51
|
Donnelly DF. Developmental changes in membrane properties of chemoreceptor afferent neurons of the rat petrosal ganglia. J Neurophysiol 1999; 82:209-15. [PMID: 10400949 DOI: 10.1152/jn.1999.82.1.209] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carotid body chemoreceptors increase their responsiveness to hypoxia in the postnatal period, but the mechanism for this increase is unresolved. The purpose of the present study was to examine developmental changes in cellular characteristics of chemoreceptor afferent neurons in the petrosal ganglia with the underlying hypothesis that developmental changes occur and may account for the developmental increase in chemoreceptor responsiveness. Chemoreceptor complexes (carotid body, sinus nerve, glossopharyngeal nerve, and petrosal ganglia) were harvested from rats, aged 3-40 days, and intracellular recordings were obtained from petrosal ganglion neurons using sharp electrode impalement. All chemoreceptor neurons across ages were C fibers with conduction velocities <1 m/s and generated repetitive action potentials with depolarization. Resting membrane potential was -61.3 +/- 0.9 (SE) mV (n = 78) and input resistance was 108 +/- 6 MOmega and did not significantly change with age. Cell capacitance was 32.4 +/- 1.7 pF and did not change with age. Rheobase averaged 0.21 +/- 0.02 nA and slightly increased with age. Action potentials were followed by an afterhyperpolarization of 12.4 +/- 0.6 mV and time constant 6.9 +/- 0.5 ms; only the time constant decreased with age. These results, obtained in rat, demonstrate electrophysiologic characteristics which differ substantially from that previously described in cat chemoreceptor neurons. In general developmental changes in cell characteristics are small and are unlikely to account for the developmental increase in chemoreceptor responsiveness with age.
Collapse
Affiliation(s)
- D F Donnelly
- Department of Pediatrics, Division of Respiratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
52
|
Alcayaga J, Varas R, Arroyo J, Iturriaga R, Zapata P. Dopamine modulates carotid nerve responses induced by acetylcholine on the cat petrosal ganglion in vitro. Brain Res 1999; 831:97-103. [PMID: 10411987 DOI: 10.1016/s0006-8993(99)01402-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have recently reported that application of acetylcholine (ACh) or nicotine to the petrosal ganglion-the sensory ganglion of the glossopharyngeal nerve-elicits a burst of discharges in the carotid nerve branch, innervating the carotid body and sinus, but not in the glossopharyngeal branch, innervating the tongue and pharynx. Thus, the perikarya of sensory neurons for the carotid bifurcation exhibit selective cholinosensitivity. Since dopamine (DA) modulates carotid nerve chemosensory activity, we searched for the presence of DA sensitivity at the perikarya of these neurons in the cat petrosal ganglion superfused in vitro. Applications of DA in doses of up to 5 mg to the ganglion did not modify the rate of spontaneous discharges in the carotid nerve. However, if DA was applied 30 s before ACh injections, ACh-evoked reactions were modified: low doses of DA enhanced the subsequent responses to ACh, while high doses of DA depressed the responses to ACh. This depressant effect of DA on ACh responses was partially antagonized by adding spiroperone to the superfusate. Our results show that the response to ACh of petrosal ganglion neurons projecting through the carotid nerve is modulated by DA acting on D(2) receptors located in the somata of these neurons. Thus, dopaminergic modulation of cholinosensitivity could be shared also by the membranes of peripheral endings and perikarya of primary sensory neurons involved in arterial chemoreception.
Collapse
Affiliation(s)
- J Alcayaga
- Laboratory of Neurobiology, Faculty of Sciences, University of Chile, PO Box 653, Santiago 1, Chile.
| | | | | | | | | |
Collapse
|
53
|
BDNF is a target-derived survival factor for arterial baroreceptor and chemoafferent primary sensory neurons. J Neurosci 1999. [PMID: 10066266 DOI: 10.1523/jneurosci.19-06-02131.1999] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) supports survival of 50% of visceral afferent neurons in the nodose/petrosal sensory ganglion complex (NPG; Ernfors et al., 1994a; Jones et al., 1994; Conover et al., 1995; Liu et al., 1995; Erickson et al., 1996), including arterial chemoafferents that innervate the carotid body and are required for development of normal breathing (Erickson et al., 1996). However, the relationship between BDNF dependence of visceral afferents and the location and timing of BDNF expression in visceral tissues is unknown. The present study demonstrates that BDNF mRNA and protein are transiently expressed in NPG targets in the fetal cardiac outflow tract, including baroreceptor regions in the aortic arch, carotid sinus, and right subclavian artery, as well as in the carotid body. The period of BDNF expression corresponds to the onset of sensory innervation and to the time at which fetal NPG neurons are BDNF-dependent in vitro. Moreover, baroreceptor innervation is absent in newborn mice lacking BDNF. In addition to vascular targets, vascular afferents themselves express high levels of BDNF, both during and after the time they are BDNF-dependent. However, endogenous BDNF supports survival of fetal NPG neurons in vitro only under depolarizing conditions. Together, these data indicate two roles for BDNF during vascular afferent pathway development; initially, as a target-derived survival factor, and subsequently, as a signaling molecule produced by the afferents themselves. Furthermore, the fact that BDNF is required for survival of functionally distinct populations of vascular afferents demonstrates that trophic requirements of NPG neurons are not modality-specific but may instead be associated with innervation of particular organ systems.
Collapse
|
54
|
Nurse CA, Zhang M. Acetylcholine contributes to hypoxic chemotransmission in co-cultures of rat type 1 cells and petrosal neurons. RESPIRATION PHYSIOLOGY 1999; 115:189-99. [PMID: 10385033 DOI: 10.1016/s0034-5687(99)00017-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The neurotransmitter mechanisms that mediate chemosensory transmission in the mammalian carotid body (CB), i.e. the primary arterial P(O2) detector, are controversial. Given the inherent difficulty of recording from afferent terminals in situ, the authors have adopted an alternative approach based on co-culture of dissociated CB receptor (type 1) cell clusters and petrosal neurons (PN) from 8-14-day-old rat pups. Electrophysiological, perforated patch recordings from petrosal somas, juxtaposed to type 1 clusters, revealed the development of a high incidence of functional 'synapses' in vitro. Recent evidence has strengthened the case for acetylcholine (ACh) as a co-released transmitter: (i) cultured type 1 cells express several cholinergic markers including the vesicular ACh transporter (VAChT), intracellular acetylcholinesterase (AChE), and occasional clear cored vesicles (approximately 50 nm diameter); (ii) the frequency of spontaneous synaptic activity, as well as the hypoxia-induced depolarization recorded in 'juxtaposed' PN in co-culture, were partially suppressed by the nicotinic ACh receptor (nAChR) blocker, mecamylamine (2 microM); (iii) consistent with the presence of extracellular AChE, ACh-mediated membrane noise in type 1 cells as well as the hypoxia-evoked PN response in co-culture were potentiated in a few cases by the AChE inhibitor, eserine (100 microM). Thus, since many PN and type 1 cells express mecamylamine-sensitive nAChR, released ACh may act presynaptically on type 1 cell autoreceptors and/or postsynaptically on petrosal terminals. Other CB transmitter candidates (e.g. 5-HT and ATP) were found to excite PN, though their potential role as co-released sensory transmitters requires further investigation.
Collapse
Affiliation(s)
- C A Nurse
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
55
|
Sun SY, Wang W, Zucker IH, Schultz HD. Enhanced activity of carotid body chemoreceptors in rabbits with heart failure: role of nitric oxide. J Appl Physiol (1985) 1999; 86:1273-82. [PMID: 10194213 DOI: 10.1152/jappl.1999.86.4.1273] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An enhanced peripheral chemoreflex has been documented in patients with chronic heart failure (CHF). This study aimed to examine the characteristics of carotid body (CB) chemoreceptors in response to isocapnic hypoxia in a rabbit model of pacing-induced CHF and to evaluate the possible role that nitric oxide (NO) plays in the altered characteristics. The chemosensitive characteristics of the CB were evaluated by recording single-unit activity from the carotid sinus nerve in both an intact and a vascularly isolated preparation. It was found that the baseline discharge under normoxia (intact preparation: arterial PO2 90-95 Torr; isolated preparation: PO2 100-110 Torr) and the chemosensitivity in response to graded hypoxia (PO2 40-70 Torr) were enhanced in CHF vs. sham rabbits. These alterations were independent of the CB preparations (intact vs. isolated). NO synthase inhibition by Nomega-nitro-L-arginine increased the baseline discharge and the chemosensitivity in the intact preparation, whereas L-arginine (10(-5) M) inhibited the baseline discharge and the chemosensitivity in the isolated preparation in sham but not in CHF rabbits. S-nitroso-N-acetylpenicillamine, an NO donor, inhibited the baseline discharge and the chemosensitivity in both CB preparations in CHF rabbits but only in the isolated preparation in sham rabbits. The amount of NO produced in vitro by the CB under normoxia was less in CHF rabbits than in sham rabbits (P < 0.05). NO synthase-positive varicosities of nerve fibers within the CB were less in CHF rabbits than in sham rabbits (P < 0.05). These data indicate that an enhanced input from CB occurs in the rabbit model of pacing-induced CHF and that an impairment of NO production may contribute to this alteration.
Collapse
Affiliation(s)
- S Y Sun
- Department of Physiology and Biophysics, University of Nebraska College of Medicine, Omaha, Nebraska 68198-4575, USA
| | | | | | | |
Collapse
|
56
|
Zhong H, Zhang M, Nurse CA. Electrophysiological characterization of 5-HT receptors on rat petrosal neurons in dissociated cell culture. Brain Res 1999; 816:544-53. [PMID: 9878879 DOI: 10.1016/s0006-8993(98)01232-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The petrosal ganglion supplies chemoafferent pathways via the glossopharyngeal (IXth) nerve to peripheral targets which release various neurotransmitters including serotonin (5-HT). Here, we combined rapid 5-HT application with patch clamp, whole-cell recording to investigate whether 5-HT receptors are expressed on isolated petrosal neurons (PN), cultured from 7-12 day-old rat pups. In responsive cells, the dominant effect of 5-HT was a rapid depolarization associated with a conductance increase in approximately 43% of the neurons (53/123); however, in a minority population ( approximately 6%; 8/123), 5-HT caused membrane depolarization associated with a conductance decrease. In the former group, 5-HT produced a transient inward current (I5-HT) in neurons voltage-clamped near the resting potential ( approximately -60 mV); the effect was mimicked by the 5-HT3 receptor-specific agonist, 2-methyl-5-HT, suggesting it was mediated by 5-HT3 receptors. Further, I5-HT was selectively inhibited by the 5-HT3 receptor-specific antagonist MDL72222 (1-10 microM), but was unaffected by either 5-HT1/5-HT2 receptor antagonist, spiperone, or by 5-HT2 receptor-specific antagonist, ketanserin (50-100 microM). I5-HT displayed moderate inward rectification and had a mean reversal potential (+/-S.E.M.) of -4.3+/-6.6 mV (n=6). Application of 5-HT (dose range: 0.1-100 microM) produced a dose-response curve that was fitted by the Hill equation with EC50= approximately 3.4 microM and Hill coefficient= approximately 1.6 (n=8). The activation phase of I5-HT (10 microM 5-HT at -60 mV) was well fitted by a single exponential with mean (+/-S.E.M.) time constant of 45+/-30 ms (n=6). The desensitization phase of I5-HT was best fitted by a single exponential with mean (+/-S.E.M.) time constant of 660+/-167 ms (n=6). Fluctuation analysis yielded an apparent mean single-channel conductance (+/-S.E.M) of 2.7+/-1.5 pS (n=4) at -60 mV. In the minority ( approximately 6%) population of neurons which responded to 5-HT with a conductance decrease, the depolarization was blocked by the 5-HT2 receptor antagonist, ketanserin (50 microM). Taken together, these results suggest that 5-HT3 receptors are the major subtype expressed by rat petrosal neurons, and therefore are candidates for facilitating chemoafferent excitation in response to 5-HT released from peripheral targets.
Collapse
Affiliation(s)
- H Zhong
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, Canada
| | | | | |
Collapse
|
57
|
Shirahata M, Ishizawa Y, Rudisill M, Schofield B, Fitzgerald RS. Presence of nicotinic acetylcholine receptors in cat carotid body afferent system. Brain Res 1998; 814:213-7. [PMID: 9838124 DOI: 10.1016/s0006-8993(98)01015-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
With immunocytochemical techniques using a monoclonal antibody for alpha7 subunits of neuronal nicotinic acetylcholine receptors, we have found these subunits to be exclusively expressed in nerve fibers in the carotid body. Double-immunostaining showed that alpha7 subunit-positive nerve endings enveloped tyrosine hydroxylase-positive glomus cells. Some carotid sinus nerve fibers and tyrosine hydroxylase-positive petrosal ganglion neurons also expressed alpha7 subunits. These data support a role for acetylcholine in carotid body neurotransmission.
Collapse
Affiliation(s)
- M Shirahata
- Department of Environmental Health Sciences, The Johns Hopkins Medical Institutions, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
58
|
Gauda EB, Bamford OS, Northington FJ. Lack of induction of substance P gene expression by hypoxia and absence of neurokinin 1-receptor mRNAs in the rat carotid body. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1998; 74:100-8. [PMID: 9915624 DOI: 10.1016/s0165-1838(98)00141-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peripheral chemoreceptors are commonly thought to respond to hypoxia by releasing neurotransmitters from the type 1 cells of the carotid body; these molecules then bind to post-synaptic receptors on the carotid sinus nerve. The tachykinin substance P (SP) may act as an important neurotransmitter/neuromodulator in hypoxic chemotransmission in peripheral arterial chemoreceptors. In order to elucidate the role of SP in modulating hypoxic chemotransmission, we have used quantitative in situ hybridization histochemistry, to determine the effect of hypoxia on SP gene induction, and the localization of neurokinin 1 (NK-1) receptor mRNA in the carotid body and petrosal ganglia complex in rats at 21 days post-natal age. For comparison, we also determined: (1) the effect of hypoxia on tyrosine hydroxylase (TH) gene induction and (2) the localization of the mRNA encoding the D2-dopamine receptor. SP mRNA was not detected in the rat carotid body during normoxia and its expression was not induced after a 1 h of exposure to hypoxia (10% O2/90% N2), a stimulus that was sufficient to cause a significant increase (P < 0.01) in TH mRNA levels in the carotid body. Both SP and TH mRNAs were abundantly expressed in multiple cells in the petrosal and the jugular ganglia. However, these mRNAs were not co-localized and SP and TH mRNA levels were not affected by hypoxia in these ganglia. Although D2-dopamine receptor mRNA was abundantly expressed in the rat carotid body, we found no evidence of NK-1 receptor mRNA in the carotid body. In contrast, both NK-1 receptor mRNA and D2-dopamine receptor mRNA were present in petrosal ganglion cells. In the rat, SP does not appear to modulate hypoxic chemotransmission by being made in and released from type 1 cells in the carotid body, and neither does SP modulate the activity of type 1 cells by binding to NK-1 receptors on these cells.
Collapse
Affiliation(s)
- E B Gauda
- Department of Pediatrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287-3200, USA.
| | | | | |
Collapse
|
59
|
Kusakabe T, Hayashida Y, Matsuda H, Gono Y, Powell FL, Ellisman MH, Kawakami T, Takenaka T. Hypoxic adaptation of the peptidergic innervation in the rat carotid body. Brain Res 1998; 806:165-74. [PMID: 9739132 DOI: 10.1016/s0006-8993(98)00742-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The abundance of substance P (SP)-, calcitonin gene-related peptide (CGRP)-, vasoactive intestinal polypeptide (VIP)-, and neuropeptide Y (NPY)-immunoreactive nerve fibers in the carotid body was compared between normoxic and chronically hypoxic rats (10% O2 and 3.0-4.0% CO2 for 3 months). The immunoreactive fibers appeared as thin processes with many varicosities, and were distributed mainly around the vasculatures. In the normoxic control carotid body, NPY fibers were more numerous than VIP, CGRP, and SP fibers. In the chronically hypoxic rats, the carotid body was enlarged several fold, and the mean absolute number of VIP and NPY fibers was 3.88 and 2.22 times higher than in the normoxic carotid body, respectively, although that of SP and CGRP fibers was not changed. When expressed as density per unit area of the parenchyma, the density of SP and CGRP fibers in the chronically hypoxic carotid body decreased significantly to under 50%, the density of VIP fibers increased significantly 1.80 times, and the density of NPY fibers were unchanged. Immunoreactivity for four neuropeptides was not found in the glomus cells of normoxic or chronically hypoxic carotid bodies. These results suggest that altered peptidergic innervation of the chronically hypoxic carotid body is one feature of hypoxic adaptation. Because these neuropeptides are vasoactive in nature, altered carotid body circulation may contribute to modulation of the chemosensory mechanisms by chronic hypoxia.
Collapse
Affiliation(s)
- T Kusakabe
- Department of Anatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Erickson JT, Mayer C, Jawa A, Ling L, Olson EB, Vidruk EH, Mitchell GS, Katz DM. Chemoafferent degeneration and carotid body hypoplasia following chronic hyperoxia in newborn rats. J Physiol 1998; 509 ( Pt 2):519-26. [PMID: 9575300 PMCID: PMC2230960 DOI: 10.1111/j.1469-7793.1998.519bn.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. To define the role of environmental oxygen in regulating postnatal maturation of the carotid body afferent pathway, light and electron microscopic methods were used to compare chemoafferent neurone survival and carotid body development in newborn rats reared from birth in normoxia (21 % O2) or chronic hyperoxia (60 % O2). 2. Four weeks of chronic hyperoxia resulted in a significant 41 % decrease in the number of unmyelinated axons in the carotid sinus nerve, compared with age-matched normoxic controls. In contrast, the number of myelinated axons was unaffected by hyperoxic exposure. 3. Chemoafferent neurones, located in the glossopharyngeal petrosal ganglion, already exhibited degenerative changes following 1 week of hyperoxia from birth, indicating that even a relatively short hyperoxic exposure was sufficient to derange normal chemoafferent development. In contrast, no such changes were observed in the vagal nodose ganglion, demonstrating that the effect of high oxygen levels was specific to sensory neurones in the carotid body afferent pathway. Moreover, petrosal ganglion neurones were sensitive to hyperoxic exposure only during the early postnatal period. 4. Chemoafferent degeneration in chronically hyperoxic animals was accompanied by marked hypoplasia of the carotid body. In view of previous findings from our laboratory that chemoafferent neurones require trophic support from the carotid body for survival after birth, we propose that chemoafferent degeneration following chronic hyperoxia is due specifically to the loss of target tissue in the carotid body.
Collapse
Affiliation(s)
- J T Erickson
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Wang ZZ, Dinger B, Fidone SJ, Stensaas LJ. Changes in tyrosine hydroxylase and substance P immunoreactivity in the cat carotid body following chronic hypoxia and denervation. Neuroscience 1998; 83:1273-81. [PMID: 9502265 DOI: 10.1016/s0306-4522(97)00440-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Long-term hypoxia elicits functional changes in the cat carotid body which are manifest as altered chemosensitivity in response to hypoxia. Previous studies have suggested that these functional adjustments may be mediated by changes in neurotransmitter levels in chemosensory type I cells. Neurotransmitter metabolism in the carotid body has also been shown to be regulated by the neural innervation to the organ. The present study using the cat carotid body demonstrates profound changes in the levels of immunoreactivity of the catecholamine-synthesizing enzyme, tyrosine hydroxylase, and the neuropeptide, substance P, in response to a two-week exposure to hypoxia (10% O2 in 90% N2). Furthermore, these changes were modulated both by sensory and sympathetic denervation of the organ. For TH, the intensity of immunostaining in type I cells was markedly increased by long-term hypoxia in both normal and chronic carotid sinus nerve-denervated carotid bodies, but this effect was blocked following chronic sympathectomy. Substance P immunoreactivity in type I cells was dramatically attenuated by hypoxia in both intact and chronic carotid sinus nerve-denervated preparations, but this effect was reduced following chronic sympathectomy. Tyrosine hydroxylase- and substance P-positive axon terminals were observed to innervate type I cells. These axons were also present in chronically sympathectomized preparations, but they disappeared following chronic carotid sinus nerve-denervation suggesting that they very likely arise from sensory neurons in the petrosal ganglion. Our data indicate that chronic chemoreceptor stimulation by hypoxia elicits multiple neurochemical adjustments in the cat carotid body. These changes suggest that catecholaminergic enzymes and neuropeptides play a significant role in the adaptive mechanisms of chemoreceptor function which occur in response to chronic physiological stimulation. Furthermore, the data suggest that neurotrophic mechanisms may influence neurotransmitter metabolism in chemosensory type I cells.
Collapse
Affiliation(s)
- Z Z Wang
- Department of Physiology, University of Utah School of Medicine, Salt Lake City 84108, USA
| | | | | | | |
Collapse
|
62
|
Iturriaga R, Alcayaga J. Effects of CO2-HCO3- on catecholamine efflux from cat carotid body. J Appl Physiol (1985) 1998; 84:60-8. [PMID: 9451618 DOI: 10.1152/jappl.1998.84.1.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using a chronoamperometric technique with carbon-fiber microelectrodes and neural recordings, we simultaneously measured the effects of the following procedures on catecholamine efflux (delta CA) and frequency of chemosensory discharges (fx) from superfused cat carotid body: 1) the addition of CO2-HCO3- to Tyrode solution previously buffered with N-2-hydroxyethylpiperazine-N'-2-ethane-sulfonic acid, maintaining pH at 7.40; 2) hypercapnia (10% CO2, pH 7.10); 3) hypoxia (PO2 h approximately 40 Torr) with and without CO2-HCO3-; and 4) the impact of several boluses of dopamine (DA; 10-100 micrograms) on hypoxic and hypercapnic challenges. With CO2-HCO3-, hypoxia increased fx which preceded delta CA increases, whereas hypercapnia raised fx but did not consistently increase delta CA. Repeated stimuli induced similar fx increases, but attenuated delta CA. After DA, hypoxia produced larger delta CA, which preceded chemosensory responses. Without CO2-HCO3-, hypoxia produced a similar pattern of delta CA and fx responses. Switching to Tyrode solution with CO2-HCO3- at pH 7.40 raised fx but did not increase delta CA. With CO2-HCO3- and after DA, hypoxic-induced delta CAs were larger than in its absence. Results suggest that DA release is not essential for chemosensory excitation.
Collapse
Affiliation(s)
- R Iturriaga
- Laboratory of Neurobiology, P. Catholic University of Chile, Santiago, Chile.
| | | |
Collapse
|
63
|
Zhong H, Zhang M, Nurse CA. Synapse formation and hypoxic signalling in co-cultures of rat petrosal neurones and carotid body type 1 cells. J Physiol 1997; 503 ( Pt 3):599-612. [PMID: 9379414 PMCID: PMC1159844 DOI: 10.1111/j.1469-7793.1997.599bg.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. To investigate synaptic mechanisms mediating chemosensory signalling in the carotid body, we developed co-cultures of chemoreceptor type 1 cell clusters and dissociated petrosal neurones (PNs) from 7- to 14-day-old rat pups and tested for functional connectivity in CO2-HCO3(-)-or Hepes-buffered medium at approximately 35 degrees C. 2. When cultured without type 1 cells, PNs were almost always quiescent (n = 104) and unresponsive to hypoxia (Po2 = 5-25 mmHg) during perforated patch, whole-cell recordings of membrane potential or voltage-activated currents; in contrast, many PNs (77 out of 170) that were juxtaposed to type 1 cell clusters in co-culture displayed spontaneous activity, comprising spikes and subthreshold potentials (SSPs) that resembled synaptic potentials. 3. Additional tests suggested that de novo chemical synapses developed between PNs and type 1 cell clusters in vitro. For example: (i) the spontaneous activity was reversibly suppressed by substituting low calcium-high magnesium in the bath; (ii) SSPs had variable amplitudes and persisted following action potential blockade with TTX (1 microM); (iii) the interval distribution between successive spontaneous events appeared random; and (iv) the frequency of spontaneous potentials was diminished (reversibly) by the nicotinic antagonist hexamethonium (100 microM), suggesting contributions from the spontaneous release of ACh. 4. Many complexes of 'juxtaposed' PNs and type 1 clusters were physiologically functional, since exposure to hypoxia caused a reversible depolarization and/or increased spike discharge in approximately 30% of such neurones (n = 140). The hypoxia-induced spike discharge persisted in the presence of the dopamine D2 receptor blocker spiperone (10-50 microM; n = 5); however, this discharge was reversibly inhibited by 100-200 microM hexamethonium, suggesting that it was mediated, at least in part, by ACh acting through nicotinic receptors. 5. The hypoxia-induced spike discharge and frequency of spontaneous potentials in co-cultured PNs were reversibly suppressed when the buffer was switched from CO2-HCO3- to Hepes (10 mM) at pH 7.4; further, 'functional' PNs that displayed spontaneous activity and/or hypoxia-induced responses in co-culture were encountered more frequently in CO2-HCO3- (> or = 40%) than in Hepes (< or = 26%) buffer. 6. We conclude that functional chemical synapses can develop de novo in cultures of carotid body type 1 cells and PNs and that ACh is probably an important excitatory neurotransmitter secreted from type 1 cells during hypoxic chemotransduction in the rat carotid body.
Collapse
Affiliation(s)
- H Zhong
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
64
|
Zhong H, Nurse CA. Nicotinic acetylcholine sensitivity of rat petrosal sensory neurons in dissociated cell culture. Brain Res 1997; 766:153-61. [PMID: 9359598 DOI: 10.1016/s0006-8993(97)00526-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using whole-cell, patch-clamp techniques we investigated acetylcholine (ACh) sensitivity of dissociated sensory neurons from rat petrosal ganglia after 4 h-14 days in vitro. In approx. 68% of petrosal neurons (PN; n = 109) ACh, applied by fast perfusion or pressure ejection from a 'puffer' pipette, caused a rapid depolarization associated with a conductance increase. Under voltage clamp near the resting potential (approx. - 60 mV), ACh induced a hexamethonium-sensitive, inward current (IACh), mimicked by nicotine application, suggesting the presence of neuronal nicotinic acetylcholine receptors (nAChR). The reversal potential of IACh occurred near 0 mV (n = 4), a region where the I-V curve displayed a prominent rectification. The dose-response relation for IACh versus ACh concentration was fitted by the Hill equation with EC50 = approx. 33.9 microM and Hill coefficient = approx. 1.6. The activation phase of IACh was well fitted by a single exponential with mean (+/- S.E.M.) time constant of 102 +/- 82 ms (n = 6); the desensitization phase of IACh was best fitted by the sum of two exponentials, with time constant of 870 +/- 210 ms (n = 6) and 8576 +/- 1435 ms (at -70 mV). Fluctuation analysis yielded an apparent single-channel conductance of 21.6 +/- 10 pS (mean +/- S.E.M.; n = 4). These data indicate that a major subpopulation of sensory neurons in visceral petrosal ganglia of the rat express nAChR. Thus, if similar receptors are present on corresponding nerve terminals, they could mediate fast afferent excitation in response to ACh released at peripheral targets, e.g., the chemosensory carotid body.
Collapse
Affiliation(s)
- H Zhong
- Department of Biology, McMaster University, Hamilton, Ont., Canada
| | | |
Collapse
|
65
|
Lahiri S. Peripheral Chemoreceptors and Their Sensory Neurons in Chronic States of Hypo‐ and Hyperoxygenation. Compr Physiol 1996. [DOI: 10.1002/cphy.cp040251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
66
|
Gauda EB, Bamford O, Gerfen CR. Developmental expression of tyrosine hydroxylase, D2-dopamine receptor and substance P genes in the carotid body of the rat. Neuroscience 1996; 75:969-77. [PMID: 8951888 DOI: 10.1016/0306-4522(96)00312-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alterations in the level of putative neurotransmitters/neuromodulators and corresponding receptors may be a possible mechanism involved in changes in chemosensitivity of peripheral chemoreceptors in the carotid body during development. Using quantitative in situ hybridization histochemistry, levels of messenger RNAs encoding tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, the D2-dopamine receptor and substance P of newborn rats at postnatal days 0, 2, 14 and 21 were determined. For comparison, during the same time points during development, we also determined the level of expression of these messenger RNAs in the cells of the superior cervical ganglion which are not chemosensitive. Tyrosine hydroxylase and D2-dopamine receptor messenger RNAs were co-localized in many of the cells in both the carotid body and the superior cervical ganglion. In the carotid body, the level of tyrosine hydroxylase messenger RNA expression was greatest at birth, significantly decreased by 48 h postnatal age and remained decreased at 14 and 21 postnatal days. In contrast, D2-dopamine receptor messenger RNA levels significantly increased with postnatal age in the carotid body. This profile of an D2-dopamine receptor was not observed in the superior cervical ganglion where tyrosine hydroxylase and D2-dopamine receptor messenger RNAs levels did not significantly change from postnatal days 0 to 21. Lastly, in the rat carotid body, substance P messenger RNA was not detected. However, substance P messenger RNA was abundant in the nodose and petrosal ganglion. The increasing contribution of carotid body on ventilation with increasing postnatal age is associated with changes in levels of gene expression for tyrosine hydroxylase and D2-dopamine receptor in the carotid body.
Collapse
Affiliation(s)
- E B Gauda
- Department of Pediatrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287-3200, USA
| | | | | |
Collapse
|
67
|
Mice lacking brain-derived neurotrophic factor exhibit visceral sensory neuron losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing. J Neurosci 1996. [PMID: 8757249 DOI: 10.1523/jneurosci.16-17-05361.1996] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT4) act via the TrkB receptor and support survival of primary somatic and visceral sensory neurons. The major visceral sensory population, the nodose-petrosal ganglion complex (NPG), requires BDNF and NT4 for survival of a full complement of neurons, providing a unique opportunity to compare gene dosage effects between the two TrkB ligands and to explore the possibility that one ligand can compensate for loss of the other. Analysis of newborn transgenic mice lacking BDNF or NT4, or BDNF and NT4, revealed that survival of many NPG afferents is proportional to the number of functional BDNF alleles, whereas only one functional NT4 allele is required to support survival of all NT4-dependent neurons. In addition, subpopulation analysis revealed that BDNF and NT4 can compensate for the loss of the other to support a subset of dopaminergic ganglion cells. Together, these data demonstrate that the pattern of neuronal dependencies on BDNF and NT4 in vivo is far more heterogeneous than predicted from previous studies in culture. Moreover, BDNF knockout animals lack a subset of afferents involved in ventilatory control and exhibit severe respiratory abnormalities characterized by depressed and irregular breathing and reduced chemosensory drive. BDNF is therefore required for expression of normal respiratory behavior in newborn animals.
Collapse
|
68
|
Poncet L, Denoroy L, Dalmaz Y, Pequignot JM, Jouvet M. Alteration in central and peripheral substance P- and neuropeptide Y-like immunoreactivity after chronic hypoxia in the rat. Brain Res 1996; 733:64-72. [PMID: 8891249 DOI: 10.1016/0006-8993(96)00539-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The influence of long-term hypoxia on substance P (SP) and neuropeptide Y (NPY)-like immunoreactivity (LI) in discrete brain areas and peripheral structures was assessed by radioimmunoassay. Rats were exposed to normobaric hypoxia (10% O2 in nitrogen) for 14 days. In the carotid bodies of hypoxic animals, NPY-LI was significantly increased (56% vs. normoxic controls) while SP-LI was unchanged. In the brain, NPY-LI was increased in the ventrolateral medulla oblongata (23%) and in the striatum (53%); however, SP-LI was unaltered in these two regions. In the anterior pituitary, NPY-LI was increased (99%), while SP-LI was decreased (37%). No significant alteration in NPY-LI and SP-LI was observed in other discrete brain areas or peripheral structures studied. These results show that, in the rat, long-term hypoxia induces changes in NPY-LI or SP-LI in a few central and peripheral structures; these biochemical alterations may be linked to adaptative mechanisms involving morphological changes in carotid bodies or alterations in sympathetic control and neuroendocrine function.
Collapse
Affiliation(s)
- L Poncet
- Département de Médecine Expérimentale, INSERM U 52, CNRS ERS 5645, Université Claude Bernard, Lyon, France.
| | | | | | | | | |
Collapse
|
69
|
Massari VJ, Shirahata M, Johnson TA, Gatti PJ. Carotid sinus nerve terminals which are tyrosine hydroxylase immunoreactive are found in the commissural nucleus of the tractus solitarius. JOURNAL OF NEUROCYTOLOGY 1996; 25:197-208. [PMID: 8737172 DOI: 10.1007/bf02284796] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tyrosine hydroxylase immunoreactive sensory neurons in the petrosal ganglion selectively innervate the carotid body via the carotid sinus nerve. Central projections of the carotid sinus nerve were traced with horseradish peroxidase. The commissural nucleus of the tractus solitarius was examined by dual labelling light and electron microscopy. Dense bilateral labelling with horseradish peroxidase was found in the tractus solitarius and commissural nucleus of the tractus solitarius. Horseradish peroxidase was found in unmyelinated axons, myelinated axons, and nerve terminals. About 88% of horseradish peroxidase-labelled carotid sinus nerve axons were unmyelinated. Tyrosine hydroxylase immunoreactivity was identified in unmyelinated axons, myelinated axons, dendrites, perikarya, and nerve terminals. Most tyrosine hydroxylase immunoreactive axons (93%) in the commissural nucleus of the tractus solitarius were unmyelinated. Tyrosine hydroxylase immunoreactivity was simultaneously identified in carotid sinus nerve unmyelinated axons, myelinated axons, and nerve terminals. These double-labelled terminals comprised 28% of the number of tyrosine hydroxylase immunoreactive terminals in the commissural nucleus of the tractus solitarius, and 55% of transganglionically-labelled terminals. Therefore, there are both central and peripheral sources of tyrosine hydroxylase immunoreactive nerve terminals in the commissural nucleus of the tractus solitarius. These data support the hypothesis that peripheral tyrosine hydroxylase immunoreactive neurons are involved in the origination of the chemoreceptor reflex. Axo-axonic synapses between peripheral carotid sinus nerve afferent terminals and central terminals containing tyrosine hydroxylase immunoreactivity were observed in 22% of the axo-axonic synapses observed. Thus, central tyrosine hydroxylase immunoreactivity neurons are involved in the modulation of the chemo-and/or baroreceptor reflexes. Synaptic contacts were not observed between carotid sinus nerve afferents and tyrosine hydroxylase immunoreactive perikarya of dendrites. Catecholaminergic neurons are thus unlikely to be the second order neurons of either the chemo-or baroreceptor reflex in the commissural nucleus of the tractus solitarius.
Collapse
Affiliation(s)
- V J Massari
- Department of Pharmacology, Howard University, College of Medicine, Washington, DC 20059, USA
| | | | | | | |
Collapse
|
70
|
Lawrence AJ, Jarrott B. Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Prog Neurobiol 1996; 48:21-53. [PMID: 8830347 DOI: 10.1016/0301-0082(95)00034-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The central control of cardiovascular function has been keenly studied for a number of decades. Of particular interest are the homeostatic control mechanisms, such as the baroreceptor heart-rate reflex, the chemoreceptor reflex, the Bezold-Jarisch reflex and the Breuer-Hering reflex. These neurally-mediated reflexes share a common termination point for their respective centrally-projecting sensory afferents, namely the nucleus tractus solitarius (NTS). Thus, the NTS clearly plays a critical role in the integration of peripherally initiated sensory information regarding the status of blood pressure, heart rate and respiratory function. Many endogenous neurochemicals, from simple amino acids through biogenic amines to complex peptides have the ability to modulate blood pressure and heart rate at the level of the NTS. This review will attempt to collate the current knowledge regarding the roles of neuromodulators in the NTS, the receptor types involved in mediating observed responses and the degree of importance of such neurochemicals in the tonic regulation of the cardiovascular system. The neural pathway that controls the baroreceptor heart-rate reflex will be the main focus of attention, including discussion of the identity of the neurotransmitter(s) thought to act at baroafferent terminals within the NTS. In addition, this review will provide a timely update on the use of recently developed molecular biological techniques that have been employed in the study of the NTS, complementing more classical research.
Collapse
Affiliation(s)
- A J Lawrence
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
71
|
Marron K, Wharton J, Sheppard MN, Fagan D, Royston D, Kuhn DM, de Leval MR, Whitehead BF, Anderson RH, Polak JM. Distribution, morphology, and neurochemistry of endocardial and epicardial nerve terminal arborizations in the human heart. Circulation 1995; 92:2343-51. [PMID: 7554220 DOI: 10.1161/01.cir.92.8.2343] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The heart contains a variety of morphologically distinct nerve terminals known to influence cardiac function. Little is known about the distribution, morphology, and neurochemistry of these terminals in the human heart. METHODS AND RESULTS We examined the entire endocardial and epicardial surfaces of infant and adult hearts obtained postmortem and at transplantation using immunohistochemical and histochemical staining of whole-mount preparations in conjunction with confocal and fluorescence microscopy. Terminals arising from nerve fibers (diameter, 6 to 10 microns) immunoreactive for myelin basic protein were identified in the atrial endocardium, epicardium, and coronary sinus, and four types were distinguished by differences in immunostained nerve area (range, 358 to 797 microns 2) and dispersion (range, 620 to 4684 microns 2). These terminals displayed immunoreactivity for tyrosine hydroxylase, neuropeptide Y, and the general neural marker protein gene product 9.5. Acetylcholinesterase (AChE) activity was detected in < 5% of endocardial terminals and in no epicardial terminals arising from myelinated fibers. The latter were observed in close proximity to mesothelial cells, and nerve fibers supplying these terminals were found to be associated with local ganglia. A distinct population of terminals (mean stained area, 35 microns 2; 18 to 53 microns 2, 95% CI; and mean dispersion, 59 microns 2; 38 to 80 microns 2, 95% CI) was demonstrated to arise from nonmyelinated fibers (mean diameter, 2.5 microns; 2.2 to 2.8 microns, 95% CI) in the endocardial plexus of the atria and left ventricle and were predominantly AChE-positive. CONCLUSIONS Specialized nerve terminals are distributed more widely in the human heart than has been described in experimental animals. These terminals express either AChE activity or tyrosine hydroxylase and neuropeptide Y immunoreactivity, suggesting that acetylcholine, catecholamines, and neuropeptide Y may be present in sensory and autonomic nerves in the human heart.
Collapse
Affiliation(s)
- K Marron
- Department of Histochemistry, Royal Postgraduate Medical School, London, England
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
The present study examined expression and plasticity of the neuropeptide, galanin, in carotid body afferent neurons in the petrosal ganglion of the adult rat. The pattern of galanin expression was compared with that of tyrosine hydroxylase, a selective marker of dopaminergic carotid body afferents in the petrosal ganglion. In normal animals, only 3% of tyrosine hydroxylase-containing petrosal ganglion neurons co-expressed galanin. Retrograde labeling studies, in which FluoroGold was injected into the vascularly isolated carotid body, demonstrated that all tyrosine hydroxylase-positive-galanin-positive cells in the petrosal ganglion project to this target. In addition, however, we unexpectedly found that galanin expression was markedly increased in the petrosal ganglion following FluoroGold injection into the carotid body. On the other hand, tyrosine hydroxylase expression was unchanged, indicating that monoaminergic and peptidergic traits can be differentially regulated in these cells. In summary, these data demonstrate that monoaminergic chemoafferent neurons can co-express a peptidergic trait, similar to catecholaminergic neurons within the central and autonomic nervous systems, and that these cells retain the potential for phenotypic plasticity in adulthood.
Collapse
Affiliation(s)
- J C Finley
- Department of Medicine, University Hospitals of Cleveland, OH 44106, USA
| | | | | |
Collapse
|
73
|
Abstract
1. In the present study in vitro electrophysiology and receptor autoradiography were used to determine whether rat vagal afferent neurones possess dopamine D2 receptors. 2. Dopamine (10-300 microM) elicited a temperature- and concentration-dependent depolarization of the rat isolated nodose ganglion preparation. When applied to the tissue 15 min prior to agonist, raclopride (10 microM), clozapine (10 microM) or a mixture of raclopride and clozapine (10 microM each) all produced a threefold parallel shift to the right of the dopamine concentration-response curve. In contrast, SCH 23390 (100 nM), phentolamine and propranolol (1 microM each) failed to antagonize the dopamine-mediated depolarization. 3. [125I]-NCQ 298 (0.5 nM), a D2 selective radioligand, bound topographically to sections of rat brainstem. Densitometric quantification of autoradiograms revealed 93.8 +/- 0.5% specific binding of this salicylamide radioligand, as determined by raclopride (10 microM, n = 10 animals). Binding was highest in the nucleus tractus solitarius (NTS), particularly the medial and gelatinous subnuclei. In addition, specific binding was also observed in the interpolar spinal trigeminal nucleus and the inferior olive. 4. Unilateral nodose ganglionectomy caused a 36.6 +/- 3.0% reduction in specific binding in the denervated NTS compared to the contralateral NTS. Furthermore, the loss of binding was confined to the dorsal aspect of the medial subnucleus of the NTS. Sham surgery had no effect on the binding of [125I]-NCQ 298 in rat brainstem. 5. The present data provide evidence for the presence of functionally relevant dopamine D2 receptors on both the soma and central terminals of rat vagal afferent neurones. In addition, the majority of D2 receptors in the rat NTS appear to be located postsynaptically with respect to vagal terminals, and are presumably located either on ascending glossopharyngeal terminals, descending terminals from higher brain regions or on neuronal cell bodies within the NTS.
Collapse
Affiliation(s)
- A J Lawrence
- Department of Pharmacology, Monash University, Clayton, Vic., Australia
| | | | | |
Collapse
|
74
|
Torrealba F, Correa R. Ultrastructure of calcitonin gene-related peptide-immunoreactive, unmyelinated afferents to the cat carotid body: a case of volume transmission. Neuroscience 1995; 64:777-85. [PMID: 7715786 DOI: 10.1016/0306-4522(94)00430-d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To relate the ultrastructure of unmyelinated afferents to the cat carotid body with the known electrophysiological properties of cat chemosensory C-fibers, we took advantage of the fact that the calcitonin gene-related peptide is exclusively present in a population of sparsely branched afferents to the carotid body. They have a morphology identical to the afferents originating from carotid sinus nerve unmyelinated axons. Immunoreactive axons were stained using pre-embedding protocols and horseradish peroxidase-labeled secondary antibody. Labeling was present only in unmyelinated axons and boutons distributed in the interstitial and parenchymal tissue. The varicosities had an average diameter of 0.7 micron, and contained both small, clear vesicles and larger dense-core vesicles. No labeled axons were ever seen to contact glomus cells, but could be observed as close as 0.2 micron to a glomus cell, always with an interposed glial process. With a very sensitive protocol, that used tungstate-stabilized tetramethylbenzidine as the chromogen, amorphous deposits of reaction product were often detected in the extracellular space around a labeled bouton. We interpret these findings as indicating that the reciprocal chemical transmission between the oxygen-sensitive glomus cells and the unmyelinated afferents takes place through non-synaptic transmission, via the rather large extracellular space of the carotid body. In addition, the larger distances between glomus cells and unmyelinated afferents could explain the lowered sensitivity and sluggishness of chemosensory C-fibers, compared to the A-fibers.
Collapse
Affiliation(s)
- F Torrealba
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago
| | | |
Collapse
|
75
|
Davis BM, Albers KM, Seroogy KB, Katz DM. Overexpression of nerve growth factor in transgenic mice induces novel sympathetic projections to primary sensory neurons. J Comp Neurol 1994; 349:464-74. [PMID: 7852636 DOI: 10.1002/cne.903490310] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Peripheral nerve crush induces novel projections from noradrenergic sympathetic neurons to sensory ganglia, and it has been suggested that these projections provide an anatomical substrate for chronic pain syndromes that occur after nerve injury. The present study demonstrates that novel sympathetic projections to sensory neurons are also induced in transgenic mice that overexpress nerve growth factor (NGF) in the skin. Specifically, a large proportion of trigeminal neurons in NGF transgenic mice were innervated by tyrosine hydroxylase (TH)-positive pericellular arborizations that were seen only rarely in controls. Electron microscopic analysis of NGF transgenic mice revealed that trigeminal neurons were surrounded by numerous axonal varicosities containing synaptic specializations. Removal of the superior cervical ganglion abolished TH-immunoreactive arborizations in the ipsilateral trigeminal ganglion confirming that these fibers were sympathetic axons. A two-site enzyme-linked immunosorbent assay revealed that transgenic ganglia contained a tenfold increase in NGF peptide compared to controls. However, reverse transcriptase polymerase chain reaction analysis showed no apparent expression of transgene mRNA in sensory ganglia, suggesting that the additional NGF was derived from increased NGF expression in the skin. These results indicate that NGF can induce novel sympathetic projections to sensory neurons in vivo and suggests a model in which increased NGF expression plays a role in the development of sympathetic hyperalgesia after nerve injury.
Collapse
Affiliation(s)
- B M Davis
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington 40536
| | | | | | | |
Collapse
|
76
|
Chen IL, Cusick CG, Weber JT, Yates RD. Synaptic morphology of substance P terminals on catecholamine neurons in the commissural subnucleus of the nucleus tractus solitarii in the rat. Microsc Res Tech 1994; 29:177-83. [PMID: 7529071 DOI: 10.1002/jemt.1070290216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ultrastructure of substance P-containing nerve terminals synapsing on catecholamine neurons in the rat commissural subnucleus of the nucleus tractus solitarii (NTScom) was studied using a double immunocytochemical labeling technique. Although there were numerous tyrosine hydroxylase-immunoreactive (TH-I) somata present, substance P immunoreactive (SP-I) cell bodies were only occasionally found in the NTScom. At the light microscopic level, many SP-I terminals were seen closely associated with TH-I dendrites and somata. At the electron microscopic level, SP-I terminals synapsing on TH-I structures were also readily encountered. SP-I terminals contained small, clear, and predominantly spherical vesicles (32 +/- 4 nm diameter), as well as large dense-cored vesicles approximately 100 nm in diameter. Postsynaptic TH-I dendritic profiles of various calibers and somata were encountered. These postsynaptic TH-I structures often showed postsynaptic densities. The morphological features of the SP-TH synapses in the present study, that is, the size of synaptic vesicles and the presence of postsynaptic densities, are quite different from those of central carotid sinus afferent synapses reported in our previous study [Chen et al. (1992), J. Neurocytol., 21:137-147]. Therefore, most of the SP terminals of the SP-TH synapses in the NTScom appear not to originate from the carotid sinus afferents. SP-I second-order neurons of the carotid sinus afferent pathway [Chen et al. (1991), J. Auton. Nerv. Syst., 33:97-98] may be one of the possible sources of such terminals.
Collapse
Affiliation(s)
- I L Chen
- Department of Anatomy, Tulane Medical School, New Orleans, Louisiana 70112
| | | | | | | |
Collapse
|
77
|
Tanaka K, Chiba T. Nitric oxide synthase containing neurons in the carotid body and sinus of the guinea pig. Microsc Res Tech 1994; 29:90-3. [PMID: 7529074 DOI: 10.1002/jemt.1070290205] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The morphology and function of the carotid sinus and carotid body have been extensively studied, but our knowledge of their transmitter(s) is still incomplete. Nitric oxide (NO) recently has been identified as a novel messenger molecule in a number of neuronal and non-neuronal tissues. Nitric oxide synthase (NOS) has been demonstrated in many neurons of the autonomic nervous system. The present study examines the distribution of NOS in the carotid sinus and body. The carotid sinus and body of newborn guinea pigs were removed for histochemical examination of NOS using the NADPH-diaphorase method. In the carotid body, many nerve fibers enveloping the glomus cells were positive for NOS. In addition, some glomus cells were positive for NOS. In the carotid sinus, NADPH-d positive fibers were distributed unevenly in the adventitia and media. These results indicate the possibility that nitric oxide plays a role in both arterial chemoreception and baroreception.
Collapse
Affiliation(s)
- K Tanaka
- Department of Anatomy, Chiba University, School of Medicine, Japan
| | | |
Collapse
|
78
|
Hertzberg T, Finley JC, Katz DM. Trophic regulation of carotid body afferent development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 360:305-7. [PMID: 7872106 DOI: 10.1007/978-1-4615-2572-1_53] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T Hertzberg
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH
| | | | | |
Collapse
|
79
|
Fan G, Katz DM. Non-neuronal cells inhibit catecholaminergic differentiation of primary sensory neurons: role of leukemia inhibitory factor. Development 1993; 118:83-93. [PMID: 8104145 DOI: 10.1242/dev.118.1.83] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although some sensory ganglion cells in mature animals are catecholaminergic, most mammalian sensory neurons that express the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH) do so only transiently during early gangliogenesis in vivo. The lack of TH expression at later stages appears to be due to modulation of this catecholaminergic potential. A previous study showed that the phenotype reappears, for example, when E16.5 and older sensory ganglia are dissociated in culture into single cells, suggesting that extracellular influences can modulate TH expression. Moreover, TH expression in dissociate cultures is cell-density dependent, as a four-fold increase in plating density led to a 30% decrease in the percentage of TH neurons. The present study demonstrates that inhibition of TH expression in high density cultures is mediated by ganglionic non-neuronal cells (NNC), as removal of NNC abolished density-dependent inhibition. Moreover, plating E16.5 trigeminal neurons at low density on top of NNC monolayers resulted in an 85% decrease in the percentage of TH neurons. Treatment of cultures with non-neuronal cell conditioned medium (NNC-CM) reproduced the effect of coculture with NNC, suggesting that diffusible factors from NNC were involved in the inhibition of TH. The inhibitory effect of NNC-CM was mimicked by treatment of dissociate cultures with ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF). However, immunoprecipitation of NNC-CM with antibodies against LIF or CNTF showed that only anti-LIF antibodies were able partially to remove the TH inhibitory activity of NNC-CM. Therefore, LIF is one, but not the only, factor mediating NNC inhibition of TH expression in cultured sensory neurons. In summary, these data indicate that ganglionic NNC can regulate sensory transmitter phenotype in culture by inhibiting expression of specific molecular traits. The finding that LIF can partially account for the inhibitory effect of ganglionic NNC on TH expression suggests a novel role for this cytokine in regulating differentiation of catecholaminergic properties in sensory neurons.
Collapse
Affiliation(s)
- G Fan
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | | |
Collapse
|
80
|
Katz DM, Finley JC, Polak J. Dopaminergic and peptidergic sensory innervation of the rat carotid body: organization and development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 337:43-9. [PMID: 7906487 DOI: 10.1007/978-1-4615-2966-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D M Katz
- Dept. of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | | | | |
Collapse
|