51
|
Abstract
Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in sensory cortex. This review first describes the systems-level effects of activating nAChRs in visual, somatosensory, and auditory cortex, and then describes, as far as possible, the underlying cellular and synaptic mechanisms. A related goal is to examine if sensory cortex can be considered a model system for cortex in general, because the use of sensory stimuli to activate neural circuits physiologically is helpful for understanding mechanisms of systems-level function and plasticity. A final goal is to highlight the emerging role of nAChRs in developing sensory cortex, and the adverse impact of early nicotine exposure on subsequent sensory-cognitive function.
Collapse
Affiliation(s)
- Raju Metherate
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, USA.
| |
Collapse
|
52
|
Fournier GN, Materi LM, Semba K, Rasmusson DD. Cortical acetylcholine release and electroencephalogram activation evoked by ionotropic glutamate receptor agonists in the rat basal forebrain. Neuroscience 2004; 123:785-92. [PMID: 14706791 DOI: 10.1016/j.neuroscience.2003.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To determine the sensitivity of basal forebrain cholinergic neurons to ionotropic glutamate receptor activation, acetylcholine was collected from the cerebral cortex of urethane-anesthetized rats using microdialysis while monitoring cortical electroencephalographic (EEG) activity. alpha-Amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA; 1, 10, or 100 microM), N-methyl-D-aspartate (NMDA; 100 or 1000 microM) or a combination of AMPA (10 microM) and NMDA (100 microM) was administered to the basal forebrain using reverse microdialysis. Both glutamate receptor agonists produced concentration-dependent, several-fold increases in acetylcholine release indicating that they activated basal forebrain cholinergic neurons; AMPA was more potent, increasing acetylcholine release at a lower concentration than NMDA. The combination of AMPA and NMDA did not produce any greater release than each drug alone, indicating that the effects of these two drugs on cholinergic neurons are not additive. EEG was analyzed by fast Fourier transforms to determine the extent of physiological activation of the cortex. The highest concentrations of AMPA and NMDA tested produced small (25%) but significant increases in high frequency activity. There was a positive correlation across animals between the increases in power in the beta (14-30 Hz) and gamma (30-58 Hz) ranges and increases in acetylcholine release. These results indicate that glutamate can activate cholinergic basal forebrain neurons via both AMPA and NMDA ionotropic receptors but has a more modest effect on EEG activation.
Collapse
Affiliation(s)
- G N Fournier
- Department of Physiology and Biophysics, Dalhousie University, NS, B3H 1X5, Halifax, Canada
| | | | | | | |
Collapse
|
53
|
Steriade M. Acetylcholine systems and rhythmic activities during the waking–sleep cycle. PROGRESS IN BRAIN RESEARCH 2004; 145:179-96. [PMID: 14650916 DOI: 10.1016/s0079-6123(03)45013-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The two processes of activation in thalamocortical systems exerted by mesopontine cholinergic neurons are (a) a direct depolarization associated with increased input resistance of thalamic relay neurons, which is antagonized by muscarinic blockers, and (b) a disinhibition of the same neurons via hyperpolarization of inhibitory thalamic reticular neurons. Low-frequency (< 15 Hz) oscillations during slow-wave sleep, characterized by rhythmic and prolonged hyperpolarizations, are suppressed by brainstem cholinergic neurons and nucleus basalis cholinergic and GABAergic neurons projecting to thalamic reticular neurons. Fast rhythms (20-60 Hz) appear during the sustained depolarization of thalamic and neocortical neurons during brain-active states that are accompanied by increased release of acetylcholine (ACh) in the thalamus and cerebral cortex. Such fast rhythms also occur during the depolarizing phases of the slow oscillation (0.5-1 Hz) in non-REM sleep. Intracellular recordings of neocortical neurons during natural states of waking and sleep demonstrate stable and increased input resistance of corticocortical and corticothalamic neurons during the sustained depolarization in wakefulness, compared to the depolarizing phase of the slow oscillation in non-REM sleep. Despite the highly increased synaptic inputs along different afferent systems that open many conductances of cortical neurons during wakefulness, the increased input resistance is attributed to the effect of acetylcholine on cortical neurons.
Collapse
Affiliation(s)
- Mircea Steriade
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Quebec, QC G1K 7P4, Canada.
| |
Collapse
|
54
|
Dringenberg HC, Yahia N, Cirasuolo J, McKee D, Kuo MC. Neocortical activation by electrical and chemical stimulation of the rat inferior colliculus: intra-collicular mapping and neuropharmacological characterization. Exp Brain Res 2003; 154:461-9. [PMID: 14614580 DOI: 10.1007/s00221-003-1675-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Accepted: 08/12/2003] [Indexed: 12/22/2022]
Abstract
Classic experiments suggested that the midbrain reticular formation plays an important role in the induction and maintenance of high-frequency, low-amplitude activation of the electrocorticogram (ECoG). However, recent studies have shown that generalized activating systems are not restricted to the reticular formation in that non-reticular brain systems (e.g., basal forebrain, amygdala, superior colliculus) can effectively produce ECoG activation. Here, we investigated the role of the inferior colliculus (IC) in regulating ECoG activation in rats. Urethane-anesthetized rats displayed continuous large amplitude ECoG activity with peak power in the delta frequency range (0.5-3.9 Hz). Electrical 100-Hz stimulation (0.1-0.5 mA) of 40/88 (46%) stimulation sites in the IC suppressed low frequency oscillations and induced ECoG activation (>/=50% suppression of peak delta power). Systematic mapping of different IC territories (central nucleus, external and dorsal cortex) revealed that stimulation of all IC parts was equally effective in producing activation. Chemical stimulation of the IC with intra-collicular glutamate infusions (50 mM, 0.5 micro l) produces similar, but more consistent effects, with ECoG activation elicited in eight of nine rats. Pharmacological experiments were carried out in order to identify transmitters that mediate cortical activation in response to IC stimulation. The muscarinic receptor antagonist scopolamine (1 mg/kg, i.p.) reduced, but did not abolish, activation, as did the serotonergic receptor antagonist methiothepin (1 mg/kg, i.p.). A combination of the two drugs produced a complete block of IC-induced ECoG activation. These experiments demonstrate that the IC contains a distributed network, spanning all IC territories, which can participate in regulating the generalized activation state of the rat neocortex. Rather than by some direct cortical projections, IC neurons appear to induce ECoG activation by acting through both cholinergic and serotonergic systems, thought to provide the final effector mechanisms for cortical activation.
Collapse
Affiliation(s)
- Hans C Dringenberg
- Department of Psychology, Queen's University, K7L 3N6, Kingston, Ontario, Canada.
| | | | | | | | | |
Collapse
|
55
|
Dringenberg HC, Kuo MC. Histaminergic facilitation of electrocorticographic activation: role of basal forebrain, thalamus, and neocortex. Eur J Neurosci 2003; 18:2285-91. [PMID: 14622189 DOI: 10.1046/j.1460-9568.2003.02975.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neuromodulator histamine plays an important role in the regulation of behavioural state and the neocortical electrocorticogram (ECoG). With the present experiments, we characterized the anatomical targets that mediate the cortical-activating effects of histamine. Urethane-anaesthetized rats displayed continuous large-amplitude, low-frequency oscillations with a maximal spectral power in the delta (0.5-3.9 Hz) frequency band. Electrical (100 Hz) stimulation of the pontine-tegmentum suppressed slow, large-amplitude oscillations and induced ECoG activation. Application of histamine (1 mm) into the basal forebrain cholinergic complex by reverse microdialysis enhanced ECoG activation elicited by tegmental stimulation without changing resting ECoG activity. Ventrolateral or central thalamic application of histamine had no effect on resting ECoG activity, and ventrolateral thalamic application produced only a slight enhancement of brainstem-induced activation. Neocortical application of histamine in close proximity (< 500 micro m) to the recording electrode reduced low-frequency delta power in the resting ECoG without affecting stimulation-induced ECoG activation. These data suggest that, under the present experimental conditions, histamine facilitates ECoG activation primarily by potentiating the excitatory influence of brainstem fibers at the level of the basal forebrain. Histamine release in some parts of the thalamus results in a minor enhancement of ECoG activation, and cortical histamine release produces a small but consistent suppression of slow delta oscillations in the resting ECoG. These concurrent subcortical and cortical actions probably permit histamine to effectively modulate cortical activation and excitability across different behavioural states.
Collapse
Affiliation(s)
- Hans C Dringenberg
- Department of Psychology and The Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada, K7L 3N6.
| | | |
Collapse
|
56
|
Dringenberg HC, Olmstead MC. Integrated contributions of basal forebrain and thalamus to neocortical activation elicited by pedunculopontine tegmental stimulation in urethane-anesthetized rats. Neuroscience 2003; 119:839-53. [PMID: 12809705 DOI: 10.1016/s0306-4522(03)00197-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efferents from the pedunculopontine tegmentum (PPTg) exert widespread control over neocortical electrocorticographic (ECoG) activity and aid in maintaining high-frequency ECoG activation during waking and rapid eye movement sleep. The mechanisms and subcortical routes that allow the PPTg to influence cortical activity remain controversial. We examined the relative contributions of the thalamus and basal forebrain in ECoG activation elicited by PPTg stimulation in urethane-anesthetized rats. Stimulation (100 Hz, 2 s) of the PPTg suppressed large-amplitude, low-frequency oscillations, replacing them with high-frequency beta-gamma activity. Systemic administration of the anti-muscarinic drug scopolamine (1 mg/kg, i.p.) abolished activation elicited by PPTg stimulation, suggestive of an essential role of acetylcholine in this effect. Local infusions of lidocaine (1 microl, 1%) into the region of the cholinergic basal forebrain complex produced a strong reduction in activation elicited by PPTg stimulation. Lidocaine infusions into the reticular thalamic nucleus had no effect, but infusions into central thalamus produced a small attenuation of PPTg-evoked cortical activation. Combined basal forebrain-central thalamic infusions (1 microl/site) produced roughly additive effects, leading to a greater loss of activation than single-site infusions. These results indicate that, under the present experimental conditions, high-frequency cortical ECoG activation elicited by the PPTg involves relays in both the basal forebrain and central thalamus, with a predominant role of the basal forebrain. After concurrent central thalamic-basal forebrain inactivation, the forebrain can maintain only limited, short-lasting activation in response to PPTg stimulation. The additivity of infusion effects suggests that, rather than participating in one serial system, basal forebrain and central thalamus constitute parallel activating pathways. These findings aid in resolving previous controversies regarding the role of thalamus and basal forebrain in activation by emphasizing the importance of multiple, large-scale networks between brainstem and cortex in regulating the activation state of the mammalian neocortex.
Collapse
Affiliation(s)
- H C Dringenberg
- Department of Psychology and Center for Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | | |
Collapse
|
57
|
McLin DE, Miasnikov AA, Weinberger NM. CS-specific gamma, theta, and alpha EEG activity detected in stimulus generalization following induction of behavioral memory by stimulation of the nucleus basalis. Neurobiol Learn Mem 2003; 79:152-76. [PMID: 12591224 DOI: 10.1016/s1074-7427(02)00009-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tone paired with stimulation of the nucleus basalis (NB) induces behavioral memory that is specific to the frequency of the conditioned stimulus (CS), assessed by cardiac and respiration behavior during post-training stimulus generalization testing. This paper focuses on CS-specific spectral and temporal features of conditioned EEG activation. Adult male Sprague-Dawley rats, chronically implanted with a stimulating electrode in the NB and a recording electrode in the ipsilateral auditory cortex, received either tone (6kHz, 70dB, 2s) paired with co-terminating stimulation of the nucleus basalis (0.2s, 100Hz, 80-105 microA, ITI approximately 45s) or unpaired presentation of the stimuli (approximately 200 trials/day for approximately 14 days). CS-specificity was tested 24h post-training by presenting test tones to obtain generalization gradients for the EEG, heart rate, and respiration. Behavioral memory was evident in cardiac and respiratory responses that were maximal to the CS frequency of 6kHz. FFT analyses of tone-elicited changes of power in the delta, theta, alpha, beta1, beta2, and gamma bands in the paired group revealed that conditioned EEG activation (shift from lower to higher frequencies) was differentially spectrally and temporally specific: theta, and alpha to a lesser extent, decreased selectively to 6kHz during and for several seconds following tone presentation while gamma power increased transiently during and after 6kHz. Delta exhibited no CS-specificity and the beta bands showed transient specificity only after several seconds. The unpaired group exhibited neither CS-specific behavioral nor EEG effects. Thus, stimulus generalization tests reveal that conditioned EEG activation is not unitary but rather reflects CS-specificity, with band-selective markers for specific, associative neural processes in learning and memory.
Collapse
Affiliation(s)
- Dewey E McLin
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA
| | | | | |
Collapse
|
58
|
Balatoni B, Détári L. EEG related neuronal activity in the pedunculopontine tegmental nucleus of urethane anaesthetized rats. Brain Res 2003; 959:304-11. [PMID: 12493619 DOI: 10.1016/s0006-8993(02)03768-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cholinergic pathways ascending from the brainstem are considered as a decisive part of the reticular activating system. We recorded unit activity from the cholinergic pedunculopontine tegmental nucleus with extracellular microelectrodes in urethane-anesthetized rats and monitored cortical electroencephalogram (EEG) to examine the possible role of the nucleus in cortical activation. We found two types of cells showing EEG-correlated firing patterns. In one group, firing rate increased during cortical activation (F cell), while in another, higher rate was accompanied by cortical slow waves (S cell). Phasic changes in the firing rate of pedunculopontine neurons and in the cortical EEG were also analyzed. Changes of single unit activity in F cells always occurred before short periods of low-voltage fast activity appeared in the cortical EEG. The S cells were more variable with respect to the temporal relation. In some of the S cells, changes in firing rate preceded changes in the EEG patterns, while in others they occurred after a certain delay. Our results indicate that F-cells in the PPT might be involved in the initiation of tonic and phasic changes in cortical activation.
Collapse
Affiliation(s)
- Balázs Balatoni
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest 1117, Hungary
| | | |
Collapse
|
59
|
Terasawa H, Hirai T, Ninomiya T, Ikeda Y, Ishijima T, Yajima T, Hamaue N, Nagase Y, Kang Y, Minami M. Influence of tooth-loss and concomitant masticatory alterations on cholinergic neurons in rats: immunohistochemical and biochemical studies. Neurosci Res 2002; 43:373-9. [PMID: 12135780 DOI: 10.1016/s0168-0102(02)00063-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The influence of tooth loss on the viability of cholinergic neurons was examined in rats. At 25th postnatal week, rats were divided into the three groups; a control group fed a solid diet, a soft diet group fed a powder diet and a molar crown-less group in which all molar crowns were removed and the powder diet was given. At 15 and 35 weeks post-treatment, the number of choline acetyltransferase (ChAT)-positive neurons in the nucleus of the diagonal band/medial septal nucleus (NDB/MS) was significantly smaller in the molar crown-less group than in the control group (P < 0.01). This was not the case in the pedunculopontine tegmental nucleus or (PPT) or in the trigeminal motor nucleus. Biochemical assay showed no statistically significant differences in choline concentrations in the hippocampus between the control and the molar crown-less group both at 15 and at 35 weeks post-treatment. Nevertheless, acetylcholine (ACh) concentration in the hippocampus of the molar crown-less group was significantly lower than that of the control group at 15 weeks post-treatment (P < 0.05). Taken together, a decrease of oral sensory information may have caused a reduction in the number of ChAT-positive neurons selectively in NDB/MS, which in turn caused a decline of ACh concentrations in the hippocampus.
Collapse
Affiliation(s)
- H Terasawa
- Department of Removable Prosthodontics, Health Sciences University of Hokkaido, School of Dentistry, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
McLin DE, Miasnikov AA, Weinberger NM. Induction of behavioral associative memory by stimulation of the nucleus basalis. Proc Natl Acad Sci U S A 2002; 99:4002-7. [PMID: 11904444 PMCID: PMC122638 DOI: 10.1073/pnas.062057099] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2001] [Accepted: 01/31/2002] [Indexed: 11/18/2022] Open
Abstract
The nucleus basalis (NB) has been implicated in memory formation indirectly, by lesions, pharmacological manipulations, and neural correlates of learning. Prior findings imply that engagement of the NB during learning promotes memory storage. We directly tested this NB-memory hypothesis by determining whether stimulation of the NB induces behavioral associative memory. Rats were trained either with paired tone (6 kHz) and NB stimulation or with the two stimuli unpaired. We later determined the specificity of cardiac and respiratory behavioral responses to the training tone and several other acoustic frequencies. Paired subjects exhibited frequency generalization gradients with a peak of 6 kHz for both cardiac and respiratory behavior. Unpaired subjects exhibited no generalization gradient. The development of such specific, associative behavioral responses indicates that tone paired with NB stimulation induced behavioral associative memory. The discovery of memory induction by direct activation of the NB supports the NB-memory hypothesis and provides a potentially powerful way to control and investigate neural mechanisms of memory.
Collapse
Affiliation(s)
- Dewey E McLin
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA
| | | | | |
Collapse
|
61
|
McLin DE, Miasnikov AA, Weinberger NM. The effects of electrical stimulation of the nucleus basalis on the electroencephalogram, heart rate, and respiration. Behav Neurosci 2002. [DOI: 10.1037/0735-7044.116.5.795] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
62
|
Datta S, Patterson EH, Spoley EE. Excitation of the pedunculopontine tegmental NMDA receptors induces wakefulness and cortical activation in the rat. J Neurosci Res 2001; 66:109-16. [PMID: 11599007 DOI: 10.1002/jnr.1202] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Microinjection of the excitatory amino acid, L-glutamate into the brainstem pedunculo pontine tegmentum (PPT) has been shown to induce wakefulness, however, it has been unclear that receptors mediate this effect. The aim of this study was to test the hypothesis that in the PPT, L-glutamate induces cortical activation and wakefulness via activation of NMDA receptors. To test this hypothesis, three sets of micro-injections into the PPT were carried out on two different groups of rats that were then allowed to move freely although chronic instrumentation recorded sleep/wake states. Three days after the initial control injections of saline, in a contra-lateral site, Group I was micro-injected with saline + glutamate (saline first, and glutamate 15 min later); after another 3 days, the same rats were micro-injected with the NMDA-receptor-specific antagonist, 2-amino-5-phosphonopentanoic acid, (AP5) + glutamate. Group II received the same initial control injections (saline only), then AP5 + glutamate and the saline + glutamate micro-injections last. In rats that were not pretreated with AP5, microinjection of a 90 ng dose of L-glutamate (0.48 nmol in a volume of 0.1 microl vehicle) kept animals awake for 2-3 hr by eliminating both slow-wave sleep (SWS) and rapid eye movement (REM) sleep. These behavioral state changes were accompanied by concomitant increase in the power of gamma (gamma) frequency (20-60 Hz) waves in the cortical EEG. Pretreatment of L-glutamate injection sites with 0.48 nmol of AP5 blocked L-glutamate-induced-wakefulness and preserved a normal amount of wakefulness and sleep. Pretreatment with AP5 decreased the power of gamma-wave activity below its control level. These results support the hypothesis that the glutamate-induced-wakefulness and cortical activation effects are mediated via the NMDA receptors.
Collapse
Affiliation(s)
- S Datta
- Sleep Research Laboratory, Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | |
Collapse
|
63
|
Materi LM, Semba K. Inhibition of synaptically evoked cortical acetylcholine release by intracortical glutamate: involvement of GABAergic neurons. Eur J Neurosci 2001; 14:38-46. [PMID: 11488947 DOI: 10.1046/j.0953-816x.2001.01619.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cortical acetylcholine (ACh) has been shown to regulate diverse cognitive processes and its release can be regulated by neuromodulators that act presynaptically at cholinergic terminals. The neocortex receives dense glutamatergic input from thalamocortical and other fibres. The present study used in vivo microdialysis to examine, and pharmacologically characterize, the effect of glutamate on cortical ACh release evoked by electrical stimulation of the pedunculopontine tegmental nucleus in urethane-anaesthetized rats. All drugs were administered locally within the cortex by reverse dialysis. Application of glutamate had no detectable effect on spontaneous ACh release but reduced evoked cortical ACh efflux in a concentration-dependent manner. This effect was mimicked by the glutamate transporter blocker L-trans-pyrrolidine-2,4-dicarboxylic acid, as well as by the ionotropic glutamate receptor agonists N-methyl-D-aspartic acid and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and was blocked by the ionotropic glutamate receptor antagonists 6,7-dinitroquinoxaline-2,3-dione and (+/-)-3-(2-carboxypiperazin-4yl)-propyl-1-phosphonic acid. Glutamate application also increased extracellular adenosine levels but the simultaneous delivery of the broad-spectrum adenosine receptor antagonist caffeine failed to affect the inhibitory action of glutamate on evoked ACh release. However, the effect of glutamate was fully blocked by simultaneous delivery of the GABAA receptor antagonist bicuculline and partially blocked by the GABAB receptor antagonist phaclofen. These results suggest that ionotropic glutamate receptor activation by glutamate inhibits evoked cortical ACh release via an indirect pathway involving GABAergic neurons in the cortex.
Collapse
Affiliation(s)
- L M Materi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H-4H7, Canada
| | | |
Collapse
|
64
|
Turchi J, Sarter M. Bidirectional modulation of basal forebrain N-methyl-d-aspartate receptor function differentially affects visual attention but not visual discrimination performance. Neuroscience 2001; 104:407-17. [PMID: 11377844 DOI: 10.1016/s0306-4522(01)00089-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Basal forebrain neuronal circuits, specifically the corticopetal cholinergic system, mediate attentional abilities. The effects of infusions of N-methyl-D-aspartate (NMDA) and the competitive NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (APV) into the basal forebrain were assessed in rats trained in an operant task designed to generate measures of sustained attention performance. Control animals were trained in a cued visual discrimination task devoid of explicit demands on attentional performance, but involving similar basic operant components as the sustained attention task. The effects of intrabasalis infusions of NMDA (1, 3 and 6nmol) and APV (3, 10 and 20nmol) were tested in separate groups of animals. Infusion of neither drug affected the animals' response accuracy in the cued visual discrimination task, indicating that performance in this task remains insufficient to activate basal forebrain NMDA receptors. Infusions of APV in sustained attention task-performing animals selectively decreased the animals' ability to detect visual signals, but spared their ability to reject non-signal events. Conversely, infusions of NMDA into the basal forebrain did not affect the animals' hit rate but increased their number of false alarms, i.e. "claims" for signals in non-signal trials. The concentrations of NMDA infused into the basal forebrain did not result in neurotoxic effects as demonstrated by a separate experiment, which indicated neurodegeneration following the infusion of 30 nmol NMDA as visualized by the Fluoro-Jade method.The effects of APV correspond with the attentional consequences of other manipulations known to impair the functions of cortical cholinergic input. Conversely, the effects of NMDA infusions agree with the hypothesis that overactivity of cortical cholinergic inputs mediates an abnormal overprocessing of the stimulus situation. Basal forebrain NMDA receptor manipulations assist in determining the role of this neuronal system in cognitive processes.
Collapse
Affiliation(s)
- J Turchi
- Department of Psychology, 27 Townshend Hall, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
65
|
Arnold HM, Fadel J, Sarter M, Bruno JP. Amphetamine-stimulated cortical acetylcholine release: role of the basal forebrain. Brain Res 2001; 894:74-87. [PMID: 11245817 DOI: 10.1016/s0006-8993(00)03328-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Systemic administration of amphetamine results in increases in the release of acetylcholine in the cortex. Basal forebrain mediation of this effect was examined in three experiments using microdialysis in freely-moving rats. Experiment 1 examined whether dopamine receptor activity within the basal forebrain was necessary for amphetamine-induced increase in cortical acetylcholine by examining whether intra-basalis perfusion of dopamine antagonists attenuates this increase. Systemic administration of 2.0 mg/kg amphetamine increased dopamine efflux within the basal forebrain nearly 700% above basal levels. However, the increase in cortical acetylcholine efflux following amphetamine administration was unaffected by intra-basalis perfusions of high concentrations of D1- (100 microM SCH 23390) or D2-like (100 microM sulpiride) dopamine receptor antagonists. Experiments 2 and 3 determined whether glutamatergic or GABAergic local modulation of the excitability of the basal forebrain cholinergic neurons influences the ability of systemic amphetamine to increase cortical acetylcholine efflux. In Experiment 2, perfusion of kynurenate (1.0 mM), a non-selective glutamate receptor antagonist, into the basal forebrain attenuated the increase in cortical acetylcholine produced by amphetamine. Experiment 3 revealed that positive modulation of GABAergic transmission by bilateral intra-basalis infusion of the benzodiazepine receptor agonist chlordiazepoxide (40 microg/hemisphere) also attenuated the amphetamine-stimulated increase in cortical acetylcholine efflux. These data suggest that amphetamine increases cortical acetylcholine release via a complex neuronal network rather than simply increasing basal forebrain D1 or D2 receptor activity.
Collapse
Affiliation(s)
- H M Arnold
- Department of Psychology, 31 Townshend Hall, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
66
|
Abstract
The mediation of cortical ACh release by basal forebrain glutamate receptors was studied in awake rats fitted with microdialysis probes in medial prefrontal cortex and ipsilateral basal forebrain. Repeated presentation of a stimulus consisting of exposure to darkness with the opportunity to consume a sweetened cereal resulted in a transient increase in cortical ACh efflux. This stimulated release was dependent on basal forebrain glutamate receptor activity as intrabasalis perfusion with the ionotropic glutamate receptor antagonist kynurenate (1.0 mM) markedly attenuated darkness/cereal-induced ACh release. Activation of AMPA/kainate receptors by intrabasalis perfusion of kainate (100 microM) was sufficient to increase cortical ACh efflux even under basal (nonstimulated) conditions. This effect of kainate was blocked by coperfusion with the antagonist DNQX (0.1-5.0 mM). Stimulation of NMDA receptors with intrabasalis perfusion of NMDA (50 or 200 microM) did not increase basal cortical ACh efflux. However, perfusion of NMDA in rats following exposure to the darkness/cereal stimulus resulted in a potentiation of both the magnitude and duration of stimulated cortical ACh efflux. Moreover, intrabasalis perfusion of the higher dose of NMDA resulted in a rapid increase in cortical ACh efflux even before presentation of the darkness/cereal stimulus, suggesting an anticipatory change in the excitability of basal forebrain cholinergic neurons. These data demonstrate that basal forebrain glutamate receptors contribute to the stimulation of cortical ACh efflux in response to behavioral stimuli. The specific roles of basal forebrain glutamate receptor subtypes in mediating cortical ACh release differ and depend on the level of activity of basal forebrain cholinergic neurons.
Collapse
Affiliation(s)
- J Fadel
- Department of Psychology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
67
|
Day JC, Kornecook TJ, Quirion R. Application of in vivo microdialysis to the study of cholinergic systems. Methods 2001; 23:21-39. [PMID: 11162147 DOI: 10.1006/meth.2000.1103] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The application of in vivo microdialysis to the study of acetylcholine (ACh) release has contributed greatly to our understanding of cholinergic brain systems. This article reviews standard experimental procedures for dialysis probe selection and implantation, perfusion parameters, neurochemical detection, and data analysis as they relate to microdialysis assessments of cholinergic function. Particular attention is focused on the unique methodological considerations that arise when in vivo microdialysis is dedicated expressly to the recovery and measurement of ACh as opposed to other neurotransmitters. Limitations of the microdialysis technique are discussed, as well as methodological adaptations that may prove useful in overcoming these limitations. This is followed by an overview of recent studies in which the application of in vivo microdialysis has been used to characterize the basic pharmacology and physiology of cholinergic neurons. Finally, the usefulness of the microdialysis approach for testing hypotheses regarding the cholinergic systems' involvement in cognitive processes is examined. It can be concluded that, in addition to being a versatile and practical method for studying the neurochemistry of cholinergic brain systems, in vivo microdialysis represents a valuable tool in our efforts to better comprehend ACh's underlying role in a variety of behavioral processes.
Collapse
Affiliation(s)
- J C Day
- Douglas Hospital Research Centre & Department of Psychiatry, McGill University, Verdun, Quebec, H4H 1R3, Canada
| | | | | |
Collapse
|
68
|
De Souza Silva MA, Hasenöhrl RU, Tomaz C, Schwarting RK, Huston JP. Differential modulation of frontal cortex acetylcholine by injection of substance P into the nucleus basalis magnocellularis region in the freely-moving vs. the anesthetized preparation. Synapse 2000; 38:243-53. [PMID: 11020227 DOI: 10.1002/1098-2396(20001201)38:3<243::aid-syn3>3.0.co;2-g] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In vivo microdialysis was used to assess the effects of unilateral substance P (SP) injection into the nucleus basalis magnocellularis on extracellular levels of acetylcholine (ACh) in the frontal cortex, either in freely moving or urethane-anesthetized rats. The results show that the neurochemical effects of SP are critically dependent on the choice of the experimental preparation: In the freely-moving rat, the injection procedure led to behavioral and concurrent bilateral cholinergic activation in the frontal cortex. This cholinergic activation was ipsilaterally reduced by intrabasalis injection of SP (1 ng), indicating that the peptide exerted an inhibitory influence on the neurochemical effect exerted by handling, intracranial needle insertion, and vehicle injection. In the anesthetized preparation, SP had a biphasic dose-dependent action on cortical ACh: a short-lasting ipsilateral increase immediately after injection (especially with 1 ng), and a delayed bilateral increase after more than 2 h (10, 100 ng). The procedure of inserting the injection needle moderately increased cortical ACh levels. Methodologically, these data are discussed with respect to the importance of using anesthetized vs. freely moving rats and the effects of intraparenchymal injections.
Collapse
Affiliation(s)
- M A De Souza Silva
- Institute of Physiological Psychology I, University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
69
|
Abstract
This review examines the role of acetylcholine in synaptic plasticity in archi-, paleo- and neocortex. Studies using microiontophoretic application of acetylcholine in vivo and in vitro and electrical stimulation of the basal forebrain have demonstrated that ACh can produce long-lasting increases in neural responsiveness. This evidence comes mainly from models of heterosynaptic facilitation in which acetylcholine produces a strengthening of a second, noncholinergic synaptic input onto the same neuron. The argument that the basal forebrain cholinergic system is essential in some models of plasticity is supported by studies that have selectively lesioned the cholinergic basal forebrain. This review will examine the mechanisms whereby acetylcholine might induce synaptic plasticity. It will also consider the neural circuitry implicated in these studies, namely the pathways that are susceptible to cholinergic plasticity and the neural regulation of the cholinergic system.
Collapse
Affiliation(s)
- D D Rasmusson
- Department of Physiology and Biophysics, Dalhousie University, NS, B3H 4H7, Halifax, Canada.
| |
Collapse
|
70
|
Szymusiak R, Alam N, McGinty D. Discharge patterns of neurons in cholinergic regions of the basal forebrain during waking and sleep. Behav Brain Res 2000; 115:171-82. [PMID: 11000419 DOI: 10.1016/s0166-4328(00)00257-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A subset of neurons recorded in the magnocellular basal forebrain (mBF) of cats and rats exhibit elevated discharge rates during waking and REM sleep, and diminished discharge during sleep with cortical EEG synchrony (nonREM sleep). This pattern is observed in mBF neurons in cats with identified ascending projections, and in neurons located in cholinergic regions of the rat mBF. However, the cholinergic versus noncholinergic nature of recorded cells could not be determined with the extracellular recording method employed. During waking, discharge of mBF neurons is strongly movement-related. Peak discharge rates occur during a variety of head and limb movements. Discharge rates during waking immobility are reduced by >50% compared to rates during waking movement. The absence of movement accounts for more of the variance in discharge across the sleep-wake cycle than does the presence of cortical EEG synchronization. Several factors participate in the regulation of mBF neuronal activity across arousal states. Tonic inhibition mediated by adenosine appears to be present during both waking and sleep. In some mBF neurons, increased GABAergic inhibition contributes to nonREM sleep-related reductions in discharge rate. Fluctuations in mBF cell activity during waking behaviors may reflect changing excitatory input from neurons in the pontine and midbrain tegmentum.
Collapse
Affiliation(s)
- R Szymusiak
- Research Service (151A3), V.A. Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA.
| | | | | |
Collapse
|
71
|
Abstract
Changes in arousal levels are normally accompanied by modification of gross electrical activity (EEG) in the cortex, with low amplitude fast waves characterizing high levels and large slow waves low levels of arousal. These changes in cortical EEG patterns depend mainly on two factors: on the input from the thalamus and on the state of various membrane channels in the cortical pyramidal cells, which are both regulated by ascending modulatory systems. Several lines of evidence indicate that of the activating systems the cholinergic is the most effective in activating the cortex. Its blockade with atropine induces large slow waves in the EEG, while inhibition of other systems has no such profound effect. The effect of atropine can be mimicked by lesioning the basal forebrain. Neurons in this area show very close tonic and phasic correlation with the cortical EEG, further supporting the suggestion that projections of these neurons have a special role in the regulation of cortical activity. However, there is a discrepancy between the effects of excitotoxic and selective cholinotoxic lesions of the basal forebrain. The immunohistochemical diversity of the corticopetal basal forebrain projection and the electrophysiological heterogeneity of the neurons also indicate that, in addition to cholinergic cells, other types of neurons do also participate in the regulation of cortical activity from this area. To understand the intimate details the activity of identified basal forebrain neurons must be recorded and correlated with cortical events.
Collapse
Affiliation(s)
- L Détári
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1088, Budapest, Hungary.
| |
Collapse
|
72
|
Wenk GL, McGann K, Mencarelli A, Hauss-Wegrzyniak B, Del Soldato P, Fiorucci S. Mechanisms to prevent the toxicity of chronic neuroinflammation on forebrain cholinergic neurons. Eur J Pharmacol 2000; 402:77-85. [PMID: 10940360 DOI: 10.1016/s0014-2999(00)00523-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inflammatory processes may play an important role in the degeneration of basal forebrain cholinergic cells Alzheimer's disease. We infused the proinflammagen lipopolysaccharide into the basal forebrain of young rats and determined whether the chronic administration of two novel non-steroidal anti-inflammatory drugs or a pan-caspase synthesis inhibitor, z-Val-Ala-Asp(OMe)-fluoromethyl ketone (zVAD), could provide neuroprotection from the cytotoxic effects of the neuroinflammation. Chronic lipopolysaccharide infusions decreased choline acetyltransferase activity and increased the number of activated microglia within the basal forebrain region. The level of caspases 3, 8 and 9 was increased in ventral caudate/putamen. Non-steroidal anti-inflammatory drug therapy attenuated the toxicity of the inflammation upon cholinergic cells and reduced caspases 3, 8 and 9 activity in the caudate/putamen. zVAD treatment significantly decreased the levels of caspases 3, 8 and 9 but did not provide neuroprotection for the cholinergic neurons. These results suggest that prostaglandins contribute to the degeneration of forebrain cholinergic neurons in Alzheimer's disease.
Collapse
Affiliation(s)
- G L Wenk
- Arizona Research Laboratories, Division of Neural Systems, Memory and Aging, University of Arizona, 384 Life Sciences North Building, Tucson, AZ 85724, USA.
| | | | | | | | | | | |
Collapse
|
73
|
Materi LM, Rasmusson DD, Semba K. Inhibition of synaptically evoked cortical acetylcholine release by adenosine: an in vivo microdialysis study in the rat. Neuroscience 2000; 97:219-26. [PMID: 10799754 DOI: 10.1016/s0306-4522(00)00075-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The release of cortical acetylcholine from the intracortical axonal terminals of cholinergic basal forebrain neurons is closely associated with electroencephalographic activity. One factor which may act to reduce cortical acetylcholine release and promote sleep is adenosine. Using in vivo microdialysis, we examined the effect of adenosine and selective adenosine receptor agonists and antagonists on cortical acetylcholine release evoked by electrical stimulation of the pedunculopontine tegmental nucleus in urethane anesthetized rats. All drugs were administered locally within the cortex by reverse dialysis. None of the drugs tested altered basal release of acetylcholine in the cortex. Adenosine significantly reduced evoked cortical acetylcholine efflux in a concentration-dependent manner. This was mimicked by the adenosine A(1) receptor selective agonist N(6)-cyclopentyladenosine and blocked by the selective A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The A(2A) receptor agonist 2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoadenosi ne hydrochloride (CGS 21680) did not alter evoked cortical acetylcholine release even in the presence of DPCPX. Administered alone, neither DPCPX nor the non-selective adenosine receptor antagonist caffeine affected evoked cortical acetylcholine efflux. Simultaneous delivery of the adenosine uptake inhibitors dipyridamole and S-(4-nitrobenzyl)-6-thioinosine significantly reduced evoked cortical acetylcholine release, and this effect was blocked by the simultaneous administration of caffeine. These data indicate that activation of the A(1) adenosine receptor inhibits acetylcholine release in the cortex in vivo while the A(2A) receptor does not influence acetylcholine efflux. Such inhibition of cortical acetylcholine release by adenosine may contribute to an increased propensity to sleep during prolonged wakefulness.
Collapse
Affiliation(s)
- L M Materi
- Departments of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | | | | |
Collapse
|
74
|
Cape EG, Jones BE. Effects of glutamate agonist versus procaine microinjections into the basal forebrain cholinergic cell area upon gamma and theta EEG activity and sleep-wake state. Eur J Neurosci 2000; 12:2166-84. [PMID: 10886356 DOI: 10.1046/j.1460-9568.2000.00099.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serving as the ventral, extra-thalamic relay from the brainstem reticular activating system to the cerebral cortex, basal forebrain neurons, including importantly the cholinergic cells therein, are believed to play a significant role in eliciting and maintaining cortical activation during the states of waking and paradoxical sleep. The present study was undertaken in rats to examine the effects upon electroencephalogram (EEG) activity and sleep-wake state of inactivating basal forebrain neurons with microinjections of procaine versus activating them with microinjections of agonists of glutamate, which is the primary neurotransmitter of the brainstem reticular activating system. Microinjections into the basal forebrain were performed using a remotely controlled device in freely moving, naturally sleeping/waking rats during the day when they are asleep the majority of the time. Procaine produced a decrease in gamma (30-60 Hz) and theta (4-8 Hz) EEG activities, and an increase in delta (1-4 Hz) associated with a loss of paradoxical sleep, despite the persistence of slow wave sleep. alpha-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) produced an increase in gamma and a decrease in delta, while eliciting waking. In addition, NMDA, which has been shown in vitro to induce rhythmic bursting in the cholinergic cells, significantly increased theta activity. Following the microinjections of NMDA, c-Fos protein, which has been shown to reflect neural activity, was found in numerous cholinergic, and also GABAergic (gamma-aminobutyric acid) and other non-cholinergic neurons, in the substantia innominata and magnocellular preoptic nucleus near the microinjection cannulae. These results substantiate the role of cholinergic, possibly together with other, basal forebrain neurons in cortical activation, including elicitation of gamma and theta activities that underlie cortical arousal during waking and paradoxical sleep.
Collapse
Affiliation(s)
- E G Cape
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
| | | |
Collapse
|
75
|
Giorgetti M, Bacciottini L, Giovannini MG, Colivicchi MA, Goldfarb J, Blandina P. Local GABAergic modulation of acetylcholine release from the cortex of freely moving rats. Eur J Neurosci 2000; 12:1941-8. [PMID: 10886335 DOI: 10.1046/j.1460-9568.2000.00079.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cortical perfusion with GABA agonists and antagonists modulates the spontaneous release of cortical acetylcholine and GABA in freely moving rats. Twenty-four hours after implantation of a dialysis fibre, cerebral cortex spontaneously released acetylcholine (3.8 +/- 0.2 pmol/10 min) and GABA (6.6 +/- 0.4 pmol/10 min) at a stable rate. Local administration of GABA (1 or 5 mM) or the GABAA agonist muscimol (25 or 50 microM) had no effect on the spontaneous release of acetylcholine. However, bicuculline (1-25 microM), a GABAA antagonist, added to the dialysis perfusate, elicited a concentration-dependent increase of acetylcholine release to approximately double that of control. This effect of bicuculline (25 microM) was completely prevented by coperfusion with muscimol (50 microM). Local administration of the GABAB receptor agonist baclofen (10 or 50 microM) elicited a concentration-dependent increase in spontaneous acetylcholine release with a maximal increase of about 60%. Intracortical administration of baclofen also decreased the spontaneous release of GABA. The GABAB receptor antagonist CGP 35348 (1 mM), administered alone for 20 min through the dialysis fibre, was without effect on spontaneous acetylcholine release; however, it completely blocked both the baclofen-induced increase in acetylcholine release and the decrease in GABA release. These results suggest that cortically released GABA exerts a tonic influence on cholinergic activity.
Collapse
Affiliation(s)
- M Giorgetti
- Dipartimento di Farmacologia Preclinica e Clinica, Universitá di Firenze, Viale G. Pieraccini 6, 50139 Firenze, Italy
| | | | | | | | | | | |
Collapse
|
76
|
Sarter M, Bruno JP. Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience 2000; 95:933-52. [PMID: 10682701 DOI: 10.1016/s0306-4522(99)00487-x] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Basal forebrain corticopetal neurons participate in the mediation of arousal, specific attentional functions and rapid eye movement sleep-associated dreaming. Recent studies on the afferent regulation of basal forebrain neurons by telencephalic and brainstem inputs have provided the basis for hypotheses which, collectively, propose that the involvement of basal forebrain corticopetal projections in arousal, attention and dreaming can be dissociated on the basis of their regulation via major afferent projections. While the processing underlying sustained, selective and divided attention performance depends on the integrity of the telencephalic afferent regulation of basal forebrain corticopetal neurons, arousal-induced attentional processing (i.e. stimulus detection, selection and processing as a result of a novel, highly salient, aversive or incentive stimuli) is mediated via the ability of brainstem ascending noradrenergic projections to the basal forebrain to activate or "recruit" these telencephalic afferent circuits of the basal forebrain. In rapid eye movement sleep, both the basal forebrain and thalamic cortiocopetal projections are stimulated by cholinergic afferents originating mainly from the pedunculopontine and laterodorsal tegmenta in the brainstem. Rapid eye movement sleep-associated dreaming is described as a form of hyperattentional processing, mediated by increased activity of cortical cholinergic inputs and their cortical interactions with activated thalamic efferents. In this context, long-standing speculations about the similarities between dreaming and psychotic cognition are substantiated by describing the role of an over(re)active cortical cholinergic input system in either condition. Finally, while determination of the afferent regulation of basal forebrain corticopetal neurons in different behavioral/cognitive states assists in defining the general cognitive functions of cortical acetylcholine, this research requires a specification of the precise anatomical organization of basal forebrain afferents and their interactions in the basal forebrain. Furthermore, the present hypotheses remain incomplete because of the paucity of data concerning the regulation and role of basal forebrain non-cholinergic, particularly GABAergic, efferents.
Collapse
Affiliation(s)
- M Sarter
- Department of Psychology, The Ohio State University, Columbus 43210, USA.
| | | |
Collapse
|
77
|
Alam MN, Szymusiak R, Gong H, King J, McGinty D. Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis. J Physiol 1999; 521 Pt 3:679-90. [PMID: 10601498 PMCID: PMC2269685 DOI: 10.1111/j.1469-7793.1999.00679.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1999] [Accepted: 09/30/1999] [Indexed: 11/29/2022] Open
Abstract
1. The cholinergic system of the basal forebrain (BF) is hypothesized to play an important role in behavioural and electrocortical arousal. Adenosine has been proposed as a sleep-promoting substance that induces sleep by inhibiting cholinergic neurons of the BF and brainstem. However, adenosinergic influences on the activity of BF neurons in naturally awake and sleeping animals have not been demonstrated. 2. We recorded the sleep-wake discharge profile of BF neurons and simultaneously assessed adenosinergic influences on wake- and sleep-related activity of these neurons by delivering adenosinergic agents adjacent to the recorded neurons with a microdialysis probe. Discharge rates of BF neurons were recorded through two to three sleep-wake episodes during baseline (artificial cerebrospinal fluid perfusion), and after delivering an adenosine transport inhibitor (s-(p-nitrobenzyl)-6-thioinosine; NBTI), or exogenous adenosine, or a selective adenosine A1 receptor antagonist (8-cyclopentyl-1, 3-dimethylxanthine; CPDX). 3. NBTI and adenosine decreased the discharge rate of BF neurons during both waking and non-rapid eye movement (NREM) sleep. In contrast, CPDX increased the discharge rate of BF neurons during both waking and NREM sleep. These results suggest that in naturally awake and sleeping animals, adenosine exerts tonic inhibitory influences on BF neurons, supporting the hypothesized role of adenosine in sleep regulation. 4. However, in the presence of exogenous adenosine, NBTI or CPDX, BF neurons retained their wake- and sleep-related discharge patterns, i.e. still exhibited changes in discharge rate during transitions between waking and NREM sleep. This suggests that other neurotransmitters/neuromodulators also contribute to the sleep-wake discharge modulation of BF neurons.
Collapse
Affiliation(s)
- M N Alam
- Department of Psychology, University of California, Los Angeles 90033, USA
| | | | | | | | | |
Collapse
|
78
|
Manfridi A, Brambilla D, Mancia M. Stimulation of NMDA and AMPA receptors in the rat nucleus basalis of Meynert affects sleep. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R1488-92. [PMID: 10564223 DOI: 10.1152/ajpregu.1999.277.5.r1488] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleus basalis of Meynert (NBM), a heterogeneous area in the basal forebrain involved in the modulation of sleep and wakefulness, is rich in glutamate receptors, and glutamatergic fibers represent an important part of the input to this nucleus. With the use of unilateral infusions in the NBM, the effects of two different glutamatergic subtype agonists, namely N-methyl-D-aspartic acid (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) hydrobromide, on sleep and wakefulness parameters were determined in freely moving rats by means of polygraphic recordings. NMDA (5 nmol) and AMPA (0.4 nmol) induced an increase in wakefulness and an inhibition of slow-wave sleep. AMPA, but not NMDA, also caused a decrease in desynchronized sleep. These AMPA- and NMDA-mediated effects were counteracted by a pretreatment with the specific NMDA antagonist 2-amino-5-phosphonopentanoic acid (20 nmol) and the specific AMPA antagonist 6,7-dinitroquinoxaline-2,3-dione (2 nmol), respectively. The results reported here indicate that 1) the NBM activation of both NMDA and AMPA glutamate receptors exert a modulatory influence on sleep and wakefulness, and 2) AMPA, but not NMDA receptors, are involved in the modulation of desynchronized sleep, suggesting a different role for NBM NMDA and non-NMDA receptors in sleep modulation.
Collapse
Affiliation(s)
- A Manfridi
- Istituto di Fisiologia Umana II, Università degli Studi, 20133 Milano, Italy
| | | | | |
Collapse
|
79
|
van der Zee EA, Luiten PG. Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory. Prog Neurobiol 1999; 58:409-71. [PMID: 10380240 DOI: 10.1016/s0301-0082(98)00092-6] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Immunocytochemical mapping studies employing the extensively used monoclonal anti-muscarinic acetylcholine receptor (mAChR) antibody M35 are reviewed. We focus on three neuronal muscarinic cholinoceptive substrates, which are target regions of the cholinergic basal forebrain system intimately involved in cognitive functions: the hippocampus; neocortex; and amygdala. The distribution and neurochemistry of mAChR-immunoreactive cells as well as behaviorally induced alterations in mAChR-immunoreactivity (ir) are described in detail. M35+ neurons are viewed as cells actively engaged in neuronal functions in which the cholinergic system is typically involved. Phosphorylation and subsequent internalization of muscarinic receptors determine the immunocytochemical outcome, and hence M35 as a tool to visualize muscarinic receptors is less suitable for detection of the entire pool of mAChRs in the central nervous system (CNS). Instead, M35 is sensitive to and capable of detecting alterations in the physiological condition of muscarinic receptors. Therefore, M35 is an excellent tool to localize alterations in cellular cholinoceptivity in the CNS. M35-ir is not only determined by acetylcholine (ACh), but by any substance that changes the phosphorylation/internalization state of the mAChR. An important consequence of this proposition is that other neurotransmitters than ACh (especially glutamate) can regulate M35-ir and the cholinoceptive state of a neuron, and hence the functional properties of a neuron. One of the primary objectives of this review is to provide a synthesis of our data and literature data on mAChR-ir. We propose a hypothesis for the role of muscarinic receptors in learning and memory in terms of modulation between learning and recall states of brain areas at the postsynaptic level as studied by way of immunocytochemistry employing the monoclonal antibody M35.
Collapse
Affiliation(s)
- E A van der Zee
- Department of Zoology, University of Groningen, Haren, The Netherlands.
| | | |
Collapse
|
80
|
Détári L, Rasmusson DD, Semba K. The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex. Prog Neurobiol 1999; 58:249-77. [PMID: 10341363 DOI: 10.1016/s0301-0082(98)00084-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The basal forebrain and in particular its cholinergic projections to the cerebral cortex have long been implicated in the maintenance of cortical activation. This review summarizes evidence supporting a close link between basal forebrain neuronal activity and the cortical electroencephalogram (EEG). The anatomy of basal forebrain projections and effects of acetylcholine on cortical and thalamic neurons are discussed along with the modulatory inputs to basal forebrain neurons. As both cholinergic and GABAergic basal forebrain neurons project to the cortex, identification of the transmitter specificity of basal forebrain neurons is critical for correlating their activity with the activity of cortical neurons and the EEG. Characteristics of the different basal forebrain neurons from in vitro and in vivo studies are summarized which might make it possible to identify different neuronal types. Recent evidence suggests that basal forebrain neurons activate the cortex not only tonically, as previously shown, but also phasically. Data on basal forebrain neuronal activity are presented, clearly showing that there are strong tonic and phasic correlations between the firing of individual basal forebrain cells and the cortical activity. Close analysis of temporal correlation indicates that changes in basal forebrain neuronal activity precede those in the cortex. While correlational, these data, together with the anatomical and pharmacological findings, suggest that the basal forebrain has an important role in regulating both the tonic and the phasic functioning of the cortex.
Collapse
Affiliation(s)
- L Détári
- Department of Comparative Physiology, Eötvös Loránd University, Budapest, Hungary.
| | | | | |
Collapse
|
81
|
Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 1999; 22:273-80. [PMID: 10354606 DOI: 10.1016/s0166-2236(98)01361-7] [Citation(s) in RCA: 487] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The cholinergic system is one of the most important modulatory neurotransmitter systems in the brain and controls activities that depend on selective attention, which are an essential component of conscious awareness. Psychopharmacological and pathological evidence supports the concept of a 'cholinergic component' of conscious awareness. Drugs that antagonize muscarinic receptors induce hallucinations and reduce the level of consciousness, while the nicotinic receptor is implicated as being involved in the mechanism of action of general (inhalational) anaesthetics. In degenerative diseases of the brain, alterations in consciousness are associated with regional deficits in the cholinergic system. In Alzheimer's disease (AD), there is a loss of explicit (more than implicit) memory and hypoactivity of cholinergic projections to the hippocampus and cortex, while the visual hallucinations experienced by subjects with Dementia with Lewy bodies (DLB) are associated with reductions in neocortical ACh-related activity. In Parkinson's disease, the additional loss of pedunculopontine cholinergic neurones, which control REM (rapid eye movement) sleep or dreaming, is likely to contribute to REM abnormalities, which also occur in DLB. Widespread basal-forebrain and rostral brainstem cholinergic pathways, which include converging projections to the thalamus, appear to be located strategically for generating and integrating conscious awareness. Alleviation of a range of cognitive and non-cognitive symptoms by drugs that modulate the cholinergic system, which are being developed for the treatment of AD and related disorders, could be caused by changes in consciousness.
Collapse
Affiliation(s)
- E Perry
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, Westgate Road, Newcastle upon Tyne, UK NE4 6BE
| | | | | | | |
Collapse
|
82
|
Manaye KF, Zweig R, Wu D, Hersh LB, De Lacalle S, Saper CB, German DC. Quantification of cholinergic and select non-cholinergic mesopontine neuronal populations in the human brain. Neuroscience 1999; 89:759-70. [PMID: 10199611 DOI: 10.1016/s0306-4522(98)00380-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The pars compacta and pars dissipata of the pedunculopontine nucleus contain cholinergic cell group Ch5, and the laterodorsal tegmental nucleus contains cholinergic cell group Ch6. The pedunculopontine nucleus has been implicated in a variety of functions, including mediation of rapid eye movement sleep and in extrapyramidal motor function, although the role of cholinergic and non-cholinergic neurons is unclear. Quantitative neuroanatomical techniques were used to map the distribution of cholinergic neurons in the mesopontine nuclei of the adult human brain. In addition, the number and distribution of comparably sized non-cholinergic neurons at selected anatomical levels were compared. An antibody raised against human choline acetyltransferase was used to stain immunohistochemically the mesopontine neurons in six brains, ranging in age from 28 to 60 years. The rostrocaudal length of the Cb5/Ch6 cell complex was approximately 10 mm. The estimated total number of cells was similar for all brains, and varied by less than 7%. The estimated average number of cholinergic cells in the combined pedunculopontine and laterodorsal tegmental nuclei was approximately 20,000, with 30% of the cells in the pedunculopontine nucleus pars compacta, 57% in the pedunculopontine nucleus pars dissipata and 13% in the laterodorsal tegmental nucleus. There was no correlation between cell number and age. Within areas of mesopontine tegmentum occupied by the Ch5 cholinergic neurons, there were often more noncholinergic neurons than comparably sized cholinergic neurons. The present study provides detailed maps of the distribution and number of mesopontine cholinergic neurons in the normal human brain. Many non-cholinergic neurons are intermixed with the cholinergic pedunculopontine neurons. One region of the pedunculopontine nucleus pars dissipata containing few cholinergic neurons, located adjacent to the ventral border of the pedunculopontine nucleus pars compacta, may correspond to the midbrain-extrapyramidal area as defined previously in rodent and in non-human primate. These data will be useful for quantitative neuropathological studies concerning the role of both cholinergic and non-cholinergic mesopontine neurons in diseases proposed to affect these neurons, including Parkinson's disease, schizophrenia and progressive supranuclear palsy.
Collapse
Affiliation(s)
- K F Manaye
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Use-dependent alterations in synaptic efficacy are believed to form the basis for such complex brain functions as learning and memory and significantly contribute to the development of neuronal networks. The algorithm of synapse modification proposed by Hebb as early as 1949 is the coincident activation of pre- and postsynaptic neurons. The present review considers the evolution of experimental protocols in which postsynaptic cell depolarization through the recording microelectrode was used to reveal the manifestation of Hebb-type plasticity in the synaptic inputs of the neocortex and hippocampus. Special attention is focused on the inhibitory control of the Hebb-type plasticity. Disinhibition within the local neuronal circuits is considered to be an important factor in Hebbian plasticity, contributing to such phenomena as priming, primed burst potentiation, hippocampal theta-rhythm and cortical arousal. The role of various transmitters (acetylcholine, norepinephrine, gamma-amino-butyric acid) in disinhibition is discussed with a special emphasis on the brain noradrenergic system. Possible mechanisms of Hebbian synapse modification and their modulation by memory enhancing substances are considered. It is suggested that along with their involvement in disinhibition processes these substances may control Hebb-type plasticity through intracellular second messenger systems.
Collapse
Affiliation(s)
- V G Skrebitsky
- Brain Research Institute, Russian Academy of Medical Sciences, Moscow
| | | |
Collapse
|
84
|
Smiley JF, Mesulam MM. Cholinergic neurons of the nucleus basalis of Meynert receive cholinergic, catecholaminergic and GABAergic synapses: an electron microscopic investigation in the monkey. Neuroscience 1999; 88:241-55. [PMID: 10051204 DOI: 10.1016/s0306-4522(98)00202-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An electron microscopic analysis of the nucleus basalis in the macaque monkey was carried out following the immunohistochemical labeling of choline acetyltransferase, either by itself or in conjunction with glutamate decarboxylase or tyrosine hydroxylase. Cholinergic axon varicosities were frequently encountered, and formed large, usually asymmetric, synapses on both choline acetyltransferase-immunopositive and -immunonegative dendrites of nucleus basalis neurons. Catecholaminergic (tyrosine hydroxylase-immunoreactive) axon varicosities formed synapses which in most cases were classified as asymmetric, and glutamate decarboxylase-immunoreactive (GABAergic) axons formed clearly symmetric synapses, each on to choline acetyltransferase-immunopositive or -immunonegative dendrites. These findings indicate that cholinergic cells in the nucleus basalis of the monkey, also known as Ch4 neurons, receive numerous synaptic inputs from cholinergic, catecholaminergic and GABAergic axons.
Collapse
Affiliation(s)
- J F Smiley
- The Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Medical School, Chicago, IL 60611, USA
| | | |
Collapse
|
85
|
Wenk GL, Baker LM, Hauss-Wegrzyniak B, Danysz W, Stoehr JD. Novel glycineB antagonists show neuroprotective activity in vivo. Amino Acids 1999; 14:223-6. [PMID: 9871465 DOI: 10.1007/bf01345266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The degeneration or dysfunction of cholinergic neurons within the basal forebrain of patients with Alzheimer's disease (AD) may be related to the vulnerability of these cells to endogenous glutamate (Beal, 1995; Greenamyre and Young, 1989). The administration of drugs that attenuate the toxic actions of glutamate in the early stages of the disease might significantly delay its rate of progression. Two approaches to neuroprotection from endogenous glutamatergic function were investigated and found to be effective: blockade of voltage-dependent, NMDA-type glutamate receptor channels and antagonism of an NMDA-receptor related glycineB modulatory site.
Collapse
Affiliation(s)
- G L Wenk
- Arizona Research Laboratories, University of Arizona, Tucson, USA
| | | | | | | | | |
Collapse
|
86
|
Khateb A, Fort P, Williams S, Serafin M, Mühlethaler M, Jones BE. GABAergic input to cholinergic nucleus basalis neurons. Neuroscience 1998; 86:937-47. [PMID: 9692729 DOI: 10.1016/s0306-4522(98)00094-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The potential influence of GABAergic input to cholinergic basalis neurons was studied in guinea-pig basal forebrain slices. GABA and its agonists were applied to electrophysiologically-identified cholinergic neurons, of which some were labelled with biocytin and confirmed to be choline acetyltransferase-immunoreactive. Immunohistochemistry for glutamate decarboxylase was also performed in some slices and revealed GABAergic varicosities in the vicinity of the biocytin-filled soma and dendrites of electrophysiologically-identified cholinergic cells. From rest (average - 63 mV), the cholinergic cells were depolarized by GABA. The depolarization was associated with a decrease in membrane resistance and diminution in firing. The effect was mimicked by muscimol, the specific agonist for GABA(A) receptors, and not by baclofen, the specific agonist for GABA(B) receptors, which had no discernible effect. The GABA- and muscimol-evoked depolarization and decrease in resistance were found to be postsynaptic since they persisted in the presence of solutions containing either high Mg2+/low Ca2+ or tetrodotoxin. They were confirmed as being mediated by a GABA(A) receptor, since they were antagonized by bicuculline. The reversal potential for the muscimol effect was estimated to be approximately -45 mV, which was -15 mV above the resting membrane potential. Finally, in some cholinergic cells, spontaneous subthreshold depolarizing synaptic potentials (average 5 mV in amplitude), which were rarely associated with action potentials, were recorded and found to persist in the presence of glutamate receptor antagonists but to be eliminated by bicuculline. These results suggest that GABAergic input may be depolarizing, yet predominantly inhibitory to cholinergic basalis neurons.
Collapse
Affiliation(s)
- A Khateb
- Département de Physiologie, CMU, Genève, Switzerland
| | | | | | | | | | | |
Collapse
|
87
|
Pepeu G, Blandina P. The acetylcholine, GABA, glutamate triangle in the rat forebrain. JOURNAL OF PHYSIOLOGY, PARIS 1998; 92:351-5. [PMID: 9789836 DOI: 10.1016/s0928-4257(99)80004-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present overview demonstrates that stress, fear, novelty, and learning processes are associated with arousal and increases of extracellular levels of cortical and hippocampal ACh, independently of increases of motor activity. Forebrain cholinergic systems appears to be regulated by GABAergic and glutamatergic inputs. However, several other neurotransmitter systems play a role.
Collapse
Affiliation(s)
- G Pepeu
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | |
Collapse
|
88
|
Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 1998; 55:27-57. [PMID: 9602499 DOI: 10.1016/s0301-0082(97)00091-9] [Citation(s) in RCA: 403] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Generalized non-convulsive absence seizures are characterized by the occurrence of synchronous and bilateral spike and wave discharges (SWDs) on the electroencephalogram, that are concomitant with a behavioral arrest. Many similarities between rodent and human absence seizures support the use of genetic rodent models, in which spontaneous SWDs occur. This review summarizes data obtained on the neurophysiological and neurochemical mechanisms of absence seizures with special emphasis on the Genetic Absence Epilepsy Rats from Strasbourg (GAERS). EEG recordings from various brain regions and lesion experiments showed that the cortex, the reticular nucleus and the relay nuclei of the thalamus play a predominant role in the development of SWDs. Neither the cortex, nor the thalamus alone can sustain SWDs, indicating that both structures are intimely involved in the genesis of SWDs. Pharmacological data confirmed that both inhibitory and excitatory neurotransmissions are involved in the genesis and control of absence seizures. Whether the generation of SWDs is the result of an excessive cortical excitability, due to an unbalance between inhibition and excitation, or excessive thalamic oscillations, due to abnormal intrinsic neuronal properties under the control of inhibitory GABAergic mechanisms, remains controversial. The thalamo-cortical activity is regulated by several monoaminergic and cholinergic projections. An alteration of the activity of these different ascending inputs may induce a temporary inadequation of the functional state between the cortex and the thalamus and thus promote SWDs. The experimental data are discussed in view of these possible pathophysiological mechanisms.
Collapse
Affiliation(s)
- L Danober
- INSERM U 398, Neurobiologie et Neuropharmacologie des épilepsies généralisées, Faculté de Médecine, Strasbourg, France.
| | | | | | | | | |
Collapse
|
89
|
Reid MS, Nishino S, Tafti M, Siegel JM, Dement WC, Mignot E. Neuropharmacological characterization of basal forebrain cholinergic stimulated cataplexy in narcoleptic canines. Exp Neurol 1998; 151:89-104. [PMID: 9582257 PMCID: PMC8848856 DOI: 10.1006/exnr.1998.6787] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Basal forebrain (BF) cholinergic regulation of cataplexy was investigated in narcoleptic canines. Specific cholinergic agonists and antagonists, and excitatory or inhibitory amino acid neurotransmitter receptor agonists, were perfused through microdialysis probes implanted bilaterally in the BF of narcoleptic canines. Cataplexy was monitored using the food-elicited cataplexy test (FECT) and recordings of electroencephalogram, electrooculogram, and electromyogram. In narcoleptic canines, carbachol and oxotremorine (10(-5)-10(-3) M), but not McN-A-343 or nicotine (10(-4)-10(-3) M), produced a dose-dependent increase in cataplexy. In addition, N-methyl-d-aspartate (10(-4)-10(-3) M) and kainic acid (10(-5)-10(-4) M) did not have any effects, while muscimol (10(-3) M) produced a weak (P < 0.10) increase in cataplexy. In control canines, carbachol (10(-5)-10(-3) M), but not oxotremorine (10(-4)-10(-3) M), produced muscle atonia after the highest concentration in one of three animals. Carbachol (10(-3) M)-induced cataplexy in narcoleptic canines was blocked by equimolar perfusion with the muscarinic antagonists atropine, gallamine, and 4-DAMP but not pirenzepine. These findings indicate that carbachol-stimulated cataplexy in the BF of narcoleptic canines is mediated by M2, and perhaps M3, muscarinic receptors. The release of acetylcholine in the BF was also examined during FECT and non-FECT behavioral stimulation in narcoleptic and control canines. A significant increase in acetylcholine release was found in both narcoleptic and control BF during FECT stimulation. In contrast, simple motor activity and feeding, approximating that which occurs during an FECT, did not affect acetylcholine release in the BF of narcoleptic canines. These findings indicate that BF acetylcholine release is enhanced during learned emotion/reward associated behaviors in canines.
Collapse
Affiliation(s)
- M S Reid
- Center for Narcolepsy Research, Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road/MSLS Building, Palo Alto, California, 94304-5485, USA
| | | | | | | | | | | |
Collapse
|
90
|
Wenk GL, Baker LM, Stoehr JD, Hauss-Wegrzyniak B, Danysz W. Neuroprotection by novel antagonists at the NMDA receptor channel and glycineB sites. Eur J Pharmacol 1998; 347:183-7. [PMID: 9653879 DOI: 10.1016/s0014-2999(98)00112-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glutamate may act via an N-methyl-D-Aspartate (NMDA)-sensitive receptor site to destroy cholinergic neurons within the nucleus basalis magnocellularis in age-associated neurodegenerative diseases. Multiple interesting properties of the NMDA receptor are relevant to its excitotoxic actions, e.g., glutamate is ineffective unless a glycine (gly) modulatory site is also occupied. Thus, the antagonism of glutamate receptor-related toxicity by blockade of either the NMDA-sensitive recognition site or the gly binding site may therefore have therapeutic applications. The current study investigated the ability of four novel noncompetitive antagonists at these two sites: one NMDA open channel antagonist (MRZ 2/579: 1-amino-1,3,3,5,5-pentamethyl-cyclohexane hydrochloride), and three glyB receptor antagonists (MRZ 2/570: 8-bromo-4-hydroxy-1-oxo-1,2-dihydropyridaziono [4,5-beta] quinoline-5-oxide choline salt; MRZ 2/57: 8-fluoro-4-hydroxy-1-oxo-1,2-dihydropyridaziono [4,5-beta] quinoline-5-oxide choline; MRZ 2/576: 8-chloro-4-hydroxy-1-oxo-1,2-dihydropyridaziono [4,5-beta] quinoline-5-oxide choline) administered acutely, to provide neuroprotection from a NMDA receptor agonist within the nucleus basalis magnocellularis of young rats. Injection of NMDA into the nucleus basalis magnocellularis significantly decreased cortical choline acetyltransferase activity. Acute administration (i.p.) of MRZ 2/579, 2/570, 2/571 and 2/576 provided significant neuroprotection from NMDA.
Collapse
Affiliation(s)
- G L Wenk
- Arizona Research Laboratories, Division of Neural Systems, Memory and Aging, University of Arizona, Tucson 85724, USA.
| | | | | | | | | |
Collapse
|
91
|
Differential modulation of high-frequency gamma-electroencephalogram activity and sleep-wake state by noradrenaline and serotonin microinjections into the region of cholinergic basalis neurons. J Neurosci 1998. [PMID: 9502823 DOI: 10.1523/jneurosci.18-07-02653.1998] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several lines of evidence indicate that cholinergic basalis neurons play an important role in cortical activation. The present study was undertaken to determine the effect of noradrenergic and serotonergic modulation of the cholinergic neurons on cortical EEG activity and sleep-wake states. The neurotransmitters were injected into the region of the basalis neurons by remote control in freely moving, naturally sleeping-waking rats during the day when the rats are normally asleep the majority of the time. Effects were observed on behavior and EEG activity, including high-frequency gamma activity (30-60 Hz), which has been demonstrated to reflect behavioral and cortical arousal in the rat. Noradrenaline, which has been shown in previous in vitro studies to depolarize and excite the cholinergic cells, produced a dose-dependent increase in gamma-EEG activity, a decrease in delta activity, and an increase in waking. Serotonin, which has been found in previous in vitro studies to hyperpolarize the cholinergic neurons, produced a dose-dependent decrease in gamma-EEG activity with no significant change in amounts of wake or slow wave sleep. Both chemicals resulted in a dose-dependent decrease in paradoxical sleep. These results demonstrate that noradrenaline and serotonin exert differential modulatory effects on EEG activity through the basal forebrain, the one facilitating gamma activity and eliciting waking and the other diminishing gamma activity and not significantly affecting slow wave sleep. The results also confirm that the cholinergic basalis neurons play an important role in cortical activation and particularly in the high-frequency gamma activity that underlies cortical and behavioral arousal of the wake state.
Collapse
|
92
|
Giovannini MG, Bartolini L, Kopf SR, Pepeu G. Acetylcholine release from the frontal cortex during exploratory activity. Brain Res 1998; 784:218-27. [PMID: 9518622 DOI: 10.1016/s0006-8993(97)01161-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The activation of the cortical cholinergic system was investigated in 3- and 25-month-old male Wistar rats, by measuring by transversal microdialysis the changes in cortical extracellular acetylcholine (ACh) levels during the performance of simple spontaneous tasks involving exploratory activity and working memory. Two days after implantation of the microdialysis probe in the frontal cortex, object recognition was investigated by either moving the rats from the home cage to the arena containing the objects or keeping the rats in the arena and introducing the objects. Spontaneous alternation was investigated in a Y runway. Young rats discriminated between familiar and novel objects and alternated in the Y runway, while aged rats were unable to discriminate. Whenever rats were moved from the home cage to the arena, ACh release increased (+70-80%) during the exploratory activity. Handling per se had no effect on extracellular ACh levels. When young rats were left in the arena, introduction of the objects caused some exploratory activity and object recognition but no increase in ACh release. ACh release increased by about 300% during spontaneous alternation. In aging rats basal extracellular ACh levels and their increase after placement in the arena were less than half that in young rats. Our work demonstrates that a novel environment activates the cortical cholinergic system, which presumably is associated with arousal mechanisms and selective attentional functions. It also demonstrates that in aging rats the cortical cholinergic hypofunction is associated with a loss of non-spatial working memory.
Collapse
Affiliation(s)
- M G Giovannini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Morgagni 65, Florence 50134, Italy
| | | | | | | |
Collapse
|
93
|
Abstract
Recent immunoelectron microscopic studies have revealed a low frequency of synaptic membrane differentiations on ACh (ChAT-immunostained) axon terminals (boutons or varicosities) in adult rat cerebral cortex, hippocampus and neostriatum, suggesting that, besides synaptic transmission, diffuse transmission by ACh prevails in many regions of the CNS. Cytological analysis of the immediate micro-environment of these ACh terminals, as well as currently available immunocytochemical data on the cellular and subcellular distribution of ACh receptors, is congruent with this view. At least in brain regions densely innervated by ACh neurons, a further aspect of the diffuse transmission paradigm is envisaged: the existence of an ambient level of ACh in the extracellular space, to which all tissue elements would be permanently exposed. Recent experimental data on the various molecular forms of AChE and their presumptive role at the neuromuscular junction support this hypothesis. As in the peripheral nervous system, degradation of ACh by the prevalent G4 form of AChE in the CNS would primarily serve to keep the extrasynaptic, ambient level of ACh within physiological limits, rather than totally eliminate ACh from synaptic clefts. Long-lasting and widespread electrophysiological effects imputable to ACh in the CNS might be explained in this manner. The notions of diffuse transmission and of an ambient level of ACh in the CNS could also be of clinical relevance, in accounting for the production and nature of certain cholinergic deficits and the efficacy of substitution therapies.
Collapse
Affiliation(s)
- L Descarries
- Département de physiologie, Faculté de médecine, Université de Montréal, QC, Canada.
| | | | | |
Collapse
|
94
|
Smythies J. The functional neuroanatomy of awareness: with a focus on the role of various anatomical systems in the control of intermodal attention. Conscious Cogn 1997; 6:455-81. [PMID: 9479480 DOI: 10.1006/ccog.1997.0315] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review considers a number of recent theories on the neural basis of consciousness, with particular attention to the theories of Bogen, Crick, Llinás, Newman, and Changeux. These theories allot different roles to various key brain areas, in particular the reticular and intralaminar nuclei of the thalamus and the cortex. Crick's hypothesis is that awareness is a function of reverberating corticothalamic loops and that the spotlight of intramodal attention is controlled by the reticular nucleus of the thalamus. He also proposed different mechanisms for attention and intention ("will"). The current review presents a new hypothesis, based on elements from these hypotheses, including intermodal attention and olfaction and pain, which may pose problems for Crick's original theory. This work reviews the possible role in awareness and intermodal attention and intention of the cholinergic system in the basal forebrain and the tegmentum; the reticular, the intralaminar, and the dorsomedial thalamic nuclei; the raphe and locus coeruleus; the reticular formation; the ventral striatum and extended amygdala; insula cortex, and other selected cortical, areas. Both clinical and basic research data are covered. The conclusion is reached that the brain may work by largely nonlinear parallel processing and much intramodal shifts of attention may be effected by intracortical, or multiple corticothalamic mechanisms (small local "flashlights" rather than one major "searchlight"). But this is constrained by the functional anatomy of the circuits concerned and waking "awareness" is modulated by the many "nonspecific" systems (cholinergic from the basal forebrain, noradrenergic from the locus coeruleus, dopaminergic from the substantia nigra and ventral tegmentum, and serotoninergic from the raphe). But the principal agents for intermodal attention shifts, the "searchlight," may be two key nuclei of the cholinergic system in the mesencephalon. Clinical loss of consciousness results from damage to these nuclei but not from damage to the cholinergic nucleus basalis of the basal forebrain.
Collapse
Affiliation(s)
- J Smythies
- Department of Neuropsychiatry, Institute of Neurology, London, England.
| |
Collapse
|
95
|
Woolf NJ. A possible role for cholinergic neurons of the basal forebrain and pontomesencephalon in consciousness. Conscious Cogn 1997; 6:574-96. [PMID: 9479485 DOI: 10.1006/ccog.1997.0319] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Excitation at widely dispersed loci in the cerebral cortex may represent a neural correlate of consciousness. Accordingly, each unique combination of excited neurons would determine the content of a conscious moment. This conceptualization would be strengthened if we could identify what orchestrates the various combinations of excited neurons. In the present paper, cholinergic afferents to the cerebral cortex are hypothesized to enhance activity at specific cortical circuits and determine the content of a conscious moment by activating certain combinations of postsynaptic sites in select cortical modules. It is proposed that these selections are enabled by learning-related restructuring that simultaneously adjusts the cytoskeletal matrix at specific constellations of postsynaptic sites giving all a similar geometry. The underlying mechanism of conscious awareness hypothetically involves cholinergic mediation of linkages between microtubules and microtubule-associated protein-2 (MAP-2). The first reason for proposing this mechanism is that previous studies indicate cognitive-related changes in MAP-2 occur in cholinoceptive cells within discrete cortical modules. These cortical modules are found throughout the cerebral cortex, measure 1-2 mm2, and contain approximately 10(3)-10(4) cholinoceptive cells that are enriched with MAP-2. The subsectors of the hippocampus may function similarly to cortical modules. The second reason for proposing the current mechanism is that the MAP-2 rich cells throughout the cerebral cortex correspond almost exactly with the cortical cells containing muscarinic receptors. Many of these cholinoceptive, MAP-2 rich cells are large pyramidal cell types, but some are also small pyramidal cells and nonpyramidal types. The third reason for proposing the current mechanism is that cholinergic afferents are module-specific; cholinergic axons terminate wholly within individual cortical modules. The cholinergic afferents may be unique in this regard. Finally, the tapering apical dendrites of pyramidal cells are proposed as primary sites for cholinergic mediation of linkages between MAP-2 and microtubules because especially high amounts of MAP-2 are found here. Also, the possibility is raised that muscarinic actions on MAP-2 could modulate microtubular coherence and self-collapse, phenomena that have been suggested to underlie consciousness.
Collapse
Affiliation(s)
- N J Woolf
- Department of Psychology, University of California, Los Angeles 90095-1563, USA
| |
Collapse
|
96
|
Khateb A, Fort P, Williams S, Serafin M, Jones BE, Mühlethaler M. Modulation of cholinergic nucleus basalis neurons by acetylcholine and N-methyl-D-aspartate. Neuroscience 1997; 81:47-55. [PMID: 9300400 DOI: 10.1016/s0306-4522(97)00167-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Known to exert an important modulatory influence on the cerebral cortex, the cholinergic neurons of the basal forebrain are modulated in turn by neurotransmitters which may include acetylcholine released from processes of brainstem or forebrain neurons. In the present study, we examined the effect of carbachol, a non-specific cholinergic agonist, either alone or in the presence of N-methyl-D-aspartate upon electrophysiologically identified cholinergic basalis neurons in guinea-pig basal forebrain slices. Carbachol produced a direct postsynaptic hyperpolarization, accompanied by a decrease in membrane resistance. Muscarine could mimic this hyperpolarizing effect, whereas nicotine produced a direct postsynaptic membrane depolarization. The interaction of carbachol with N-methyl-D-aspartate was subsequently tested since, in a prior study, N-methyl-D-aspartate was shown to induce rhythmic bursting in cholinergic cells when they were hyperpolarized by continuous injection of outward current. Applied simultaneously with N-methyl-D-aspartate in the absence of current injection, carbachol was also found to promote rhythmic bursting in half of the cells tested. Since the bursts under these conditions were markedly longer in duration than those observed in the presence of N-methyl-D-aspartate alone, it was hypothesized that carbachol might have another action, in addition to the membrane hyperpolarization. Using dissociated cells, it was found that brief applications of carbachol could indeed diminish the slow afterhyperpolarizations that follow single spikes, short bursts or long trains of action potentials in cholinergic basalis neurons. These results indicate that, through its dual ability to hyperpolarize cholinergic neurons and to reduce their afterhyperpolarizations, acetylcholine can promote the occurrence of rhythmic bursting in the presence of N-methyl-D-aspartate. Accordingly, whether derived from brainstem or local sources, acetylcholine may facilitate rhythmic discharge in cholinergic basalis neurons which could in turn impose a rhythmic modulation upon cortical activity during particular states across the sleep-waking cycle.
Collapse
Affiliation(s)
- A Khateb
- Département de Physiologie, CMU, Genève, Switzerland
| | | | | | | | | | | |
Collapse
|
97
|
Giovannini MG, Giovannelli L, Bianchi L, Kalfin R, Pepeu G. Glutamatergic modulation of cortical acetylcholine release in the rat: a combined in vivo microdialysis, retrograde tracing and immunohistochemical study. Eur J Neurosci 1997; 9:1678-89. [PMID: 9283822 DOI: 10.1111/j.1460-9568.1997.tb01525.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The microdialysis technique with one or two probes was used to investigate the modulation of cortically projecting cholinergic neurons by glutamatergic input in the rat in vivo. Male albino Wistar rats (250-300 g) were used. Under chloral hydrate anaesthesia microdialysis membranes were positioned in the parietal cortex, nucleus basalis magnocellularis (NBM) or medial septum. Acetylcholine was assayed using high-performance liquid chromatography (HPLC) with electrochemical detection while GABA was detected using HPLC with fluorimetric detection after derivatization of the amino acid with o-phthalaldehyde. Septo-cortical neurons were retrogradely labelled with fluoro-gold. Double labelling with choline acetyltransferase (ChAT) immunoreactivity was performed to identify these neurons. Our main findings were that: (i) i.c.v. administration of the NMDA antagonist 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 1-5 nmol) increased cortical acetylcholine outflow; (ii) local administration of CPP (100 microM) to the cortex had no effect on cortical acetylcholine outflow; (iii) local administration of CPP (100 microM) to the NBM decreased cortical acetylcholine outflow; (iv) local administration of CPP (100-200 microM) to the septum increased cortical GABA and acetylcholine outflow; (v) administration of muscimol to the septum prevented the effect of CPP on cortical acetylcholine outflow; (vi) retrograde tracing with fluoro-gold labelled cell bodies in the medial septum; (vii) septal fluoro-gold-positive neurons were not ChAT-immunoreactive. Our in vivo neurochemical results, in combination with retrograde tracing and immunohistochemistry, indicate that the cortically projecting cholinergic system is indirectly regulated by a glutamatergic input via a polysynaptic GABAergic circuitry located in the septum.
Collapse
Affiliation(s)
- M G Giovannini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | | | | | | | |
Collapse
|
98
|
Détári L, Semba K, Rasmusson DD. Responses of cortical EEG-related basal forebrain neurons to brainstem and sensory stimulation in urethane-anaesthetized rats. Eur J Neurosci 1997; 9:1153-61. [PMID: 9215698 DOI: 10.1111/j.1460-9568.1997.tb01469.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The basal forebrain can be considered to be a rostral extension of the ascending reticular activating system. A large number of neurons in the basal forebrain have been shown to display higher firing rates when low-voltage fast activity is present in the cortical EEG as opposed to states characterized by large slow waves in both unanaesthetized and anaesthetized animals. However, a smaller number of cells with increased discharge rate during slow waves was also observed in most of these studies. While it is likely that these two types of neurons have opposite roles in the regulation of cortical activation, it is not known how they respond to inputs from the brainstem or the periphery. In the present study, extracellular recordings were made in the basal forebrain of urethane-anaesthetized rats. A total of 52 neurons were studied in which the firing rate was significantly higher during fast cortical EEG waves (F-cells), and 14 neurons in which activity was significantly greater during slow waves (S-cells). The two cell types responded differently to stimulation of the pedunculopontine tegmental nucleus (PPT) and dorsal raphe nucleus (DRN) with short (0.5-1 s) trains of pulses and to noxious sensory stimuli (tail pinch). These stimulations excited most F-cells (80-96%) and inhibited the majority of S-cells (55-67%). In the few F-cells that were inhibited by stimulation, the response varied with the background firing rate of the cell: the higher the firing rate at the time of stimulation, the higher the probability of observing an inhibitory response. In contrast, single electrical pulses delivered to the PPT and DRN excited the majority (72%) of both F- and S-cells. Previous in vitro studies have shown that the application of acetylcholine or serotonin has predominantly inhibitory effects on basal forebrain cholinergic neurons. The predominantly excitatory effect of noxious, PPT and DRN stimulation on F-cells therefore suggests that glutamatergic or other excitatory afferents play a more dominant role in regulating basal forebrain neurons. We have previously shown that F-cells are more prevalent than S-cells. In combination, these findings suggest that basal forebrain neurons, and F-cells in particular, are important in mediating the ascending excitatory drive from the brainstem to the cerebral cortex.
Collapse
Affiliation(s)
- L Détári
- Department of Comparative Physiology, Eötvos Loránd University, Budapest, Hungary
| | | | | |
Collapse
|
99
|
Dykes RW. Mechanisms controlling neuronal plasticity in somatosensory cortex. Can J Physiol Pharmacol 1997. [DOI: 10.1139/y97-089] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
100
|
Givens B, Sarter M. Modulation of cognitive processes by transsynaptic activation of the basal forebrain. Behav Brain Res 1997; 84:1-22. [PMID: 9079768 DOI: 10.1016/s0166-4328(96)00146-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Each of the neurotransmitter-specific afferents to the basal forebrain (BF) carry different types of information which converge to regulate the activity of cholinergic projections to telencephalic areas. Brainstem monoaminergic and cholinergic inputs are critical for context-dependent arousal. GABAergic afferents are gated by a variety of ascending and descending systems, and in addition provide an intrinsic control of BF output excitability. Corticofugal glutamatergic inputs represent reciprocal connections from sites to which BF afferents project, and carry information about the current level of cortical processing intensity and capacity. Peptidergic inputs arise from hypothalamic sources and locally modulate BF output as a function of motivational and homeostatic processes. The significance of these afferent systems can be studied by examining the behavioral consequences of infusion into the BF of drugs that act on the specific receptor systems. Although traditional analyses suggest that the BF has many behavioral functions that can be subdivided regionally, an analysis of studies employing transsynaptic approaches lead to the conceptualization of the BF as having a uniform function, that of maximizing cortical processing efficiency. The BF is conditionally active during specific episodes of acquisition and processing of behaviorally significant, externally-derived information, and drives cortical targets into a state of readiness by reducing interference and amplifying the processing of relevant stimuli and associations, thus allowing for more efficient processing. This paper describes the transsynaptic approach to studying BF function, reviews the neurobiological and behavioral consequences of altering neurotransmitter-specific inputs to the BF, and explores the functional significance of the BF.
Collapse
Affiliation(s)
- B Givens
- The Ohio State University, Department of Psychology, Columbus 43210, USA
| | | |
Collapse
|