51
|
Nourbakhsh K, Yadav S. Kinase Signaling in Dendritic Development and Disease. Front Cell Neurosci 2021; 15:624648. [PMID: 33642997 PMCID: PMC7902504 DOI: 10.3389/fncel.2021.624648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Dendrites undergo extensive growth and remodeling during their lifetime. Specification of neurites into dendrites is followed by their arborization, maturation, and functional integration into synaptic networks. Each of these distinct developmental processes is spatially and temporally controlled in an exquisite fashion. Protein kinases through their highly specific substrate phosphorylation regulate dendritic growth and plasticity. Perturbation of kinase function results in aberrant dendritic growth and synaptic function. Not surprisingly, kinase dysfunction is strongly associated with neurodevelopmental and psychiatric disorders. Herein, we review, (a) key kinase pathways that regulate dendrite structure, function and plasticity, (b) how aberrant kinase signaling contributes to dendritic dysfunction in neurological disorders and (c) emergent technologies that can be applied to dissect the role of protein kinases in dendritic structure and function.
Collapse
Affiliation(s)
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
52
|
Antrobus MR, Brazier J, Stebbings GK, Day SH, Heffernan SM, Kilduff LP, Erskine RM, Williams AG. Genetic Factors That Could Affect Concussion Risk in Elite Rugby. Sports (Basel) 2021; 9:19. [PMID: 33499151 PMCID: PMC7910946 DOI: 10.3390/sports9020019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
Elite rugby league and union have some of the highest reported rates of concussion (mild traumatic brain injury) in professional sport due in part to their full-contact high-velocity collision-based nature. Currently, concussions are the most commonly reported match injury during the tackle for both the ball carrier and the tackler (8-28 concussions per 1000 player match hours) and reports exist of reduced cognitive function and long-term health consequences that can end a playing career and produce continued ill health. Concussion is a complex phenotype, influenced by environmental factors and an individual's genetic predisposition. This article reviews concussion incidence within elite rugby and addresses the biomechanics and pathophysiology of concussion and how genetic predisposition may influence incidence, severity and outcome. Associations have been reported between a variety of genetic variants and traumatic brain injury. However, little effort has been devoted to the study of genetic associations with concussion within elite rugby players. Due to a growing understanding of the molecular characteristics underpinning the pathophysiology of concussion, investigating genetic variation within elite rugby is a viable and worthy proposition. Therefore, we propose from this review that several genetic variants within or near candidate genes of interest, namely APOE, MAPT, IL6R, COMT, SLC6A4, 5-HTTLPR, DRD2, DRD4, ANKK1, BDNF and GRIN2A, warrant further study within elite rugby and other sports involving high-velocity collisions.
Collapse
Affiliation(s)
- Mark R. Antrobus
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.B.); (G.K.S.); (A.G.W.)
- Sport and Exercise Science, University of Northampton, Northampton NN1 5PH, UK
| | - Jon Brazier
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.B.); (G.K.S.); (A.G.W.)
- Department of Psychology and Sports Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Georgina K. Stebbings
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.B.); (G.K.S.); (A.G.W.)
| | - Stephen H. Day
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Shane M. Heffernan
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea SA1 8EN, UK; (S.M.H.); (L.P.K.)
| | - Liam P. Kilduff
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea SA1 8EN, UK; (S.M.H.); (L.P.K.)
| | - Robert M. Erskine
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
- Institute of Sport, Exercise and Health, University College London, London WC1E 6BT, UK
| | - Alun G. Williams
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.B.); (G.K.S.); (A.G.W.)
- Institute of Sport, Exercise and Health, University College London, London WC1E 6BT, UK
| |
Collapse
|
53
|
Pekala M, Doliwa M, Kalita K. Impact of maternal immune activation on dendritic spine development. Dev Neurobiol 2021; 81:524-545. [PMID: 33382515 DOI: 10.1002/dneu.22804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/26/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023]
Abstract
Dendritic spines are small dendritic protrusions that harbor most excitatory synapses in the brain. The proper generation and maturation of dendritic spines are crucial for the regulation of synaptic transmission and formation of neuronal circuits. Abnormalities in dendritic spine density and morphology are common pathologies in autism and schizophrenia. According to epidemiological studies, one risk factor for these neurodevelopmental disorders is maternal infection during pregnancy. This review discusses spine alterations in animal models of maternal immune activation in the context of neurodevelopmental disorders. We describe potential mechanisms that might be responsible for prenatal infection-induced changes in the dendritic spine phenotype and behavior in offspring.
Collapse
Affiliation(s)
- Martyna Pekala
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Doliwa
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
54
|
Yu Q, Zou L, Kong Z, Yang L. Cognitive Impact of Calorie Restriction: A Narrative Review. J Am Med Dir Assoc 2020; 21:1394-1401. [PMID: 32693996 DOI: 10.1016/j.jamda.2020.05.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
The impairment of cognitive function can cause substantial emotional and financial burdens. A recent global increasing trend in cognitive impairment and associated disorders has been observed, which will continue to grow as the population ages rapidly. As a nonpharmaceutical approach, calorie restriction (CR) has received extensive research interests due to its health benefits, including maintaining cognitive function. In this narrative review, we first briefly introduce the role of cognitive function in activities of daily living and CR as a part of healthy lifestyle behaviors to protect against cognitive decline. Second, we present results from human studies demonstrating that CR might be beneficial for improving age-related cognitive decline and cognitive impairment in the clinical population such as obesity and type 2 diabetes. Third, the potential mechanisms regarding the protective effects of CR on cognition are discussed. Fourth, specific suggestions are highlighted to be considered in future human studies. Overall, although there are few data available from human studies, CR appears to be beneficial for cognitive protection for both healthy and clinical populations. Further scientific investigations are needed before a firm conclusion can be made.
Collapse
Affiliation(s)
- Qian Yu
- Exercise and Mental Health Laboratory, Shenzhen University, Shenzhen, China
| | - Liye Zou
- Exercise and Mental Health Laboratory, Shenzhen University, Shenzhen, China.
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China
| | - Lin Yang
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Canada; Departments of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
55
|
Smail MA, Smith BL, Nawreen N, Herman JP. Differential impact of stress and environmental enrichment on corticolimbic circuits. Pharmacol Biochem Behav 2020; 197:172993. [PMID: 32659243 PMCID: PMC7484282 DOI: 10.1016/j.pbb.2020.172993] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Stress exposure can produce profound changes in physiology and behavior that can impair health and well-being. Of note, stress exposure is linked to anxiety disorders and depression in humans. The widespread impact of these disorders warrants investigation into treatments to mitigate the harmful effects of stress. Pharmacological treatments fail to help many with these disorders, so recent work has focused on non-pharmacological alternatives. One of the most promising of these alternatives is environmental enrichment (EE). In rodents, EE includes social, physical, and cognitive stimulation for the animal, in the form of larger cages, running wheels, and toys. EE successfully reduces the maladaptive effects of various stressors, both as treatment and prophylaxis. While we know that EE can have beneficial effects under stress conditions, the morphological and molecular mechanisms underlying these behavioral effects are still not well understood. EE is known to alter neurogenesis, dendrite development, and expression of neurotrophic growth factors, effects that vary by type of enrichment, age, and sex. To add to this complexity, EE has differential effects in different brain regions. Understanding how EE exerts its protective effects on morphological and molecular levels could hold the key to developing more targeted pharmacological treatments. In this review, we summarize the literature on the morphological and molecular consequences of EE and stress in key emotional regulatory pathways in the brain, the hippocampus, prefrontal cortex, and amygdala. The similarities and differences among these regions provide some insight into stress-EE interaction that may be exploited in future efforts toward prevention of, and intervention in, stress-related diseases.
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States.
| | - Brittany L Smith
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Nawshaba Nawreen
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Veterans Affairs Medical Center, Cincinnati, OH, United States; Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
56
|
Hill RA, Grech AM, Notaras MJ, Sepulveda M, van den Buuse M. Brain-Derived Neurotrophic Factor Val66Met polymorphism interacts with adolescent stress to alter hippocampal interneuron density and dendritic morphology in mice. Neurobiol Stress 2020; 13:100253. [PMID: 33344708 PMCID: PMC7739172 DOI: 10.1016/j.ynstr.2020.100253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/26/2020] [Indexed: 01/06/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays essential roles in GABAergic interneuron development. The common BDNF val66met polymorphism, leads to decreased activity-dependent release of BDNF. The current study used a humanized mouse model of the BDNF val66met polymorphism to determine how reduced activity-dependent release of BDNF, both on its own, and in combination with chronic adolescent stress hormone, impact hippocampal GABAergic interneuron cell density and dendrite morphology. Male and female Val/Val and Met/Met mice were exposed to corticosterone (CORT) or placebo in their drinking water from weeks 6-8, before brains were perfuse-fixed at 15 weeks. Cell density and dendrite morphology of immunofluorescent labelled inhibitory interneurons; somatostatin, parvalbumin and calretinin in the CA1, and 3 and dentate gyrus (DG) across the dorsal (DHP) and ventral hippocampus (VHP) were assessed by confocal z-stack imaging, and IMARIS dendritic mapping software. Mice with the Met/Met genotype showed significantly lower somatostatin cell density compared to Val/Val controls in the DHP, and altered somatostatin interneuron dendrite morphology including branch depth, and spine density. Parvalbumin-positive interneurons were unchanged between genotype groups, however BDNF val66met genotype influenced the dendritic volume, branch level and spine density of parvalbumin interneurons differentially across hippocampal subregions. Contrary to this, no such effects were observed for calretinin-positive interneurons. Adolescent exposure to CORT treatment also significantly altered somatostatin and parvalbumin dendrite branch level and the combined effect of Met/Met genotype and CORT treatment significantly reduced somatostatin and parvalbumin dendrite spine density. In sum, the BDNFVal66Met polymorphism significantly alters somatostatin and parvalbumin-positive interneuron cell development and dendrite morphology. Additionally, we also report a compounding effect of the Met/Met genotype and chronic adolescent CORT treatment on dendrite spine density, indicating that adolescence is a sensitive period of risk for Val66Met polymorphism carriers.
Collapse
Affiliation(s)
- Rachel Anne Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Monash Medical Centre, Clayton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Corresponding author. Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash University Level 3, Monash Medical Centre 27Wright St Clayton VIC 3168 Australia, .
| | - Adrienne Mary Grech
- Department of Psychiatry, School of Clinical Sciences, Monash University, Monash Medical Centre, Clayton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michael J. Notaras
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Weill Cornell Medical College of Cornell University, Centre for Neurogenetics, Brain & Mind Research Institute, New York City, New York, USA
| | - Mauricio Sepulveda
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
- Department of Pharmacology, University of Melbourne, VIC, Australia
- The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
57
|
Jorgensen C, Wang Z. Hormonal Regulation of Mammalian Adult Neurogenesis: A Multifaceted Mechanism. Biomolecules 2020; 10:biom10081151. [PMID: 32781670 PMCID: PMC7465680 DOI: 10.3390/biom10081151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Adult neurogenesis—resulting in adult-generated functioning, integrated neurons—is still one of the most captivating research areas of neuroplasticity. The addition of new neurons in adulthood follows a seemingly consistent multi-step process. These neurogenic stages include proliferation, differentiation, migration, maturation/survival, and integration of new neurons into the existing neuronal network. Most studies assessing the impact of exogenous (e.g., restraint stress) or endogenous (e.g., neurotrophins) factors on adult neurogenesis have focused on proliferation, survival, and neuronal differentiation. This review will discuss the multifaceted impact of hormones on these various stages of adult neurogenesis. Specifically, we will review the evidence for hormonal facilitation (via gonadal hormones), inhibition (via glucocorticoids), and neuroprotection (via recruitment of other neurochemicals such as neurotrophin and neuromodulators) on newly adult-generated neurons in the mammalian brain.
Collapse
Affiliation(s)
- Claudia Jorgensen
- Behavioral Science Department, Utah Valley University, Orem, UT 84058, USA
- Correspondence:
| | - Zuoxin Wang
- Psychology Department and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
| |
Collapse
|
58
|
Viale B, Song L, Petrenko V, Wenger Combremont AL, Contestabile A, Bocchi R, Salmon P, Carleton A, An L, Vutskits L, Kiss JZ. Transient Deregulation of Canonical Wnt Signaling in Developing Pyramidal Neurons Leads to Dendritic Defects and Impaired Behavior. Cell Rep 2020; 27:1487-1502.e6. [PMID: 31042475 DOI: 10.1016/j.celrep.2019.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/28/2019] [Accepted: 04/03/2019] [Indexed: 12/30/2022] Open
Abstract
During development, the precise implementation of molecular programs is a key determinant of proper dendritic development. Here, we demonstrate that canonical Wnt signaling is active in dendritic bundle-forming layer II pyramidal neurons of the rat retrosplenial cortex during dendritic branching and spine formation. Transient downregulation of canonical Wnt transcriptional activity during the early postnatal period irreversibly reduces dendritic arbor architecture, leading to long-lasting deficits in spatial exploration and/or navigation and spatial memory in the adult. During the late phase of dendritogenesis, canonical Wnt-dependent transcription regulates spine formation and maturation. We identify neurotrophin-3 as canonical Wnt target gene in regulating dendritogenesis. Our findings demonstrate how temporary imbalance in canonical Wnt signaling during specific time windows can result in irreversible dendritic defects, leading to abnormal behavior in the adult.
Collapse
Affiliation(s)
- Beatrice Viale
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | - Lin Song
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland; School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Volodymyr Petrenko
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | | | - Alessandro Contestabile
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | - Riccardo Bocchi
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | - Patrick Salmon
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | - Alan Carleton
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | - Lijia An
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Laszlo Vutskits
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland; Department of Anesthesiology, Pharmacology and Intensive Care, University Hospitals of Geneva, 1211 Geneva 4, Switzerland
| | - Jozsef Zoltan Kiss
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland.
| |
Collapse
|
59
|
Bhaskar S, Gowda J, Prasanna J, Kumar A. Does altering proteasomal activity and trafficking reduce the arborization mediated specific vulnerability of SNpc dopaminergic neurons of Parkinson's disease? Med Hypotheses 2020; 143:110062. [PMID: 32652429 DOI: 10.1016/j.mehy.2020.110062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/27/2020] [Indexed: 01/15/2023]
Abstract
Parkinson's disease (PD) is a late-onset degenerative neuronal disorder and stands second among the neurological disorders with 1% of the total world population being affected. The disease originates majorly due to compromised function of the dopaminergic (DA) neurons in the Substantia Nigra pars compacta (SNpc), but not the ventral tegmental area (VTA) region of the midbrain. The differential susceptibility for degeneration is majorly attributed to morphological, molecular, and electrophysiological heterogeneity existing in DA neurons of SNpc and VTA. Long-range axonal arborization and a higher number of synapses in SNpc DA neurons make it more vulnerable compared to VTA DA neurons. Studies have shown that a decrease in such axonal arborization places DA neurons at decreased risk in PD. The two well established underlying mechanisms are a) As arborization is an energy-demanding process, increased redistribution of mitochondria to the axonal terminals occurs to satisfy the bioenergetic requirement b) The stabilization of axon-promoting factors at the axonal tip is an essential component for enhancing the arborization process. Interfering with any of these two processes would probably alleviate the degeneration of SNpc DA neurons. To accomplish the decreased stability of arborizing factors and thereby increase the resilience of SNpc DA neurons, we hypothesize the activation of anterograde transport-dependent recruitment of proteasomes to axon terminals as one of the most favorable approaches. Understanding this putative avenue of enhancing proteasomal activity and migration to the axonal tip could provide insight into the progression of neurodegeneration in PD and possibly offer a novel therapeutic strategy.
Collapse
Affiliation(s)
- Smitha Bhaskar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allalsandra, Yelahanka, Bengaluru 560065, Karnataka, India
| | - Jeevan Gowda
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allalsandra, Yelahanka, Bengaluru 560065, Karnataka, India
| | - Jyothi Prasanna
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allalsandra, Yelahanka, Bengaluru 560065, Karnataka, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allalsandra, Yelahanka, Bengaluru 560065, Karnataka, India.
| |
Collapse
|
60
|
Bessi V, Mazzeo S, Bagnoli S, Padiglioni S, Carraro M, Piaceri I, Bracco L, Sorbi S, Nacmias B. The implication of BDNF Val66Met polymorphism in progression from subjective cognitive decline to mild cognitive impairment and Alzheimer's disease: a 9-year follow-up study. Eur Arch Psychiatry Clin Neurosci 2020; 270:471-482. [PMID: 31560105 DOI: 10.1007/s00406-019-01069-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Brain-derived natriuretic factor (BDNF) Val66Met polymorphism has been frequently reported to be associated with Alzheimer's disease (AD) with contrasting results. Numerous studies showed that Met allele increased the risk of AD only in women, while other studies have found worse cognitive performance in Val/Val carriers. We aimed to inquire the effects of Val66Met polymorphism on the progression from subjective cognitive decline (SCD) to mild cognitive impairment (MCI) and from MCI to AD and to ascertain if this effect is modulated by demographic and cognitive variables. For this purpose, we followed up 74 subjects (48 SCD, 26 MCI) for a mean time of 9 years. All participants underwent extensive neuropsychological assessment, cognitive reserve estimation, BDNF and apolipoprotein E (ApoE) genotype analysis at baseline. Personality traits and leisure activities were assessed in a subgroup. Each patient underwent clinical-neuropsychological follow-up, during which 18 out of 48 SCD subjects progressed to MCI and 14 out of 26 MCI subjects progressed to AD. We found that Val66Met increased the risk of progression from SCD to MCI and from MCI to AD only in women. Nevertheless, Val/Val carriers who progressed from SCD to MCI had a shorter conversion time compared to Met carriers. We concluded that Val66Met polymorphism might play different roles depending on sex and stage of the disease.
Collapse
Affiliation(s)
- Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy.
| | - Salvatore Mazzeo
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| | - Sonia Padiglioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| | - Marco Carraro
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| | - Irene Piaceri
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| | - Laura Bracco
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| |
Collapse
|
61
|
Hernandez-Echeagaray E. The role of the TrkB-T1 receptor in the neurotrophin-4/5 antagonism of brain-derived neurotrophic factor on corticostriatal synaptic transmission. Neural Regen Res 2020; 15:1973-1976. [PMID: 32394943 PMCID: PMC7716028 DOI: 10.4103/1673-5374.282224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This manuscript reviews the function and fundamental characteristics of the neurotrophins and their receptors to introduce the reader to the differential effects exhibited by the neurotrophins; brain-derived neurotrophic factor and neurotrophin 4/5 when acted together after sequential presentation. The neurotrophin 4/5 exhibits an inhibitory action on the modulatory effect of brain-derived neurotrophic factor in corticostriatal synapses when they are administered sequentially (brain-derived neurotrophic factor to neurotrophin 4/5). This inhibitory effect has not been previously documented and is relevant for these neurotrophins as both of them stimulate the TrkB receptor. The additive effect of these neurotrophins is also discussed and occurs when neurotrophin 4/5 exposure is followed by brain-derived neurotrophic factor in a mouse model of striatal degeneration. Occlusive and additive effects of both neurotrophins are accompanied by changes in the expression of the TrkB receptor isoforms, specifically TrkB-T1 and TrkB-FL, as well as differences in phosphorylation levels of the TrkB receptor. The results of the experiments described raise several questions to inquire about the role that TrkB-T1 receptor plays in striatal physiology, as well as the functional relevance of the interaction of brain-derived neurotrophic factor and neurotrophin 4/5 in the brain and more specifically at the striatal circuits in normal as well as pathological conditions.
Collapse
|
62
|
The early overgrowth theory of autism spectrum disorder: Insight into convergent mechanisms from valproic acid exposure and translational models. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020. [PMID: 32711813 DOI: 10.1016/bs.pmbts.2020.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The development of new approaches for the clinical management of autism spectrum disorder (ASD) can only be realized through a better understanding of the neurobiological changes associated with ASD. One strategy for gaining deeper insight into the neurobiological mechanisms associated with ASD is to identify converging pathogenic processes associated with human idiopathic clinicopathology that are conserved in translational models of ASD. In this chapter, we first present the early overgrowth theory of ASD. Second, we introduce valproic acid (VPA), one of the most robust and well-known environmental risk factors associated with ASD, and we summarize the rapidly growing body of animal research literature using VPA as an ASD translational model. Lastly, we will detail the mechanisms of action of VPA and its impact on functional neural systems, as well as discuss future research directions that could have a lasting impact on the field.
Collapse
|
63
|
Gait Deficits and Loss of Striatal Tyrosine Hydroxlase/Trk-B are Restored Following 7,8-Dihydroxyflavone Treatment in a Progressive MPTP Mouse Model of Parkinson’s Disease. Neuroscience 2020; 433:53-71. [DOI: 10.1016/j.neuroscience.2020.02.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022]
|
64
|
Luo J, Ting CY, Li Y, McQueen P, Lin TY, Hsu CP, Lee CH. Antagonistic regulation by insulin-like peptide and activin ensures the elaboration of appropriate dendritic field sizes of amacrine neurons. eLife 2020; 9:50568. [PMID: 32175842 PMCID: PMC7075694 DOI: 10.7554/elife.50568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/05/2020] [Indexed: 01/09/2023] Open
Abstract
Establishing appropriate sizes and shapes of dendritic arbors is critical for proper wiring of the central nervous system. Here we report that Insulin-like Peptide 2 (DILP2) locally activates transiently expressed insulin receptors in the central dendrites of Drosophila Dm8 amacrine neurons to positively regulate dendritic field elaboration. We found DILP2 was expressed in L5 lamina neurons, which have axonal terminals abutting Dm8 dendrites. Proper Dm8 dendrite morphogenesis and synapse formation required insulin signaling through TOR (target of rapamycin) and SREBP (sterol regulatory element-binding protein), acting in parallel with previously identified negative regulation by Activin signaling to provide robust control of Dm8 dendrite elaboration. A simulation of dendritic growth revealed trade-offs between dendritic field size and robustness when branching and terminating kinetic parameters were constant, but dynamic modulation of the parameters could mitigate these trade-offs. We suggest that antagonistic DILP2 and Activin signals from different afferents appropriately size Dm8 dendritic fields.
Collapse
Affiliation(s)
- Jiangnan Luo
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Chun-Yuan Ting
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Yan Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Philip McQueen
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, United States
| | - Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chi-Hon Lee
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
65
|
Elkahlah NA, Rogow JA, Ahmed M, Clowney EJ. Presynaptic developmental plasticity allows robust sparse wiring of the Drosophila mushroom body. eLife 2020; 9:e52278. [PMID: 31913123 PMCID: PMC7028369 DOI: 10.7554/elife.52278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/07/2020] [Indexed: 01/29/2023] Open
Abstract
In order to represent complex stimuli, principle neurons of associative learning regions receive combinatorial sensory inputs. Density of combinatorial innervation is theorized to determine the number of distinct stimuli that can be represented and distinguished from one another, with sparse innervation thought to optimize the complexity of representations in networks of limited size. How the convergence of combinatorial inputs to principle neurons of associative brain regions is established during development is unknown. Here, we explore the developmental patterning of sparse olfactory inputs to Kenyon cells of the Drosophila melanogaster mushroom body. By manipulating the ratio between pre- and post-synaptic cells, we find that postsynaptic Kenyon cells set convergence ratio: Kenyon cells produce fixed distributions of dendritic claws while presynaptic processes are plastic. Moreover, we show that sparse odor responses are preserved in mushroom bodies with reduced cellular repertoires, suggesting that developmental specification of convergence ratio allows functional robustness.
Collapse
Affiliation(s)
- Najia A Elkahlah
- Department of Molecular, Cellular and Developmental BiologyThe University of MichiganAnn ArborUnited States
| | - Jackson A Rogow
- Laboratory of Neurophysiology and BehaviorThe Rockefeller UniversityNew YorkUnited States
| | - Maria Ahmed
- Department of Molecular, Cellular and Developmental BiologyThe University of MichiganAnn ArborUnited States
| | - E Josephine Clowney
- Department of Molecular, Cellular and Developmental BiologyThe University of MichiganAnn ArborUnited States
| |
Collapse
|
66
|
Combined Treatment with Low-Dose Ionizing Radiation and Ketamine Induces Adverse Changes in CA1 Neuronal Structure in Male Murine Hippocampi. Int J Mol Sci 2019; 20:ijms20236103. [PMID: 31817026 PMCID: PMC6929167 DOI: 10.3390/ijms20236103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
In children, ketamine sedation is often used during radiological procedures. Combined exposure of ketamine and radiation at doses that alone did not affect learning and memory induced permanent cognitive impairment in mice. The aim of this study was to elucidate the mechanism behind this adverse outcome. Neonatal male NMRI mice were administered ketamine (7.5 mg kg−1) and irradiated (whole-body, 100 mGy or 200 mGy, 137Cs) one hour after ketamine exposure on postnatal day 10. The control mice were injected with saline and sham-irradiated. The hippocampi were analyzed using label-free proteomics, immunoblotting, and Golgi staining of CA1 neurons six months after treatment. Mice co-exposed to ketamine and low-dose radiation showed alterations in hippocampal proteins related to neuronal shaping and synaptic plasticity. The expression of brain-derived neurotrophic factor, activity-regulated cytoskeleton-associated protein, and postsynaptic density protein 95 were significantly altered only after the combined treatment (100 mGy or 200 mGy combined with ketamine, respectively). Increased numbers of basal dendrites and branching were observed only after the co-exposure, thereby constituting a possible reason for the displayed alterations in behavior. These data suggest that the risk of radiation-induced neurotoxic effects in the pediatric population may be underestimated if based only on the radiation dose.
Collapse
|
67
|
The molecular and cellular mechanisms of depression: a focus on reward circuitry. Mol Psychiatry 2019; 24:1798-1815. [PMID: 30967681 PMCID: PMC6785351 DOI: 10.1038/s41380-019-0415-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/18/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Depression is a complex disorder that takes an enormous toll on individual health. As affected individuals display a wide variation in their clinical symptoms, the precise neural mechanisms underlying the development of depression remain elusive. Although it is impossible to phenocopy every symptom of human depression in rodents, the preclinical field has had great success in modeling some of the core affective and neurovegetative depressive symptoms, including social withdrawal, anhedonia, and weight loss. Adaptations in select cell populations may underlie these individual depressive symptoms and new tools have expanded our ability to monitor and manipulate specific cell types. This review outlines some of the most recent preclinical discoveries on the molecular and neurophysiological mechanisms in reward circuitry that underlie the expression of behavioral constructs relevant to depressive symptoms.
Collapse
|
68
|
Xu J, Du YL, Xu JW, Hu XG, Gu LF, Li XM, Hu PH, Liao TL, Xia QQ, Sun Q, Shi L, Luo JH, Xia J, Wang Z, Xu J. Neuroligin 3 Regulates Dendritic Outgrowth by Modulating Akt/mTOR Signaling. Front Cell Neurosci 2019; 13:518. [PMID: 31849609 PMCID: PMC6896717 DOI: 10.3389/fncel.2019.00518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023] Open
Abstract
Neuroligins (NLs) are a group of postsynaptic cell adhesion molecules that function in synaptogenesis and synaptic transmission. Genetic defects in neuroligin 3 (NL3), a member of the NL protein family, are associated with autism. Studies in rodents have revealed that mutations of NL3 gene lead to increased growth and complexity in dendrites in the central nervous system. However, the detailed mechanism is still unclear. In our study, we found that deficiency of NL3 led to morphological changes of the pyramidal neurons in layer II/III somatosensory cortex in mice, including enlarged somata, elongated dendritic length, and increased dendritic complexity. Knockdown of NL3 in cultured rat neurons upregulated Akt/mTOR signaling, resulting in both increased protein synthesis and dendritic growth. Treating neurons with either rapamycin to inhibit the mTOR or LY294002 to inhibit the PI3K/Akt activity rescued the morphological abnormalities resulting from either NL3 knockdown or knockout (KO). In addition, we found that the hyperactivated Akt/mTOR signaling associated with NL3 defects was mediated by a reduction in phosphatase and tensin (PTEN) expression, and that MAGI-2, a scaffold protein, interacted with both NL3 and PTEN and could be a linker between NL3 and Akt/mTOR signaling pathway. In conclusion, our results suggest that NL3 regulates neuronal morphology, especially dendritic outgrowth, by modulating the PTEN/Akt/mTOR signaling pathway, probably via MAGI-2. Thereby, this study provides a new link between NL3 and neuronal morphology.
Collapse
Affiliation(s)
- Jing Xu
- Department of Rehabilitation of the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-lan Du
- Department of Rehabilitation of the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing-wei Xu
- Department of Rehabilitation of the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-ge Hu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lin-fan Gu
- Zhejiang University-University of Edinburgh Institute, Jiaxing, China
| | - Xiu-mao Li
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ping-hong Hu
- Department of Rehabilitation of the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tai-lin Liao
- Department of Rehabilitation of the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang-qiang Xia
- Department of Rehabilitation of the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Sun
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China
| | - Jian-hong Luo
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Xia
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Ziyi Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Junyu Xu
- Department of Rehabilitation of the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
69
|
Soto F, Tien NW, Goel A, Zhao L, Ruzycki PA, Kerschensteiner D. AMIGO2 Scales Dendrite Arbors in the Retina. Cell Rep 2019; 29:1568-1578.e4. [PMID: 31693896 PMCID: PMC6871773 DOI: 10.1016/j.celrep.2019.09.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/21/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
The size of dendrite arbors shapes their function and differs vastly between neuron types. The signals that control dendritic arbor size remain obscure. Here, we find that in the retina, starburst amacrine cells (SACs) and rod bipolar cells (RBCs) express the homophilic cell-surface protein AMIGO2. In Amigo2 knockout (KO) mice, SAC and RBC dendrites expand while arbors of other retinal neurons remain stable. SAC dendrites are divided into a central input region and a peripheral output region that provides asymmetric inhibition to direction-selective ganglion cells (DSGCs). Input and output compartments scale precisely with increased arbor size in Amigo2 KO mice, and SAC dendrites maintain asymmetric connectivity with DSGCs. Increased coverage of SAC dendrites is accompanied by increased direction selectivity of DSGCs without changes to other ganglion cells. Our results identify AMIGO2 as a cell-type-specific dendritic scaling factor and link dendrite size and coverage to visual feature detection.
Collapse
Affiliation(s)
- Florentina Soto
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Nai-Wen Tien
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anurag Goel
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lei Zhao
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Philip A Ruzycki
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
70
|
Huang JY, Lu HC. mGluR5 Tunes NGF/TrkA Signaling to Orient Spiny Stellate Neuron Dendrites Toward Thalamocortical Axons During Whisker-Barrel Map Formation. Cereb Cortex 2019; 28:1991-2006. [PMID: 28453662 DOI: 10.1093/cercor/bhx105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Indexed: 12/12/2022] Open
Abstract
Neurons receive and integrate synaptic inputs at their dendrites, thus dendritic patterning shapes neural connectivity and behavior. Aberrant dendritogenesis is present in neurodevelopmental disorders such as Down's syndrome and autism. Abnormal glutamatergic signaling has been observed in these diseases, as has dysfunction of the metabotropic glutamate receptor 5 (mGluR5). Deleting mGluR5 in cortical glutamatergic neurons disrupted their coordinated dendritic outgrowth toward thalamocortical axons and perturbed somatosensory circuits. Here we show that mGluR5 loss-of-function disrupts dendritogenesis of cortical neurons by increasing mRNA levels of nerve growth factor (NGF) and fibroblast growth factor 10 (FGF10), in part through calcium-permeable AMPA receptors (CP-AMPARs), as the whisker-barrel map is forming. Postnatal NGF and FGF10 expression in cortical layer IV spiny stellate neurons differentially impacted dendritic patterns. Remarkably, NGF-expressing neurons exhibited dendritic patterns resembling mGluR5 knockout neurons: increased total dendritic length/complexity and reduced polarity. Furthermore, suppressing the kinase activity of TrkA, a major NGF receptor, prevents aberrant dendritic patterning in barrel cortex of mGluR5 knockout neurons. These results reveal novel roles for NGF-TrkA signaling and CP-AMPARs for proper dendritic development of cortical neurons. This is the first in vivo demonstration that cortical neuronal NGF expression modulates dendritic patterning during postnatal brain development.
Collapse
Affiliation(s)
- Jui-Yen Huang
- Department of Psychological and Brain Sciences, the Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN 47405, USA.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui-Chen Lu
- Department of Psychological and Brain Sciences, the Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN 47405, USA.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
71
|
Patel D, Kas MJ, Chattarji S, Buwalda B. Rodent models of social stress and neuronal plasticity: Relevance to depressive-like disorders. Behav Brain Res 2019; 369:111900. [DOI: 10.1016/j.bbr.2019.111900] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
|
72
|
Liang C, Carrel D, Omelchenko A, Kim H, Patel A, Fanget I, Firestein BL. Cortical Neuron Migration and Dendrite Morphology are Regulated by Carboxypeptidase E. Cereb Cortex 2019; 29:2890-2903. [PMID: 29982499 PMCID: PMC6611459 DOI: 10.1093/cercor/bhy155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022] Open
Abstract
Higher brain function relies on proper development of the cerebral cortex, including correct positioning of neurons and dendrite morphology. Disruptions in these processes may result in various neurocognitive disorders. Mutations in the CPE gene, which encodes carboxypeptidase E (CPE), have been linked to depression and intellectual disability. However, it remains unclear whether CPE is involved in early brain development and in turn contributes to the pathophysiology of neurocognitive disorders. Here, we investigate the effects of CPE knockdown on early brain development and explore the functional significance of the interaction between CPE and its binding partner p150Glued. We demonstrate that CPE is required for cortical neuron migration and dendrite arborization. Furthermore, we show that expression of CPE-C10 redistributes p150Glued from the centrosome and that disruption of CPE interaction with p150Glued leads to abnormal neuronal migration and dendrite morphology, suggesting that a complex between CPE and p150Glued is necessary for proper neurodevelopment.
Collapse
Affiliation(s)
- Chen Liang
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA
- Molecular Biosciences Graduate Program, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA
| | - Damien Carrel
- Neurophotonics Laboratory, Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique UMR 8250, Paris, France
| | - Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, 683 Hoes Lane West, USA
| | - Hyuck Kim
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA
| | - Aashini Patel
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA
| | - Isabelle Fanget
- Neurophotonics Laboratory, Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique UMR 8250, Paris, France
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA
| |
Collapse
|
73
|
Sonmez EO, Uguz F, Sahingoz M, Sonmez G, Kaya N, Camkurt MA, Gokmen Z, Basaran M, Gezginc K, Erdem SS, Dulger HH, Tasyurek E. Effect of Maternal Depression on Brain-derived Neurotrophic Factor Levels in Fetal Cord Blood. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:308-313. [PMID: 30905131 PMCID: PMC6478092 DOI: 10.9758/cpn.2019.17.2.308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 12/30/2022]
Abstract
Objective We aimed to assess the association between cord blood brain-derived neurotrophic factor (BDNF) concentration and maternal depression during pregnancy. Methods A total of 48 pregnant women, admitted for elective caesarean section to Department of Obstetrics and Gynecology, The Konya Research and Training Hospital and Konya Necmettin Erbakan University Meram Medical Faculty, were included in this study. The study group included 23 women diagnosed as having depression during pregnancy and the control group included 25 pregnant women who did not experience depression during pregnancy. Results The groups had similar sociodemographic characteristics. Cord blood BDNF concentration was significantly lower in babies born to mothers with major depression as compared with those in the control group. We didn’t find any correlation between the umbilical cord blood BDNF levels and BDI scores. Conclusion The results suggest that the existence of major depression in pregnant women may negatively affect fetal circulating BDNF levels.
Collapse
Affiliation(s)
- Erdem Onder Sonmez
- Department of Psychiatry, Dr. Ekrem Tok Mental Health and Disease Hospital
| | | | | | | | | | | | | | | | | | - Sami Sait Erdem
- Department of Biochemistry, Konya Research and Training Hospital
| | - Hasan Haluk Dulger
- Department of Biochemistry, Meram Faculty of Medicine, Necmettin Erbakan University
| | - Erkan Tasyurek
- Department of Biochemistry, Meram Faculty of Medicine, Necmettin Erbakan University
| |
Collapse
|
74
|
Ravindran S, Nalavadi VC, Muddashetty RS. BDNF Induced Translation of Limk1 in Developing Neurons Regulates Dendrite Growth by Fine-Tuning Cofilin1 Activity. Front Mol Neurosci 2019; 12:64. [PMID: 30949027 PMCID: PMC6436473 DOI: 10.3389/fnmol.2019.00064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/26/2019] [Indexed: 11/13/2022] Open
Abstract
Dendritic growth and branching are highly regulated processes and are essential for establishing proper neuronal connectivity. There is a critical phase of early dendrite development when these are heavily regulated by external cues such as trophic factors. Brain-derived neurotrophic factor (BDNF) is a major trophic factor known to enhance dendrite growth in cortical neurons, but the molecular underpinnings of this response are not completely understood. We have identified that BDNF induced translational regulation is an important mechanism governing dendrite development in cultured rat cortical neurons. We show that BDNF treatment for 1 h in young neurons leads to translational up-regulation of an important actin regulatory protein LIM domain kinase 1 (Limk1), increasing its level locally in the dendrites. Limk1 is a member of serine/threonine (Ser/Thr) family kinases downstream of the Rho-GTPase pathway. BDNF induced increase in Limk1 levels leads to increased phosphorylation of its target protein cofilin1. We observed that these changes are maintained for long durations of up to 48 h and are mediating increase in number of primary dendrites and total dendrite length. Thus, we show that BDNF induced protein synthesis leads to fine-tuning of the actin cytoskeletal reassembly and thereby mediate dendrite development.
Collapse
Affiliation(s)
- Sreenath Ravindran
- Center for Brain Development and Repair (CBDR), Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Vijayalaxmi C Nalavadi
- Center for Brain Development and Repair (CBDR), Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
| | - Ravi S Muddashetty
- Center for Brain Development and Repair (CBDR), Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
| |
Collapse
|
75
|
Torres-Cruz FM, César Vivar-Cortés I, Moran I, Mendoza E, Gómez-Pineda V, García-Sierra F, Hernández-Echeagaray E. NT-4/5 antagonizes the BDNF modulation of corticostriatal transmission: Role of the TrkB.T1 receptor. CNS Neurosci Ther 2019; 25:621-631. [PMID: 30666798 PMCID: PMC6488875 DOI: 10.1111/cns.13091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
Neurotrophins are related to survival, growth, differentiation and neurotrophic maintenance as well as modulation of synaptic transmission in different regions of the nervous system. BDNF effects have been studied in the striatum due to the trophic role of BDNF in medium spiny neurons; however, less is known about the effects of NT‐4/5, which is also present in the striatum and activates the TrkB receptor along with BDNF. If both neurotrophins are present in the striatum, the following question arises: What role do they play in striatal physiology? Thus, the aim of this study was to determine the physiological effect of the sequential application and coexistence of BDNF and NT‐4/5 on the modulation of corticostriatal synapses. Our data demonstrated that neurotrophins exhibit differential effects depending on exposure order. BDNF did not modify NT‐4/5 effect; however, NT‐4/5 inhibited the effects of BDNF. Experiments carried out in COS‐7 cells to understand the mechanisms of this antagonism, indicated that NT‐4/5 exerts its inhibitory effect on BDNF by upregulating the TrkB.T1 and downregulating the TrkB‐FL isoforms of the TrkB receptor.
Collapse
Affiliation(s)
- Francisco M Torres-Cruz
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Israel César Vivar-Cortés
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Isaac Moran
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ernesto Mendoza
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Victor Gómez-Pineda
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Elizabeth Hernández-Echeagaray
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
76
|
Manohar S, Ramchander PV, Salvi R, Seigel GM. Synaptic Reorganization Response in the Cochlear Nucleus Following Intense Noise Exposure. Neuroscience 2018; 399:184-198. [PMID: 30593923 DOI: 10.1016/j.neuroscience.2018.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
The cochlear nucleus, located in the brainstem, receives its afferent auditory input exclusively from the auditory nerve fibers of the ipsilateral cochlea. Noise-induced neurodegenerative changes occurring in the auditory nerve stimulate a cascade of neuroplastic changes in the cochlear nucleus resulting in major changes in synaptic structure and function. To identify some of the key molecular mechanisms mediating this synaptic reorganization, we unilaterally exposed rats to a high-intensity noise that caused significant hearing loss and then measured the resulting changes in a synaptic plasticity gene array targeting neurogenesis and synaptic reorganization. We compared the gene expression patterns in the dorsal cochlear nucleus (DCN) and ventral cochlear nucleus (VCN) on the noise-exposed side versus the unexposed side using a PCR gene array at 2 d (early) and 28 d (late) post-exposure. We discovered a number of differentially expressed genes, particularly those related to synaptogenesis and regeneration. Significant gene expression changes occurred more frequently in the VCN than the DCN and more changes were seen at 28 d versus 2 d post-exposure. We confirmed the PCR findings by in situ hybridization for Brain-derived neurotrophic factor (Bdnf), Homer-1, as well as the glutamate NMDA receptor Grin1, all involved in neurogenesis and plasticity. These results suggest that Bdnf, Homer-1 and Grin1 play important roles in synaptic remodeling and homeostasis in the cochlear nucleus following severe noise-induced afferent degeneration.
Collapse
Affiliation(s)
- S Manohar
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| | - P V Ramchander
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| | - R Salvi
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States.
| | - G M Seigel
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| |
Collapse
|
77
|
Lira M, Arancibia D, Orrego PR, Montenegro-Venegas C, Cruz Y, García J, Leal-Ortiz S, Godoy JA, Gundelfinger ED, Inestrosa NC, Garner CC, Zamorano P, Torres VI. The Exocyst Component Exo70 Modulates Dendrite Arbor Formation, Synapse Density, and Spine Maturation in Primary Hippocampal Neurons. Mol Neurobiol 2018; 56:4620-4638. [DOI: 10.1007/s12035-018-1378-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
|
78
|
Orellana AM, Leite JA, Kinoshita PF, Vasconcelos AR, Andreotti DZ, de Sá Lima L, Xavier GF, Kawamoto EM, Scavone C. Ouabain increases neuronal branching in hippocampus and improves spatial memory. Neuropharmacology 2018; 140:260-274. [PMID: 30099050 DOI: 10.1016/j.neuropharm.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/05/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
Abstract
Previous research shows Ouabain (OUA) to bind Na, K-ATPase, thereby triggering a number of signaling pathways, including the transcription factors NFᴋB and CREB. These transcription factors play a key role in the regulation of BDNF and WNT-β-catenin signaling cascades, which are involved in neuroprotection and memory regulation. This study investigated the effects of OUA (10 nM) in the modulation of the principal signaling pathways involved in morphological plasticity and memory formation in the hippocampus of adult rats. The results show intrahippocampal injection of OUA 10 nM to activate the Wnt/β-Catenin signaling pathway and to increase CREB/BDNF and NFᴋB levels. These effects contribute to important changes in the cellular microenvironment, resulting in enhanced levels of dendritic branching in hippocampal neurons, in association with an improvement in spatial reference memory and the inhibition of long-term memory extinction.
Collapse
Affiliation(s)
- Ana Maria Orellana
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Paula Fernanda Kinoshita
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Diana Zukas Andreotti
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Larissa de Sá Lima
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Gilberto Fernando Xavier
- Department of Physiology, Institute of Bioscience, University of São Paulo, Adress: Rua do Matão, Travessa 14, 101, São Paulo, 05508-090, Brazil.
| | - Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| |
Collapse
|
79
|
Wang Y, Wu W, Wu X, Sun Y, Zhang YP, Deng LX, Walker MJ, Qu W, Chen C, Liu NK, Han Q, Dai H, Shields LB, Shields CB, Sengelaub DR, Jones KJ, Smith GM, Xu XM. Remodeling of lumbar motor circuitry remote to a thoracic spinal cord injury promotes locomotor recovery. eLife 2018; 7:39016. [PMID: 30207538 PMCID: PMC6170189 DOI: 10.7554/elife.39016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/09/2018] [Indexed: 12/18/2022] Open
Abstract
Retrogradely-transported neurotrophin signaling plays an important role in regulating neural circuit specificity. Here we investigated whether targeted delivery of neurotrophin-3 (NT-3) to lumbar motoneurons (MNs) caudal to a thoracic (T10) contusive spinal cord injury (SCI) could modulate dendritic patterning and synapse formation of the lumbar MNs. In vitro, Adeno-associated virus serotype two overexpressing NT-3 (AAV-NT-3) induced NT-3 expression and neurite outgrowth in cultured spinal cord neurons. In vivo, targeted delivery of AAV-NT-3 into transiently demyelinated adult mouse sciatic nerves led to the retrograde transportation of NT-3 to the lumbar MNs, significantly attenuating SCI-induced lumbar MN dendritic atrophy. NT-3 enhanced sprouting and synaptic formation of descending serotonergic, dopaminergic, and propriospinal axons on lumbar MNs, parallel to improved behavioral recovery. Thus, retrogradely transported NT-3 stimulated remodeling of lumbar neural circuitry and synaptic connectivity remote to a thoracic SCI, supporting a role for retrograde transport of NT-3 as a potential therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Ying Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States.,Neural Tissue Engineering Research Institute, Mudanjiang College of Medicine, Mudanjiang, China
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Yan Sun
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi P Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, United States
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Melissa Jane Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Wenrui Qu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States.,Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indiana, United States
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Heqiao Dai
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Lisa Be Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, United States
| | | | - Dale R Sengelaub
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, United States
| | - Kathryn J Jones
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, United States
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, United States
| |
Collapse
|
80
|
Cell type-specific effects of BDNF in modulating dendritic architecture of hippocampal neurons. Brain Struct Funct 2018; 223:3689-3709. [DOI: 10.1007/s00429-018-1715-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
|
81
|
Murray SS, Wong AW, Yang J, Li Y, Putz U, Tan SS, Howitt J. Ubiquitin Regulation of Trk Receptor Trafficking and Degradation. Mol Neurobiol 2018; 56:1628-1636. [PMID: 29911254 DOI: 10.1007/s12035-018-1179-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022]
Abstract
The regulation of Trk receptors is critical for orchestrating multiple signalling pathways required for developing and maintaining neuronal networks. Activation of Trk receptors results in signalling, internalisation and subsequent degradation of the protein. Although ubiquitination of TrkA by Nedd4-2 has been identified as an important degradation pathway, much less is known about the pathways regulating the degradation of TrkB and TrkC. Critical to the interaction between TrkA and Nedd4-2 is a PPxY motif present within TrkA but absent in TrkB and TrkC. Given the absence of this interaction motif, it remains to be determined how TrkB and TrkC are ubiquitinated. Here we report that the adaptor protein Ndfip1 can interact with all three Trk receptors and show for TrkB the recruitment of Nedd4-2 through PPxY motifs present in Ndfip1. Ndfip1 mediates the ubiquitination of TrkB, resulting in receptor trafficking predominantly on Rab7 containing late endosomes, highlighting a pathway for TrkB degradation at the lysosome. In vitro, overexpression of Ndfip1 increased TrkB ubiquitination and decreased viability of BDNF-dependent primary neurons. In vivo, conditional genetic deletion of Ndfip1 increased TrkB in the brain and resulted in enlargement of the granular cell layer of the dentate gyrus.
Collapse
Affiliation(s)
- S S Murray
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - A W Wong
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - J Yang
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Y Li
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - U Putz
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - S-S Tan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - J Howitt
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia. .,Department of Health and Medical Sciences, Iverson Health Innovation Institute, Swinburne University of Technology, Hawthorn, Australia.
| |
Collapse
|
82
|
Ohja K, Gozal E, Fahnestock M, Cai L, Cai J, Freedman JH, Switala A, El-Baz A, Barnes GN. Neuroimmunologic and Neurotrophic Interactions in Autism Spectrum Disorders: Relationship to Neuroinflammation. Neuromolecular Med 2018; 20:161-173. [PMID: 29691724 PMCID: PMC5942347 DOI: 10.1007/s12017-018-8488-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/28/2018] [Indexed: 12/30/2022]
Abstract
Autism spectrum disorders (ASD) are the most prevalent set of pediatric neurobiological disorders. The etiology of ASD has both genetic and environmental components including possible dysfunction of the immune system. The relationship of the immune system to aberrant neural circuitry output in the form of altered behaviors and communication characterized by ASD is unknown. Dysregulation of neurotrophins such as BDNF and their signaling pathways have been implicated in ASD. While abnormal cortical formation and autistic behaviors in mouse models of immune activation have been described, no one theory has been described to link activation of the immune system to specific brain signaling pathways aberrant in ASD. In this paper we explore the relationship between neurotrophin signaling, the immune system and ASD. To this effect we hypothesize that an interplay of dysregulated immune system, synaptogenic growth factors and their signaling pathways contribute to the development of ASD phenotypes.
Collapse
Affiliation(s)
- Kshama Ohja
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Evelyne Gozal
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Lu Cai
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jonathan H Freedman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Andy Switala
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Gregory Neal Barnes
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Spafford Ackerly Chair in Child and Adolescent Psychiatry, University of Louisville Autism Center, 1405 East Burnett Avenue, Louisville, KY, 40217, USA.
| |
Collapse
|
83
|
|
84
|
Zhu MY. Noradrenergic Modulation on Dopaminergic Neurons. Neurotox Res 2018; 34:848-859. [DOI: 10.1007/s12640-018-9889-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 12/24/2022]
|
85
|
O'Neill KM, Donohue KE, Omelchenko A, Firestein BL. The 3' UTRs of Brain-Derived Neurotrophic Factor Transcripts Differentially Regulate the Dendritic Arbor. Front Cell Neurosci 2018; 12:60. [PMID: 29563866 PMCID: PMC5845904 DOI: 10.3389/fncel.2018.00060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
The patterning of dendrites is regulated by many factors, such as brain-derived neurotrophic factor (BDNF), which our laboratory has previously shown alters the dendritic arbor uniquely depending on the mode of extracellular application. In the current work, we examine how BDNF affects dendritogenesis in hippocampal neurons when it is overexpressed intracellularly by transcripts previously reported to be transported to distinct cellular compartments. The BDNF gene is processed at two different polyadenylation sites, leading to mRNA transcription with two different length 3′ untranslated regions (UTRs), and therefore, different mRNA localization preferences. We found that overexpression of BDNF mRNA with or without 3′ UTRs significantly alters dendritic branching compared to branching in control neurons as analyzed by Sholl distribution curves. Unexpectedly, we found that the overexpression of the shorter BDNF mRNA (reported to be preferentially targeted to the cell body) results in similar changes to Sholl curves compared to overexpression of the longer BDNF mRNA (reported to be preferentially targeted to both the cell body and dendrites). We also investigated whether the BDNF receptor TrkB mediates these changes and found that inhibiting TrkB blocks increases in Sholl curves, although at different distances depending on the transcript’s UTR. Finally, although it is not found in nature, we also examined the effects of overexpressing BDNF mRNA with the unique portion of the longer 3′ UTR since it was previously shown to be necessary for dendritic targeting of mRNA. We found that its overexpression increases Sholl curves at distances close to the cell body and that these changes also depend on TrkB activity. This work illustrates how the mRNA spatial code affects how BDNF alters local dendritogenesis and how TrkB may mediate these effects. Finally, our findings emphasize the importance of intracellular transport of BDNF mRNAs in the regulation of dendrite morphology.
Collapse
Affiliation(s)
- Kate M O'Neill
- Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States.,Graduate Program in Biomedical Engineering, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Katherine E Donohue
- Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States.,Graduate Program in Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States.,Biomedical Engineering Graduate Faculty, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States.,Neuroscience Graduate Faculty, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
86
|
Maserati M, Alexander SA. Genetics and Genomics of Acute Neurologic Disorders. AACN Adv Crit Care 2018; 29:57-75. [PMID: 29496714 DOI: 10.4037/aacnacc2018566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurologic diseases and injuries are complex and multifactorial, making risk prediction, targeted treatment modalities, and outcome prognostication difficult and elusive. Genetics and genomics have affected clinical practice in many aspects in medicine, particularly cancer treatment. Advancements in knowledge of genetic and genomic variability in neurologic disease and injury are growing rapidly. Although these data are not yet ready for use in clinical practice, research continues to progress and elucidate information that eventually will provide answers to complex neurologic questions and serve as a platform to provide individualized care plans aimed at improving outcomes. This article provides a focused review of relevant literature on genetics, genomics, and common complex neurologic disease and injury likely to be seen in the acute care setting.
Collapse
Affiliation(s)
- Megan Maserati
- Megan Maserati is a PhD student at University of Pittsburgh, Pittsburgh, Pennsylvania. Sheila A. Alexander is Associate Professor, University of Pittsburgh, 336 Victoria Building, 3500 Victoria Street, Pittsburgh, PA 15261
| | - Sheila A Alexander
- Megan Maserati is a PhD student at University of Pittsburgh, Pittsburgh, Pennsylvania. Sheila A. Alexander is Associate Professor, University of Pittsburgh, 336 Victoria Building, 3500 Victoria Street, Pittsburgh, PA 15261
| |
Collapse
|
87
|
Wu H, Liu Q, Kalavagunta PK, Huang Q, Lv W, An X, Chen H, Wang T, Heriniaina RM, Qiao T, Shang J. Normal diet Vs High fat diet - A comparative study: Behavioral and neuroimmunological changes in adolescent male mice. Metab Brain Dis 2018; 33:177-190. [PMID: 29101600 DOI: 10.1007/s11011-017-0140-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/23/2017] [Indexed: 12/26/2022]
Abstract
Recent evidence has established that consumption of High-fat diet (HFD)-induced obesity is associated with deficits in hippocampus-dependent memory/learning and mood states. Nevertheless the link between obesity and emotional disorders still remains to be elucidated. This issue is of particular interest during adolescence, which is important period for shaping learning/memory and mood regulation that can be sensitive to the detrimental effects of HFD. Our present study is focused to investigate behavioral and metabolic influences of short-term HFD intake in adolescent C57BL/6 mice. HFD caused weight gain, impaired glucose tolerance (IGT) and depression-like behavior as early as after 3 weeks which was clearly proved by a decrease in number of groomings in the open field test (OFT) and an increase in immobility time in the tail suspension test (TST). In the 4th week HFD induced obese model was fully developed and above behavioral symptoms were more dominant (decrease in number of crossings and groomings and increase in immobility time in both FST and TST). At the end of 6th week hippocampal analysis revealed the differences in morphology (reduced Nissl positive neurons and decreased the 5-HT1A receptor expression), neuronal survival (increased cleaved caspase-3 expression), synaptic plasticity (down regulation of p-CREB and BDNF), and inflammatory responses (increase in expression of pro-inflammatory cytokines and decrease in expression of anti-inflammatory cyokines) in HFD mice. Our results demonstrate that, high-fat feeding of adolescent mice could provoke "depression-like" behavior as early as 3 weeks and modulate structure, neuron survival and neuroinflammation in hippocampus as early as 6 weeks proving that adolescent age is much prone to adverse effects of HFD, which causes obesity, behavioral differences, memory and learning deficiencies.
Collapse
Affiliation(s)
- Huali Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiongzhen Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Praveen Kumar Kalavagunta
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qiaoling Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenting Lv
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaohong An
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Haijuan Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, QingHai Province, 810008, China
| | - Tao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Rakotomalala Manda Heriniaina
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tong Qiao
- Vascular Surgery Department, Nanjing Drum Tower Hospital, Nanjing, 210008, China.
| | - Jing Shang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China.
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, QingHai Province, 810008, China.
| |
Collapse
|
88
|
Dominguez N, van Weering JRT, Borges R, Toonen RFG, Verhage M. Dense-core vesicle biogenesis and exocytosis in neurons lacking chromogranins A and B. J Neurochem 2018; 144:241-254. [PMID: 29178418 PMCID: PMC5814729 DOI: 10.1111/jnc.14263] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 11/26/2022]
Abstract
Chromogranin A and B (Cgs) are considered to be master regulators of cargo sorting for the regulated secretory pathway (RSP) and dense-core vesicle (DCV) biogenesis. To test this, we analyzed the release of neuropeptide Y (NPY)-pHluorin, a live RSP reporter, and the distribution, number, and appearance of DCVs, in mouse hippocampal neurons lacking expression of CHGA and CHGB genes. qRT-PCR analysis showed that expression of other granin family members was not significantly altered in CgA/B-/- neurons. As synaptic maturation of developing neurons depends on secretion of trophic factors in the RSP, we first analyzed neuronal development in standardized neuronal cultures. Surprisingly, dendritic and axonal length, arborization, synapse density, and synaptic vesicle accumulation in synapses were all normal in CgA/B-/- neurons. Moreover, the number of DCVs outside the soma, stained with endogenous marker Secretogranin II, the number of NPY-pHluorin puncta, and the total amount of reporter in secretory compartments, as indicated by pH-sensitive NPY-pHluorin fluorescence, were all normal in CgA/B-/- neurons. Electron microscopy revealed that synapses contained a normal number of DCVs, with a normal diameter, in CgA/B-/- neurons. In contrast, CgA/B-/- chromaffin cells contained fewer and smaller secretory vesicles with a smaller core size, as previously reported. Finally, live-cell imaging at single vesicle resolution revealed a normal number of fusion events upon bursts of action potentials in CgA/B-/- neurons. These events had normal kinetics and onset relative to the start of stimulation. Taken together, these data indicate that the two chromogranins are dispensable for cargo sorting in the RSP and DCV biogenesis in mouse hippocampal neurons.
Collapse
Affiliation(s)
- Natalia Dominguez
- Department of Clinical GeneticsCenter for Neurogenomics and Cognitive Research (CNCR)VU University Amsterdam and VU University Medical Center (VUmc)AmsterdamThe Netherlands
| | - Jan R. T. van Weering
- Department of Clinical GeneticsCenter for Neurogenomics and Cognitive Research (CNCR)VU University Amsterdam and VU University Medical Center (VUmc)AmsterdamThe Netherlands
| | - Ricardo Borges
- Unidad de FarmacologíaFacultad de MedicinaUniversidad de la LagunaTenerifeSpain
| | - Ruud F. G. Toonen
- Functional GenomicsCenter for Neurogenomics and Cognitive Research (CNCR)VU University Amsterdam and VU University Medical Center (VUmc)AmsterdamThe Netherlands
| | - Matthijs Verhage
- Department of Clinical GeneticsCenter for Neurogenomics and Cognitive Research (CNCR)VU University Amsterdam and VU University Medical Center (VUmc)AmsterdamThe Netherlands
- Functional GenomicsCenter for Neurogenomics and Cognitive Research (CNCR)VU University Amsterdam and VU University Medical Center (VUmc)AmsterdamThe Netherlands
| |
Collapse
|
89
|
Burak K, Lamoureux L, Boese A, Majer A, Saba R, Niu Y, Frost K, Booth SA. MicroRNA-16 targets mRNA involved in neurite extension and branching in hippocampal neurons during presymptomatic prion disease. Neurobiol Dis 2017; 112:1-13. [PMID: 29277556 DOI: 10.1016/j.nbd.2017.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/14/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
Abstract
The mechanisms that lead to neuronal death in neurodegenerative diseases are poorly understood. Prion diseases, like many more common disorders such as Alzheimer's and Parkinson's diseases, are characterized by the progressive accumulation of misfolded disease-specific proteins. The earliest changes observed in brain tissue include a reduction in synaptic number and retraction of dendritic spines, followed by reduced length and branching of neurites. These pathologies are observable during presymptomatic stages of disease and are accompanied by altered expression of transcripts that include miRNAs. Here we report that miR-16 localized within hippocampal CA1 neurons is increased during early prion disease. Modulating miR-16 expression in mature murine hippocampal neurons by expression from a lentivirus, thus mimicking the modest increase seen in vivo, was found to induce neurodegeneration. This was characterized by retraction of neurites and reduced branching. We performed immunoprecipitation of the miR-16 enriched RISC complex, and identified associated transcripts from the co-immunoprecipitated RNA (Ago2 RIP-Chip). These transcripts were enriched with predicted binding sites for miR-16, including the validated miR-16 targets APP and BCL2, as well as numerous novel targets. In particular, genes within the neurotrophin receptor mediated MAPK/ERK pathway were potentially regulated by miR-16; including TrkB (NTRK2), MEK1 (MAP2K1) and c-Raf (RAF). Increased miR-16 expression in neurons during presymptomatic prion disease and reduction in proteins involved in MAPK/ERK signaling represents a possible mechanism by which neurite length and branching are decreased during early stages of disease.
Collapse
Affiliation(s)
- Kristyn Burak
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lise Lamoureux
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Amrit Boese
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anna Majer
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Reuben Saba
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yulian Niu
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kathy Frost
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Stephanie A Booth
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
90
|
Kim JY, Seo ES, Kim H, Park JW, Lim DK, Moon DW. Atmospheric pressure mass spectrometric imaging of live hippocampal tissue slices with subcellular spatial resolution. Nat Commun 2017; 8:2113. [PMID: 29235455 PMCID: PMC5727394 DOI: 10.1038/s41467-017-02216-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 11/14/2017] [Indexed: 12/03/2022] Open
Abstract
We report a high spatial resolution mass spectrometry (MS) system that allows us to image live hippocampal tissue slices under open-air atmospheric pressure (AP) and ambient temperature conditions at the subcellular level. The method is based on an efficient desorption process by femtosecond (fs) laser assisted with nanoparticles and a subsequent ionization step by applying nonthermal plasma, termed AP nanoparticle and plasma assisted laser desorption ionization (AP-nanoPALDI) MS method. Combining the AP-nanoPALDI with microscopic sample scanning, MS imaging with spatial resolution of 2.9 µm was obtained. The observed AP-nanoPALDI MS imaging clearly revealed the differences of molecular composition between the apical and basal dendrite regions of a hippocampal tissue. In addition, the AP-nanoPALDI MS imaging showed the decrease of cholesterol in hippocampus by treating with methyl β-cyclodextrin, which exemplifies the potential of AP-nanoPALDI for live tissue imaging for various biomedical applications without any chemical pretreatment and/or labeling process. Ambient mass spectrometry-based approaches have found application in biology and medicine. Here the authors report a mass spectrometric imaging method (ambient nanoPALDI) for live hippocampal tissues, based on gold nanorodassisted femtosecond laser desorption and subsequent non-thermal plasma induced ionization.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Eun Seok Seo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Hyunmin Kim
- Companion Diagnostics and Medical Technology Research Group, DGIST, Daegu, 42988, Republic of Korea
| | - Ji-Won Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dae Won Moon
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
91
|
SAP97 Binding Partner CRIPT Promotes Dendrite Growth In Vitro and In Vivo. eNeuro 2017; 4:eN-NWR-0175-17. [PMID: 29218323 PMCID: PMC5718245 DOI: 10.1523/eneuro.0175-17.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023] Open
Abstract
The dendritic tree is a key determinant of neuronal information processing. In the motor system, the dendritic tree of spinal cord neurons undergoes dramatic remodeling in an activity-dependent manner during early postnatal life. This leads to the proper segmental spinal cord connectivity that subserves normal locomotor behavior. One molecular system driving the establishment of dendrite architecture of mammalian motor neurons relies on AMPA receptors (AMPA-Rs) assembled with the GluA1 subunit, and this occurs in an NMDA receptor (NMDA-R)-independent manner. The dendrite growth promoting activity of GluA1-containing AMPA-Rs depends on its intracellular binding partner, SAP97, and SAP97's PDZ3 domain. We show here that cysteine-rich interactor of PDZ3 (CRIPT) is a bona fide SAP97 PDZ3-domain binding partner, localizes to synapses with GluA1 and SAP97 along the dendritic tree, and is a determinant of the dendritic growth of mammalian spinal cord neurons. We further show that CRIPT has a well-conserved ortholog in the nematode, Caenorhabditis elegans, and animals lacking CRIPT display decreased dendrite branching of the well-studied PVD neuron in vivo. The lack of CRIPT leads to a selective defect in touch perception, and this is rescued by expression of wild-type (WT) human CRIPT (hCRIPT) in the nervous system. This work brings new light into the molecular machinery that drives dendritic growth during development and may prove relevant to the promotion of nervous system plasticity following insult.
Collapse
|
92
|
Ledda F, Paratcha G. Mechanisms regulating dendritic arbor patterning. Cell Mol Life Sci 2017; 74:4511-4537. [PMID: 28735442 PMCID: PMC11107629 DOI: 10.1007/s00018-017-2588-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
93
|
Nandi S, Alviña K, Lituma PJ, Castillo PE, Hébert JM. Neurotrophin and FGF Signaling Adapter Proteins, FRS2 and FRS3, Regulate Dentate Granule Cell Maturation and Excitatory Synaptogenesis. Neuroscience 2017; 369:192-201. [PMID: 29155277 DOI: 10.1016/j.neuroscience.2017.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022]
Abstract
Dentate granule cells (DGCs) play important roles in cognitive processes. Knowledge about how growth factors such as FGFs and neurotrophins contribute to the maturation and synaptogenesis of DGCs is limited. Here, using brain-specific and germline mouse mutants we show that a module of neurotrophin and FGF signaling, the FGF Receptor Substrate (FRS) family of intracellular adapters, FRS2 and FRS3, are together required for postnatal brain development. In the hippocampus, FRS promotes dentate gyrus morphogenesis and DGC maturation during developmental neurogenesis, similar to previously published functions for both neurotrophins and FGFs. Consistent with a role in DGC maturation, two-photon imaging revealed that Frs2,3-double mutants have reduced numbers of dendritic branches and spines in DGCs. Functional analysis further showed that double-mutant mice exhibit fewer excitatory synaptic inputs onto DGCs. These observations reveal roles for FRS adapters in DGC maturation and synaptogenesis and suggest that FRS proteins may act as an important node for FGF and neurotrophin signaling in postnatal hippocampal development.
Collapse
Affiliation(s)
- Sayan Nandi
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Karina Alviña
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Pablo J Lituma
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pablo E Castillo
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jean M Hébert
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
94
|
MANF Is Essential for Neurite Extension and Neuronal Migration in the Developing Cortex. eNeuro 2017; 4:eN-NWR-0214-17. [PMID: 29082311 PMCID: PMC5655607 DOI: 10.1523/eneuro.0214-17.2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/22/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER) resident protein with neuroprotective effects. Previous studies have shown that MANF expression is altered in the developing rodent cortex in a spatiotemporal manner. However, the role of MANF in mammalian neurogenesis is not known. The aim of this study was to determine the role of MANF in neural stem cell (NSC) proliferation, differentiation, and cerebral cortex development. We found that MANF is highly expressed in neural lineage cells, including NSCs in the developing brain. We discovered that MANF-deficient NSCs in culture are viable and show no defect in proliferation. However, MANF-deficient cells have deficits in neurite extension upon neuronal differentiation. In vivo, MANF removal leads to slower neuronal migration and impaired neurite outgrowth. In vitro, mechanistic studies indicate that impaired neurite growth is preceded by reduced de novo protein synthesis and constitutively activated unfolded protein response (UPR) pathways. This study is the first to demonstrate that MANF is a novel and critical regulator of neurite growth and neuronal migration in mammalian cortical development.
Collapse
|
95
|
Singhal G, Baune BT. Microglia: An Interface between the Loss of Neuroplasticity and Depression. Front Cell Neurosci 2017; 11:270. [PMID: 28943841 PMCID: PMC5596091 DOI: 10.3389/fncel.2017.00270] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022] Open
Abstract
Depression has been widely accepted as a major psychiatric disease affecting nearly 350 million people worldwide. Research focus is now shifting from studying the extrinsic and social factors of depression to the underlying molecular causes. Microglial activity is shown to be associated with pathological conditions, such as psychological stress, pathological aging, and chronic infections. These are primary immune effector cells in the CNS and regulate the extensive dialogue between the nervous and the immune systems in response to different immunological, physiological, and psychological stressors. Studies have suggested that during stress and pathologies, microglia play a significant role in the disruption of neuroplasticity and have detrimental effects on neuroprotection causing neuroinflammation and exacerbation of depression. After a systematic search of literature databases, relevant articles on the microglial regulation of bidirectional neuroimmune pathways affecting neuroplasticity and leading to depression were reviewed. Although, several hypotheses have been proposed for the microglial role in the onset of depression, it is clear that all molecular pathways to depression are linked through microglia-associated neuroinflammation and hippocampal degeneration. Molecular factors such as an excess of glucocorticoids and changes in gene expression of neurotrophic factors, as well as neuro active substances secreted by gut microbiota have also been shown to affect microglial morphology and phenotype resulting in depression. This review aims to critically analyze the various molecular pathways associated with the microglial role in depression.
Collapse
Affiliation(s)
| | - Bernhard T. Baune
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, University of AdelaideAdelaide, SA, Australia
| |
Collapse
|
96
|
Kimura E, Kubo KI, Endo T, Ling W, Nakajima K, Kakeyama M, Tohyama C. Impaired dendritic growth and positioning of cortical pyramidal neurons by activation of aryl hydrocarbon receptor signaling in the developing mouse. PLoS One 2017; 12:e0183497. [PMID: 28820910 PMCID: PMC5562321 DOI: 10.1371/journal.pone.0183497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/05/2017] [Indexed: 11/24/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factors exert multiple functions in mammalian cerebral cortex development. The aryl hydrocarbon receptor (AhR), a member of the bHLH-Per-Arnt-Sim subfamily, is a ligand-activated transcription factor reported to regulate nervous system development in both invertebrates and vertebrates, but the functions that AhR signaling pathway may have for mammalian cerebral cortex development remains elusive. Although the endogenous ligand involved in brain developmental process has not been identified, the environmental pollutant dioxin potently binds AhR and induces abnormalities in higher brain function of laboratory animals. Thus, we studied how activation of AhR signaling influences cortical development in mice. To this end, we produced mice expressing either constitutively active-AhR (CA-AhR), which has the capacity for ligand-independent activation of downstream genes, or AhR, which requires its ligands for activation. In brief, CA-AhR-expressing plasmid and AhR-expressing plasmid were each transfected into neural stems cells in the developing cerebrum by in utero electroporation on embryonic day 14.5. On postnatal day 14, mice transfected in utero with CA-AhR, but not those transfected with AhR, exhibited drastically reduced dendritic arborization of layer II/III pyramidal neurons and impaired neuronal positioning in the developing somatosensory cortex. The effects of CA-AhR were observed for dendrite development but not for the commissural fiber projection, suggesting a preferential influence on dendrites. The present results indicate that over-activation of AhR perturbs neuronal migration and morphological development in mammalian cortex, supporting previous observations of impaired dendritic structure, cortical dysgenesis, and behavioral abnormalities following perinatal dioxin exposure.
Collapse
Affiliation(s)
- Eiki Kimura
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ken-ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiro Endo
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wenting Ling
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Kakeyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Neuroscience and Preventive Medicine, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
97
|
Gu F, Parada I, Shen F, Li J, Bacci A, Graber K, Taghavi RM, Scalise K, Schwartzkroin P, Wenzel J, Prince DA. Structural alterations in fast-spiking GABAergic interneurons in a model of posttraumatic neocortical epileptogenesis. Neurobiol Dis 2017; 108:100-114. [PMID: 28823934 DOI: 10.1016/j.nbd.2017.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 01/22/2023] Open
Abstract
Electrophysiological experiments in the partial cortical isolation ("undercut" or "UC") model of injury-induced neocortical epileptogenesis have shown alterations in GABAergic synaptic transmission attributable to abnormalities in presynaptic terminals. To determine whether the decreased inhibition was associated with structural abnormalities in GABAergic interneurons, we used immunocytochemical techniques, confocal microscopy and EM in UC and control sensorimotor rat cortex to analyze structural alterations in fast-spiking parvalbumin-containing interneurons and pyramidal (Pyr) cells of layer V. Principle findings were: 1) there were no decreases in counts of parvalbumin (PV)- or GABA-immunoreactive interneurons in UC cortex, however there were significant reductions in expression of VGAT and GAD-65 and -67 in halos of GABAergic terminals around Pyr somata in layer V. 2) Consistent with previous results, somatic size and density of Pyr cells was decreased in infragranular layers of UC cortex. 3) Dendrites of biocytin-filled FS interneurons were significantly decreased in volume. 4) There were decreases in the size and VGAT content of GABAergic boutons in axons of biocytin-filled FS cells in the UC, together with a decrease in colocalization with postsynaptic gephyrin, suggesting a reduction in GABAergic synapses. Quantitative EM of layer V Pyr somata confirmed the reduction in inhibitory synapses. 5) There were marked and lasting reductions in brain derived neurotrophic factor (BDNF)-IR and -mRNA in Pyr cells and decreased TrkB-IR on PV cells in UC cortex. 6) Results lead to the hypothesis that reduction in trophic support by BDNF derived from Pyr cells may contribute to the regressive changes in axonal terminals and dendrites of FS cells in the UC cortex and decreased GABAergic inhibition. SIGNIFICANCE Injury to cortical structures is a major cause of epilepsy, accounting for about 20% of cases in the general population, with an incidence as high as ~50% among brain-injured personnel in wartime. Loss of GABAergic inhibitory interneurons is a significant pathophysiological factor associated with epileptogenesis following brain trauma and other etiologies. Results of these experiments show that the largest population of cortical interneurons, the parvalbumin-containing fast-spiking (FS) interneurons, are preserved in the partial neocortical isolation model of partial epilepsy. However, axonal terminals of these cells are structurally abnormal, have decreased content of GABA synthetic enzymes and vesicular GABA transporter and make fewer synapses onto pyramidal neurons. These structural abnormalities underlie defects in GABAergic neurotransmission that are a key pathophysiological factor in epileptogenesis found in electrophysiological experiments. BDNF, and its TrkB receptor, key factors for maintenance of interneurons and pyramidal neurons, are decreased in the injured cortex. Results suggest that supplying BDNF to the injured epileptogenic brain may reverse the structural and functional abnormalities in the parvalbumin FS interneurons and provide an antiepileptogenic therapy.
Collapse
Affiliation(s)
- Feng Gu
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Isabel Parada
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Fran Shen
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Judith Li
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Alberto Bacci
- ICM - Hôpital Pitié Salpêtrière, 7, bd de l'hôpital, 75013 Paris, France
| | - Kevin Graber
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Reza Moein Taghavi
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Karina Scalise
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Philip Schwartzkroin
- Department of Neurological Surgery, University of California, Davis, United States
| | - Jurgen Wenzel
- Department of Neurological Surgery, University of California, Davis, United States
| | - David A Prince
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States.
| |
Collapse
|
98
|
Castrén E, Antila H. Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry 2017; 22:1085-1095. [PMID: 28397840 PMCID: PMC5510719 DOI: 10.1038/mp.2017.61] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 02/07/2023]
Abstract
Neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF) and other members of the neurotrophin family, are central mediators of the activity-dependent plasticity through which environmental experiences, such as sensory information are translated into the structure and function of neuronal networks. Synthesis, release and action of BDNF is regulated by neuronal activity and BDNF in turn leads to trophic effects such as formation, stabilization and potentiation of synapses through its high-affinity TrkB receptors. Several clinically available drugs activate neurotrophin signaling and neuronal plasticity. In particular, antidepressant drugs rapidly activate TrkB signaling and gradually increase BDNF expression, and the behavioral effects of antidepressants are mediated by and dependent on BDNF signaling through TrkB at least in rodents. These findings indicate that antidepressants, widely used drugs, effectively act as TrkB activators. They further imply that neuronal plasticity is a central mechanism in the action of antidepressant drugs. Indeed, it was recently discovered that antidepressants reactivate a state of plasticity in the adult cerebral cortex that closely resembles the enhanced plasticity normally observed during postnatal critical periods. This state of induced plasticity, known as iPlasticity, allows environmental stimuli to beneficially reorganize networks abnormally wired during early life. iPlasticity has been observed in cortical as well as subcortical networks and is induced by several pharmacological and non-pharmacological treatments. iPlasticity is a new pharmacological principle where drug treatment and rehabilitation cooperate; the drug acts permissively to enhance plasticity and rehabilitation provides activity to guide the appropriate wiring of the plastic network. Optimization of iPlastic drug treatment with novel means of rehabilitation may help improve the efficacy of available drug treatments and expand the use of currently existing drugs into new indications.
Collapse
|
99
|
Distinct effects on the dendritic arbor occur by microbead versus bath administration of brain-derived neurotrophic factor. Cell Mol Life Sci 2017; 74:4369-4385. [PMID: 28698933 DOI: 10.1007/s00018-017-2589-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/15/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022]
Abstract
Proper communication among neurons depends on an appropriately formed dendritic arbor, and thus, aberrant changes to the arbor are implicated in many pathologies, ranging from cognitive disorders to neurodegenerative diseases. Due to the importance of dendritic shape to neuronal network function, the morphology of dendrites is tightly controlled and is influenced by both intrinsic and extrinsic factors. In this work, we examine how brain-derived neurotrophic factor (BDNF), one of the most well-studied extrinsic regulators of dendritic branching, affects the arbor when it is applied locally via microbeads to cultures of hippocampal neurons. We found that local application of BDNF increases both proximal and distal branching in a time-dependent manner and that local BDNF application attenuates pruning of dendrites that occurs with neuronal maturation. Additionally, we examined whether cytosolic PSD-95 interactor (cypin), an intrinsic regulator of dendritic branching, plays a role in these changes and found strong evidence for the involvement of cypin in BDNF-promoted increases in dendrites after 24 but not 48 h of application. This current study extends our previous work in which we found that bath application of BDNF for 72 h, but not shorter times, increases proximal dendrite branching and that this increase occurs through transcriptional regulation of cypin. Moreover, this current work illustrates how dendritic branching is regulated differently by the same growth factor depending on its spatial localization, suggesting a novel pathway for modulation of dendritic branching locally.
Collapse
|
100
|
Long-term effects of enriched environment following neonatal hypoxia-ischemia on behavior, BDNF and synaptophysin levels in rat hippocampus: Effect of combined treatment with G-CSF. Brain Res 2017; 1667:55-67. [DOI: 10.1016/j.brainres.2017.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/13/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
|