51
|
Martín R, Durroux T, Ciruela F, Torres M, Pin JP, Sánchez-Prieto J. The metabotropic glutamate receptor mGlu7 activates phospholipase C, translocates munc-13-1 protein, and potentiates glutamate release at cerebrocortical nerve terminals. J Biol Chem 2010; 285:17907-17. [PMID: 20375012 DOI: 10.1074/jbc.m109.080838] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At synaptic boutons, metabotropic glutamate receptor 7 (mGlu7 receptor) serves as an autoreceptor, inhibiting glutamate release. In this response, mGlu7 receptor triggers pertussis toxin-sensitive G protein activation, reducing presynaptic Ca(2+) influx and the subsequent depolarization evoked release. Here we report that receptor coupling to signaling pathways that potentiate release can be seen following prolonged exposure of nerve terminals to the agonist l-(+)-phosphonobutyrate, l-AP4. This novel mGlu7 receptor response involves an increase in the release induced by the Ca(2+) ionophore ionomycin, suggesting a mechanism that is independent of Ca(2+) channel activity, but dependent on the downstream exocytotic release machinery. The mGlu7 receptor-mediated potentiation resists exposure to pertussis toxin, but is dependent on phospholipase C, and increased phosphatidylinositol (4,5)-bisphosphate hydrolysis. Furthermore, the potentiation of release does not depend on protein kinase C, although it is blocked by the diacylglycerol-binding site antagonist calphostin C. We also found that activation of mGlu7 receptors translocate the active zone protein essential for synaptic vesicle priming, munc13-1, from soluble to particulate fractions. We propose that the mGlu7 receptor can facilitate or inhibit glutamate release through multiple pathways, thereby exerting homeostatic control of presynaptic function.
Collapse
Affiliation(s)
- Ricardo Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
52
|
Ladera C, Martín R, Bartolomé-Martín D, Torres M, Sánchez-Prieto J. Partial compensation for N-type Ca(2+) channel loss by P/Q-type Ca(2+) channels underlines the differential release properties supported by these channels at cerebrocortical nerve terminals. Eur J Neurosci 2009; 29:1131-40. [PMID: 19302149 DOI: 10.1111/j.1460-9568.2009.06675.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-type and P/Q-type Ca(2+) channels support glutamate release at central synapses. To determine whether the glutamate release mediated by these channels exhibits distinct properties, we have isolated each release component in cerebrocortical nerve terminals from wild-type mice by specifically blocking N-type Ca(2+) channels with omega-conotoxin-GVIA and P/Q-type Ca(2+) channels with omega-agatoxin-IVA. In addition, we have determined the release properties at terminals from mice lacking the alpha(1B) subunit of N-type channels (Ca(v) 2.2) to test the possibility that P/Q-type channels can compensate for the loss of N-type Ca(2+) channels. We recently demonstrated that, while evoked glutamate release depends on P/Q- and N-type channels in wild-type nerve terminals, only P/Q-type channels participate in these knockout mice. Moreover, in nerve terminals expressing solely P/Q-type channels, metabotropic glutamate receptor 7 (mGluR7) fails to inhibit the evoked Ca(2+) influx and glutamate release. Here, we show that the failure of mGluR7 to modulate evoked glutamate release is not due to a lack of receptors, as nerve terminals from mice lacking N-type Ca(2+) channels express mGluR7. Indeed, we show that other receptor responses, such as the inhibition of forskolin-induced release, are preserved in these knockout mice. N-type channels are more loosely coupled to release than P/Q-type channels in nerve terminals from wild-type mice, as reflected by the tighter coupling of release in knockout nerve terminals. We conclude that the glutamate release supported by N- and P/Q-type channels exhibits distinct properties, and that P/Q-type channels cannot fully compensate for the loss of N-type channels.
Collapse
Affiliation(s)
- Carolina Ladera
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
53
|
Dai S, Hall DD, Hell JW. Supramolecular assemblies and localized regulation of voltage-gated ion channels. Physiol Rev 2009; 89:411-52. [PMID: 19342611 DOI: 10.1152/physrev.00029.2007] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review addresses the localized regulation of voltage-gated ion channels by phosphorylation. Comprehensive data on channel regulation by associated protein kinases, phosphatases, and related regulatory proteins are mainly available for voltage-gated Ca2+ channels, which form the main focus of this review. Other voltage-gated ion channels and especially Kv7.1-3 (KCNQ1-3), the large- and small-conductance Ca2+-activated K+ channels BK and SK2, and the inward-rectifying K+ channels Kir3 have also been studied to quite some extent and will be included. Regulation of the L-type Ca2+ channel Cav1.2 by PKA has been studied most thoroughly as it underlies the cardiac fight-or-flight response. A prototypical Cav1.2 signaling complex containing the beta2 adrenergic receptor, the heterotrimeric G protein Gs, adenylyl cyclase, and PKA has been identified that supports highly localized via cAMP. The type 2 ryanodine receptor as well as AMPA- and NMDA-type glutamate receptors are in close proximity to Cav1.2 in cardiomyocytes and neurons, respectively, yet independently anchor PKA, CaMKII, and the serine/threonine phosphatases PP1, PP2A, and PP2B, as is discussed in detail. Descriptions of the structural and functional aspects of the interactions of PKA, PKC, CaMKII, Src, and various phosphatases with Cav1.2 will include comparisons with analogous interactions with other channels such as the ryanodine receptor or ionotropic glutamate receptors. Regulation of Na+ and K+ channel phosphorylation complexes will be discussed in separate papers. This review is thus intended for readers interested in ion channel regulation or in localization of kinases, phosphatases, and their upstream regulators.
Collapse
Affiliation(s)
- Shuiping Dai
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
| | | | | |
Collapse
|
54
|
Site-specific regulation of CA(V)2.2 channels by protein kinase C isozymes betaII and epsilon. Neuroscience 2009; 159:618-28. [PMID: 19167461 DOI: 10.1016/j.neuroscience.2008.12.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 12/12/2008] [Accepted: 12/27/2008] [Indexed: 11/24/2022]
Abstract
Ca(v)2.2 high voltage-gated calcium channels are regulated by phorbol-12-myristae, 13-acetate (PMA) via Ser/Thr protein kinase C (PKC) phosphorylation sites in the I-II linker and C-terminus of the alpha(1) 2.2 subunit. Here we show that PMA enhancement of Ca(v)2.2 currents expressed in Xenopus oocytes can be blocked by inhibitors of PKC betaII or PKC epsilon isozymes, as shown previously for Ca(v)2.3 currents, and that microinjection of PKC betaII or PKC epsilon isozymes in the oocytes expressing the WT Ca(v)2.2 channels increases the basal barium current (I(Ba)). The I-V plot shows a large increase in current amplitude with PKC betaII and PKC epsilon isozymes with only a small shift in the peak I(Ba) in the hyperpolarizing direction. The potentiation of Ca(v)2.2 currents by microinjection of PKC betaII and PKC epsilon isozymes was not altered by the inhibition of G proteins with GDPbetaS. The combination of isozyme specific inhibitors with previously generated Ser/Thr to Ala mutants of alpha(1) 2.2 subunit revealed that PKC betaII or PKC epsilon isozymes (but not PKC alpha or delta) can provide full enhancement through the stimulatory site (Thr-422) in the I-II linker but that PKC epsilon is better at decreasing channel activity through the inhibitory site Ser-425. The enhancing effect of PKC betaII or epsilon at Thr-422 is dominant over the inhibitory effect at Ser-425. Injected PKC betaII also enhances Ca(v)2.2 current when any of the potential stimulatory sites (Ser-1757, Ser-2108 and Ser-2132) are available in the C-terminus. PKC epsilon provides lesser enhancement with C-terminal sites and only with Ser-2108 and Ser-2132. Sites Ser-1757 and Ser-2132, but not Ser-2108, are dominant over the inhibitory site Ser-425. Collectively, these results reveal a hierarchy of regulatory sites in Ca(v)2.2 channels. Site-specific regulation by different PKC isozymes may allow graded levels of channel activation and susceptibility or resistance to subsequent stimulatory events.
Collapse
|
55
|
Kim T, Kim S, Yun HM, Chung KC, Han YS, Shin HS, Rhim H. Modulation of Cav3.1 T-type Ca2+ channels by the ran binding protein RanBPM. Biochem Biophys Res Commun 2009; 378:15-20. [DOI: 10.1016/j.bbrc.2008.09.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 11/29/2022]
|
56
|
Clark JM, Symington SB. Neurotoxic implications of the agonistic action of CS-syndrome pyrethroids on the N-type Ca(v)2.2 calcium channel. PEST MANAGEMENT SCIENCE 2008; 64:628-38. [PMID: 18383452 DOI: 10.1002/ps.1573] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cismethrin (T-syndrome) and deltamethrin (CS-syndrome) pyrethroids have been previously shown to increase membrane depolarization and calcium influx, but only deltamethrin increased Ca(2+)-dependent neurotransmitter release from rat brain synaptosomes. Deltamethrin's action was blocked by omega-conotoxin GVIA, delineating a separate action at N-type Ca(v)2.2 channels that is consistent with the in vivo release of neurotransmitter. It is hypothesized that other CS-syndrome pyrethroids will elicit similar actions at presynaptic nerve terminals. RESULTS Nine additional pyrethroids were similarly examined, and these data were used in a cluster analysis. CS-syndrome pyrethroids that possessed alpha-cyano groups, cypermethrin, deltamethrin and esfenvalerate, all caused Ca(2+) influx and neurotransmitter release and clustered with two other alpha-cyano pyrethroids, cyfluthrin and cyhalothrin, that shared these same actions. T-syndrome pyrethroids, bioallethrin, cismethrin and fenpropathrin, did not share these actions and clustered with two non-alpha-cyano pyrethroids, tefluthin and bifenthrin, which likewise did not elicit these actions. Deltamethrin reduced peak current of heterologously expressed wild-type Ca(v)2.2, increased peak current of T422E Ca(v)2.2 and was 20-fold more potent on T422E Ca(v)2.2 than on wild-type channels, indicating that the permanently phosphorylated form of Ca(v)2.2 is the preferred target. CONCLUSIONS Ca(v)2.2 is directly modified by deltamethrin, but the resulting perturbation is dependent upon its phosphorylation state. The present findings may provide a partial explanation for the different toxic syndromes produced by these structurally distinct pyrethroids.
Collapse
Affiliation(s)
- J Marshall Clark
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
57
|
PMA counteracts G protein actions on CaV2.2 channels in rat sympathetic neurons. Arch Biochem Biophys 2008; 473:1-7. [PMID: 18298939 DOI: 10.1016/j.abb.2008.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/19/2008] [Accepted: 01/22/2008] [Indexed: 11/21/2022]
Abstract
Protein kinase C (PKC)-induced phosphorylation and G protein-mediated inhibition of Ca(V)2.2 N-type Ca2+ channels counteract exerting opposing modulatory responses at the channel level. At present, the most striking question remaining is whether prominent enhancement of the Ca2+ current (I(Ca)) observed under PKC activation arises from relief of G-protein tonic inhibition. Here, by using patch-clamp methods in superior cervical ganglion (SCG) neurons of rat, we show the following: First, that PKC activation by phorbol-12-myristate-13-acetate (PMA) not only counteracts mutually with noradrenaline (NA) and GTPgammaS-induced I(Ca) inhibition, but also reverses current inhibition by Gbetagamma subunits over-expression. Second, that PMA increases I(Ca) beyond the enhancement expected by sole removal of the G protein-mediated tonic inhibition. Accordingly, PMA increases conductance through N-type Ca2+ channels, unlike the G protein inhibitor GDPbetaS. Together, our results support that PMA-induced phosphorylation produces changes in I(Ca) that cannot be accounted for by prevention of G protein inhibition. They may have important implications in reinterpretation of existing data with PMA. Furthermore, counteracting modulation of ion channels and reversibility within a short time frame are better support for a dynamic system with short-term adaptive responses.
Collapse
|
58
|
|
59
|
Abstract
G-proteins (guanine nucleotide-binding proteins) are membrane-attached proteins composed of three subunits, alpha, beta, and gamma. They transduce signals from G-protein coupled receptors (GPCRs) to target effector proteins. The agonistactivated receptor induces a conformational change in the G-protein trimer so that the alpha-subunit binds GTP in exchange for GDP and alpha-GTP, and betagamma-subunits separate to interact with the target effector. Effector-interaction is terminated by the alpha-subunit GTPase activity, whereby bound GTP is hydrolyzed to GDP. This is accelerated in situ by RGS proteins, acting as GTPase-activating proteins (GAPs). Galpha-GDP and Gbetagamma then reassociate to form the Galphabetagamma trimer. G-proteins primarily involved in the modulation of neurotransmitter release are G(o), G(q) and G(s). G(o) mediates the widespread presynaptic auto-inhibitory effect of many neurotransmitters (e.g., via M2/M4 muscarinic receptors, alpha(2) adrenoreceptors, micro/delta opioid receptors, GABAB receptors). The G(o) betagamma-subunit acts in two ways: first, and most ubiquitously, by direct binding to CaV2 Ca(2+) channels, resulting in a reduced sensitivity to membrane depolarization and reduced Ca(2+) influx during the terminal action potential; and second, through a direct inhibitory effect on the transmitter release machinery, by binding to proteins of the SNARE complex. G(s) and G(q) are mainly responsible for receptor-mediated facilitatory effects, through activation of target enzymes (adenylate cyclase, AC and phospholipase-C, PLC respectively) by the GTP-bound alpha-subunits.
Collapse
Affiliation(s)
- David A Brown
- Department of Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
60
|
Abstract
The central and peripheral nervous systems express multiple types of ligand and voltage-gated calcium channels (VGCCs), each with specific physiological roles and pharmacological and electrophysiological properties. The members of the Ca(v)2 calcium channel family are located predominantly at presynaptic nerve terminals, where they are responsible for controlling evoked neurotransmitter release. The activity of these channels is subject to modulation by a number of different means, including alternate splicing, ancillary subunit associations, peptide and small organic blockers, G-protein-coupled receptors (GPCRs), protein kinases, synaptic proteins, and calcium-binding proteins. These multiple and complex modes of calcium channel regulation allow neurons to maintain the specific, physiological window of cytoplasmic calcium concentrations which is required for optimal neurotransmission and proper synaptic function. Moreover, these varying means of channel regulation provide insight into potential therapeutic targets for the treatment of pathological conditions that arise from disturbances in calcium channel signaling. Indeed, considerable efforts are presently underway to identify and develop specific presynaptic calcium channel blockers that can be used as analgesics.
Collapse
Affiliation(s)
- Alexandra E Kisilevsky
- Hotchkiss Brain Institute and Department of Physiology and Biophysics, University of Calgary, Calgary, Canada
| | | |
Collapse
|
61
|
Chemin J, Mezghrani A, Bidaud I, Dupasquier S, Marger F, Barrère C, Nargeot J, Lory P. Temperature-dependent modulation of CaV3 T-type calcium channels by protein kinases C and A in mammalian cells. J Biol Chem 2007; 282:32710-8. [PMID: 17855364 DOI: 10.1074/jbc.m702746200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modulation of low voltage-activated Ca(V)3 T-type calcium channels remains poorly characterized compared with high voltage-activated Ca(V)1 and Ca(V)2 calcium channels. Notably, it is yet unresolved whether Ca(V)3 channels are modulated by protein kinases in mammalian cells. In this study, we demonstrate that protein kinase A (PKA) and PKC (but not PKG) activation induces a potent increase in Ca(V)3.1, Ca(V)3.2, and Ca(V)3.3 currents in various mammalian cell lines. Notably, we show that protein kinase effects occur at physiological temperature ( approximately 30-37 degrees C) but not at room temperature ( approximately 22-27 degrees C). This temperature dependence could involve kinase translocation, which is impaired at room temperature. A similar temperature dependence was observed for PKC-mediated increase in high voltage-activated Ca(V)2.3 currents. We also report that neither Ca(V)3 surface expression nor T-current macroscopic properties are modified upon kinase activation. In addition, we provide evidence for the direct phosphorylation of Ca(V)3.2 channels by PKA in in vitro assays. Overall, our results clearly establish the role of PKA and PKC in the modulation of Ca(V)3 T-channels and further highlight the key role of the physiological temperature in the effects described.
Collapse
Affiliation(s)
- Jean Chemin
- Département de Physiologie, Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, Universités de Montpellier 1 et 2, Institut Fédératif de Recherche 3, 141 Rue de la Cardonille, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Vergnano AM, Schlichter R, Poisbeau P. PKC activation sets an upper limit to the functional plasticity of GABAergic transmission induced by endogenous neurosteroids. Eur J Neurosci 2007; 26:1173-82. [PMID: 17767496 DOI: 10.1111/j.1460-9568.2007.05746.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activity of GABAergic inhibitory interneurones located in lamina II of the spinal cord is of fundamental importance for the processing of peripheral nociceptive messages. We have recently shown that 3alpha-hydroxy ring A-reduced pregnane neurosteroids [3alpha5alpha-neurosteroids (3alpha5alphaNS)], potent allosteric modulators of GABA(A) receptors (GABA(A)Rs), are synthesized in the spinal cord and limit thermal hyperalgesia during inflammatory pain. Because changes in the expression of calcium-dependent protein kinases [protein kinase C (PKC)] are observed during pathological pain in the spinal cord, we examined the possible interactions between PKC and 3alpha5alphaNS at synaptic GABA(A)Rs. Using patch-clamp recordings of lamina II interneurones in the spinal cord of 15-20-day-old rats, we showed that synaptic inhibition mediated by GABA(A)Rs and its modulation by 3alpha5alphaNS in lamina II of the spinal cord largely depend on activation of PKC. Our experimental results suggested that activation of PKC locks synaptic GABA(A)Rs in a functional state precluding further positive allosteric modulation by endogenous and exogenous 3alpha5alphaNS. This effect was fully prevented by coadministration of chelerythrin, an inhibitor of PKC. Furthermore, application of chelerythrin alone rendered synaptic GABA(A)Rs hypersensitive to endogenously produced or exogenously applied 3alpha5alphaNS. These findings confirmed that there was a significant production of endogenous 3alpha5alphaNS in lamina II of the spinal cord but also indicated that PKC-dependent phosphorylation processes were tonically activated to control GABA(A)R-mediated inhibition under resting conditions. We therefore can conclude that PKC activation sets an upper limit to the functional plasticity of GABAergic transmission induced by endogenous neurosteroids.
Collapse
Affiliation(s)
- Angela Maria Vergnano
- Institut des Neurosciences Cellulaires et Intégratives, Department of Nociception and Pain, Unité Mixte de Recherche 7168 Centre National de la Recherche Scientifique/Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|
63
|
Clark JM, Symington SB. Pyrethroid action on calcium channels: neurotoxicological implications. INVERTEBRATE NEUROSCIENCE 2007; 7:3-16. [PMID: 17294162 DOI: 10.1007/s10158-006-0038-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 12/04/2006] [Indexed: 11/24/2022]
Abstract
Actions of cismethrin versus deltamethrin were compared using two functional attributes of rat brain synaptosomes. Both pyrethroids increased calcium influx but only deltamethrin increased Ca(2+)-dependent neurotransmitter release following K(+)-stimulated depolarization. The action of deltamethrin was stereospecific, concentration-dependent, and blocked by omega-conotoxin GVIA. These findings delineate a separate action for deltamethrin and implicate N-type rat brain Ca(v)2.2 voltage-sensitive calcium channels (VSCC) as target sites that are consistent with the in vivo release of neurotransmitter caused by deltamethrin. Deltamethrin (10(-7) M) reduced the peak current (approx. -47%) of heterologously expressed wild type Ca(v)2.2 in a stereospecific manner. Mutation of threonine 422 to glutamic acid (T422E) in the alpha(1)-subunit results in a channel that functions as if it were permanently phosphorylated. Deltamethrin now increased peak current (approx. +49%) of T422E Ca(v)2.2 in a stereospecific manner. Collectively, these results substantiate that Ca(v)2.2 is directly modified by deltamethrin but the resulting perturbation is dependent upon the phosphorylation state of Ca(v)2.2. Our findings may provide a partial explanation for the different toxic syndromes produced by these structurally-distinct pyrethroids.
Collapse
Affiliation(s)
- J Marshall Clark
- Department of Veterinary and Animal Science, University of Massachusetts, Morrill 1 N311, 639 N. Pleasant St., Amherst, MA 01003, USA.
| | | |
Collapse
|
64
|
Meza U, Thapliyal A, Bannister RA, Adams BA. Neurokinin 1 receptors trigger overlapping stimulation and inhibition of CaV2.3 (R-type) calcium channels. Mol Pharmacol 2007; 71:284-93. [PMID: 17050807 DOI: 10.1124/mol.106.028530] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurokinin (NK) 1 receptors and CaV2.3 calcium channels are both expressed in nociceptive neurons, and mice lacking either protein display altered responses to noxious stimuli. Here, we examined modulation of CaV2.3 through NK1 receptors expressed in human embryonic kidney 293 cells. We find that NK1 receptors generate complex modulation of CaV2.3. In particular, weak activation of these receptors evokes mainly stimulation of CaV2.3, whereas strong receptor activation elicits profound inhibition that overlaps with channel stimulation. Unlike R-type channels encoded by CaV2.3, L-type (CaV1.3), N-type (CaV2.2), and P/Q-type (CaV2.1) channels are inhibited, but not stimulated, through NK1 receptors. Pharmacological experiments show that protein kinase C (PKC) mediates stimulation of CaV2.3 through NK1 receptors. The signaling mechanisms underlying inhibition were explored by expressing proteins that buffer either Galpha(q/11) (regulator of G protein signaling protein 3T and carboxyl-terminal region of phospholipase C-beta1) or Gbeta gamma subunits (transducin and the carboxyl-terminal region of bovine G-protein-coupled receptor kinase). A fast component of inhibition was attenuated by buffering Gbeta gamma, whereas a slow component of inhibition was reduced by buffering Galpha(q/11). When both Gbeta gamma and Galpha(q/11) were simultaneously buffered in the same cells, inhibition was virtually eliminated, but receptor activation still triggered substantial stimulation of CaV2.3. We also report that NK1 receptors accelerate the inactivation kinetics of CaV2.3 currents. Altogether, our results indicate that NK1 receptors modulate CaV2.3 using three different signaling mechanisms: a fast inhibition mediated by Gbeta gamma, a slow inhibition mediated by Galpha(q/11), and a slow stimulation mediated by PKC. This new information concerning R-type calcium channels and NK1 receptors may help in understanding nociception, synaptic plasticity, and other physiological processes.
Collapse
Affiliation(s)
- Ulises Meza
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| | | | | | | |
Collapse
|
65
|
Burgos M, Pastor MD, González JC, Martinez-Galan JR, Vaquero CF, Fradejas N, Benavides A, Hernández-Guijo JM, Tranque P, Calvo S. PKCɛ upregulates voltage-dependent calcium channels in cultured astrocytes. Glia 2007; 55:1437-48. [PMID: 17676593 DOI: 10.1002/glia.20555] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Astrocytes express voltage-gated calcium channels (VGCCs) that are upregulated in the context of the reactive astrogliosis occurring in several CNS pathologies. Moreover, the ability of selective calcium channel blockers to inhibit reactive astrogliosis has been revealed in a variety of experimental models. However, the functions and regulation of VGCC in astrocytes are still poorly understood. Interestingly, protein kinase C epsilon (PKCepsilon), one of the known regulators of VGCC in several cell types, induces in astrocytes a stellated morphology similar to that associated to gliosis. Thereby, here we explored the possible regulation of VGCC by adenovirally expressed PKCepsilon in astrocytes. We found that PKCepsilon potently increases the mRNA levels of two different calcium channel alpha(1) subunits, Ca(V)1.2 (L-type channel) and Ca(V)2.1 (P/Q-type channel). The mRNA upregulation was followed by a robust increase in the corresponding peptides. Moreover, the new calcium channels formed as a consequence of PKCepsilon activation are functional, since overexpression of constitutively-active PKCepsilon increased significantly the calcium current density in astrocytes. PKCepsilon raised currents carried by both L- and P/Q-type channels. However, the effect on the P/Q-type channel was more prominent since an increase of the relative contribution of this channel to the whole cell calcium current was observed. Finally, we found that PKCepsilon-induced stellation was significantly reduced by the specific L-type channel blocker nifedipine, indicating that calcium influx through VGCC mediates the change in astrocyte morphology induced by PKCepsilon. Therefore, here we describe a novel regulatory pathway involving VGCC that participates in PKCepsilon-dependent astrocyte activation.
Collapse
Affiliation(s)
- M Burgos
- Unidad de Fisiología, Facultad de Medicina y Centro Regional de Investigaciones Biomedicas, Universidad de Castilla La Mancha, Albacete, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Park JY, Kang HW, Moon HJ, Huh SU, Jeong SW, Soldatov NM, Lee JH. Activation of protein kinase C augments T-type Ca2+ channel activity without changing channel surface density. J Physiol 2006; 577:513-23. [PMID: 17008378 PMCID: PMC1890444 DOI: 10.1113/jphysiol.2006.117440] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 09/25/2006] [Indexed: 11/08/2022] Open
Abstract
T-type Ca2+ channels play essential roles in numerous cellular processes. Recently, we reported that phorbol-12-myristate-13-acetate (PMA) potently enhanced the current amplitude of Cav3.2 T-type channels reconstituted in Xenopus oocytes. Here, we have compared PMA modulation of the activities of Cav3.1, Cav3.2 and Cav3.3 channels, and have investigated the underlying mechanism. PMA augmented the current amplitudes of the three T-type channel isoforms, but the fold stimulations and time courses differed. The augmentation effects were not mimicked by 4alpha-PMA, an inactive stereoisomer of PMA, but were abolished by preincubation with protein kinase C (PKC) inhibitors, indicating that PMA augmented T-type channel currents via activation of oocyte PKC. The stimulation effect on Cav3.1 channel activity by PKC was mimicked by endothelin when endothelin receptor type A was coexpressed with Cav3.1 in the Xenopus oocyte system. Pharmacological studies combined with fluorescence imaging revealed that the surface density of Cav3.1 T-type channels was not significantly changed by activation of PKC. The PKC effect on Cav3.1 was localized to the cytoplasmic II-III loop using chimeric channels with individual cytoplasmic loops of Cav3.1 replaced by those of Cav2.1.
Collapse
Affiliation(s)
- Jin-Yong Park
- Department of Life Science, Sogang University, Shinsu-dong, Seoul 121-742, Korea
| | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
The regulation of presynaptic, voltage-gated calcium channels by activation of heptahelical G protein-coupled receptors exerts a crucial influence on presynaptic calcium entry and hence on neurotransmitter release. Receptor activation subjects presynaptic N- and P/Q-type calcium channels to a rapid, membrane-delimited inhibition-mediated by direct, voltage-dependent interactions between G protein betagamma subunits and the channels-and to a slower, voltage-independent modulation involving soluble second messenger molecules. In turn, the direct inhibition of the channels is regulated as a function of many factors, including channel subtype, ancillary calcium channel subunits, and the types of G proteins and G protein regulatory factors involved. Twenty-five years after this mode of physiological regulation was first described, we review the investigations that have led to our current understanding of its molecular mechanisms.
Collapse
Affiliation(s)
- H William Tedford
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Canada
| | | |
Collapse
|
68
|
Evans RM, Zamponi GW. Presynaptic Ca2+ channels--integration centers for neuronal signaling pathways. Trends Neurosci 2006; 29:617-24. [PMID: 16942804 DOI: 10.1016/j.tins.2006.08.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Revised: 06/29/2006] [Accepted: 08/17/2006] [Indexed: 12/25/2022]
Abstract
Calcium influx into presynaptic nerve terminals via voltage-gated Ca2+ channels is an essential step in neurotransmitter release. The predominant Ca2+ channel species in synaptic nerve terminals are P/Q-type and N-type channels, with their relative levels of expression varying across the nervous system. The different distributions of these two channel subtypes are reflected in their distinct physiological and pathological roles, yet their activity is regulated by common mechanisms and both function as part of larger signaling complexes that enable their precise regulation and subcellular targeting. Here, we provide a broad overview of molecular and cellular mechanisms that regulate Ca2+ channels, and how these cellular signaling pathways are integrated at the level of the channel protein.
Collapse
Affiliation(s)
- Rhian M Evans
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
69
|
Toro-Castillo C, Thapliyal A, Gonzalez-Ochoa H, Adams BA, Meza U. Muscarinic modulation of Cav2.3 (R-type) calcium channels is antagonized by RGS3 and RGS3T. Am J Physiol Cell Physiol 2006; 292:C573-80. [PMID: 16855219 DOI: 10.1152/ajpcell.00219.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) influx through voltage-gated R-type (Ca(V)2.3) Ca(2+) channels is important for hormone and neurotransmitter secretion and other cellular events. Previous studies have shown that Ca(V)2.3 is both inhibited and stimulated through signaling mechanisms coupled to muscarinic ACh receptors. We previously demonstrated that muscarinic stimulation of Ca(V)2.3 is blocked by regulator of G protein signaling (RGS) 2. Here we investigated whether muscarinic inhibition of Ca(V)2.3 is antagonized by RGS3. RGS3 is particularly interesting because it contains a lengthy ( approximately 380 residue) amino-terminal domain of uncertain physiological function. Ca(V)2.3, M(2) muscarinic ACh receptors (M(2)R), and various deletion mutants of RGS3, including its native isoform RGS3T, were expressed in HEK293 cells, and agonist-dependent inhibition of Ca(V)2.3 was quantified using whole cell patch-clamp recordings. Full-length RGS3, RGS3T, and the core domain of RGS3 were equally effective in antagonizing inhibition of Ca(V)2.3 through M(2)R. These results identify RGS3 and RGS3T as potential physiological regulators of R-type Ca(2+) channels. Furthermore, they suggest that the signaling activity of RGS3 is unaffected by its extended amino-terminal domain. Confocal microscopy was used to examine the intracellular locations of four RGS3-enhanced green fluorescent protein fusion proteins. The RGS3 core domain was uniformly distributed throughout both cytoplasm and nucleus. By contrast, full-length RGS3, RGS3T, and the amino-terminal domain of RGS3 were restricted to the cytoplasm. These observations suggest that the amino terminus of RGS3 may serve to confine it to the cytoplasmic compartment where it can interact with cell surface receptors, heterotrimeric G proteins, and other signaling proteins.
Collapse
Affiliation(s)
- Carmen Toro-Castillo
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, San Luis Potosí, SLP, 78210 México
| | | | | | | | | |
Collapse
|
70
|
Tai C, Kuzmiski JB, MacVicar BA. Muscarinic enhancement of R-type calcium currents in hippocampal CA1 pyramidal neurons. J Neurosci 2006; 26:6249-58. [PMID: 16763032 PMCID: PMC6675200 DOI: 10.1523/jneurosci.1009-06.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The "toxin-resistant" R-type Ca2+ channels are expressed widely in the CNS and distributed mainly in apical dendrites and spines. They play important roles in regulating signal transduction and intrinsic properties of neurons, but the modulation of these channels in the mammalian CNS has not been studied. In this study we used whole-cell patch-clamp recordings and found that muscarinic activation enhances R-type, but does not affect T-type, Ca2+ currents in hippocampal CA1 pyramidal neurons after N, P/Q, and L-type Ca2+ currents selectively were blocked. M1/M3 cholinergic receptors mediated the muscarinic stimulation of R-type Ca2+ channels. The signaling pathway underlying the R-type enhancement was independent of intracellular [Ca2+] changes and required the activation of a Ca(2+)-independent PKC pathway. Furthermore, we found that the enhancement of R-type Ca2+ currents resulted in the de novo appearance of Ca2+ spikes and in remarkable changes in the firing pattern of R-type Ca2+ spikes, which could fire repetitively in the theta frequency. Therefore, muscarinic enhancement of R-type Ca2+ channels could play an important role in modifying the dendritic response to synaptic inputs and in the intrinsic resonance properties of neurons.
Collapse
|
71
|
Fang H, Patanavanich S, Rajagopal S, Yi X, Gill MS, Sando JJ, Kamatchi GL. Inhibitory role of Ser-425 of the alpha1 2.2 subunit in the enhancement of Cav 2.2 currents by phorbol-12-myristate, 13-acetate. J Biol Chem 2006; 281:20011-7. [PMID: 16704976 DOI: 10.1074/jbc.m601776200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated calcium channels (Ca(v)) 2.2 currents are potentiated by phorbol-12-myristate, 13-acetate (PMA), whereas Ca(v) 2.3 currents are increased by both PMA and acetyl-beta-methylcholine (MCh). MCh-selective sites were identified in the alpha(1) 2.3 subunit, whereas the identified PMA sites responded to both PMA and MCh (Kamatchi, G. L., Franke, R., Lynch, C., III, and Sando, J. J. (2004) J. Biol. Chem. 279, 4102-4109; Fang, H., Franke, R., Patanavanich, S., Lalvani, A., Powell, N. K., Sando, J. J., and Kamatchi, G. L. (2005) J. Biol. Chem. 280, 23559-23565). The hypothesis that PMA sites in the alpha(1) 2.2 subunit are homologous to the PMA-responsive sites in alpha(1) 2.3 subunit was tested with Ser/Thr --> Ala mutations in the alpha(1) 2.2 subunit. WT alpha(1) 2.2 or mutants were expressed in Xenopus oocytes in combination with beta1b and alpha2/delta subunits. Inward current (I(Ba)) was recorded using Ba(2+) as the charge carrier. T422A, S1757A, S2108A, or S2132A decreased the PMA response. In contrast, S425A increased the response to PMA, and thus, it was considered an inhibitory site. Replacement of each of the identified stimulatory Ser/Thr sites with Asp increased the basal current and decreased the PMA-induced enhancement, consistent with regulation by phosphorylation at these sites. Multiple mutant combinations showed (i) greater inhibition than that caused by the single Ala mutations; (ii) that enhancement observed when Thr-422 and Ser-2108 are available may be inhibited by the presence of Ser-425; and (iii) that the combination of Thr-422, Ser-2108, and either Ser-1757 or Ser-2132 can provide a greater response to PMA when Ser-425 is replaced with Ala. The homologous sites in alpha(1) 2.2 and alpha(1) 2.3 subunits seem to be functionally different. The existence of an inhibitory phosphorylation site in the I-II linker seems to be unique to the alpha(1) 2.2 subunit.
Collapse
Affiliation(s)
- Hongyu Fang
- Department of Anesthesiology, University of Virginia Health Sciences Systems, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Wu ZZ, Chen SR, Pan HL. Signaling mechanisms of down-regulation of voltage-activated Ca2+ channels by transient receptor potential vanilloid type 1 stimulation with olvanil in primary sensory neurons. Neuroscience 2006; 141:407-19. [PMID: 16678970 DOI: 10.1016/j.neuroscience.2006.03.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/01/2006] [Accepted: 03/13/2006] [Indexed: 11/18/2022]
Abstract
Olvanil ((N-vanillyl)-9-oleamide), a non-pungent transient receptor potential vanilloid type 1 agonist, desensitizes nociceptors and alleviates pain. But its molecular targets and signaling mechanisms are little known. Calcium influx through voltage-activated Ca(2+) channels plays an important role in neurotransmitter release and synaptic transmission. Here we determined the effect of olvanil on voltage-activated Ca(2+) channel currents and the signaling pathways in primary sensory neurons. Whole-cell voltage-clamp recordings were performed in acutely isolated rat dorsal root ganglion neurons. Olvanil (1 microM) elicited a delayed but sustained inward current, and caused a profound inhibition (approximately 60%) of N-, P/Q-, L-, and R-type voltage-activated Ca(2+) channel current. Pretreatment with a specific transient receptor potential vanilloid type 1 antagonist or intracellular application of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid abolished the inhibitory effect of olvanil on voltage-activated Ca(2+) channel current. Calmodulin antagonists (ophiobolin-A and calmodulin inhibitory peptide) largely blocked the effect of olvanil and capsaicin on voltage-activated Ca(2+) channel current. Furthermore, calcineurin (protein phosphatase 2B) inhibitors (deltamethrin and FK-506) eliminated the effect of olvanil on voltage-activated Ca(2+) channel current. Notably, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, calmodulin antagonists, and calcineurin inhibitors each alone significantly increased the amplitude of voltage-activated Ca(2+) channel current. In addition, double immunofluorescence labeling revealed that olvanil induced a rapid internalization of Ca(V)2.2 immunoreactivity from the membrane surface of dorsal root ganglion neurons. Collectively, this study suggests that stimulation of non-pungent transient receptor potential vanilloid type 1 inhibits voltage-activated Ca(2+) channels through a biochemical pathway involving intracellular Ca(2+)-calmodulin and calcineurin in nociceptive neurons. This new information is important for our understanding of the signaling mechanisms of desensitization of nociceptors by transient receptor potential vanilloid type 1 analogues and the feedback regulation of intracellular Ca(2+) and voltage-activated Ca(2+) channels in nociceptive sensory neurons.
Collapse
Affiliation(s)
- Z-Z Wu
- Department of Anesthesiology and Pain Medicine, University of Texas M. D. Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 409, Houston, TX 77030-4009, USA
| | | | | |
Collapse
|
73
|
Abstract
The rapid entry of calcium into cells through activation of voltage-gated calcium channels directly affects membrane potential and contributes to electrical excitability, repetitive firing patterns, excitation-contraction coupling, and gene expression. At presynaptic nerve terminals, calcium entry is the initial trigger mediating the release of neurotransmitters via the calcium-dependent fusion of synaptic vesicles and involves interactions with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex of synaptic release proteins. Physiological factors or drugs that affect either presynaptic calcium channel activity or the efficacy of calcium-dependent vesicle fusion have dramatic consequences on synaptic transmission, including that mediating pain signaling. The N-type calcium channel exhibits a number of characteristics that make it an attractive target for therapeutic intervention concerning chronic and neuropathic pain conditions. Within the past year, both U.S. and European regulatory agencies have approved the use of the cationic peptide Prialt for the treatment of intractable pain. Prialt is the first N-type calcium channel blocker approved for clinical use and represents the first new proven mechanism of action for chronic pain intervention in many years. The present review discusses the rationale behind targeting the N-type calcium channel, some of the limitations confronting the widespread clinical application of Prialt, and outlines possible strategies to improve upon Prialt's relatively narrow therapeutic window.
Collapse
Affiliation(s)
- Terrance P Snutch
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| |
Collapse
|
74
|
Chen Y, Lai M, Maeno-Hikichi Y, Zhang JF. Essential role of the LIM domain in the formation of the PKCɛ–ENH–N-type Ca2+ channel complex. Cell Signal 2006; 18:215-24. [PMID: 15979848 DOI: 10.1016/j.cellsig.2005.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 04/14/2005] [Accepted: 04/19/2005] [Indexed: 01/21/2023]
Abstract
A LIM domain is a specialized double-zinc finger motif found in a variety of proteins. LIM domains are thought to function as molecular modules, mediating specific protein-protein interactions in cellular signaling. In a recent study, we have demonstrated that ENH, which has three consecutive LIM domains, acts as an adaptor protein for the formation of a functional PKCepsilon-ENH-N-type Ca2+ channel complex in neurons. Formation of this complex selectively recruits PKCepsilon to its specific substrate, N-type Ca2+ channels, and is critical for rapid and efficient potentiation of the Ca2+ channel activity by PKC in neurons. However, it is not clear whether changes in the local Ca2+ concentrations near the channel mouth may affect the formation of the triprotein complex. Furthermore, the molecular determinants for the interactions among these three proteins remain unknown. Biochemical studies were performed to address these questions. Within the physiological Ca2+ concentration range (0-300 microM), binding of ENH to the channel C-terminus was significantly increased by Ca2+, whereas increased Ca2+ levels led to dissociation of PKCepsilon from ENH. Mutagenesis studies revealed that the second LIM domain in ENH was primarily responsible for Ca2+-dependent binding of ENH to both the Ca2+ channel C-terminus and PKCepsilon. ENH existed as a dimer in vivo. PKCepsilon translocation inhibition peptide, which blocks the translocation of PKCepsilon from the cytosol to the membrane, inhibited the interaction between PKCepsilon and ENH. These results provide a molecular mechanism for how the PKCepsilon-ENH-N-type Ca2+ channel complex is formed and regulated, as well as potential drug targets to selectively disrupt the PKC signaling complex.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Physiology, Jefferson Medical College, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
75
|
Neuromodulatory Functions of Terminal Nerve‐GnRH Neurons. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1546-5098(06)25011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
76
|
Krieger A, Radhakrishnan K, Pereverzev A, Siapich SA, Banat M, Kamp MA, Leroy J, Klöckner U, Hescheler J, Weiergräber M, Schneider T. The Molecular Chaperone hsp70 Interacts with the Cytosolic II-III Loop of the Cav2.3 E-type Voltagegated Ca2+ Channel. Cell Physiol Biochem 2006; 17:97-110. [PMID: 16543726 DOI: 10.1159/000092071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multiple types of voltage-activated Ca2+ channels (T, L, N, P, Q, R type) coexist in excitable cells and participate in synaptic differentiation, secretion, transmitter release, and neuronal plasticity. Ca2+ ions entering cells trigger these events through their interaction with the ion channel itself or through Ca2+ binding to target proteins initiating signalling cascades at cytosolic loops of the ion conducting subunit (Cava1). These loops interact with target proteins in a Ca2+-dependent or independent manner. In Cav2.3-containing channels the cytosolic linker between domains II and III confers a novel Ca2+ sensitivity to E-type Ca2+ channels including phorbol ester sensitive signalling via protein kinase C (PKC) in Cav2.3 transfected HEK-293 cells. To understand Ca2+ and phorbol ester mediated activation of Cav2.3 Ca2+ channels, protein interaction partners of the II-III loop were identified. FLAG-tagged II-III - loop of human Cav2.3 was over-expressed in HEK 293 cells, and the molecular chaperone hsp70, which is known to interact with PKC, was identified as a novel functional interaction partner. Immunopurified II-III loop-protein of neuronal and endocrine Cav2.3 splice variants stimulate autophosphorylation of PKCa, leading to the suggestion that hsp70--binding to the II-III loop--may act as an adaptor for Ca2+ dependent targeting of PKC to E-type Ca2+ channels.
Collapse
Affiliation(s)
- Andreas Krieger
- Institute for Neurophysiology, University of Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Lafond J, Simoneau L. Calcium Homeostasis in Human Placenta: Role of Calcium‐Handling Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 250:109-74. [PMID: 16861065 DOI: 10.1016/s0074-7696(06)50004-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human placenta is a transitory organ, representing during pregnancy the unique connection between the mother and her fetus. The syncytiotrophoblast represents the specialized unit in the placenta that is directly involved in fetal nutrition, mainly involving essential nutrients, such as lipids, amino acids, and calcium. This ion is of particular interest since it is actively transported by the placenta throughout pregnancy and is associated with many roles during intrauterine life. At term, the human fetus has accumulated about 25-30 g of calcium. This transfer allows adequate fetal growth and development, since calcium is vital for fetal skeleton mineralization and many cellular functions, such as signal transduction, neurotransmitter release, and cellular growth. Thus, there are many proteins involved in calcium homeostasis in the human placenta.
Collapse
Affiliation(s)
- Julie Lafond
- Laboratoire de Physiologie Materno Foetale, Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Canada, H3C 3P8
| | | |
Collapse
|
78
|
Abstract
Voltage-gated Ca2+ (Ca(v)) channels are found in all excitable cells and many nonexcitable cells, in which they govern Ca2+ influx, thereby contributing to determine a host of important physiological processes including gene transcription, muscle contraction, hormone secretion, and neurotransmitter release. The past years have seen some significant advances in our understanding of the functional, pharmacological, and molecular properties of Ca(v) channels. Molecular studies have revealed that several of these channels are oligomeric complexes consisting of an ion-conducting alpha1 subunit and auxiliary alpha2delta, beta, and gamma subunits. In addition, cloning of multiple Ca(v) channel alpha1 subunits has offered the opportunity to investigate the regulation of these proteins at the molecular level. The regulation of Ca(v) channels by intracellular second messengers constitutes a key mechanism for controlling Ca2+ influx. This review summarizes recent advances that have provided important clues to the underlying molecular mechanisms involved in the regulation of Ca(v) channels by protein phosphorylation, G-protein activation, and interactions with Ca(2+)-binding and SNARE proteins.
Collapse
Affiliation(s)
- Ricardo Felix
- Department of Physiology Biophysics, and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-IPN, Mexico City, Mexico.
| |
Collapse
|
79
|
Winquist RJ, Pan JQ, Gribkoff VK. Use-dependent blockade of Cav2.2 voltage-gated calcium channels for neuropathic pain. Biochem Pharmacol 2005; 70:489-99. [PMID: 15950195 DOI: 10.1016/j.bcp.2005.04.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 11/28/2022]
Abstract
The translocation of extracellular calcium (Ca(2+)) via voltage-gated Ca(2+) channels (VGCCs) in neurons is involved in triggering multiple physiological cell functions but also the abnormal, pathophysiological responses that develop as a consequence of injury. In conditions of neuropathic pain, VGCCs are involved in supplying the signal Ca(2+) important for the sustained neuronal firing and neurotransmitter release characteristic of these syndromes. Preclinical data have identified N-type VGCCs (Ca(v)2.2) as key participants in contributing to these Ca(2+) signaling events and clinical data with the peptide blocker Prialt have now validated Ca(v)2.2 as a bona fide target for future drug discovery efforts to identify new and novel therapeutics for neuropathic pain. Imperative for the success of such an endeavor will be the ability to identify compounds selective for Ca(v)2.2, versus other VGCCs, but also compounds which demonstrate effective blockade during the pathophysiological states of neuropathic pain without compromising channel activity associated with sustaining normal housekeeping cellular functions. An approach to obtain this research target profile is to identify compounds, which are more potent in blocking Ca(v)2.2 during higher frequencies of firing as compared to the slower more physiologically-relevant frequencies. This may be achieved by identifying compounds with enhanced potency for the inactivated state of Ca(v)2.2. This commentary explores the rationale and options for engineering a use-dependent blocker of Ca(v)2.2. It is anticipated that this use-dependent profile of channel blockade will result in new chemical entities with an improved therapeutic ratio for neuropathic pain.
Collapse
Affiliation(s)
- Raymond J Winquist
- Department of Pharmacology, Scion Pharmaceuticals Inc., 200 Boston Avenue, Suite 3600, Medford, MA 02155, USA.
| | | | | |
Collapse
|
80
|
Fang H, Franke R, Patanavanich S, Lalvani A, Powell NK, Sando JJ, Kamatchi GL. Role of α1 2.3 Subunit I-II Linker Sites in the Enhancement of Cav 2.3 Current by Phorbol 12-Myristate 13-Acetate and Acetyl-β-methylcholine. J Biol Chem 2005; 280:23559-65. [PMID: 15840578 DOI: 10.1074/jbc.m501540200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Potentiation of Ca(v) 2.3 currents by phorbol 12-myristate 13-acetate (PMA) or acetyl-beta-methylcholine (MCh) may be due to protein kinase C (PKC)-mediated phosphorylation of the alpha1 2.3 subunit. Mutational analysis of potential PKC sites unique to the alpha1 2.3 subunit revealed several sites in the II-III linker that are specific to MCh (Kamatchi, G., Franke, R., Lynch, C., III, and Sando, J. (2004) J. Biol. Chem. 279, 4102-4109). To identify sites responsive to PMA, Ser/Thr --> Ala mutations were made in potential PKC sites homologous to the alpha1 2.3 and 2.2 subunits, both of which respond to PMA. Wild type alpha1 2.3 or mutants were expressed in Xenopus oocytes in combination with beta1b and alpha2/delta subunits and muscarinic M1 receptors. Inward current (I(Ba)) was recorded using Ba2+ as the charge carrier. Thr-365 of the I-II linker was identified as the primary site of PMA action, and this site also was required, along with the previously identified MCh-selective sites, for the MCh response. Ser-369 and Ser-1995 contributed to current enhancement only if Thr-365 also was available. Mutation of the essential sites to Asp increased the basal I(Ba) and caused a corresponding decrease in the PMA or MCh responses, consistent with possible regulation of these sites by phosphorylation. These results suggest that PMA and MCh both activate a pathway that can regulate the common PMA-sensitive sites in the I-II linker but that MCh also activates an additional pathway required for regulation of the MCh-unique sites, especially in the II-III linker.
Collapse
Affiliation(s)
- Hongyu Fang
- Department of Anesthesiology, University of Virginia Health Sciences Systems, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Kuzmiski JB, Barr W, Zamponi GW, MacVicar BA. Topiramate Inhibits the Initiation of Plateau Potentials in CA1 Neurons by Depressing R-type Calcium Channels. Epilepsia 2005; 46:481-9. [PMID: 15816941 DOI: 10.1111/j.0013-9580.2005.35304.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Cholinergic-dependent plateau potentials (PPs) are intrinsically generated conductances that can elicit ictal-type seizure activity. The aim of this study was to investigate the actions of topiramate (TPM) on the generation of PPs. METHODS We used whole-cell patch-clamp recordings from CA1 pyramidal neurons in rat hippocampal slices to examine the effects of TPM on the PPs. RESULTS In current-clamp mode, action potentials evoked PPs after cholinergic receptor stimulation. Therapeutically relevant concentrations of TPM (50 microM) depressed the PPs evoked by action potentials. Surprisingly, in voltage-clamp mode, we discovered that the cyclic nucleotide-gated (CNG) current that underlies PP generation (denoted as I(tail)) was not depressed. However, significantly longer depolarizing voltage steps were required to elicit I(tail). This suggested that the calcium entry trigger for evoking PPs was depressed by TPM and not I(tail) itself. TPM had no effect on calcium spikes in control conditions; however, TPM did reduce calcium spikes after cholinergic-receptor stimulation. We recently found that R-type calcium spikes are enhanced by cholinergic-receptor stimulation. Therefore we isolated R-type calcium spikes with a cocktail containing tetrodotoxin, omega-conotoxin MVIIC, omega-conotoxin-GVIA, omega-agatoxin IVA, and nifedipine. R-type calcium spikes were significantly depressed by TPM. We also examined the effects of TPM on recombinant Ca(V)2.3 calcium channels expressed in tsA-201 cells. TPM depressed currents mediated by Ca(V)2.3 subunits by a hyperpolarizing shift in steady-state inactivation. CONCLUSIONS We have found that TPM reduces ictal-like activity in CA1 hippocampal neurons through a novel inhibitory action of R-type calcium channels.
Collapse
Affiliation(s)
- Joseph Brent Kuzmiski
- Brain Research Centre, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
82
|
Wu ZZ, Chen SR, Pan HL. Transient receptor potential vanilloid type 1 activation down-regulates voltage-gated calcium channels through calcium-dependent calcineurin in sensory neurons. J Biol Chem 2005; 280:18142-51. [PMID: 15746091 DOI: 10.1074/jbc.m501229200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium influx through voltage-activated Ca(2+) channels (VACCs) plays a critical role in neurotransmission. Capsaicin application inhibits VACCs and desensitizes nociceptors. In this study, we determined the signaling mechanisms of the inhibitory effect of capsaicin on VACCs in primary sensory neurons. Whole-cell voltage clamp recordings were performed in acutely isolated rat dorsal root ganglion neurons. Capsaicin caused a profound decrease in the Ca(2+) current (I(Ca)) density in capsaicin-sensitive, but not -insensitive, dorsal root ganglion neurons. At 1 mum, capsaicin suppressed about 60% of N-, P/Q-, L-, and R-type I(Ca) density. Pretreatment with iodoresiniferatoxin, a specific transient receptor potential vanilloid type 1 (TRPV1) antagonist, or intracellular application of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid blocked the inhibitory effect of capsaicin on I(ca). However, neither W-7, a calmodulin blocker, nor KN-93, a CaMKII inhibitor, attenuated the inhibitory effect of capsaicin on I(Ca). Furthermore, intracellular dialysis of deltamethrin or cyclosporin A, the specific calcineurin (protein phosphatase 2B) inhibitors, but not okadaic acid (a selective protein phosphatase 1/protein phosphatase 2A inhibitor), abolished the effect of capsaicin on I(Ca). Interestingly, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, deltamethrin, cyclosporin A, and okadaic acid each alone significantly increased the I(Ca) density and caused a depolarizing shift in the voltage dependence of activation. Immunofluorescence labeling revealed that capsaicin induced a rapid internalization of Ca(V)2.2 channels on the membrane. Thus, this study provides novel information that VACCs are tonically modulated by the intracellular Ca(2+) level and endogenous phosphatases in sensory neurons. Stimulation of TRPV1 by capsaicin down-regulates VACCs by dephosphorylation through Ca(2+)-dependent activation of calcineurin.
Collapse
Affiliation(s)
- Zi-Zhen Wu
- Department of Anesthesiology, Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
83
|
Kamp MA, Krieger A, Henry M, Hescheler J, Weiergräber M, Schneider T. Presynaptic ‘Cav2.3-containing’ E-type Ca2+channels share dual roles during neurotransmitter release. Eur J Neurosci 2005; 21:1617-25. [PMID: 15845089 DOI: 10.1111/j.1460-9568.2005.03984.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca2+ influx into excitable cells is a prerequisite for neurotransmitter release and regulated exocytosis. Within the group of ten cloned voltage-gated Ca2+ channels, the Ca(v)2.3-containing E-type Ca2+ channels are involved in various physiological processes, such as neurotransmitter release and exocytosis together with other voltage-gated Ca2+ channels of the Ca(v)1, Ca(v)2 and Ca(v)3 subfamily. However, E-type Ca2+ channels also exhibit several subunit-specific features, most of which still remain poorly understood. Ca(v)2.3-containing R-type channels (here called 'E-type channels') are also located in presynaptic terminals and interact with some synaptic vesicle proteins, the so-called SNARE proteins, although lacking the classical synprint interaction site. E-type channels trigger exocytosis and are also involved in long-term potentiation. Recently, it was shown that the interaction of Ca(v)2.3 with the EF-hand motif containing protein EFHC1 is involved in the aetiology and pathogenesis of juvenile myoclonic epilepsy.
Collapse
Affiliation(s)
- M A Kamp
- Institute of Neurophysiology, Robert-Koch-Str. 39, D-50931 Köln, Germany
| | | | | | | | | | | |
Collapse
|
84
|
Darszon A, Nishigaki T, Wood C, Treviño CL, Felix R, Beltrán C. Calcium Channels and Ca2+ Fluctuations in Sperm Physiology. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 243:79-172. [PMID: 15797459 DOI: 10.1016/s0074-7696(05)43002-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Generating new life in animals by sexual reproduction depends on adequate communication between mature and competent male and female gametes. Ion channels are instrumental in the dialogue between sperm, its environment, and the egg. The ability of sperm to swim to the egg and fertilize it is modulated by ion permeability changes induced by environmental cues and components of the egg outer layer. Ca(2+) is probably the key messenger in this information exchange. It is therefore not surprising that different Ca(2+)-permeable channels are distinctly localized in these tiny specialized cells. New approaches to measure sperm currents, intracellular Ca(2+), membrane potential, and intracellular pH with fluorescent probes, patch-clamp recordings, sequence information, and heterologous expression are revealing how sperm channels participate in fertilization. Certain sperm ion channels are turning out to be unique, making them attractive targets for contraception and for the discovery of novel signaling complexes.
Collapse
Affiliation(s)
- Alberto Darszon
- Department of Developmental Genetics and Molecular Physiology, Institute of Biotechnology, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico 62210
| | | | | | | | | | | |
Collapse
|
85
|
Belkacemi L, Bédard I, Simoneau L, Lafond J. Calcium channels, transporters and exchangers in placenta: a review. Cell Calcium 2005; 37:1-8. [PMID: 15541458 DOI: 10.1016/j.ceca.2004.06.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 06/28/2004] [Accepted: 06/29/2004] [Indexed: 11/25/2022]
Abstract
Calcium (Ca2+) entry in cells is crucial for development and physiology of virtually all cell types. It acts as an intracellular (second) messenger to regulate a diverse array of cellular functions, from cell division and differentiation to cell death. Among candidates for Ca2+ entry in cells are-voltage-dependant Ca2+ channels (VDCCs), transient receptor potential (TRP)-related Ca2+ channels and store-operated Ca2+ (SOC) channels. Plasma membrane Ca2+-ATPases (PMCA) and Na+/Ca2+ exchanger (NCX) are mainly responsible for Ca2+ extrusion. These different Ca2+channels/transporters and exchangers exhibit specific distribution and physiological properties. During pregnancy, the syncytiotrophoblast layer of the human placenta transfers as much as 30 g of Ca2+ from the mother to the fetus, especially in late gestation where Ca2+ transport through different channels must increase in response to the demands of accelerating bone mineralization of the fetus. The identification and characterization of the different Ca2+ channels/transporters and exchangers on the brush-border membrane (BBM) facing the maternal circulation, and the basal plasma membrane (BPM) facing the fetal circulation; placental membrane of the syncytiotrophoblasts have been the focus of numerous studies. This review discusses current views in this field regarding localization and functions during transcellular Ca2+ entry and extrusion from cells particularly in the placenta.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Laboratoire de Physiologie Materno-Foetale, Département des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succursale 'Centre-Ville'Montréal, Montréal, Québec, Canada H3C 3P8
| | | | | | | |
Collapse
|
86
|
Chaban VV, Li J, Ennes HS, Nie J, Mayer EA, McRoberts JA. N-methyl-D-aspartate receptors enhance mechanical responses and voltage-dependent Ca2+ channels in rat dorsal root ganglia neurons through protein kinase C. Neuroscience 2004; 128:347-57. [PMID: 15350646 DOI: 10.1016/j.neuroscience.2004.06.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2004] [Indexed: 11/28/2022]
Abstract
N-methyl-D-aspartate (NMDA)receptors (NMDARs) located on peripheral terminals of primary afferents are involved in the transduction of noxious mechanical stimuli. Exploiting the fact that both NMDARs and stretch-activated channels are retained in short-term culture and expressed on the soma of dorsal root ganglia (DRG) neurons, we examined the effect of NMDA on mechanically mediated changes in intracellular calcium concentration ([Ca2+]i). Our aims were to determine whether NMDARs modulate the mechanosensitivity of DRG neurons. Primary cultures of adult rat lumbosacral DRG cells were cultured for 1-3 days. [Ca2+]i responses were determined by Fura-2 ratio fluorescence. Somas were mechanically stimulated with fire-polished glass pipettes that depressed the cell membrane for 0.5 s. Voltage-activated inward Ca2+ currents were measured by the whole cell patch clamp. Stimulation of neurons with 100 microM NMDA in the presence, but not the absence, of co-agonist (10 microM D-serine) caused transient [Ca2+]i responses (101+/-9 nM) and potentiated [Ca2+]i peak responses to subsequent mechanical stimulation more than two-fold (P < 0.001). NMDA-mediated potentiation of mechanically induced [Ca2+]i responses was inhibited by the selective protein kinase C (PKC) inhibitor GF109203X (GFX; 10 microM), which had no independent effects on NMDA- or mechanically induced responses. Short-term treatment with the PKC activator phorbol dibutyrate (1 microM PDBu for 1-2 min) also potentiated mechanically induced [Ca2+]i responses nearly two-fold (P < 0.001), while longer exposure (>10 min) inhibited the [Ca2+]i transients by 44% (P < 0.001). Both effects of PDBu were prevented by prior treatment with GFX. Inhibition of voltage-dependent Ca2+ channels with 25 microM La3+ had no effect on mechanically induced [Ca2+]i transients prior to NMDA, but prevented enhancement of the transients by NMDA and PDBu. NMDA pretreatment transiently enhanced nifedipine-sensitive, voltage-activated Ca2+ currents by a process that was sensitive to GFX. In conclusion, activation of NMDARs on cultured DRG neurons sensitize voltage-dependent L-type Ca2+ channels which contribute to mechanically induced [Ca2+]i transients through a PKC-mediated process.
Collapse
Affiliation(s)
- V V Chaban
- Center for Neurovisceral Sciences and Women's Health, Department of Medicine, University of California, Warren Hall, Room 14-103, 900 Veterans Avenue, Los Angeles 90095, USA
| | | | | | | | | | | |
Collapse
|
87
|
Suszkiw JB. Presynaptic disruption of transmitter release by lead. Neurotoxicology 2004; 25:599-604. [PMID: 15183013 DOI: 10.1016/j.neuro.2003.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2003] [Accepted: 09/09/2003] [Indexed: 11/24/2022]
Abstract
Low concentrations of inorganic lead ions (Pb2+) disrupt transmitter release by causing aberrant augmentation of spontaneous and suppression of evoked release. These effects result from high affinity interactions of Pb2+ with the voltage-gated calcium channels (VGCC) as well as Ca2+ binding proteins which regulate the synaptic vesicle mobilization, docking, and exocytosis processes. Augmentation of spontaneous release may involve stimulation of vesicle mobilization consequent to Pb2+ activation of CaMKII-dependent phosphorylation of synapsin I and/or stimulation of asynchronous exocytosis via direct Pb2+ activation of the putative exocytotic Ca2+-sensor protein synaptotagmin I. In addition, synergistic stimulation of PLC and DAG/Pb2+-dependent activation of PKC may enhance the secretagogue effects of Pb2+ by increasing metal sensitivity of exocytosis and/or modulating calcium channel activity. In contrast to intracellularly-mediated actions of Pb2+ resulting in augmentation of spontaneous release, the inhibition of evoked transmitter release by Pb2+ is largely attributable to extracellular block of the voltage-gated calcium channels.
Collapse
Affiliation(s)
- Janusz B Suszkiw
- Department of Cellular and Molecular Physiology, College of Medicine, University of Cincinnati, P.O. Box 670576, Cincinnati, OH 45267-0576, USA.
| |
Collapse
|
88
|
Lee JJ, Hahm ET, Min BI, Cho YW. Activation of protein kinase C antagonizes the opioid inhibition of calcium current in rat spinal dorsal horn neurons. Brain Res 2004; 1017:108-19. [PMID: 15261106 DOI: 10.1016/j.brainres.2004.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2004] [Indexed: 12/01/2022]
Abstract
Spinal dorsal horn (SDH) is one of important regions in both nociceptive transmission and antinociception. Opioid peptides produce analgesia via regulation of neurotransmitter release through modulation of voltage-dependent Ca(2+) channel (VDCC) in neuronal tissues. The modulatory effect of micro-opioid receptor (MOR) activation on VDCC was investigated in acutely isolated rat SDH neurons under the conventional whole-cell patch-clamp recording mode. The Ba(2+) current passing through VDCC was reversibly inhibited by a MOR agonist, [D-Ala(2),N-MePhe(4),Gly(5)-ol]-enkephalin (DAMGO, 1 microM). Among 108 SDH neurons tested, VDCC of 39 neurons (36%) were inhibited by MOR activation, while other 69 neurons (64%) were not affected. The L-, N-, P/Q-, and R-type VDCC components shared 58.4+/-18.9%, 29.3+/-12.1%, 8.7+/-7.2%, and 3.4+/-4.8% of the total VDCC, respectively. Among VDCC subtypes inhibited by MOR activation, L- and N-types were 61.4+/-12.8% and 30.7+/-14.4%, respectively, while both P/Q- and R-types were 7.9+/-11.8%. A depolarizing pre-pulse increased the amplitude of VDCC and suppressed most of the inhibitory effect of MOR activation. Application of 1 microM phorbol-12-myristate-13-acetate completely antagonized the inhibitory effect of MOR activation without any alteration of basal VDCC amplitude. In contrast, the response of MOR activation was not altered by application of 4-alpha-phorbol (1 microM), 2-[3-Dimethylaminopropyl]indol-3-yl]-3-(indol-3-yl) maleimide (GF109203X, 1 microM), forskolin (1 microM), N-(2-[p-Bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride (H-89, 1 microM). These results indicate that activation of MOR coupled to G-proteins inhibits VDCC, and that this G-protein-mediated inhibition is antagonized by PKC-dependent phosphorylation.
Collapse
Affiliation(s)
- Jong-Ju Lee
- Department of Physiology, College of Medicine, Kyung Hee University, 1 Hoigi-dong, Dongdaemoon-gu, Seoul 130-701, South Korea
| | | | | | | |
Collapse
|
89
|
Doering CJ, Kisilevsky AE, Feng ZP, Arnot MI, Peloquin J, Hamid J, Barr W, Nirdosh A, Simms B, Winkfein RJ, Zamponi GW. A Single Gβ Subunit Locus Controls Cross-talk between Protein Kinase C and G Protein Regulation of N-type Calcium Channels. J Biol Chem 2004; 279:29709-17. [PMID: 15105422 DOI: 10.1074/jbc.m308693200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The modulation of N-type calcium channels is a key factor in the control of neurotransmitter release. Whereas N-type channels are inhibited by Gbetagamma subunits in a G protein beta-isoform-dependent manner, channel activity is typically stimulated by activation of protein kinase C (PKC). In addition, there is cross-talk among these pathways, such that PKC-dependent phosphorylation of the Gbetagamma target site on the N-type channel antagonizes subsequent G protein inhibition, albeit only for Gbeta(1)-mediated responses. The molecular mechanisms that control this G protein beta subunit subtype-specific regulation have not been described. Here, we show that G protein inhibition of N-type calcium channels is critically dependent on two separate but adjacent approximately 20-amino acid regions of the Gbeta subunit, plus a highly conserved Asn-Tyr-Val motif. These regions are distinct from those implicated previously in Gbetagamma signaling to other effectors such as G protein-coupled inward rectifier potassium channels, phospholipase beta(2), and adenylyl cyclase, thus raising the possibility that the specificity for G protein signaling to calcium channels might rely on unique G protein structural determinants. In addition, we identify a highly specific locus on the Gbeta(1) subunit that serves as a molecular detector of PKC-dependent phosphorylation of the G protein target site on the N-type channel alpha(1) subunit, thus providing for a molecular basis for G protein-PKC cross-talk. Overall, our results significantly advance our understanding of the molecular details underlying the integration of G protein and PKC signaling pathways at the level of the N-type calcium channel alpha(1) subunit.
Collapse
Affiliation(s)
- Clinton J Doering
- Department of Physiology and Biophysics, Cellular and Molecular Neurobiology Research Group, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Klöckner U, Pereverzev A, Leroy J, Krieger A, Vajna R, Pfitzer G, Hescheler J, Malécot CO, Schneider T. The cytosolic II-III loop of Cav2.3 provides an essential determinant for the phorbol ester-mediated stimulation of E-type Ca2+ channel activity. Eur J Neurosci 2004; 19:2659-68. [PMID: 15147300 DOI: 10.1111/j.0953-816x.2004.03375.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is growing evidence that E-type voltage dependent Ca(2+) channels (Ca(v)2.3) are involved in triggering and controlling pivotal cellular processes like neurosecretion and long-term potentiation. The mechanism underlying a novel Ca(2+) dependent stimulation of E-type Ca(2+) channels was investigated in the context of the recent finding that influx of Ca(2+) through other voltage dependent Ca(2+) channels is necessary and sufficient to directly activate protein kinase C (PKC). With Ba(2+) as charge carrier through Ca(v)2.3 channel alpha(1) subunits expressed in HEK-293 cells, activation of PKC by low concentrations of phorbol ester augmented peak I(Ba) by approximately 60%. In addition, the non-inactivating fraction of I(Ba) was increased by more than three-fold and recovery from short-term inactivation was accelerated. The effect of phorbol ester on I(Ba) was inhibited by application of the specific PKC inhibitor bisindolylmaleimide I. With Ca(2+) as charge carrier, application of phorbol ester did not change the activity of Ca(v)2.3 currents but they were modified by the PKC inhibitor bisindolylmaleimide I. These results suggest that with Ca(2+) as charge carrier the incoming Ca(2+) can activate PKC, thereby augmenting Ca(2+) influx into the cytosol. No modulation of Ca(v)2.3 channels by PKC was observed when an arginine rich region in the II-III loop of Ca(v)2.3 was eliminated. Receptor independent stimulation of PKC and its interaction with Ca(v)2.3 channels therefore represents an important positive feedback mechanism to decode electrical signals into a variety of cellular functions.
Collapse
Affiliation(s)
- Udo Klöckner
- Institute of Vegetative Physiology, University of Cologne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Yang L, Zhang FX, Huang F, Lu YJ, Li GD, Bao L, Xiao HS, Zhang X. Peripheral nerve injury induces trans-synaptic modification of channels, receptors and signal pathways in rat dorsal spinal cord. Eur J Neurosci 2004; 19:871-83. [PMID: 15009134 DOI: 10.1111/j.0953-816x.2004.03121.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peripheral tissue injury-induced central sensitization may result from the altered biochemical properties of spinal dorsal horn. However, peripheral nerve injury-induced modification of genes in the dorsal horn remains largely unknown. Here we identified strong changes of 14 channels, 25 receptors and 42 signal transduction related molecules in Sprague-Dawley rat dorsal spinal cord 14 days after peripheral axotomy by cDNA microarray. Twenty-nine genes were further confirmed by semiquantitative RT-PCR, Northern blotting, in situ hybridization and immunohistochemistry. These regulated genes included Ca2+ channel alpha1E and alpha2/delta1 subunits, alpha subunits for Na+ channel 1 and 6, Na+ channel beta subunit, AMAP receptor GluR3 and 4, GABAA receptor alpha5 subunit, nicotinic acetylcholine receptor alpha5 and beta2 subunits, PKC alpha, betaI and delta isozymes, JNK1-3, ERK2-3, p38 MAPK and BatK and Lyn tyrosine-protein kinases, indicating that several signal transduction pathways were activated in dorsal spinal cord by peripheral nerve injury. These results demonstrate that peripheral nerve injury causes phenotypic changes in spinal dorsal horn. Increases in Ca2+ channel alpha2/delta1 subunit, GABAA receptor alpha5 subunit, Na+ channels and nicotinic acetylcholine receptors in both dorsal spinal cord and dorsal root ganglia indicate their potential roles in neuropathic pain control.
Collapse
Affiliation(s)
- Liang Yang
- Laboratory of Sensory System, Institute of Neurosciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Kamatchi GL, Franke R, Lynch C, Sando JJ. Identification of Sites Responsible for Potentiation of Type 2.3 Calcium Currents by Acetyl-β-methylcholine. J Biol Chem 2004; 279:4102-9. [PMID: 14625305 DOI: 10.1074/jbc.m308606200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To address mechanisms for the differential sensitivity of voltage-gated Ca2+ channels (Cav) to agonists, channel activity was compared in Xenopus oocytes coexpressing muscarinic M(1) receptors and different Cav alpha1 subunits, all with beta1B,alpha2/delta subunits. Acetyl-beta-methylcholine (MCh) decreased Cav 1.2c currents, did not affect 2.1 or 2.2 currents, but potentiated Cav 2.3 currents. Phorbol 12-myristate 13-acetate (PMA) did not affect Cav 1.2c or 2.1 currents but potentiated 2.2 and 2.3 currents. Comparison of the amino acid sequences of the alpha1 subunits revealed a set of potential protein kinase C phosphorylation sites in common between the 2.2 and 2.3 channels that respond to PMA and a set of potential sites unique to the alpha1 2.3 subunits that respond to MCh. Quadruple Ser --> Ala mutation of the predicted MCh sites in the alpha1 2.3 subunit (Ser-888, Ser-892, and Ser-894 in the II-III linker and Ser-1987 in the C terminus) caused loss of the MCh response but not the PMA response. Triple Ser --> Ala mutation of just the II-III linker sites gave similar results. Ser-888 or Ser-892 was sufficient for the MCh responsiveness, whereas Ser-894 required the presence of Ser-1987. Ser --> Asp substitution of Ser-888, Ser-892, Ser-1987, and Ser-892/Ser-1987 increased the basal current and decreased the MCh response but did not alter the PMA response. These results reveal that sites unique to the II-III linker of alpha1 2.3 subunits mediate the responsiveness of Cav 2.3 channels to MCh. Because Cav 2.3 channels contribute to action potential-induced Ca2+ influx, these sites may account for M1 receptor-mediated regulation of neurotransmission at some synapses.
Collapse
Affiliation(s)
- Ganesan L Kamatchi
- Department of Anesthesiology, University of Virginia Health Sciences Systems, Charlottesville, Virginia 22908-0710, USA.
| | | | | | | |
Collapse
|
93
|
Bannister RA, Melliti K, Adams BA. Differential modulation of CaV2.3 Ca2+ channels by Galphaq/11-coupled muscarinic receptors. Mol Pharmacol 2004; 65:381-8. [PMID: 14742680 DOI: 10.1124/mol.65.2.381] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CaV2.3 subunits are expressed in neuronal and neuroendocrine cells where they are believed to form native R-type Ca2+ channels. Although R-type currents are involved in triggering neurotransmitter and hormone secretion, little is known about their modulation. Previous studies have shown that muscarinic acetylcholine receptors evoke both inhibition and stimulation of CaV2.3. Muscarinic inhibition of CaV2.3 is mediated by Gbetagamma subunits, whereas stimulation is mediated by pertussis toxin-insensitive Galpha subunits. In the present study, we compared modulation of CaV2.3 by the three Galphaq/11-coupled muscarinic receptors (M1, M3, and M5). Our data indicate that these receptors trigger comparable stimulation of CaV2.3. The signaling pathway that mediates stimulation was meticulously analyzed for M1 receptors. Stimulation is blocked by neutralizing antibodies directed against Galphaq/11, coexpression of the regulatory domain of protein kinase Cdelta (PKCdelta), preactivating PKC with phorbol ester, or pharmacological suppression of PKC with bisindolylmaleimide I. Stimulation of CaV2.3 is Ca(2+)-independent and insensitive to 12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3,4-c)-carbazole (Gö 6976), a specific inhibitor of Ca(2+)-dependent PKC isozymes. These results indicate that muscarinic stimulation of CaV2.3 involves signaling by Galphaq/11, diacylglycerol, and a Ca(2+)-independent PKC. In contrast to stimulation, the magnitude of CaV2.3 inhibition depended on receptor subtype, with M3 and M5 receptors producing much larger CaV2.3 inhibition than M1 receptors. Interestingly, muscarinic inhibition of CaV2.3 was notably enhanced during pharmacological suppression of PKC, suggesting the presence of cross-talk between Gbetagamma-mediated inhibition and PKC-mediated stimulation of R-type channels similar to that described previously for N-type channels.
Collapse
Affiliation(s)
- R A Bannister
- Department of Biology, Utah State University, Logan, Utah 84322, USA
| | | | | |
Collapse
|
94
|
Kerekes N, Mennicken F, O'Donnell D, Hökfelt T, Hill RH. Galanin increases membrane excitability and enhances Ca(2+) currents in adult, acutely dissociated dorsal root ganglion neurons. Eur J Neurosci 2004; 18:2957-66. [PMID: 14656291 DOI: 10.1111/j.1460-9568.2003.03057.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We examined the effect of galanin (10(-15) - 10(-7) M) on dispersed, mainly small-sized dorsal root ganglion (DRG) neurons in adult rats using whole-cell patch-clamp. Galanin and AR-M1896, a selective galanin type 2 receptor (GalR2) agonist, both significantly increased the number of action potentials in response to current pulses in 77% of the neurons, indicating an increase in excitability. Galanin also caused a rise in input resistance, decreased the holding current for -60 mV and depolarized the resting potential. In addition, Ca(2+) currents elicited by voltage steps were significantly increased by both galanin and AR-M1896 in nearly 70% of the cells. This enhancement was observed in 30% of the neurons in the presence of nimodipine or omega-conotoxin, but in each case approximately 60% less than without blocking either N- or L-type Ca(2+) channels, indicating modulation of both types of Ca(2+) channels. The percentage of small- and medium-sized neurons expressing GalR2 mRNA in DRGs in situ was similar to that showing increased excitability and Ca(2+) current after galanin application, i.e. approximately 70-80% of the neurons. The findings suggest that GalR2 has a role in controlling both the excitability, probably by inhibition of GIRK or leak K(+) channels, and Ca(2+) entry in a large population of presumably nociceptive neurons. The combination of the two effects, which possibly arise from separate biochemical pathways, would increase excitability and enhance intracellular Ca(2+) signalling which would enhance sensory transmission. These mechanisms involving GalR2 receptors may underlie the pronociceptive effects of galanin described in the literature.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels/drug effects
- Cell Count
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drug Interactions
- Electric Impedance
- Galanin/agonists
- Galanin/pharmacology
- Ganglia, Spinal/cytology
- In Situ Hybridization
- Male
- Membrane Potentials/drug effects
- Neurons/classification
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques/methods
- Peptide Fragments/pharmacology
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptor, Galanin, Type 1/metabolism
- Receptor, Galanin, Type 2/genetics
- Receptor, Galanin, Type 2/metabolism
- Sulfur Isotopes/metabolism
Collapse
Affiliation(s)
- Nóra Kerekes
- Karolinska Institutet, Department of Neuroscience, Retzius väg 8, SE-17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
95
|
Rousset M, Cens T, Gouin-Charnet A, Scamps F, Charnet P. Ca2+ and phosphatidylinositol 4,5-bisphosphate stabilize a Gbeta gamma-sensitive state of Ca V2 Ca 2+ channels. J Biol Chem 2004; 279:14619-30. [PMID: 14722074 DOI: 10.1074/jbc.m313284200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Direct interactions between G-protein betagamma subunits and N- or P/Q-type Ca(2+) channels mediate the inhibitory action of several neurotransmitters in the brain. Membrane potential, channel phosphorylation, or auxiliary subunit association tightly regulate these interactions and the consequent inhibition of Ca(2+) current. We now provide evidence that intracellular Ca(2+) concentration and phosphoinositides play a stabilizing role in this direct voltage-dependent inhibition. Lowering resting cytosolic Ca(2+) concentration in Xenopus oocytes expressing Ca(V)2Ca(2+) channels strongly decreased basal as well as phasic, agonist-dependent inhibition of Ca(2+) channels by G-proteins. Decreasing phosphoinositide levels also suppressed G-protein inhibition and completely occluded the effects of a subsequent injection of Ca(2+) chelator. Similar regulations are observed in mouse dorsal root ganglia neurons. Alteration of G-protein block by these agents is independent of protein phosphorylation, cytoskeleton dynamics, and GTPase or GDP/GTP exchange activity, suggesting a direct action at the level of the Ca(2+) channel/Gbetagamma-protein interaction. Moreover, affinity binding experiments of intracellular loops of the Ca(V)2.1 Ca(2+) channels to different phospholipids revealed specific interactions between the C-terminal tail of the channel and phosphoinositides. Taken together these data indicate that a Ca(2+)-sensitive interaction of the C-terminal tail of P/Q channels with the plasma membrane is important for G-protein regulation.
Collapse
Affiliation(s)
- Matthieu Rousset
- Centre de Recherche de Biochimie Macromoléculaire, CNRS-FRE 2593, 1919 Route de Mende, 34293 Montpellier, France
| | | | | | | | | |
Collapse
|
96
|
Wang F, Matsuoka N, Mutoh S, Kaneko S. Modulation of Ca2+ channel currents by a novel antidementia drug N-(4-Acetyl-1-piperazinyl)-p-fluorobenzamide monohydrate (FK960) in rat hippocampal neurons. J Pharmacol Exp Ther 2004; 308:120-6. [PMID: 14569070 DOI: 10.1124/jpet.103.057687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-(4-Acetyl-1-piperazinyl)-p-fluorobenzamide monohydrate (FK960), a novel antidementia drug, has been demonstrated to ameliorate memory deficits in various experimental models of dementia. This drug selectively increases somatostatin release from hippocampal slices and augments long-term potentiation (LTP) in the CA3 area of the hippocampus. In the present study, the effects of FK960 on voltage-activated Ca2+ channels were investigated in acutely isolated rat hippocampal neurons, using whole-cell patch-clamp technique to clarify the cellular mode of action of FK960. Application of somatostatin significantly reduced Ca2+ currents via G protein-coupled signaling pathways. This inhibitory effect was significantly abolished by FK960 when applied in combination. In contrast, FK960 showed only modest inhibition on the reduction in Ca2+ currents produced by baclofen, an agonist of GABAB receptor. Intracellular application of the protein kinase inhibitor H-7 did not alter somatostatin-induced inhibition and had no significant effect on blockade by FK960. In addition, application of FK960 alone produced modest but apparent increases in Ca2+ currents without significant changes in the activation kinetics of the channels. The dose-response relationship on calcium current enhancement was bell-shaped with a maximum effect at 0.1 microM FK960, the same concentration as that for increasing on somatostatin release and CA3-LTP. These results show that FK960 reverses G protein-dependent inhibition of Ca2+ currents by somatostatin in hippocampal neurons. Enhancement of Ca2+ currents by FK960 may be due to its modulatory actions on Ca2+ channels, rather than removal of G protein-inhibited tonic currents. Together, these mechanisms may be involved in the selective effects of FK960 on somatostatin release, excitatory transmission, and synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Feng Wang
- Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co. Ltd., Kashima, Osaka 532-8514, Japan
| | | | | | | |
Collapse
|
97
|
Abstract
Calcium influx into any cell requires fine tuning to guarantee the correct balance between activation of calcium-dependent processes, such as muscle contraction and neurotransmitter release, and calcium-induced cell damage. G protein-coupled receptors play a critical role in negative feedback to modulate the activity of the CaV2 subfamily of the voltage-dependent calcium channels, which are largely situated on neuronal and neuro-endocrine cells. The basis for the specificity of the relationships among membrane receptors, G proteins, and effector calcium channels will be discussed, as well as the mechanism by which G protein-mediated inhibition is thought to occur. The inhibition requires free G beta gamma dimers, and the cytoplasmic linker between domains I and II of the CaV2 alpha 1 subunits binds G beta gamma dimers, whereas the intracellular N terminus of CaV2 alpha 1 subunits provides essential determinants for G protein modulation. Evidence suggests a key role for the beta subunits of calcium channels in the process of G protein modulation, and the role of a class of proteins termed "regulators of G protein signaling" will also be described.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Pharmacology, University College London, Gower St., London WC1E 6BT, UK.
| |
Collapse
|
98
|
Palotás A, Pákáski M, Palotás M, Hugyecz M, Molnár J, Penke B, Janka Z, Kálmán J. Effect of haloperidol and risperidone on amyloid precursor protein levels in vivo. Brain Res Bull 2003; 62:93-9. [PMID: 14638382 DOI: 10.1016/j.brainresbull.2003.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The neurotoxic beta-amyloid peptide of Alzheimer's disease is formed from the amyloid precursor protein (APP), which is a member of an evolutionarily highly conserved gene family with significant functional importance. Because behavioral and psychiatric symptoms treated with antipsychotics may influence the course of the disease, we have investigated traditional and atypical antipsychotic drugs, administered through the intraperitoneal route, for their effects on rat cortical APP. Western-immunoblotting was utilized for semi-quantitative evaluation of APP levels. Treatment with haloperidol resulted in an acute elevation of cortical APP both in therapeutic and toxic doses, however, it had no significant chronic impact on APP. Atypical antipsychotic risperidone did not change cortical APP concentration. These results indicate that both haloperidol and risperidone are considered to be relatively safe with respect to APP metabolism. Possible mechanisms, including involvement of calcium and APP itself as a receptor, are discussed.
Collapse
Affiliation(s)
- András Palotás
- Department of Psychiatry, University of Szeged, Pécsi u. 4, Szeged H-6720, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Millán C, Torres M, Sánchez-Prieto J. Co-activation of PKA and PKC in cerebrocortical nerve terminals synergistically facilitates glutamate release. J Neurochem 2003; 87:1101-11. [PMID: 14622090 DOI: 10.1046/j.1471-4159.2003.02065.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein kinase A and protein kinase C are involved in processes that enhance glutamate release at glutamatergic nerve terminals. However, it is not known whether these two kinases co-exist within the same nerve terminal, nor is it clear what impact their simultaneous activation may have on neurotransmitter release. In cerebrocortical nerve terminals, co-application of forskolin, which increases cAMP levels and activates protein kinase A, and 4beta-phorbol dibutyrate, a direct activator of protein kinase C, synergistically enhanced the spontaneous release of glutamate. This enhancement exhibited both tetrodotoxin-sensitive and tetrodotoxin-resistant components. Interestingly, the tetrodotoxin-resistant component of release was not observed when cyclic AMP-dependent protein kinase (PKA) and calcium- and phospholipid-dependent protein kinase (PKC) were activated separately, but developed slowly after the co-activation of the two kinases, accounting for 50% of the facilitated release. This release component was dependent on voltage-dependent Ca2+ channels that opened spontaneously after PKA and PKC activation and occurred in the absence of Na+ channel firing. These data provide functional evidence for the co-existence of PKA- and PKC-signalling pathways in a subpopulation of glutamatergic nerve terminals.
Collapse
Affiliation(s)
- Carmelo Millán
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid 28040, Spain
| | | | | |
Collapse
|
100
|
Chen C, Xu R. The in vitro regulation of growth hormone secretion by orexins. Endocrine 2003; 22:57-66. [PMID: 14610299 DOI: 10.1385/endo:22:1:57] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2003] [Accepted: 08/04/2003] [Indexed: 11/11/2022]
Abstract
Orexins, orexigenic neuropeptides, have recently been discovered in lateral hypothalamus and play an important role in the regulation of pituitary hormone secretion. Two subtypes of orexin receptors (orexin-1 and orexin-2) have been demonstrated in pituitaries. In this experiment, the effects of orexins on voltage-gated Ca2+ currents and the GH release in primary cultured ovine somatotropes were examined. Voltage-gated Ca2+ currents were isolated in ovine somatotropes as L, T, and N currents using whole-cell patch-clamp techniques and specific Ca2+ channel blocker and toxin. Application of orexin-A or orexin-B (100 nM) significantly, dose-dependently, and reversibly increased only nifedipine-sensitive L-type Ca2+ current. Inhibitors of PKC (calphostin C, PKC inhibitory peptide) but not inhibitors of PKA (H89, PKA inhibitory peptide) cancelled the increase in the L current by orexins. Co-administration of orexin-A and GHRH (10 nM) showed an additive effect on the L current. Specific intracellular Ca2+-store-depleting reagent, thapsigargin (1 microM), did not affect the orexin-induced increase in the L current. Orexin-B alone slightly increased GH release and co-administration of orexin-A and GHRH synergistically stimulated GH secretion in vitro. It is therefore suggested that orexins may play an important role in regulating GHRH-stimulated GH secretion through an increase in the L-type Ca2+ current and the PKC-mediated signaling pathways in ovine somatotropes.
Collapse
Affiliation(s)
- Chen Chen
- Prince Henry's Institute of Medical Research, and Department of Physiology, PO Box 5152, Monash University, Clayton, Victoria 3168, Australia.
| | | |
Collapse
|