51
|
Luzolo AL, Ngoyi DM. Cerebral malaria. Brain Res Bull 2019; 145:53-58. [DOI: 10.1016/j.brainresbull.2019.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 01/17/2023]
|
52
|
Urak KT, Blanco GN, Shubham S, Lin LH, Dassie JP, Thiel WH, Chen Y, Sonkar VK, Lei B, Murthy S, Gutierrez WR, Wilson ME, Stiber JA, Klesney-Tait J, Dayal S, Miller FJ, Giangrande PH. RNA inhibitors of nuclear proteins responsible for multiple organ dysfunction syndrome. Nat Commun 2019; 10:116. [PMID: 30631065 PMCID: PMC6328615 DOI: 10.1038/s41467-018-08030-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 12/12/2018] [Indexed: 12/30/2022] Open
Abstract
The development of multiple organ dysfunction syndrome (MODS) following infection or tissue injury is associated with increased patient morbidity and mortality. Extensive cellular injury results in the release of nuclear proteins, of which histones are the most abundant, into the circulation. Circulating histones are implicated as essential mediators of MODS. Available anti-histone therapies have failed in clinical trials due to off-target effects such as bleeding and toxicity. Here, we describe a therapeutic strategy for MODS based on the neutralization of histones by chemically stabilized nucleic acid bio-drugs (aptamers). Systematic evolution of ligands by exponential enrichment technology identified aptamers that selectively bind those histones responsible for MODS and do not bind to serum proteins. We demonstrate the efficacy of histone-specific aptamers in human cells and in a murine model of MODS. These aptamers could have a significant therapeutic benefit in the treatment of multiple diverse clinical conditions associated with MODS.
Collapse
Affiliation(s)
- Kevin T Urak
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Giselle N Blanco
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Li-Hsien Lin
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Justin P Dassie
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - William H Thiel
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Yani Chen
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Beilei Lei
- Department of Medicine, Duke University, Durham, NC, 27708, USA
| | - Shubha Murthy
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Wade R Gutierrez
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Mary E Wilson
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Department of Microbiology, University of Iowa, Iowa City, IA, 52242, USA.,Veteran's Affairs Medical Center, University of Iowa, Iowa City, IA, 52241, USA
| | | | | | - Sanjana Dayal
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Francis J Miller
- Department of Medicine, Duke University, Durham, NC, 27708, USA. .,Pharmacology and Cancer Biology Program, Duke University, Durham, NC, 27708, USA. .,Deptartment of Medicine, Veterans Administration Medical Center, Durham, NC, 27705, USA.
| | - Paloma H Giangrande
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA. .,Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, 52242, USA. .,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, 52242, USA. .,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA. .,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA. .,Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA. .,Environmental Health Sciences Research Center (EHSRC), University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
53
|
Glennon EKK, Dankwa S, Smith JD, Kaushansky A. Opportunities for Host-targeted Therapies for Malaria. Trends Parasitol 2018; 34:843-860. [PMID: 30122551 PMCID: PMC6168423 DOI: 10.1016/j.pt.2018.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022]
Abstract
Despite the recent successes of artemisinin-based antimalarial drugs, many still die from severe malaria, and eradication efforts are hindered by the limited drugs currently available to target transmissible gametocyte parasites and liver-resident dormant Plasmodium vivax hypnozoites. Host-targeted therapy is a new direction for infectious disease drug development and aims to interfere with host molecules, pathways, or networks that are required for infection or that contribute to disease. Recent advances in our understanding of host pathways involved in parasite development and pathogenic mechanisms in severe malaria could facilitate the development of host-targeted interventions against Plasmodium infection and malaria disease. This review discusses new opportunities for host-targeted therapeutics for malaria and the potential to harness drug polypharmacology to simultaneously target multiple host pathways using a single drug intervention.
Collapse
Affiliation(s)
- Elizabeth K K Glennon
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA; These authors made an equal contribution
| | - Selasi Dankwa
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; These authors made an equal contribution
| | - Joseph D Smith
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA
| | - Alexis Kaushansky
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA.
| |
Collapse
|
54
|
Nagano F, Mizuno T, Mizumoto S, Yoshioka K, Takahashi K, Tsuboi N, Maruyama S, Yamada S, Nagamatsu T. Chondroitin sulfate protects vascular endothelial cells from toxicities of extracellular histones. Eur J Pharmacol 2018; 826:48-55. [DOI: 10.1016/j.ejphar.2018.02.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022]
|
55
|
Meegan JE, Yang X, Coleman DC, Jannaway M, Yuan SY. Neutrophil-mediated vascular barrier injury: Role of neutrophil extracellular traps. Microcirculation 2018; 24. [PMID: 28120468 DOI: 10.1111/micc.12352] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022]
Abstract
Neutrophils play an essential role in host defense against infection or injury. While neutrophil activation is necessary for pathogen clearance and tissue repair, a hyperactive response can lead to tissue damage and microcirculatory disorders, a process involving complex neutrophil-endothelium cross talk. This review highlights recent research findings about neutrophil-mediated signaling and structural changes, including those induced by neutrophil extracellular traps, which ultimately lead to vascular barrier injury.
Collapse
Affiliation(s)
- Jamie E Meegan
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
| | - Danielle C Coleman
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
| | - Melanie Jannaway
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
56
|
Abstract
The nephrons of the kidney are independent functional units harboring cells of a low turnover during homeostasis. As such, physiological renal cell death is a rather rare event and dead cells are flushed away rapidly with the urinary flow. Renal cell necrosis occurs in acute kidney injuries such as thrombotic microangiopathies, necrotizing glomerulonephritis, or tubular necrosis. All of these are associated with intense intrarenal inflammation, which contributes to further renal cell loss, an autoamplifying process referred to as necroinflammation. But how does renal cell necrosis trigger inflammation? Here, we discuss the role of danger-associated molecular patterns (DAMPs), mitochondrial (mito)-DAMPs, and alarmins, as well as their respective pattern recognition receptors. The capacity of DAMPs and alarmins to trigger cytokine and chemokine release initiates the recruitment of leukocytes into the kidney that further amplify necroinflammation. Infiltrating neutrophils often undergo neutrophil extracellular trap formation associated with neutrophil death or necroptosis, which implies a release of histones, which act not only as DAMPs but also elicit direct cytotoxic effects on renal cells, namely endothelial cells. Proinflammatory macrophages and eventually cytotoxic T cells further drive kidney cell death and inflammation. Dissecting the molecular mechanisms of necroinflammation may help to identify the best therapeutic targets to limit nephron loss in kidney injury.
Collapse
Affiliation(s)
- Shrikant R Mulay
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Santhosh V Kumar
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Maciej Lech
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Jyaysi Desai
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
57
|
DNA and factor VII-activating protease protect against the cytotoxicity of histones. Blood Adv 2017; 1:2491-2502. [PMID: 29296900 DOI: 10.1182/bloodadvances.2017010959] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/23/2017] [Indexed: 11/20/2022] Open
Abstract
Circulating histones have been implicated as major mediators of inflammatory disease because of their strong cytotoxic effects. Histones form the protein core of nucleosomes; however, it is unclear whether histones and nucleosomes are equally cytotoxic. Several plasma proteins that neutralize histones are present in plasma. Importantly, factor VII-activating protease (FSAP) is activated upon contact with histones and subsequently proteolyzes histones. We aimed to determine the effect of FSAP on the cytotoxicity of both histones and nucleosomes. Indeed, FSAP protected against histone-induced cytotoxicity of cultured cells in vitro. Upon incubation of serum with histones, endogenous FSAP was activated and degraded histones, which also prevented cytotoxicity. Notably, histones as part of nucleosome complexes were not cytotoxic, whereas DNA digestion restored cytotoxicity. Histones in nucleosomes were inefficiently cleaved by FSAP, which resulted in limited cleavage of histone H3 and removal of the N-terminal tail. The specific isolation of either circulating nucleosomes or free histones from sera of Escherichia coli challenged baboons or patients with meningococcal sepsis revealed that histone H3 was present in the form of nucleosomes, whereas free histone H3 was not detected. All samples showed signs of FSAP activation. Markedly, we observed that all histone H3 in nucleosomes from the patients with sepsis, and most histone H3 from the baboons, was N-terminally truncated, giving rise to a similarly sized protein fragment as through cleavage by FSAP. Taken together, our results suggest that DNA and FSAP jointly limit histone cytotoxicity and that free histone H3 does not circulate in appreciable concentrations in sepsis.
Collapse
|
58
|
Kessler A, Dankwa S, Bernabeu M, Harawa V, Danziger SA, Duffy F, Kampondeni SD, Potchen MJ, Dambrauskas N, Vigdorovich V, Oliver BG, Hochman SE, Mowrey WB, MacCormick IJC, Mandala WL, Rogerson SJ, Sather DN, Aitchison JD, Taylor TE, Seydel KB, Smith JD, Kim K. Linking EPCR-Binding PfEMP1 to Brain Swelling in Pediatric Cerebral Malaria. Cell Host Microbe 2017; 22:601-614.e5. [PMID: 29107642 DOI: 10.1016/j.chom.2017.09.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/06/2017] [Accepted: 09/22/2017] [Indexed: 11/16/2022]
Abstract
Brain swelling is a major predictor of mortality in pediatric cerebral malaria (CM). However, the mechanisms leading to swelling remain poorly defined. Here, we combined neuroimaging, parasite transcript profiling, and laboratory blood profiles to develop machine-learning models of malarial retinopathy and brain swelling. We found that parasite var transcripts encoding endothelial protein C receptor (EPCR)-binding domains, in combination with high parasite biomass and low platelet levels, are strong indicators of CM cases with malarial retinopathy. Swelling cases presented low platelet levels and increased transcript abundance of parasite PfEMP1 DC8 and group A EPCR-binding domains. Remarkably, the dominant transcript in 50% of swelling cases encoded PfEMP1 group A CIDRα1.7 domains. Furthermore, a recombinant CIDRα1.7 domain from a pediatric CM brain autopsy inhibited the barrier-protective properties of EPCR in human brain endothelial cells in vitro. Together, these findings suggest a detrimental role for EPCR-binding CIDRα1 domains in brain swelling.
Collapse
Affiliation(s)
- Anne Kessler
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Selasi Dankwa
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Maria Bernabeu
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Visopo Harawa
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre BT3, Malawi; University of Malawi, College of Medicine, Biomedical Department, Blantyre BT3, Malawi
| | | | - Fergal Duffy
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | | | - Michael J Potchen
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA
| | | | | | - Brian G Oliver
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Sarah E Hochman
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA
| | - Wenzhu B Mowrey
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Ian J C MacCormick
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre BT3, Malawi; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Department of Eye and Vision Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Wilson L Mandala
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre BT3, Malawi; University of Malawi, College of Medicine, Biomedical Department, Blantyre BT3, Malawi; Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo BT3, Malawi
| | - Stephen J Rogerson
- Department of Medicine at the Doherty Institute, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - D Noah Sather
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | | | - Terrie E Taylor
- Blantyre Malaria Project, Blantyre BT3, Malawi; Department of Osteopathic Medical Specialities, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Karl B Seydel
- Blantyre Malaria Project, Blantyre BT3, Malawi; Department of Osteopathic Medical Specialities, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | - Joseph D Smith
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| | - Kami Kim
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA.
| |
Collapse
|
59
|
Maknitikul S, Luplertlop N, Grau GER, Ampawong S. Dysregulation of pulmonary endothelial protein C receptor and thrombomodulin in severe falciparum malaria-associated ARDS relevant to hemozoin. PLoS One 2017; 12:e0181674. [PMID: 28732053 PMCID: PMC5521846 DOI: 10.1371/journal.pone.0181674] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 07/04/2017] [Indexed: 12/20/2022] Open
Abstract
To investigate the role of the protein C system, endothelial protein C receptor (EPCR) and thrombomodulin (TM) in the pathogenesis of malaria-associated acute respiratory distress syndrome (ARDS) in relation to hemozoin and proinflammatory cytokines-induced type II pneumocyte injury and -aggravated pulmonary resolution. A total of 29 left-over lung specimens that were obtained from patients who died from severe falciparum malaria were examined. Histopathological, immunohistochemical and electron microscopic analyses revealed that ARDS coexisted with pulmonary edema and systemic bleeding; the severity was dependent on the level of hemozoin deposition in the lung and internal alveolar hemorrhaging. The loss of EPCR and TM was primarily identified in ARDS patients and was related to the level of hemozoin, parasitized red blood cell (PRBC) and white blood cell accumulation in the lung. Moreover, an in vitro analysis demonstrated that interleukin-13 and -31 and hemozoin induced pneumocytic cell injury and apoptosis, as assessed by EB/AO staining, electron microscopy and the up-regulation of CARD-9 mRNA (caspase recruitment domain-9 messenger-ribonucleic acid). The dysregulation of EPCR and TM in the lung, especially in those with increased levels of hemozoin, may play an important role in the pathogenesis of malaria-associated ARDS through an apoptotic pathway.
Collapse
Affiliation(s)
- Sitang Maknitikul
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Georges E. R. Grau
- Vascular Immunology, Department of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
60
|
Punsawad C, Viriyavejakul P. Reduction in serum sphingosine 1-phosphate concentration in malaria. PLoS One 2017; 12:e0180631. [PMID: 28666023 PMCID: PMC5493422 DOI: 10.1371/journal.pone.0180631] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 06/19/2017] [Indexed: 11/29/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a lipid mediator formed by the metabolism of sphingomyelin which is involved in the endothelial permeability and inflammation. Although the plasma S1P concentration is reportedly decreased in patients with cerebral malaria, the role of S1P in malaria is still unclear. The purpose of this study was to examine the impact of malaria on circulating S1P concentration and its relationship with clinical data in malaria patients. Serum S1P levels were measured in 29 patients with P. vivax, 30 patients with uncomplicated P. falciparum, and 13 patients with complicated P. falciparum malaria on admission and on day 7, compared with healthy subjects (n = 18) as control group. The lowest level of serum S1P concentration was found in the complicated P. falciparum malaria group, compared with P. vivax, uncomplicated P. falciparum patients and healthy controls (all p < 0.001). In addition, serum S1P level was positively correlated with platelet count, hemoglobin and hematocrit levels in malaria patients. In conclusions, low levels of S1P are associated with the severity of malaria, and are correlated with thrombocytopenia and anemia. These findings highlight a role of S1P in the severity of malaria and support the use of S1P and its analogue as a novel adjuvant therapy for malaria complications.
Collapse
Affiliation(s)
- Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Tropical Diseases and Parasitic Infectious Diseases Research Group, Walailak University, Nakhon Si Thammarat, Thailand
| | - Parnpen Viriyavejakul
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
61
|
Pérez-Cremades D, Bueno-Betí C, García-Giménez JL, Ibañez-Cabellos JS, Hermenegildo C, Pallardó FV, Novella S. Extracellular histones disarrange vasoactive mediators release through a COX-NOS interaction in human endothelial cells. J Cell Mol Med 2017; 21:1584-1592. [PMID: 28244682 PMCID: PMC5543457 DOI: 10.1111/jcmm.13088] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/13/2016] [Indexed: 12/16/2022] Open
Abstract
Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone-mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and nitric oxide (NO). HUVEC exposed to increasing concentrations of histones (0.001 to 100 μg/ml) for 4 hrs induced prostacyclin (PGI2) production in a dose-dependent manner and decreased thromboxane A2 (TXA2) release at 100 μg/ml. Extracellular histones raised cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS) mRNA and protein expression, decreased COX-1 mRNA levels and did not change thromboxane A2 synthase (TXAS) expression. Moreover, extracellular histones decreased both, eNOS expression and NO production in HUVEC. The impaired NO production was related to COX-2 activity and superoxide production since was reversed after celecoxib (10 μmol/l) and tempol (100 μmol/l) treatments, respectively. In conclusion, our findings suggest that extracellular histones stimulate the release of endothelial-dependent mediators through an up-regulation in COX-2-PGIS-PGI2 pathway which involves a COX-2-dependent superoxide production that decreases the activity of eNOS and the NO production. These effects may contribute to the endothelial cell dysfunction observed in histone-mediated pathologies.
Collapse
Affiliation(s)
- Daniel Pérez-Cremades
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Carlos Bueno-Betí
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain
| | - José Luis García-Giménez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
| | - José Santiago Ibañez-Cabellos
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
| | - Carlos Hermenegildo
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
| | - Susana Novella
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
62
|
Fattahi F, Grailer JJ, Lu H, Dick RS, Parlett M, Zetoune FS, Nuñez G, Ward PA. Selective Biological Responses of Phagocytes and Lungs to Purified Histones. J Innate Immun 2017; 9:300-317. [PMID: 28171866 DOI: 10.1159/000452951] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/31/2016] [Indexed: 12/12/2022] Open
Abstract
Histones invoke strong proinflammatory responses in many different organs and cells. We assessed biological responses to purified or recombinant histones, using human and murine phagocytes and mouse lungs. H1 had the strongest ability in vitro to induce cell swelling independent of requirements for toll-like receptors (TLRs) 2 or 4. These responses were also associated with lactate dehydrogenase release. H3 and H2B were the strongest inducers of [Ca2+]i elevations in phagocytes. Cytokine and chemokine release from mouse and human phagocytes was predominately a function of H2A and H2B. Double TLR2 and TLR4 knockout (KO) mice had dramatically reduced cytokine release induced in macrophages exposed to individual histones. In contrast, macrophages from single TLR-KO mice showed few inhibitory effects on cytokine production. Using the NLRP3 inflammasome protocol, release of mature IL-1β was predominantly a feature of H1. Acute lung injury following the airway delivery of histones suggested that H1, H2A, and H2B were linked to alveolar leak of albumin and the buildup of polymorphonuclear neutrophils as well as the release of chemokines and cytokines into bronchoalveolar fluids. These results demonstrate distinct biological roles for individual histones in the context of inflammation biology and the requirement of both TLR2 and TLR4.
Collapse
Affiliation(s)
- Fatemeh Fattahi
- University of Michigan Medical School, Department of Pathology, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Nakazawa D, Kumar SV, Marschner J, Desai J, Holderied A, Rath L, Kraft F, Lei Y, Fukasawa Y, Moeckel GW, Angelotti ML, Liapis H, Anders HJ. Histones and Neutrophil Extracellular Traps Enhance Tubular Necrosis and Remote Organ Injury in Ischemic AKI. J Am Soc Nephrol 2017; 28:1753-1768. [PMID: 28073931 DOI: 10.1681/asn.2016080925] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022] Open
Abstract
Severe AKI is often associated with multiorgan dysfunction, but the mechanisms of this remote tissue injury are unknown. We hypothesized that renal necroinflammation releases cytotoxic molecules that may cause remote organ damage. In hypoxia-induced tubular epithelial cell necrosis in vitro, histone secretion from ischemic tubular cells primed neutrophils to form neutrophil extracellular traps. These traps induced tubular epithelial cell death and stimulated neutrophil extracellular trap formation in fresh neutrophils. In vivo, ischemia-reperfusion injury in the mouse kidney induced tubular necrosis, which preceded the expansion of localized and circulating neutrophil extracellular traps and the increased expression of inflammatory and injury-related genes. Pretreatment with inhibitors of neutrophil extracellular trap formation reduced kidney injury. Dual inhibition of neutrophil trap formation and tubular cell necrosis had an additive protective effect. Moreover, pretreatment with antihistone IgG suppressed ischemia-induced neutrophil extracellular trap formation and renal injury. Renal ischemic injury also increased the levels of circulating histones, and we detected neutrophil infiltration and TUNEL-positive cells in the lungs, liver, brain, and heart along with neutrophil extracellular trap accumulation in the lungs. Inhibition of neutrophil extracellular trap formation or of circulating histones reduced these effects as well. These data suggest that tubular necrosis and neutrophil extracellular trap formation accelerate kidney damage and remote organ dysfunction through cytokine and histone release and identify novel molecular targets to limit renal necroinflammation and multiorgan failure.
Collapse
Affiliation(s)
- Daigo Nakazawa
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Santhosh V Kumar
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Julian Marschner
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Jyaysi Desai
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Alexander Holderied
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Lukas Rath
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Franziska Kraft
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Yutian Lei
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Yuichiro Fukasawa
- Department of Pathology, Sapporo City General Hospital, Sapporo, Hokkaido, Japan
| | - Gilbert W Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Maria Lucia Angelotti
- Excellence Centre for Research, Transfer and High Education for the Development of De Novo Therapies, University of Florence, Florence, Italy; and
| | - Helen Liapis
- Departments of Pathology and Immunology and Internal Medicine (Renal), School of Medicine, Washington University in St. Louis, Missouri and Arkana Laboratories, Little Rock, Arkansas
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany;
| |
Collapse
|
64
|
Gillrie MR, Ho M. Dynamic interactions of Plasmodium spp. with vascular endothelium. Tissue Barriers 2017; 5:e1268667. [PMID: 28452684 PMCID: PMC5362994 DOI: 10.1080/21688370.2016.1268667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022] Open
Abstract
Plasmodial species are protozoan parasites that infect erythrocytes. As such, they are in close contact with microvascular endothelium for most of the life cycle in the mammalian host. The host-parasite interactions of this stage of the infection are responsible for the clinical manifestations of the disease that range from a mild febrile illness to severe and frequently fatal syndromes such as cerebral malaria and multi-organ failure. Plasmodium falciparum, the causative agent of the most severe form of malaria, is particularly predisposed to modulating endothelial function through either direct adhesion to endothelial receptor molecules, or by releasing potent host and parasite products that can stimulate endothelial activation and/or disrupt barrier function. In this review, we provide a critical analysis of the current clinical and laboratory evidence for endothelial dysfunction during severe P. falciparum malaria. Future investigations using state-of-the-art technologies such as mass cytometry and organs-on-chips to further delineate parasite-endothelial cell interactions are also discussed.
Collapse
Affiliation(s)
- Mark R. Gillrie
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - May Ho
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
65
|
Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation. Cell Death Dis 2016; 7:e2518. [PMID: 27929534 PMCID: PMC5261016 DOI: 10.1038/cddis.2016.410] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
Abstract
In inflammation, extensive cell death may occur, which results in the release of chromatin components into the extracellular environment. Individually, the purified chromatin components double stranded (ds)DNA and histones have been demonstrated, both in vitro and in vivo, to display various immunostimulatory effects, for example, histones induce cytotoxicity and proinflammatory signaling through toll-like receptor (TLR)2 and 4, while DNA induces signaling through TLR9 and intracellular nucleic acid sensing mechanisms. However, DNA and histones are organized in nucleosomes in the nucleus, and evidence suggests that nucleosomes are released as such in inflammation. The cytotoxicity and proinflammatory signaling induced by nucleosomes have not been studied as extensively as the separate effects brought about by histones and dsDNA, and there appear to be some marked differences. Remarkably, little distinction between the different forms in which histones circulate has been made throughout literature. This is partly due to the limitations of existing techniques to differentiate between histones in their free or DNA-bound form. Here we review the current understanding of immunostimulation induced by extracellular histones, dsDNA and nucleosomes, and discuss the importance of techniques that in their detection differentiate between these different chromatin components.
Collapse
|
66
|
Bernabeu M, Smith JD. EPCR and Malaria Severity: The Center of a Perfect Storm. Trends Parasitol 2016; 33:295-308. [PMID: 27939609 DOI: 10.1016/j.pt.2016.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022]
Abstract
Severe malaria due to Plasmodium falciparum infection causes nearly half a million deaths per year. The different symptomatology and disease manifestations among patients have hampered understanding of severe malaria pathology and complicated efforts to develop targeted disease interventions. Infected erythrocyte sequestration in the microvasculature plays a critical role in the development of severe disease, and there is increasing evidence that cytoadherent parasites interact with host factors to enhance the damage caused by the parasite. The recent discovery that parasite binding to endothelial protein C receptor (EPCR) is associated with severe disease has suggested new mechanisms of pathology and provided new avenues for severe malaria adjunctive therapy research.
Collapse
Affiliation(s)
- Maria Bernabeu
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Joseph D Smith
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
67
|
Schönrich G, Raftery MJ. Neutrophil Extracellular Traps Go Viral. Front Immunol 2016; 7:366. [PMID: 27698656 PMCID: PMC5027205 DOI: 10.3389/fimmu.2016.00366] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are the most numerous immune cells. Their importance as the first line of defense against bacterial and fungal pathogens is well described. In contrast, the role of neutrophils in controlling viral infections is less clear. Bacterial and fungal pathogens can stimulate neutrophils extracellular traps (NETs) in a process called NETosis. Although NETosis has previously been described as a special form of programmed cell death, there are forms of NET production that do not end with the demise of neutrophils. As an end result of NETosis, genomic DNA complexed with microbicidal proteins is expelled from neutrophils. These structures can kill pathogens or at least prevent their local spread within host tissue. On the other hand, disproportionate NET formation can cause local or systemic damage. Only recently, it was recognized that viruses can also induce NETosis. In this review, we discuss the mechanisms by which NETs are produced in the context of viral infection and how this may contribute to both antiviral immunity and immunopathology. Finally, we shed light on viral immune evasion mechanisms targeting NETs.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Martin J Raftery
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|
68
|
Petersen JEV, Lavstsen T, Craig A. Breaking down brain barrier breaches in cerebral malaria. J Clin Invest 2016; 126:3725-3727. [PMID: 27643435 DOI: 10.1172/jci90188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent findings have linked brain swelling to death in cerebral malaria (CM). These observations have prompted a number of investigations into the mechanisms of this pathology with the goal of identifying potential therapeutic targets. In this issue of the JCI, Gallego-Delgado and colleagues present evidence that implicates angiotensin receptors and the relocation of β-catenin to the endothelial cell nucleus in CM. This study provides a renewed focus on infected erythrocyte debris as the cause of endothelial damage and challenges previous work implicating direct effects of infected erythrocyte sequestration in the brain as the major driver of disease. While this work provides potential therapeutic avenues for CM, it leaves a number of questions unanswered.
Collapse
|
69
|
Alhamdi Y, Toh CH. The role of extracellular histones in haematological disorders. Br J Haematol 2016; 173:805-11. [PMID: 27062156 DOI: 10.1111/bjh.14077] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/22/2022]
Abstract
Over the past decades, chromosomal alterations have been extensively investigated for their pathophysiological relevance in haematological malignancies. In particular, epigenetic modifications of intra-nuclear histones are now known as key regulators of healthy cell cycles that have also evolved into novel therapeutic targets for certain blood cancers. Thus, for most haematologists, histones are DNA-chained proteins that are buried deep within chromatin. However, the plot has deepened with recent revelations on the function of histones when unchained and released extracellularly upon cell death or from activated neutrophils as part of neutrophil extracellular traps (NETs). Extracellular histones and NETs are increasingly recognized for profound cytotoxicity and pro-coagulant effects. This article highlights the importance of recognizing this new paradigm of extracellular histones as a key player in host defence through its damage-associated molecular patterns, which could translate into novel diagnostic and therapeutic biomarkers in various haematological and critical disorders.
Collapse
Affiliation(s)
- Yasir Alhamdi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Roald Dahl Haemostasis & Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, UK
| |
Collapse
|
70
|
Kawai C, Kotani H, Miyao M, Ishida T, Jemail L, Abiru H, Tamaki K. Circulating Extracellular Histones Are Clinically Relevant Mediators of Multiple Organ Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:829-43. [PMID: 26878212 DOI: 10.1016/j.ajpath.2015.11.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/18/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
Extracellular histones are a damage-associated molecular pattern (DAMP) involved in the pathogenesis of various diseases. The mechanisms of histone-mediated injury in certain organs have been extensively studied, but an understanding of the pathophysiological role of histone-mediated injury in multiple organ injury remains elusive. To elucidate this role, we systemically subjected C57BL/6 mice to various doses of histones and performed a chronological evaluation of the morphological and functional changes in the lungs, liver, and kidneys. Notably, histone administration ultimately led to death after a dose-dependent aggravation of multiple organ injury. In chronological studies, pulmonary and hepatic injuries occurred within 15 minutes, whereas renal injuries presented at a later phase, suggesting that susceptibility to extracellular histones varies among organs. Histones bound to pulmonary and hepatic endothelial cells immediately after administration, leading to endothelial damage, which could be ameliorated by pretreatment with heparin. Furthermore, release of another DAMP, high-mobility group protein box 1, followed the histone-induced tissue damage, and an antibody against the molecule ameliorated hepatic and renal failure in a late phase. These findings indicate that extracellular histones induce multiple organ injury in two progressive stages-direct injury to endothelial cells and the subsequent release of other DAMPs-and that combination therapies against extracellular histones and high-mobility group protein box 1 may be a promising strategy for treating multiple organ injury.
Collapse
Affiliation(s)
- Chihiro Kawai
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirokazu Kotani
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Masashi Miyao
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tokiko Ishida
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Leila Jemail
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hitoshi Abiru
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keiji Tamaki
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
71
|
Mena HA, Carestia A, Scotti L, Parborell F, Schattner M, Negrotto S. Extracellular histones reduce survival and angiogenic responses of late outgrowth progenitor and mature endothelial cells. J Thromb Haemost 2016; 14:397-410. [PMID: 26663311 DOI: 10.1111/jth.13223] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Indexed: 12/25/2022]
Abstract
UNLABELLED ESSENTIALS: Extracellular histones are highly augmented in sites of neovessel formation, such as regeneration tissues. We studied histone effect on survival and angiogenic activity of mature and progenitor endothelial cells. Extracellular histones trigger apoptosis and pyroptosis and reduce angiogenesis in vivo and in vitro. Histone blockade can be useful as a therapeutic strategy to improve angiogenesis and tissue regeneration. BACKGROUND Extracellular histones are highly augmented in sites of neovessel formation, like regeneration tissues. Their cytotoxic effect has been studied in endothelial cells, although the mechanism involved and their action on endothelial colony-forming cells (ECFCs) remain unknown. OBJECTIVE To study the effect of histones on ECFC survival and angiogenic functions and compare it with mature endothelial cells. METHODS AND RESULTS Nuclear morphology analysis showed that each human recombinant histone triggered both apoptotic-like and necrotic-like cell deaths in both mature and progenitor endothelial cells. While H1 and H2A exerted a weak toxicity, H2B, H3 and H4 were the most powerful. The percentage of apoptosis correlated with the percentage of ECFCs exhibiting caspase-3 activation and was zeroed by the pan-caspase inhibitor Z-VAD-FMK. Necrotic-like cell death was also suppressed by this compound and the caspase-1 inhibitor Ac-YVAD-CMK, indicating that histones triggered ECFC pyroptosis. All histones, at non-cytotoxic concentrations, reduced migration and H2B, H3 and H4 induced cell cycle arrest and impaired tubulogenesis via p38 activation. Neutrophil-derived histones exerted similar effects. In vivo blood vessel formation in the quail chorioallantoic membrane was also reduced by H2B, H3 and H4. Their cytotoxic and antiangiogenic effects were suppressed by unfractioned and low-molecular-weight heparins and the combination of TLR2 and TLR4 blocking antibodies. CONCLUSIONS Histones trigger both apoptosis and pyroptosis of ECFCs and inhibit their angiogenic functions. Their cytotoxic and antiangiogenic effects are similar in mature endothelial cells and disappear after heparin addition or TLR2/TLR4 blockade, suggesting both as therapeutic strategies to improve tissue regeneration.
Collapse
Affiliation(s)
- H A Mena
- Experimental Thrombosis Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine-CONICET, Buenos Aires, Argentina
| | - A Carestia
- Experimental Thrombosis Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine-CONICET, Buenos Aires, Argentina
| | - L Scotti
- Experimental Medicine and Biology Institute (IByME), CONICET, Buenos Aires, Argentina
| | - F Parborell
- Experimental Medicine and Biology Institute (IByME), CONICET, Buenos Aires, Argentina
| | - M Schattner
- Experimental Thrombosis Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine-CONICET, Buenos Aires, Argentina
| | - S Negrotto
- Experimental Thrombosis Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine-CONICET, Buenos Aires, Argentina
| |
Collapse
|
72
|
Fattahi F, Grailer JJ, Jajou L, Zetoune FS, Andjelkovic AV, Ward PA. Organ distribution of histones after intravenous infusion of FITC histones or after sepsis. Immunol Res 2015; 61:177-86. [PMID: 25680340 DOI: 10.1007/s12026-015-8628-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Histones appear in plasma during infectious or non-infectious sepsis and are associated with multiorgan injury. In the current studies, intravenous infusion of histones resulted in their localization in major organs. In vitro exposure of mouse macrophages to histones caused a buildup of histones on cell membranes followed by localization into cytosol and into the nucleus. After polymicrobial sepsis (cecal ligation and puncture), histones appeared in plasma as well as in a multiorgan pattern, peaking at 8 h followed by decline. In lungs, histones and neutrophils appeared together, with evidence for formation of neutrophil extracellular traps (NETs), which represent an innate immune response to trap and kill bacteria and other infectious agents. In liver, there was intense NET formation, featuring linear patterns containing histones and strands of DNA. When neutrophils were activated in vitro with C5a or phorbol myristate acetate, NET formation ensued. While formation of NETs represents entrapment and killing of infectious agents, the simultaneous release from neutrophils of histones often results in tissue/organ damage.
Collapse
Affiliation(s)
- Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1301 Catherine Rd, Ann Arbor, MI, 48109-5602, USA
| | | | | | | | | | | |
Collapse
|
73
|
Deroost K, Pham TT, Opdenakker G, Van den Steen PE. The immunological balance between host and parasite in malaria. FEMS Microbiol Rev 2015; 40:208-57. [PMID: 26657789 DOI: 10.1093/femsre/fuv046] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.
Collapse
Affiliation(s)
- Katrien Deroost
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium The Francis Crick Institute, Mill Hill Laboratory, London, NW71AA, UK
| | - Thao-Thy Pham
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
74
|
Westman J, Papareddy P, Dahlgren MW, Chakrakodi B, Norrby-Teglund A, Smeds E, Linder A, Mörgelin M, Johansson-Lindbom B, Egesten A, Herwald H. Extracellular Histones Induce Chemokine Production in Whole Blood Ex Vivo and Leukocyte Recruitment In Vivo. PLoS Pathog 2015; 11:e1005319. [PMID: 26646682 PMCID: PMC4672907 DOI: 10.1371/journal.ppat.1005319] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/11/2015] [Indexed: 11/19/2022] Open
Abstract
The innate immune system relies to a great deal on the interaction of pattern recognition receptors with pathogen- or damage-associated molecular pattern molecules. Extracellular histones belong to the latter group and their release has been described to contribute to the induction of systemic inflammatory reactions. However, little is known about their functions in the early immune response to an invading pathogen. Here we show that extracellular histones specifically target monocytes in human blood and this evokes the mobilization of the chemotactic chemokines CXCL9 and CXCL10 from these cells. The chemokine induction involves the toll-like receptor 4/myeloid differentiation factor 2 complex on monocytes, and is under the control of interferon-γ. Consequently, subcutaneous challenge with extracellular histones results in elevated levels of CXCL10 in a murine air pouch model and an influx of leukocytes to the site of injection in a TLR4 dependent manner. When analyzing tissue biopsies from patients with necrotizing fasciitis caused by Streptococcus pyogenes, extracellular histone H4 and CXCL10 are immunostained in necrotic, but not healthy tissue. Collectively, these results show for the first time that extracellular histones have an important function as chemoattractants as their local release triggers the recruitment of immune cells to the site of infection. The detrimental effects of extracellular histones under pathological conditions have lately attracted considerable attention. However, little is known about their functions as damage-associated molecular pattern molecules. Our study shows for the first time that extracellular histones trigger the induction of chemotactic chemokines from monocytes. As this interaction is dependent on a pattern recognition receptor, namely toll-like receptor 4, our data indeed point to an important role of extracellular histones in danger signaling. Notably, CXCL9 and CXCL10 are chemoattractants, and the recruitment of immune cells to the site of histone injection in a subcutaneous mouse model supports the concept that low levels of extracellular histones constitute a part of the host response.
Collapse
Affiliation(s)
- Johannes Westman
- Department of Clinical Sciences, Division of Infection Medicine, Biomedical Center, Lund, Sweden
- * E-mail:
| | - Praveen Papareddy
- Department of Clinical Sciences, Division of Infection Medicine, Biomedical Center, Lund, Sweden
| | - Madelene W. Dahlgren
- Department of Experimental Medical Science, Adaptive Immunity, Biomedical Center, Lund, Sweden
| | - Bhavya Chakrakodi
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Anna Norrby-Teglund
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Emanuel Smeds
- Department of Clinical Sciences, Division of Infection Medicine, Biomedical Center, Lund, Sweden
| | - Adam Linder
- Department of Clinical Sciences, Division of Infection Medicine, Biomedical Center, Lund, Sweden
| | - Matthias Mörgelin
- Department of Clinical Sciences, Division of Infection Medicine, Biomedical Center, Lund, Sweden
| | - Bengt Johansson-Lindbom
- Department of Experimental Medical Science, Adaptive Immunity, Biomedical Center, Lund, Sweden
| | - Arne Egesten
- Department of Clinical Sciences, Respiratory Medicine & Allergy, Biomedical Center, Lund, Sweden
| | - Heiko Herwald
- Department of Clinical Sciences, Division of Infection Medicine, Biomedical Center, Lund, Sweden
| |
Collapse
|
75
|
Sepsis and ARDS: The Dark Side of Histones. Mediators Inflamm 2015; 2015:205054. [PMID: 26609197 PMCID: PMC4644547 DOI: 10.1155/2015/205054] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022] Open
Abstract
Despite advances in management over the last several decades, sepsis and acute respiratory distress syndrome (ARDS) still remain major clinical challenges and the leading causes of death for patients in intensive care units (ICUs) due to insufficient understanding of the pathophysiological mechanisms of these diseases. However, recent studies have shown that histones, also known as chromatin-basic structure proteins, could be released into the extracellular space during severe stress and physical challenges to the body (e.g., sepsis and ARDS). Due to their cytotoxic and proinflammatory effects, extracellular histones can lead to excessive and overwhelming cell damage and death, thus contributing to the pathogenesis of both sepsis and ARDS. In addition, antihistone-based treatments (e.g., neutralizing antibodies, activated protein C, and heparin) have shown protective effects and have significantly improved the outcomes of mice suffering from sepsis and ARDS. Here, we review researches related to the pathological role of histone in context of sepsis and ARDS and evaluate the potential value of histones as biomarkers and therapeutic targets of these diseases.
Collapse
|
76
|
Wassmer SC, Taylor TE, Rathod PK, Mishra SK, Mohanty S, Arevalo-Herrera M, Duraisingh MT, Smith JD. Investigating the Pathogenesis of Severe Malaria: A Multidisciplinary and Cross-Geographical Approach. Am J Trop Med Hyg 2015; 93:42-56. [PMID: 26259939 PMCID: PMC4574273 DOI: 10.4269/ajtmh.14-0841] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/10/2015] [Indexed: 01/14/2023] Open
Abstract
More than a century after the discovery of Plasmodium spp. parasites, the pathogenesis of severe malaria is still not well understood. The majority of malaria cases are caused by Plasmodium falciparum and Plasmodium vivax, which differ in virulence, red blood cell tropism, cytoadhesion of infected erythrocytes, and dormant liver hypnozoite stages. Cerebral malaria coma is one of the most severe manifestations of P. falciparum infection. Insights into its complex pathophysiology are emerging through a combination of autopsy, neuroimaging, parasite binding, and endothelial characterizations. Nevertheless, important questions remain regarding why some patients develop life-threatening conditions while the majority of P. falciparum-infected individuals do not, and why clinical presentations differ between children and adults. For P. vivax, there is renewed recognition of severe malaria, but an understanding of the factors influencing disease severity is limited and remains an important research topic. Shedding light on the underlying disease mechanisms will be necessary to implement effective diagnostic tools for identifying and classifying severe malaria syndromes and developing new therapeutic approaches for severe disease. This review highlights progress and outstanding questions in severe malaria pathophysiology and summarizes key areas of pathogenesis research within the International Centers of Excellence for Malaria Research program.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joseph D. Smith
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York; Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Departments of Chemistry and Global Health, University of Washington, Seattle, Washington; Department of Internal Medicine, Ispat General Hospital, Orissa, India; Caucaseco Scientific Research Center, Cali, Colombia; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Seattle Biomedical Research Institute, Seattle, Washington; Department of Global Health, University of Washington, Seattle, Washington
| |
Collapse
|
77
|
Huson MA, Zeerleder SS, van Mierlo G, Wouters D, Grobusch MP, van der Poll T. HIV infection is associated with elevated nucleosomes in asymptomatic patients and during sepsis or malaria. J Infect 2015; 71:266-9. [DOI: 10.1016/j.jinf.2015.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 03/25/2015] [Accepted: 03/28/2015] [Indexed: 12/30/2022]
|
78
|
Luckhart S, Pakpour N, Giulivi C. Host-pathogen interactions in malaria: cross-kingdom signaling and mitochondrial regulation. Curr Opin Immunol 2015. [PMID: 26210301 DOI: 10.1016/j.coi.2015.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malaria parasite-host interactions are complex and have confounded available drugs and the development of vaccines. Further, we now appreciate that interventions for malaria elimination and eradication must include therapeutics with intrinsic transmission blocking activity to treat the patient and prevent disease spread. Studies over the past 15 years have revealed significant conservation in the response to infection in mosquito and human hosts. More recently, we have recognized that conserved cell signaling cascades in mosquitoes and humans dictate infection outcome through the regulation of mitochondrial function and biogenesis, which feed back to host immunity, basic intermediary metabolism, and stress responses. These responses - reflected clearly in the primeval insect host - provide fertile ground for innovative strategies for both treatment and transmission blocking.
Collapse
Affiliation(s)
- Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis CA 95616, United States.
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis CA 95616, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, and Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis CA 95616, United States
| |
Collapse
|
79
|
Zhou P, Wu E, Alam HB, Li Y. Histone cleavage as a mechanism for epigenetic regulation: current insights and perspectives. Curr Mol Med 2015; 14:1164-72. [PMID: 25323999 DOI: 10.2174/1566524014666141015155630] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 11/22/2022]
Abstract
Discovered over a century ago, histones constitute one of the oldest families of proteins and have been remarkably conserved throughout eukaryotic evolution. However, only for the past 30 years have histones demonstrated that their influence extends far beyond packaging DNA. To create the various chromatin structures that are necessary for DNA function in higher eukaryotes, histones undergo posttranslational modifications. While many such modifications are well documented, others, such as histone tail cleavage are less understood. Recent studies have discovered several proteases that cleave histones and have suggested roles for clipped histones in stem cell differentiation and aging in addition to infection and inflammation; the underlying mechanisms, however, are uncertain. One histone class in particular, histone H3, has received outstanding interest due to its numerous N-terminal modification sites and prevalence in regulating homeostatic processes. Here, with special consideration of H3, we will discuss the novel findings regarding histone proteolytic cleavage as well as their significance in the studies of immunology and epigenetics.
Collapse
Affiliation(s)
| | | | | | - Y Li
- University of Michigan Medical School, Section of General Surgery, University of Michigan Hospital, Ann Arbor, MI 48109, USA.
| |
Collapse
|
80
|
Iba T, Nagakari K. The effect of plasma-derived activated protein C on leukocyte cell-death and vascular endothelial damage. Thromb Res 2015; 135:963-9. [PMID: 25813362 DOI: 10.1016/j.thromres.2015.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/05/2015] [Accepted: 03/03/2015] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The role of leukocyte and its death in the progression in inflammation attracts attention nowadays. The purpose of this study is to examine the effects of activated protein C (APC) on leucocyte cell death and vascular endothelial damage in sepsis. METHODS Wistar rats were infused with lipopolysaccharide (8.0mg/kg) concomitantly with either a low dose (0.5mg/kg), a high dose (5.0mg/kg) of plasma-derived APC or albumin. One and 3hours after the injections, the mesenteric microcirculation was observed by intravital microscopy. The serum levels of nucleosome and High Mobility Group Box 1 (HMGB1) were measured in each group. In another series, cultured leukocyte cell-death in the medium supplemented with serum obtained from each group was examined in vitro. RESULTS Microcirculatory disturbance was significantly suppressed in both the high-dose and low-dose groups compared to the control group (P<0.01, 0.05, respectively). The bleeding area was significantly increased in the control and high-dose groups (P<0.05, 0.01, respectively). Serum levels of cell death markers such as nucleosome and HMGB1 were significantly decreased in the treatment groups (P<0.01), and the protective effect was more pronounced in high-dose group. Cell death suppression was most prominent in high-dose group and the formation of neutrophil extracellular traps (NETs) was significantly suppressed in the treatment groups. CONCLUSION Low-dose plasma-derived APC exerted protective effects on the microcirculation without increasing the risk of bleeding. The protective effect against leukocyte cell death and the suppressive effect on NETs formation of APC might be related to its beneficial effects.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of MedicineJapan.
| | - Kunihiko Nagakari
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of MedicineJapan.
| |
Collapse
|
81
|
Kumar SVR, Kulkarni OP, Mulay SR, Darisipudi MN, Romoli S, Thomasova D, Scherbaum CR, Hohenstein B, Hugo C, Müller S, Liapis H, Anders HJ. Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN. J Am Soc Nephrol 2015; 26:2399-413. [PMID: 25644111 DOI: 10.1681/asn.2014070673] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/09/2014] [Indexed: 11/03/2022] Open
Abstract
Severe GN involves local neutrophil extracellular trap (NET) formation. We hypothesized a local cytotoxic effect of NET-related histone release in necrotizing GN. In vitro, histones from calf thymus or histones released by neutrophils undergoing NETosis killed glomerular endothelial cells, podocytes, and parietal epithelial cells in a dose-dependent manner. Histone-neutralizing agents such as antihistone IgG, activated protein C, or heparin prevented this effect. Histone toxicity on glomeruli ex vivo was Toll-like receptor 2/4 dependent, and lack of TLR2/4 attenuated histone-induced renal thrombotic microangiopathy and glomerular necrosis in mice. Anti-glomerular basement membrane GN involved NET formation and vascular necrosis, whereas blocking NET formation by peptidylarginine inhibition or preemptive anti-histone IgG injection significantly reduced all aspects of GN (i.e., vascular necrosis, podocyte loss, albuminuria, cytokine induction, recruitment or activation of glomerular leukocytes, and glomerular crescent formation). To evaluate histones as a therapeutic target, mice with established GN were treated with three different histone-neutralizing agents. Anti-histone IgG, recombinant activated protein C, and heparin were equally effective in abrogating severe GN, whereas combination therapy had no additive effects. Together, these results indicate that NET-related histone release during GN elicits cytotoxic and immunostimulatory effects. Furthermore, neutralizing extracellular histones is still therapeutic when initiated in established GN.
Collapse
Affiliation(s)
- Santhosh V R Kumar
- Division of Nephrology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Onkar P Kulkarni
- Division of Nephrology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Shrikant R Mulay
- Division of Nephrology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Murthy N Darisipudi
- Division of Nephrology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Simone Romoli
- Division of Nephrology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Dana Thomasova
- Division of Nephrology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Christina R Scherbaum
- Division of Nephrology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Bernd Hohenstein
- Division of Nephrology, Department of Internal Medicine III, Dresden University of Technology, Dresden, Germany
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, Dresden University of Technology, Dresden, Germany
| | - Susanna Müller
- Institute of Pathology, University of Munich, Munich, Germany; and
| | - Helen Liapis
- Department of Pathology and Immunology, School of Medicine, Washington University in Saint Louis, Saint Louis, Missouri
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany;
| |
Collapse
|
82
|
Berg A, Patel S, Gonca M, David C, Otterdal K, Ueland T, Dalen I, Kvaløy JT, Mollnes TE, Aukrust P, Langeland N. Cytokine network in adults with falciparum Malaria and HIV-1: increased IL-8 and IP-10 levels are associated with disease severity. PLoS One 2014; 9:e114480. [PMID: 25503583 PMCID: PMC4263737 DOI: 10.1371/journal.pone.0114480] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/07/2014] [Indexed: 11/18/2022] Open
Abstract
Background Co-infection with malaria and HIV increases the severity and mortality of both diseases, but the cytokine responses related to this co-infection are only partially characterised. The aim of this study was to explore cytokine responses in relation to severity and mortality in malaria patients with and without HIV co-infection. Methods This was a prospective cross-sectional study. Clinical data and blood samples were collected from adults in Mozambique. Plasma was analysed for 21 classical pro- and anti-inflammatory cytokines, including interleukins, interferons, and chemokines. Results We included 212 in-patients with fever and/or suspected malaria and 56 healthy controls. Falciparum malaria was diagnosed in 131 patients, of whom 70 were co-infected with HIV-1. The malaria patients had marked increases in their cytokine responses compared with the healthy controls. Some of these changes, particularly interleukin 8 (IL-8) and interferon-γ-inducing protein 10 (IP-10) were strongly associated with falciparum malaria and disease severity. Both these chemokines were markedly increased in patients with falciparum malaria as compared with healthy controls, and raised levels of IL-8 and IP-10 were associated with increased disease severity, even after adjusting for relevant confounders. For IL-8, particularly high levels were found in malaria patients that were co-infected with HIV and in those who died during hospitalization. Interpretations Our findings underscore the complex role of inflammation during infection with P. falciparum, and suggest a potential pathogenic role for IL-8 and IP-10. However, the correlations do not necessarily mean any causal relationship, and further both clinical and mechanistic research is necessary to elucidate the role of cytokines in pathogenesis and protection during falciparum malaria.
Collapse
Affiliation(s)
- Aase Berg
- Department of Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Medicine, The Central Hospital of Maputo, Maputo, Mozambique
- Department of Clinical Science, University of Bergen, Bergen, Norway
- * E-mail:
| | - Sam Patel
- Department of Medicine, The Central Hospital of Maputo, Maputo, Mozambique
| | - Miguel Gonca
- Department of Medicine, The Central Hospital of Maputo, Maputo, Mozambique
| | - Catarina David
- Department of Medicine, The Central Hospital of Maputo, Maputo, Mozambique
| | - Kari Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Ingvild Dalen
- Research Department, Stavanger University Hospital, Stavanger, Norway
| | - Jan T. Kvaløy
- Research Department, Stavanger University Hospital, Stavanger, Norway
- Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway
| | - Tom E. Mollnes
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Laboratory Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
83
|
Storm J, Craig AG. Pathogenesis of cerebral malaria--inflammation and cytoadherence. Front Cell Infect Microbiol 2014; 4:100. [PMID: 25120958 PMCID: PMC4114466 DOI: 10.3389/fcimb.2014.00100] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/07/2014] [Indexed: 01/08/2023] Open
Abstract
Despite decades of research on cerebral malaria (CM) there is still a paucity of knowledge about what actual causes CM and why certain people develop it. Although sequestration of P. falciparum infected red blood cells has been linked to pathology, it is still not clear if this is directly or solely responsible for this clinical syndrome. Recent data have suggested that a combination of parasite variant types, mainly defined by the variant surface antigen, P. falciparum erythrocyte membrane protein 1 (PfEMP1), its receptors, coagulation and host endothelial cell activation (or inflammation) are equally important. This makes CM a multi-factorial disease and a challenge to unravel its causes to decrease its detrimental impact.
Collapse
Affiliation(s)
- Janet Storm
- Department of Parasitology, Liverpool School of Tropical Medicine Liverpool, UK ; Malawi Liverpool Wellcome Trust Clinical Research Programme (MLW), University of Malawi College of Medicine Blantyre, Malawi
| | - Alister G Craig
- Department of Parasitology, Liverpool School of Tropical Medicine Liverpool, UK
| |
Collapse
|
84
|
Khaw LT, Ball HJ, Mitchell AJ, Grau GE, Stocker R, Golenser J, Hunt NH. Brain endothelial cells increase the proliferation of Plasmodium falciparum through production of soluble factors. Exp Parasitol 2014; 145:34-41. [PMID: 25045850 DOI: 10.1016/j.exppara.2014.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/06/2014] [Accepted: 07/08/2014] [Indexed: 01/01/2023]
Abstract
We here describe the novel finding that brain endothelial cells in vitro can stimulate the growth of Plasmodium falciparum through the production of low molecular weight growth factors. By using a conditioned medium approach, we show that the brain endothelial cells continued to release these factors over time. If this mirrors the in vivo situation, these growth factors potentially would provide an advantage, in terms of enhanced growth, for sequestered parasitised red blood cells in the brain microvasculature. We observed this phenomenon with brain endothelial cells from several sources as well as a second P. falciparum strain. The characteristics of the growth factors included: <3 kDa molecular weight, heat stable, and in part chloroform soluble. Future efforts should be directed at identifying these growth factors, since blocking their production or actions might be of benefit for reducing parasite load and, hence, malaria pathology.
Collapse
Affiliation(s)
- L T Khaw
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, Sydney Medical School, University of Sydney, NSW 2006, Australia; Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - H J Ball
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - A J Mitchell
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, Sydney Medical School, University of Sydney, NSW 2006, Australia; Immune Imaging Program, Centenary Institute, Sydney, NSW 2050, Australia
| | - G E Grau
- Vascular Immunology Unit, School of Medical Sciences and Bosch Institute, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - R Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia
| | - J Golenser
- Department of Microbiology and Molecular Genetics, Kuvin Centre for the Study of Tropical and Infectious Diseases, Hebrew University of Jerusalem, Jerusalem, Israel
| | - N H Hunt
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, Sydney Medical School, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
85
|
Westman J, Smeds E, Johansson L, Mörgelin M, Olin AI, Malmström E, Linder A, Herwald H. Treatment with p33 curtails morbidity and mortality in a histone-induced murine shock model. J Innate Immun 2014; 6:819-30. [PMID: 24942226 DOI: 10.1159/000363348] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 01/26/2023] Open
Abstract
Collateral damage caused by extracellular histones has an immediate impact on morbidity and mortality in many disease models. A significant increase in the levels of extracellular histones is seen in critically ill patients with trauma and sepsis. We showed that histones are released from necrotic cells in patients with invasive skin infections. Under in vitro conditions, endogenous p33, an endothelial surface protein also known as the gC1q receptor, interacts with histones released from damaged endothelial cells. Functional analyses have revealed that recombinantly expressed p33 completely neutralizes the harmful features of histones, i.e. hemolysis of erythrocytes, lysis of endothelial cells and platelet aggregation. We also noted that mice treated with a sublethal dose of histones developed severe signs of hemolysis, thrombocytopenia and lung tissue damage already 10 min after inoculation. These complications were fully counteracted when p33 was administered together with the histones. Moreover, application of p33 significantly improved survival in mice receiving an otherwise lethal dose of histones. Together, our data suggest that treatment with p33 is a promising therapeutic approach in severe infectious diseases.
Collapse
Affiliation(s)
- Johannes Westman
- Division of Infection Medicine, Department of Clinical Sciences, Biomedical Center, Lund, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Allam R, Kumar SVR, Darisipudi MN, Anders HJ. Extracellular histones in tissue injury and inflammation. J Mol Med (Berl) 2014; 92:465-72. [PMID: 24706102 DOI: 10.1007/s00109-014-1148-z] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/16/2014] [Accepted: 03/21/2014] [Indexed: 02/07/2023]
Abstract
Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes.
Collapse
Affiliation(s)
- Ramanjaneyulu Allam
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland
| | | | | | | |
Collapse
|
87
|
N'Dilimabaka N, Taoufiq Z, Zougbédé S, Bonnefoy S, Lorthiois A, Couraud PO, Rebollo A, Snounou G, Mazier D, Moreno Sabater A. P. falciparum isolate-specific distinct patterns of induced apoptosis in pulmonary and brain endothelial cells. PLoS One 2014; 9:e90692. [PMID: 24686750 PMCID: PMC3970966 DOI: 10.1371/journal.pone.0090692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/04/2014] [Indexed: 11/18/2022] Open
Abstract
The factors implicated in the transition from uncomplicated to severe clinical malaria such as pulmonary oedema and cerebral malaria remain unclear. It is known that alterations in vascular integrity due to endothelial cell (EC) activation and death occur during severe malaria. In this study, we assessed the ability of different P. falciparum clinical isolates to induce apoptosis in ECs derived from human lung and brain. We observed that induction of EC apoptosis was sensitive to the environmental pH and required direct contact between the parasite and the cell, though it was not correlated to the ability of the parasite to cytoadhere. Moreover, the extent of induced apoptosis in the two EC types varied with the isolate. Analysis of parasite genes transcript led us to propose that the activation of different pathways, such as Plasmodium apoptosis-linked pathogenicity factors (PALPF), PALPF-2, PALPF-5 and PF11_0521, could be implied in EC death. These observations provide an experimental framework to decipher the molecular mechanism implicated in the genesis of severe malaria.
Collapse
Affiliation(s)
- Nadine N'Dilimabaka
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Zacharie Taoufiq
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Sergine Zougbédé
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Serge Bonnefoy
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, CNRS URA 2581, Paris, France
| | - Audrey Lorthiois
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Pierre Oliver Couraud
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Angelita Rebollo
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Georges Snounou
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Dominique Mazier
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
- Laboratoire de Parasitologie-Mycologie, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Alicia Moreno Sabater
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
- * E-mail:
| |
Collapse
|
88
|
Cunnington AJ, Riley EM, Walther M. Stuck in a rut? Reconsidering the role of parasite sequestration in severe malaria syndromes. Trends Parasitol 2013; 29:585-92. [PMID: 24210256 PMCID: PMC3880783 DOI: 10.1016/j.pt.2013.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 09/30/2013] [Accepted: 10/07/2013] [Indexed: 12/20/2022]
Abstract
Severe malaria defines individuals at increased risk of death from their infection. Proposed pathogenic mechanisms include parasite sequestration, inflammation, and endothelial dysfunction. Severe malaria is not a single entity, manifesting with distinct syndromes such as severe anemia, severe respiratory distress or coma, each characterized by differences in epidemiology, underlying biology, and risk of death. The relative contribution of the various pathogenic mechanisms may differ between syndromes, and this is supported by accumulating evidence, which challenges sequestration as the initiating event. Here we propose that high parasite biomass is the common initiating feature, but subtle variations in the interaction between the host and parasite exist, and understanding these differences may be crucial to improve outcomes in patients with severe malaria.
Collapse
|
89
|
|
90
|
CD36 and Fyn kinase mediate malaria-induced lung endothelial barrier dysfunction in mice infected with Plasmodium berghei. PLoS One 2013; 8:e71010. [PMID: 23967147 PMCID: PMC3744507 DOI: 10.1371/journal.pone.0071010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022] Open
Abstract
Severe malaria can trigger acute lung injury characterized by pulmonary edema resulting from increased endothelial permeability. However, the mechanism through which lung fluid conductance is altered during malaria remains unclear. To define the role that the scavenger receptor CD36 may play in mediating this response, C57BL/6J (WT) and CD36−/− mice were infected with P. berghei ANKA and monitored for changes in pulmonary endothelial barrier function employing an isolated perfused lung system. WT lungs demonstrated a >10-fold increase in two measures of paracellular fluid conductance and a decrease in the albumin reflection coefficient (σalb) compared to control lungs indicating a loss of barrier function. In contrast, malaria-infected CD36−/− mice had near normal fluid conductance but a similar reduction in σalb. In WT mice, lung sequestered iRBCs demonstrated production of reactive oxygen species (ROS). To determine whether knockout of CD36 could protect against ROS-induced endothelial barrier dysfunction, mouse lung microvascular endothelial monolayers (MLMVEC) from WT and CD36−/− mice were exposed to H2O2. Unlike WT monolayers, which showed dose-dependent decreases in transendothelial electrical resistance (TER) from H2O2 indicating loss of barrier function, CD36−/− MLMVEC demonstrated dose-dependent increases in TER. The differences between responses in WT and CD36−/− endothelial cells correlated with important differences in the intracellular compartmentalization of the CD36-associated Fyn kinase. Malaria infection increased total lung Fyn levels in CD36−/− lungs compared to WT, but this increase was due to elevated production of the inactive form of Fyn further suggesting a dysregulation of Fyn-mediated signaling. The importance of Fyn in CD36-dependent endothelial signaling was confirmed using in vitro Fyn knockdown as well as Fyn−/− mice, which were also protected from H2O2- and malaria-induced lung endothelial leak, respectively. Our results demonstrate that CD36 and Fyn kinase are critical mediators of the increased lung endothelial fluid conductance caused by malaria infection.
Collapse
|
91
|
Hawkes M, Elphinstone RE, Conroy AL, Kain KC. Contrasting pediatric and adult cerebral malaria: the role of the endothelial barrier. Virulence 2013; 4:543-55. [PMID: 23924893 PMCID: PMC5359751 DOI: 10.4161/viru.25949] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Malaria affects millions of people around the world and a small subset of those infected develop cerebral malaria. The clinical presentation of cerebral malaria differs between children and adults, and it has been suggested that age-related changes in the endothelial response may account for some of these differences. During cerebral malaria, parasites sequester within the brain microvasculature but do not penetrate into the brain parenchyma and yet, the infection causes severe neurological symptoms. Endothelial dysfunction is thought to play an important role in mediating these adverse clinical outcomes. During infection, the endothelium becomes activated and more permeable, which leads to increased inflammation, hemorrhages, and edema in the surrounding tissue. We hypothesize that post-natal developmental changes, occurring in both endothelial response and the neurovascular unit, account for the differences observed in the clinical presentations of cerebral malaria in children compared with adults.
Collapse
|
92
|
Mita-Mendoza NK, van de Hoef DL, Lopera-Mesa TM, Doumbia S, Konate D, Doumbouya M, Gu W, Anderson JM, Santos-Argumedo L, Rodriguez A, Fay MP, Diakite M, Long CA, Fairhurst RM. A potential role for plasma uric acid in the endothelial pathology of Plasmodium falciparum malaria. PLoS One 2013; 8:e54481. [PMID: 23349902 PMCID: PMC3551755 DOI: 10.1371/journal.pone.0054481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 12/12/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammatory cytokinemia and systemic activation of the microvascular endothelium are central to the pathogenesis of Plasmodium falciparum malaria. Recently, 'parasite-derived' uric acid (UA) was shown to activate human immune cells in vitro, and plasma UA levels were associated with inflammatory cytokine levels and disease severity in Malian children with malaria. Since UA is associated with endothelial inflammation in non-malaria diseases, we hypothesized that elevated UA levels contribute to the endothelial pathology of P. falciparum malaria. METHODOLOGY/PRINCIPAL FINDINGS We measured levels of UA and soluble forms of intercellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sE-Selectin), thrombomodulin (sTM), tissue factor (sTF) and vascular endothelial growth factor (VEGF) in the plasma of Malian children aged 0.5-17 years with uncomplicated malaria (UM, n = 487) and non-cerebral severe malaria (NCSM, n = 68). In 69 of these children, we measured these same factors once when they experienced a malaria episode and twice when they were healthy (i.e., before and after the malaria transmission season). We found that levels of UA, sICAM-1, sVCAM-1, sE-Selectin and sTM increase during a malaria episode and return to basal levels at the end of the transmission season (p<0.0001). Plasma levels of UA and these four endothelial biomarkers correlate with parasite density and disease severity. In children with UM, UA levels correlate with parasite density (r = 0.092, p = 0.043), sICAM-1 (r = 0.255, p<0.0001) and sTM (r = 0.175, p = 0.0001) levels. After adjusting for parasite density, UA levels predict sTM levels. CONCLUSIONS/SIGNIFICANCE Elevated UA levels may contribute to malaria pathogenesis by damaging endothelium and promoting a procoagulant state. The correlation between UA levels and parasite densities suggests that parasitized erythrocytes are one possible source of excess UA. UA-induced shedding of endothelial TM may represent a novel mechanism of malaria pathogenesis, in which activated thrombin induces fibrin deposition and platelet aggregation in microvessels. This protocol is registered at clinicaltrials.gov (NCT00669084).
Collapse
Affiliation(s)
- Neida K. Mita-Mendoza
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Departmento de Biomedicina Molecular, Centro de Investigaciόn y Estudios Avanzados – Instituto Politécnico Nacional, Ciudad de México, México
| | - Diana L. van de Hoef
- Department of Microbiology, Division of Parasitology, NYU School of Medicine, New York, New York, United States of America
| | - Tatiana M. Lopera-Mesa
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Saibou Doumbia
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odontostomatology, University of Bamako, Bamako, Mali
| | - Drissa Konate
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odontostomatology, University of Bamako, Bamako, Mali
| | - Mory Doumbouya
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odontostomatology, University of Bamako, Bamako, Mali
| | - Wenjuan Gu
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jennifer M. Anderson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Leopoldo Santos-Argumedo
- Departmento de Biomedicina Molecular, Centro de Investigaciόn y Estudios Avanzados – Instituto Politécnico Nacional, Ciudad de México, México
| | - Ana Rodriguez
- Department of Microbiology, Division of Parasitology, NYU School of Medicine, New York, New York, United States of America
| | - Michael P. Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mahamadou Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odontostomatology, University of Bamako, Bamako, Mali
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|