51
|
Bakulina NV, Tikhonov SV, Topalova YG, Ilchishina TA, Vasiliev RO. Esophagoprotective therapy in patients with erosive esophagitis. TERAPEVT ARKH 2022; 94:985-991. [DOI: 10.26442/00403660.2022.08.201828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 01/17/2023]
Abstract
Aim. To evaluate the advantages of using combined therapy of proton-pump inhibitors (PPIs) and esophagoprotector in comparison with basic therapy of PPIs for 4 weeks based on the results of changes in the endoscopic picture.To compare the effectiveness of 4-week PPI therapy and 4-week combination therapy with PPI and esophagoprotector Alfasoxx (sodium hyaluronate, chondroitin sulfate, poloxomer 407) in patients with erosive esophagitis (EE) of any degree according to the Los Angeles Endoscopic Classification.
Materials and methods. 81 patients with EE AC according to the Los Angeles endoscopic classification (1994) was enrolled in the study on the basis of the clinic of Peter the Great, Mechnikov North-Western State Medical University. By computer randomization, patients were divided into the control group 40 patients (pantoprazole 40 mg 1 time per day) and the intervention group 41 patients (pantoprazole 40 mg 1 time per day + Alfasoxx 1 sachet qid). The therapy was carried out for 4 weeks. In all patients before and after therapy, the frequency and severity of the main symptoms of gastroesophageal reflux disease (GERD) were assessed, esophagogastroduodenoscopy was performed.
Results. The advantage of combination therapy over standard PPI monotherapy in patients with EE was revealed. According to the results of the control endoscopy, healing of erosions of the esophageal mucosa was observed in 39 out of 41 (95.1%) patients in the intervention group and 32 out of 39 (82.1%) in the control group. The proportion of patients who showed an improvement in the endoscopic picture before and after treatment for 4 weeks by at least 1 level according to the Los Angeles classification was significantly higher in the comparison group 41 patients (100%), while in the control group 33 patients (85%); p0.009. After treatment, the combination therapy group had a lower incidence (p0.01) and severity of heartburn (p0.01). The same results are demonstrated by combination therapy regarding the symptom belching of air: in the study group after treatment, this symptom occurred less frequently (p=0.014), its severity was significantly less than in the control group (p0.01). There was a statistically significant decrease in the need for on-demand antacid therapy in the study group.
Conclusion. In this study involving 81 patients with erosive GERD, the benefits of combination therapy were demonstrated. The addition of Alfasoxx medical device to PPI therapy increases the clinical and endoscopic efficacy of therapy. This positive effect is associated with the esophagoprotective properties of the drug, based on unique pharmacodynamic characteristics. Combination therapy for GERD is preferred in patients with EE. Studies have shown the expediency of using Alfasoxx in case of insufficient effectiveness of classical acid-suppressive therapy for GERD.
Collapse
|
52
|
Djoudi A, Molina-Peña R, Ferreira N, Ottonelli I, Tosi G, Garcion E, Boury F. Hyaluronic Acid Scaffolds for Loco-Regional Therapy in Nervous System Related Disorders. Int J Mol Sci 2022; 23:12174. [PMID: 36293030 PMCID: PMC9602826 DOI: 10.3390/ijms232012174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (HA) is a Glycosaminoglycan made of disaccharide units containing N-acetyl-D-glucosamine and glucuronic acid. Its molecular mass can reach 10 MDa and its physiological properties depend on its polymeric property, polyelectrolyte feature and viscous nature. HA is a ubiquitous compound found in almost all biological tissues and fluids. So far, HA grades are produced by biotechnology processes, while in the human organism it is a major component of the extracellular matrix (ECM) in brain tissue, synovial fluid, vitreous humor, cartilage and skin. Indeed, HA is capable of forming hydrogels, polymer crosslinked networks that are very hygroscopic. Based on these considerations, we propose an overview of HA-based scaffolds developed for brain cancer treatment, central and peripheral nervous systems, discuss their relevance and identify the most successful developed systems.
Collapse
Affiliation(s)
- Amel Djoudi
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Rodolfo Molina-Peña
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Natalia Ferreira
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Emmanuel Garcion
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Frank Boury
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| |
Collapse
|
53
|
Mobed A, Kohansal F, Dolati S, Hasanzadeh M. A novel immuno-device based on the specific binding of AuNP-supported CTAB with biotinylated antibody of hyaluronic acid toward an early-stage recognition of a biomarker: a bioanalytical assay in real samples using disposal biosensor technology. RSC Adv 2022; 12:28473-28488. [PMID: 36320526 PMCID: PMC9533320 DOI: 10.1039/d2ra04984h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Hyaluronic Acid (HA) is a non-sulfated glycosaminoglycan, which is a potential biomarker that could be evaluated in the diagnosis of some cancers. For the first time, a novel label-free electrochemical immunosensor was developed based on modified ITO-PET (indium tin oxide-polyethylene terephthalate) electrodes for the sensitive recognition of hyaluronic acid (HA) in real samples. A disposable ITO-coated PET electrode was modified with gold nanoparticles (AuNPs) to construct a suitable substrate for the efficient immobilization of biotinylated antibodies of HA. Importantly, the encapsulation of biotinylated antibody of HA in KCC1-NH-CS2 was performed successfully, which was another innovative part of this bio-device construction. For determining the immobilization steps and optimization of the biosensor, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques were used. Furthermore, the morphological characterization of each ITO electrode surface was performed by field emission scanning electron microscopy (FESEM). Specific binding of gold nanoparticles supported CTAB to ITO-PET and its bioconjugation with the biotinylated antibody of HA was studied using the electroanalysis of the sensor performance. For the better performance of the antibody to generate an immunocomplex with HA (antigen), its encapsulation was performed, which led to the excellent behavior of the immunosensor. The proposed HA immunosensor indicated excellent reproducibility, high selectivity, and long-term stability. The HA electrochemical immunosensor performed perfectly with a wide determination range (0.078 to 160 ng mL-1) and a low limit of quantification (0.078 ng mL-1) in human plasma samples. It is recommended that the designed biosensor can be used as a diagnostic tool in clinical bioassays in the near future.
Collapse
Affiliation(s)
- Ahmad Mobed
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Fereshteh Kohansal
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
54
|
Hyaluronic Acid-Based Nanomaterials Applied to Cancer: Where Are We Now? Pharmaceutics 2022; 14:pharmaceutics14102092. [PMID: 36297526 PMCID: PMC9609123 DOI: 10.3390/pharmaceutics14102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Cancer cells normally develop the ability to rewire or reprogram themselves to become resistant to treatments that were previously effective. Despite progress in understanding drug resistance, knowledge gaps remain regarding the underlying biological causes of drug resistance and the design of cancer treatments to overcome it. So, resistance acquisition remains a major problem in cancer treatment. Targeted therapeutics are considered the next generation of cancer therapy because they overcome many limitations of traditional treatments. Numerous tumor cells overexpress several receptors that have a high binding affinity for hyaluronic acid (HA), while they are poorly expressed in normal body cells. HA and its derivatives have the advantage of being biocompatible and biodegradable and may be conjugated with a variety of drugs and drug carriers for developing various formulations as anticancer therapies such as micelles, nanogels, and inorganic nanoparticles. Due to their stability in blood circulation and predictable delivery patterns, enhanced tumor-selective drug accumulation, and decreased toxicity to normal tissues, tumor-targeting nanomaterial-based drug delivery systems have been shown to represent an efficacious approach for the treatment of cancer. In this review, we aim to provide an overview of some in vitro and in vivo studies related to the potential of HA as a ligand to develop targeted nanovehicles for future biomedical applications in cancer treatment.
Collapse
|
55
|
Münster L, Capáková Z, Humpolíček P, Kuřitka I, Christensen BE, Vícha J. Dicarboxylated hyaluronate: Synthesis of a new, highly functionalized and biocompatible derivative. Carbohydr Polym 2022; 292:119661. [PMID: 35725164 DOI: 10.1016/j.carbpol.2022.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
Sequential periodate-chlorite oxidation of sodium hyaluronate to 2,3-dicarboxylated hyaluronate (DCH), a novel biocompatible and highly functionalized derivative bearing additional pair of COOH groups at C2 and C3 carbons of oxidized ᴅ-glucuronic acid units, is investigated. The impact of various reaction parameters (time, oxidizer concentration, and molar amount) on DCH's composition, molecular weight, degree of oxidation, and cytotoxicity are investigated to guide the synthesis of DCH derivatives of desired properties. Subsequently, fully (99%) and partially (70%) oxidized DCH derivatives were compared to untreated sodium hyaluronate in terms of anticancer drug cisplatin loading efficacy, carrier capacity, drug release rates, and cytotoxicity towards healthy and cancerous cell lines. DCH derivatives were found to be superior in every aspect, having nearly twice the carrier capacity, significantly slower release rates, and higher efficacy. DCH is thus a highly interesting hyaluronate derivative with an adjustable degree of oxidation, molecular weight, and great potential for further modifications.
Collapse
Affiliation(s)
- Lukáš Münster
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic.
| | - Zdenka Capáková
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Ivo Kuřitka
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Bjørn E Christensen
- NOBIPOL, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jan Vícha
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| |
Collapse
|
56
|
Mayer CA, Ganguli A, Mayer A, Pabelick CM, Prakash YS, Hascall VC, Midura RJ, Cali V, Flask CA, Erokwu BO, Martin RJ, MacFarlane PM. CPAP-induced airway hyper-reactivity in mice is modulated by hyaluronan synthase-3. Pediatr Res 2022; 92:685-693. [PMID: 34750521 PMCID: PMC9079185 DOI: 10.1038/s41390-021-01695-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 06/11/2021] [Accepted: 06/27/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Continuous positive airway pressure (CPAP) is a primary mode of respiratory support for preterm infants. Animal studies have shown long-term detrimental effects on lung/airway development, particularly airway (AW) hyper-reactivity, as an unfortunate consequence of neonatal CPAP. Since the hyaluronan (HA) synthesizing enzyme hyaluronan synthase-3 (HAS3) is involved in various adult pulmonary disorders, the present study used a neonatal mouse model to investigate the role of HAS3 in CPAP-induced AW hyper-reactivity. METHODS Male and female neonatal mice were fitted with a custom-made mask for delivery of daily CPAP 3 h/day for 7 days. At postnatal day 21 (2 weeks after CPAP ended), airway (AW) hyper-reactivity and HAS3 expression were assessed with and without in vitro HAS3 siRNA treatment. RESULTS MRIs of 3-day-old mice confirmed that CPAP increased lung volume with incrementing inflation pressures. CPAP increased AW reactivity in both male and female mice, which was associated with increased airway smooth muscle and epithelial HAS3 immunoreactivity. CPAP did not affect HA accumulation, but HAS3 siRNA reversed CPAP-induced AW hyper-reactivity and reduced HAS3 expression. CONCLUSIONS These data in mice implicate a role for HAS3 in long-term effects of CPAP in the developing airway in the context of preterm birth and CPAP therapy. IMPACT Neonatal CPAP increases airway smooth muscle and epithelial HAS3 expression in mice. CPAP-induced airway hyper-reactivity is modulated by HAS3. These data enhance our understanding of the role mechanical forces play on lung development. These data are a significance step toward understanding CPAP effects on developing airway. These data may impact clinical recognition of the ways that CPAP may contribute to wheezing disorders of former preterm infants.
Collapse
Affiliation(s)
- Catherine A Mayer
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH
| | - Abhrajit Ganguli
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH
| | - Aubrey Mayer
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - YS Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Vince C Hascall
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Ron J Midura
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Valbona Cali
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Christopher A Flask
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Bernadette O Erokwu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Richard J Martin
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH
| | - Peter M MacFarlane
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
57
|
Bonet IJM, Staurengo-Ferrari L, Araldi D, Green PG, Levine JD. Second messengers mediating high-molecular-weight hyaluronan-induced antihyperalgesia in rats with chemotherapy-induced peripheral neuropathy. Pain 2022; 163:1728-1739. [PMID: 34913881 PMCID: PMC9167889 DOI: 10.1097/j.pain.0000000000002558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT High-molecular-weight hyaluronan (HMWH) is an agonist at cluster of differentiation (CD)44, the cognate hyaluronan receptor, on nociceptors, where it acts to induce antihyperalgesia in preclinical models of inflammatory and neuropathic pain. In the present experiments, we studied the CD44 second messengers that mediate HMWH-induced attenuation of pain associated with oxaliplatin and paclitaxel chemotherapy-induced peripheral neuropathy (CIPN). While HMWH attenuated CIPN only in male rats, after ovariectomy or intrathecal administration of an oligodeoxynucleotide (ODN) antisense to G protein-coupled estrogen receptor (GPR30) mRNA, female rats were also sensitive to HMWH. Intrathecal administration of an ODN antisense to CD44 mRNA markedly attenuated HMWH-induced antihyperalgesia in male rats with CIPN induced by oxaliplatin or paclitaxel. Intradermal administration of inhibitors of CD44 second messengers, RhoA (member of the Rho family of GTPases), phospholipase C, and phosphatidylinositol (PI) 3-kinase gamma (PI3Kγ), attenuated HMWH-induced antihyperalgesia as does intrathecal administration of an ODN antisense to PI3Kγ. Our results demonstrated that HMWH induced antihyperalgesia in CIPN, mediated by its action at CD44 and downstream signaling by RhoA, phospholipase C, and PI3Kγ.
Collapse
Affiliation(s)
- Ivan J. M. Bonet
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Larissa Staurengo-Ferrari
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Dionéia Araldi
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
58
|
Buckley C, Murphy EJ, Montgomery TR, Major I. Hyaluronic Acid: A Review of the Drug Delivery Capabilities of This Naturally Occurring Polysaccharide. Polymers (Basel) 2022; 14:polym14173442. [PMID: 36080515 PMCID: PMC9460006 DOI: 10.3390/polym14173442] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The inclusion of physiologically active molecules into a naturally occurring polymer matrix can improve the degradation, absorption, and release profile of the drug, thus boosting the therapeutic impact and potentially even reducing the frequency of administration. The human body produces significant amounts of polysaccharide hyaluronic acid, which boasts exceptional biocompatibility, biodegradability, and one-of-a-kind physicochemical features. In this review, we will examine the clinical trials currently utilizing hyaluronic acid and address the bright future of this versatile polymer, as well as summarize the numerous applications of hyaluronic acid in drug delivery and immunomodulation.
Collapse
Affiliation(s)
- Ciara Buckley
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Biosciences Research Institute, Technological University of the Shannon, V94 EC5T Limerick, Ireland
| | - Emma J. Murphy
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- LIFE Research Institute, Technological University of the Shannon, V94 EC5T Limerick, Ireland
| | - Therese R. Montgomery
- School of Science and Computing, Atlantic Technological University, H91 T8NW Galway, Ireland
| | - Ian Major
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Correspondence:
| |
Collapse
|
59
|
Tang F, Brune JE, Chang MY, Reeves SR, Altemeier WA, Frevert CW. Defining the versican interactome in lung health and disease. Am J Physiol Cell Physiol 2022; 323:C249-C276. [PMID: 35649251 PMCID: PMC9291419 DOI: 10.1152/ajpcell.00162.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) imparts critical mechanical and biochemical information to cells in the lungs. Proteoglycans are essential constituents of the ECM and play a crucial role in controlling numerous biological processes, including regulating cellular phenotype and function. Versican, a chondroitin sulfate proteoglycan required for embryonic development, is almost absent from mature, healthy lungs and is reexpressed and accumulates in acute and chronic lung disease. Studies using genetically engineered mice show that the versican-enriched matrix can be pro- or anti-inflammatory depending on the cellular source or disease process studied. The mechanisms whereby versican develops a contextual ECM remain largely unknown. The primary goal of this review is to provide an overview of the interaction of versican with its many binding partners, the "versican interactome," and how through these interactions, versican is an integrator of complex extracellular information. Hopefully, the information provided in this review will be used to develop future studies to determine how versican and its binding partners can develop contextual ECMs that control select biological processes. Although this review focuses on versican and the lungs, what is described can be extended to other proteoglycans, tissues, and organs.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jourdan E Brune
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Mary Y Chang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - William A Altemeier
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
60
|
Casey-Power S, Ryan R, Behl G, McLoughlin P, Byrne ME, Fitzhenry L. Hyaluronic Acid: Its Versatile Use in Ocular Drug Delivery with a Specific Focus on Hyaluronic Acid-Based Polyelectrolyte Complexes. Pharmaceutics 2022; 14:pharmaceutics14071479. [PMID: 35890371 PMCID: PMC9323903 DOI: 10.3390/pharmaceutics14071479] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022] Open
Abstract
Extensive research is currently being conducted into novel ocular drug delivery systems (ODDS) that are capable of surpassing the limitations associated with conventional intraocular anterior and posterior segment treatments. Nanoformulations, including those synthesised from the natural, hydrophilic glycosaminoglycan, hyaluronic acid (HA), have gained significant traction due to their enhanced intraocular permeation, longer retention times, high physiological stability, inherent biocompatibility, and biodegradability. However, conventional nanoformulation preparation methods often require large volumes of organic solvent, chemical cross-linkers, and surfactants, which can pose significant toxicity risks. We present a comprehensive, critical review of the use of HA in the field of ophthalmology and ocular drug delivery, with a discussion of the physicochemical and biological properties of HA that render it a suitable excipient for drug delivery to both the anterior and posterior segments of the eye. The pivotal focus of this review is a discussion of the formation of HA-based nanoparticles via polyelectrolyte complexation, a mild method of preparation driven primarily by electrostatic interaction between opposing polyelectrolytes. To the best of our knowledge, despite the growing number of publications centred around the development of HA-based polyelectrolyte complexes (HA-PECs) for ocular drug delivery, no review articles have been published in this area. This review aims to bridge the identified gap in the literature by (1) reviewing recent advances in the area of HA-PECs for anterior and posterior ODD, (2) describing the mechanism and thermodynamics of polyelectrolyte complexation, and (3) critically evaluating the intrinsic and extrinsic formulation parameters that must be considered when designing HA-PECs for ocular application.
Collapse
Affiliation(s)
- Saoirse Casey-Power
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
- Correspondence:
| | - Richie Ryan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| | - Gautam Behl
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| | - Peter McLoughlin
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| | - Mark E. Byrne
- Biomimetic & Biohybrid Materials, Biomedical Devices & Drug Delivery Laboratories, Department of Biomedical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA;
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| |
Collapse
|
61
|
Parnigoni A, Viola M, Karousou E, Rovera S, Giaroni C, Passi A, Vigetti D. ROLE OF HYALURONAN IN PATHOPHYSIOLOGY OF VASCULAR1 ENDOTHELIAL AND SMOOTH MUSCLE CELLS. Am J Physiol Cell Physiol 2022; 323:C505-C519. [PMID: 35759431 DOI: 10.1152/ajpcell.00061.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the main components of the extracellular matrix (ECM) of the blood vessel is hyaluronic acid or hyaluronan (HA). It is a ubiquitous polysaccharide belonging to the family of glycosaminoglycans, but, differently from other proteoglycan-associated glycosaminoglycans, it is synthesized on the plasma membrane by a family of three HA synthases (HAS). HA can be released as a free polymer in the extracellular space or remain associated with the membrane in the pericellular space via HAS or via binding proteins. In fact, several cell surface proteins can interact with HA working as HA receptors like CD44, RHAMM, and LYVE-1. In physiological conditions, HA is localized in the glycocalyx and in the adventitia and is responsible for the loose and hydrated vascular structure favoring flexibility and allowing the stretching of vessels in response to mechanical forces. During atherogenesis, ECM undergoes dramatic alterations which have a crucial role in lipoprotein retention and in triggering multiple signaling cascades that wake up cells from their quiescent status. HA becomes highly present in the media and neointima favoring smooth muscle cells dedifferentiation, migration, and proliferation that strongly contribute to vessel wall thickening. Further, HA is able to modulate immune cell recruitment both within the vessel wall and on the endothelial cell layer. This review is focused on the effects of HA on vascular cell behavior.
Collapse
Affiliation(s)
- Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Simona Rovera
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
62
|
Vallet SD, Berthollier C, Ricard-Blum S. The glycosaminoglycan interactome 2.0. Am J Physiol Cell Physiol 2022; 322:C1271-C1278. [PMID: 35544698 DOI: 10.1152/ajpcell.00095.2022] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycosaminoglycans (GAGs) are complex linear polysaccharides, which are covalently attached to core proteins (except for hyaluronan) to form proteoglycans. They play key roles in the organization of the extracellular matrix, and at the cell surface where they contribute to the regulation of cell signaling and of cell adhesion. To explore the mechanisms and pathways underlying their functions, we have generated an expanded dataset of 4290 interactions corresponding to 3464 unique GAG-binding proteins, four times more than the first version of the GAG interactome (Vallet and Ricard-Blum, 2021 J Histochem Cytochem 69:93-104). The increased size of the GAG network is mostly due to the addition of GAG-binding proteins captured from cell lysates and biological fluids by affinity chromatography and identified by mass spectrometry. We review here the interaction repertoire of natural GAGs and of synthetic sulfated hyaluronan, the specificity and molecular functions of GAG-binding proteins, and the biological processes and pathways they are involved in. This dataset is also used to investigate the differences between proteins binding to iduronic acid-containing GAGs (dermatan sulfate and heparin/heparan sulfate) and those interacting with GAGs lacking iduronic acid (chondroitin sulfate, hyaluronan, and keratan sulfate).
Collapse
|
63
|
Bron AJ, Dogru M, Horwath-Winter J, Kojima T, Kovács I, Müller-Lierheim WGK, van Setten GB, Belmonte C. Reflections on the Ocular Surface: Summary of the Presentations at the 4th Coronis Foundation Ophthalmic Symposium Debate: "A Multifactorial Approach to Ocular Surface Disorders" (August 31 2021). FRONT BIOSCI-LANDMRK 2022; 27:142. [PMID: 35638409 DOI: 10.31083/j.fbl2705142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 01/04/2025]
Affiliation(s)
- Anthony J Bron
- University of Oxford, Nuffield Laboratory of Ophthalmology, Nuffield Dept of Clinical Neurosciences, OX1 2JD Oxford, UK
| | - Murat Dogru
- Department of Ophthalmology, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | | | - Takashi Kojima
- Department of Ophthalmology, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | - Illés Kovács
- Department of Ophthalmology, Semmelweis University, H-1085 Budapest, Hungary
| | | | | | | |
Collapse
|
64
|
Lierova A, Kasparova J, Filipova A, Cizkova J, Pekarova L, Korecka L, Mannova N, Bilkova Z, Sinkorova Z. Hyaluronic Acid: Known for Almost a Century, but Still in Vogue. Pharmaceutics 2022; 14:838. [PMID: 35456670 PMCID: PMC9029726 DOI: 10.3390/pharmaceutics14040838] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyaluronic acid (HA) has a special position among glycosaminoglycans. As a major component of the extracellular matrix (ECM). This simple, unbranched polysaccharide is involved in the regulation of various biological cell processes, whether under physiological conditions or in cases of cell damage. This review summarizes the history of this molecule's study, its distinctive metabolic pathway in the body, its unique properties, and current information regarding its interaction partners. Our main goal, however, is to intensively investigate whether this relatively simple polymer may find applications in protecting against ionizing radiation (IR) or for therapy in cases of radiation-induced damage. After exposure to IR, acute and belated damage develops in each tissue depending upon the dose received and the cellular composition of a given organ. A common feature of all organ damage is a distinct change in composition and structure of the ECM. In particular, the important role of HA was shown in lung tissue and the variability of this flexible molecule in the complex mechanism of radiation-induced lung injuries. Moreover, HA is also involved in intermediating cell behavior during morphogenesis and in tissue repair during inflammation, injury, and would healing. The possibility of using the HA polymer to affect or treat radiation tissue damage may point to the missing gaps in the responsible mechanisms in the onset of this disease. Therefore, in this article, we will also focus on obtaining answers from current knowledge and the results of studies as to whether hyaluronic acid can also find application in radiation science.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jitka Kasparova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Alzbeta Filipova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jana Cizkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lenka Pekarova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lucie Korecka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Nikola Mannova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| |
Collapse
|
65
|
Abstract
Glycosaminoglycans (GAGs) are an important component of the tumor microenvironment (TME). GAGs can interact with a variety of binding partners and thereby influence cancer progression on multiple levels. GAGs can modulate growth factor and chemokine signaling, invasion and metastasis formation. Moreover, GAGs are able to change the physical property of the extracellular matrix (ECM). Abnormalities in GAG abundance and structure (e.g., sulfation patterns and molecular weight) are found across various cancer types and show biomarker potential. Targeting GAGs, as well as the usage of GAGs and their mimetics, are promising approaches to interfere with cancer progression. In addition, GAGs can be used as drug and cytokine carriers to induce an anti-tumor response. In this review, we summarize the role of GAGs in cancer and the potential use of GAGs and GAG derivatives to target cancer.
Collapse
Affiliation(s)
- Ronja Wieboldt
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Heinz Läubli
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Switzerland; Division of Oncology, Department of Theragnostics, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
66
|
Parnigoni A, Caon I, Teo WX, Hua SH, Moretto P, Bartolini B, Viola M, Karousou E, Yip GW, Götte M, Heldin P, Passi A, Vigetti D. The natural antisense transcript HAS2-AS1 regulates breast cancer cells aggressiveness independently from hyaluronan metabolism. Matrix Biol 2022; 109:140-161. [PMID: 35395387 DOI: 10.1016/j.matbio.2022.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022]
Abstract
Hyaluronan (HA) is a ubiquitous extracellular matrix component playing a crucial role in the regulation of cell behaviors, including cancer. Aggressive breast cancer cells tend to proliferate, migrate and metastatize. Notably, triple-negative breast cancer cells lacking the expression of estrogen receptor (ER) as well as progesterone receptor and HER2 are more aggressive than ER-positive ones. As currently no targeted therapy is available for triple-negative breast cancer, the identification of novel therapeutic targets has a high clinical priority. In ER-negative cells, tumoral behavior can be reduced by inhibiting HA synthesis or silencing the enzymes involved in its metabolism, such as HA synthase 2 (HAS2). HAS2-AS1 is a long non-coding RNA belonging to the natural antisense transcript family which is known to favor HAS2 gene expression and HA synthesis, thus bolstering malignant progression in brain, ovary, and lung tumors. As the role of HAS2-AS1 has not yet been investigated in breast cancer, in this work we report that ER-positive breast cancers had lower HAS2-AS1 expression compared to ER-negative tumors. Moreover, the survival of patients with ER-negative tumors was higher when the expression of HAS2-AS1 was elevated. Experiments with ER-negative cell lines as MDA-MB-231 and Hs 578T revealed that the overexpression of either the full-length HAS2-AS1 or its exon 2 long or short isoforms alone, strongly reduced cell viability, migration, and invasion, whereas HAS2-AS1 silencing increased cell aggressiveness. Unexpectedly, in these ER-negative cell lines, HAS2-AS1 is involved neither in the regulation of HAS2 nor in HA deposition. Finally, transcriptome analysis revealed that HAS2-AS1 modulation affected several pathways, including apoptosis, proliferation, motility, adhesion, epithelial to mesenchymal transition, and signaling, describing this long non-coding RNA as an important regulator of breast cancer cells aggressiveness.
Collapse
Affiliation(s)
- Arianna Parnigoni
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Ilaria Caon
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Wei Xuan Teo
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore 4 Medical Drive, Block MD10, Singapore, 117594, Singapore
| | - San Hue Hua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore 4 Medical Drive, Block MD10, Singapore, 117594, Singapore
| | - Paola Moretto
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Barbara Bartolini
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Manuela Viola
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Evgenia Karousou
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - George W Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore 4 Medical Drive, Block MD10, Singapore, 117594, Singapore
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Albert-Schweitzer-Campus 1, D11, 48149, Münster, Germany
| | - Paraskevi Heldin
- Department Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alberto Passi
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Davide Vigetti
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy.
| |
Collapse
|
67
|
Maloney FP, Kuklewicz J, Corey RA, Bi Y, Ho R, Mateusiak L, Pardon E, Steyaert J, Stansfeld PJ, Zimmer J. Structure, substrate recognition and initiation of hyaluronan synthase. Nature 2022; 604:195-201. [PMID: 35355017 PMCID: PMC9358715 DOI: 10.1038/s41586-022-04534-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022]
Abstract
Hyaluronan is an acidic heteropolysaccharide comprising alternating N-acetylglucosamine and glucuronic acid sugars that is ubiquitously expressed in the vertebrate extracellular matrix1. The high-molecular-mass polymer modulates essential physiological processes in health and disease, including cell differentiation, tissue homeostasis and angiogenesis2. Hyaluronan is synthesized by a membrane-embedded processive glycosyltransferase, hyaluronan synthase (HAS), which catalyses the synthesis and membrane translocation of hyaluronan from uridine diphosphate-activated precursors3,4. Here we describe five cryo-electron microscopy structures of a viral HAS homologue at different states during substrate binding and initiation of polymer synthesis. Combined with biochemical analyses and molecular dynamics simulations, our data reveal how HAS selects its substrates, hydrolyses the first substrate to prime the synthesis reaction, opens a hyaluronan-conducting transmembrane channel, ensures alternating substrate polymerization and coordinates hyaluronan inside its transmembrane pore. Our research suggests a detailed model for the formation of an acidic extracellular heteropolysaccharide and provides insights into the biosynthesis of one of the most abundant and essential glycosaminoglycans in the human body.
Collapse
Affiliation(s)
- Finn P Maloney
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jeremi Kuklewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Yunchen Bi
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ruoya Ho
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Lukasz Mateusiak
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
68
|
Mohammed GF, Al‐Dhubaibi MS. Triple steps acne scar revision technique a new combination therapeutic modality for atrophic acne scars. J Cosmet Dermatol 2022; 21:4659-4668. [PMID: 35348282 DOI: 10.1111/jocd.14944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Ghada F. Mohammed
- Department of Dermatology and Venereology Faculty of Medicine Suez Canal University Ismailia Egypt
| | | |
Collapse
|
69
|
Kayashima Y, Clanton CA, Lewis AM, Sun X, Hiller S, Huynh P, Wilder J, Hagaman J, Li F, Maeda-Smithies N, Harris EN. Reduction of Stabilin-2 Contributes to a Protection Against Atherosclerosis. Front Cardiovasc Med 2022; 9:818662. [PMID: 35360009 PMCID: PMC8963368 DOI: 10.3389/fcvm.2022.818662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 01/05/2023] Open
Abstract
We have previously identified a novel atherosclerosis quantitative trait locus (QTL), Arch atherosclerosis 5 (Aath5), on mouse chromosome 10 by three-way QTL analyses between Apoe−/− mice on a DBA/2J, 129S6 and C57BL/6J background. The DBA/2J haplotype at the Aath5 locus was associated with smaller plaque size. One of the candidate genes underlying Aath5 was Stabilin-2 (Stab2), which encodes a clearance receptor for hyaluronan (HA) predominantly expressed in liver sinusoidal endothelial cells (LSECs). However, the role of Stab2 in atherosclerosis is unknown. A congenic line of Apoe−/− mice carrying Aath5 covering the Stab2DBA allele on a background of 129S6 confirmed the small reductions of atherosclerotic plaque development. To further determine whether Stab2 is an underlying gene for Aath5, we generated Stab2−/−Apoe−/− mice on a C57BL/6J background. When fed with a Western diet for 8 weeks, Stab2−/−Apoe−/− males developed approximately 30% smaller plaques than Stab2+/+Apoe−/− mice. HA was accumulated in circulation but not in major organs in the Stab2 deficient mice. STAB2-binding molecules that are involved in atherosclerosis, including acLDL, apoptotic cells, heparin and vWF were not likely the direct cause of the protection in the Stab2−/−Apoe−/− males. These data indicate that reduction of Stab2 is protective against atherosclerotic plaque development, and that Stab2 is a contributing gene underlying Aath5, although its effect is small. To test whether non-synonymous amino acid changes unique to DBA/2J affect the function of STAB2 protein, we made HEK293 cell lines expressing STAB2129 or STAB2DBA proteins, as well as STAB2129 proteins carrying each of five DBA-unique replacements that have been predicted to be deleterious. These mutant cells were capable of internalizing 125I -HA and DiI-acLDL similarly to the control cells. These results indicate that the amino acid changes unique to DBA/2J are not affecting the function of STAB2 protein, and support our previous observation that the reduced transcription of Stab2 in the liver sinusoid as a consequence of the insertion of a viral-derived sequence, intracisternal A particle, is the primary contributor to the athero-protection conferred by the DBA/2J allele.
Collapse
Affiliation(s)
- Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Yukako Kayashima
| | - Connor A. Clanton
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Amanda M. Lewis
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Sylvia Hiller
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Phillip Huynh
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jennifer Wilder
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John Hagaman
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Feng Li
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nobuyo Maeda-Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
70
|
Derwich M, Lassmann L, Machut K, Zoltowska A, Pawlowska E. General Characteristics, Biomedical and Dental Application, and Usage of Chitosan in the Treatment of Temporomandibular Joint Disorders: A Narrative Review. Pharmaceutics 2022; 14:pharmaceutics14020305. [PMID: 35214037 PMCID: PMC8880239 DOI: 10.3390/pharmaceutics14020305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this narrative review was to present research investigating chitosan, including its general characteristics, properties, and medical and dental applications, and finally to present the current state of knowledge regarding the efficacy of chitosan in the treatment of temporomandibular disorders (TMDs) based on the literature. The PICO approach was used for the literature search strategy. The PubMed database was analyzed with the following keywords: (“chitosan”[MeSH Terms] OR “chitosan”[All Fields] OR “chitosans”[All Fields] OR “chitosan s”[All Fields] OR “chitosane”[All Fields]) AND (“temporomandibular joint”[MeSH Terms] OR (“tem-poromandibular”[All Fields] AND “joint”[All Fields]) OR “temporomandibular joint”[All Fields] OR (“temporomandibular”[All Fields] AND “joints”[All Fields]) OR “temporo-mandibular joints”[All Fields]). After screening 8 results, 5 studies were included in this review. Chitosan presents many biological properties and therefore it can be widely used in several branches of medicine and dentistry. Chitosan promotes wound healing, helps to control bleeding, and is used in wound dressings, such as sutures and artificial skin. Apart from its antibacterial property, chitosan has many other properties, such as antifungal, mucoadhesive, anti-inflammatory, analgesic, antioxidant, antihyperglycemic, and antitumoral properties. Further clinical studies assessing the efficacy of chitosan in the treatment of TMD are required. According to only one clinical study, chitosan was effective in the treatment of TMD; however, better clinical results were obtained with platelet-rich plasma.
Collapse
Affiliation(s)
- Marcin Derwich
- ORTODENT, Specialist Orthodontic Private Practice in Grudziadz, 86-300 Grudziadz, Poland
- Correspondence: ; Tel.: +48-660-723-164
| | - Lukasz Lassmann
- Dental Sense, Dental Private Practice in Gdansk, 80-283 Gdansk, Poland;
| | - Katarzyna Machut
- Department of Endodontic Dentistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (K.M.); (A.Z.)
| | - Agata Zoltowska
- Department of Endodontic Dentistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (K.M.); (A.Z.)
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
71
|
OUP accepted manuscript. Glycobiology 2022; 32:743-750. [DOI: 10.1093/glycob/cwac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023] Open
|
72
|
Kocurkova A, Nesporova K, Sandanusova M, Kerberova M, Lehka K, Velebny V, Kubala L, Ambrozova G. Endogenously-Produced Hyaluronan and Its Potential to Regulate the Development of Peritoneal Adhesions. Biomolecules 2021; 12:biom12010045. [PMID: 35053193 PMCID: PMC8773905 DOI: 10.3390/biom12010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
Formation of peritoneal adhesions (PA) is one of the major complications following intra-abdominal surgery. It is primarily caused by activation of the mesothelial layer and underlying tissues in the peritoneal membrane resulting in the transition of mesothelial cells (MCs) and fibroblasts to a pro-fibrotic phenotype. Pro-fibrotic transition of MCs—mesothelial-to-mesenchymal transition (MMT), and fibroblasts activation to myofibroblasts are interconnected to changes in cellular metabolism and culminate in the deposition of extracellular matrix (ECM) in the form of fibrotic tissue between injured sides in the abdominal cavity. However, ECM is not only a mechanical scaffold of the newly synthetized tissue but reciprocally affects fibrosis development. Hyaluronan (HA), an important component of ECM, is a non-sulfated glycosaminoglycan consisting of N-acetyl-D-glucosamine (GlcNAc) and D-glucuronic acid (GlcUA) that can affect the majority of processes involved in PA formation. This review considers the role of endogenously produced HA in the context of different fibrosis-related pathologies and its overlap in the development of PA.
Collapse
Affiliation(s)
- Anna Kocurkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Kristina Nesporova
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Miriam Sandanusova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Michaela Kerberova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
| | - Katerina Lehka
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Vladimir Velebny
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Lukas Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Gabriela Ambrozova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Correspondence:
| |
Collapse
|
73
|
Extracellular hyaluronate pressure shaped by cellular tethers drives tissue morphogenesis. Cell 2021; 184:6313-6325.e18. [PMID: 34942099 PMCID: PMC8722442 DOI: 10.1016/j.cell.2021.11.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
How tissues acquire complex shapes is a fundamental question in biology and regenerative medicine. Zebrafish semicircular canals form from invaginations in the otic epithelium (buds) that extend and fuse to form the hubs of each canal. We find that conventional actomyosin-driven behaviors are not required. Instead, local secretion of hyaluronan, made by the enzymes uridine 5'-diphosphate dehydrogenase (ugdh) and hyaluronan synthase 3 (has3), drives canal morphogenesis. Charged hyaluronate polymers osmotically swell with water and generate isotropic extracellular pressure to deform the overlying epithelium into buds. The mechanical anisotropy needed to shape buds into tubes is conferred by a polarized distribution of actomyosin and E-cadherin-rich membrane tethers, which we term cytocinches. Most work on tissue morphogenesis ascribes actomyosin contractility as the driving force, while the extracellular matrix shapes tissues through differential stiffness. Our work inverts this expectation. Hyaluronate pressure shaped by anisotropic tissue stiffness may be a widespread mechanism for powering morphological change in organogenesis and tissue engineering.
Collapse
|
74
|
Hussain Z, Jamal Ahmed D, Mohammed Alkabra R, Thu HE, Khan S, Sohail M, Sarfraz RM, Ramli NA. Hyaluronic acid based nanomedicines as promising wound healers for acute-to-chronic wounds: a review of recent updates and emerging trends. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2006655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, UAE
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Dalya Jamal Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Ranim Mohammed Alkabra
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Hnin Ei Thu
- Innoscience Ressearch Sdn, Subang Jaya, Malaysia
- Research and Innovation Department, Lincoln University College, Petaling Jaya, Malaysia
| | - Shahzeb Khan
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas, Austin, TX, USA
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Mohammad Sohail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | | | - Nor Amlizan Ramli
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
| |
Collapse
|
75
|
Zakusilo FT, Kerry O'Banion M, Gelbard HA, Seluanov A, Gorbunova V. Matters of size: Roles of hyaluronan in CNS aging and disease. Ageing Res Rev 2021; 72:101485. [PMID: 34634492 PMCID: PMC8903057 DOI: 10.1016/j.arr.2021.101485] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022]
Abstract
Involvement of extracellular matrix (ECM) components in aging and age-related neurodegeneration is not well understood. The role of hyaluronan (HA), a major extracellular matrix glycosaminoglycan, in malignancy and inflammation is gaining new understanding. In particular, the differential biological effects of high molecular weight (HMW-HA) and low molecular weight hyaluronan (LMW-HA), and the mechanism behind such differences are being uncovered. Tightly regulated in the brain, HA can have diverse effects on cellular development, growth and degeneration. In this review, we summarize the homeostasis and signaling of HA in healthy tissue, discuss its distribution and ontogeny in the central nervous system (CNS), summarize evidence for its involvement in age-related neurodegeneration and Alzheimer Disease (AD), and assess the potential of HA as a therapeutic target in the CNS.
Collapse
Affiliation(s)
- Frances Tolibzoda Zakusilo
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA; Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA; Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Harris A Gelbard
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA; Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY, USA
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
76
|
Smolka W, Ptas M, Panek A, Krok-Borkowicz M, Zambrzycki M, Gubernat M, Markowski J, Fraczek-Szczypta A. Surface Modification of Carbon Nanofibers to Improve Their Biocompatibility in Contact with Osteoblast and Chondrocytes Cell Lines. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6370. [PMID: 34771898 PMCID: PMC8585247 DOI: 10.3390/ma14216370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
The goal of this study is to investigate the influence of different types of modifiers, such as sodium hyaluronate (NaH), graphene oxide (GO), silica oxycarbide (SiOC) and oxidation process (ox) on physicochemical, morphological, and biological properties of electrospun carbon nanofibers (eCNFs). Scanning electron microscopy, X-ray photoelectron spectroscopy and infrared spectroscopy (FTIR) were used to evaluate the microstructure and chemistry of as-prepared and modified CNFs. The electrical properties of CNFs scaffolds were examined using a four-point probe method to evaluate the influence of modifiers on the volume conductivity and surface resistivity of the obtained samples. The wettability of the surfaces of modified and unmodified CNFs scaffolds was also tested by contact angle measurement. During the in vitro study all samples were put into direct contact with human chondrocyte CHON-001 cells and human osteosarcoma MG-63 cells. Their viability was analysed after 72 h in culture. Moreover, the cell morphology and cell area in contact with CNFs was observed by means of fluorescence microscopy. The obtained results show great potential for the modification of CNFs with polymer, ceramic and carbon modifiers, which do not change the fiber form of the substrate but significantly affect their surface and volume properties. Preliminary biological studies have shown that the type of modification of CNFs affects either the rate of increase in the number of cells or the degree of spreading in relation to the unmodified sample. More hydrophilic and low electrically conductive samples such as CNF_ox and CNF_NaH significantly increase cell proliferation, while other GO and SiOC modified samples have an effect on cell adhesion and thus cell spreading. From the point of view of further research and the possibility of combining the electrical properties of modified CNF scaffolds with electrical stimulation, where these scaffolds would be able to transport electrical signals to cells and thus affect cell adhesion, spreading, and consequently tissue regeneration, samples CNF_GO and CNF_SiOC would be the most desirable.
Collapse
Affiliation(s)
- Wojciech Smolka
- Laryngology Department, School of Medicine in Katowice, Medical University of Silesia in Katowice, Poniatowskiego 15, 40-055 Katowice, Poland; (W.S.); (J.M.)
| | - Monika Ptas
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (M.P.); (M.K.-B.); (M.Z.); (M.G.)
| | - Agnieszka Panek
- Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow, Poland;
| | - Malgorzata Krok-Borkowicz
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (M.P.); (M.K.-B.); (M.Z.); (M.G.)
| | - Marcel Zambrzycki
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (M.P.); (M.K.-B.); (M.Z.); (M.G.)
| | - Maciej Gubernat
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (M.P.); (M.K.-B.); (M.Z.); (M.G.)
| | - Jaroslaw Markowski
- Laryngology Department, School of Medicine in Katowice, Medical University of Silesia in Katowice, Poniatowskiego 15, 40-055 Katowice, Poland; (W.S.); (J.M.)
| | - Aneta Fraczek-Szczypta
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (M.P.); (M.K.-B.); (M.Z.); (M.G.)
| |
Collapse
|
77
|
Pibuel MA, Poodts D, Díaz M, Molinari YA, Franco PG, Hajos SE, Lompardía SL. Antitumor effect of 4MU on glioblastoma cells is mediated by senescence induction and CD44, RHAMM and p-ERK modulation. Cell Death Discov 2021; 7:280. [PMID: 34628469 PMCID: PMC8502173 DOI: 10.1038/s41420-021-00672-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
The extracellular matrix plays a key role in cancer progression. Hyaluronan, the main glycosaminoglycan of the extracellular matrix, has been related to several tumor processes. Hyaluronan acts through the interaction with cell membrane receptors as CD44 and RHAMM and triggers signaling pathways as MEK/ERK. 4-methylumbelliferone (4MU), a well-known hyaluronan synthesis inhibitor, is a promising alternative for cancer therapy. 4MU is a coumarin derivative without adverse effects that has been studied in several tumors. However, little is known about its use in glioblastoma (GBM), the most malignant primary brain tumor in adults. Glioblastoma is characterized by fast growth, migration and tissue invasiveness, and a poor median survival of the patients after treatment. Several reports linked glioblastoma progression with HA levels and even with CD44 and RHAMM expression, as well as MEK/ERK activation. Previously, we showed on a murine GBM cell line that HA enhances GBM migration, while 4MU markedly inhibits it. In this work we showed for the first time, that 4MU decreases cell migration and induces senescence in U251 and LN229 human GBM cell lines. Furthermore, we observed that HA promotes GBM cell migration on both cell lines and that such effects depend on CD44 and RHAMM, as well as MEK/ERK signaling pathway. Interestingly, we observed that the exogenous HA failed to counteract the effects of 4MU, indicating that 4MU effects are independent of HA synthesis inhibition. We found that 4MU decreases total CD44 and RHAMM membrane expression, which could explain the effect of 4MU on cell migration. Furthermore, we observed that 4MU increases the levels of RHAMM inside the cell while decreases the nucleus/cytoplasm relation of p-ERK, associated with 4MU effects on cell proliferation and senescence induction. Overall, 4MU should be considered as a promising therapeutic alternative to improve the outcome of patients with GBM.
Collapse
Grants
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
Collapse
Affiliation(s)
- Matías Arturo Pibuel
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina.
| | - Daniela Poodts
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Yamila Azul Molinari
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET; Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Paula Gabriela Franco
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET; Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvia Elvira Hajos
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvina Laura Lompardía
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina
| |
Collapse
|
78
|
PI3Kγ/AKT Signaling in High Molecular Weight Hyaluronan (HMWH)-Induced Anti-Hyperalgesia and Reversal of Nociceptor Sensitization. J Neurosci 2021; 41:8414-8426. [PMID: 34417329 DOI: 10.1523/jneurosci.1189-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
High molecular weight hyaluronan (HMWH), a well-established treatment for osteoarthritis pain, is anti-hyperalgesic in preclinical models of inflammatory and neuropathic pain. HMWH-induced anti-hyperalgesia is mediated by its action at cluster of differentiation 44 (CD44), the cognate hyaluronan receptor, which can signal via phosphoinositide 3-kinase (PI3K), a large family of kinases involved in diverse cell functions. We demonstrate that intrathecal administration of an oligodeoxynucleotide (ODN) antisense to mRNA for PI3Kγ (a Class I PI3K isoform) expressed in dorsal root ganglia (DRGs), and intradermal administration of a PI3Kγ-selective inhibitor (AS605240), markedly attenuates HMWH-induced anti-prostaglandin E2 (PGE2) hyperalgesia, in male and female rats. Intradermal administration of inhibitors of mammalian target of rapamycin (mTOR; rapamycin) and protein kinase B (AKT; AKT Inhibitor IV), signaling molecules downstream of PI3Kγ, also attenuates HMWH-induced anti-hyperalgesia. In vitro patch-clamp electrophysiology experiments on cultured nociceptors from male rats demonstrate that some HMWH-induced changes in generation of action potentials (APs) in nociceptors sensitized by PGE2 are PI3Kγ dependent (reduction in AP firing rate, increase in latency to first AP and increase in slope of current ramp required to induce AP) and some are PI3Kγ independent [reduction in recovery rate of AP afterhyperpolarization (AHP)]. Our demonstration of a role of PI3Kγ in HMWH-induced anti-hyperalgesia and reversal of nociceptor sensitization opens a novel line of research into molecular targets for the treatment of diverse pain syndromes.SIGNIFICANCE STATEMENT We have previously demonstrated that high molecular weight hyaluronan (HMWH) attenuates inflammatory hyperalgesia, an effect mediated by its action at cluster of differentiation 44 (CD44), the cognate hyaluronan receptor, and activation of its downstream signaling pathway, in nociceptors. In the present study, we demonstrate that phosphoinositide 3-kinase (PI3K)γ and downstream signaling pathway, protein kinase B (AKT) and mammalian target of rapamycin (mTOR), are crucial for HMWH to induce anti-hyperalgesia.
Collapse
|
79
|
Bonet IJM, Araldi D, Green PG, Levine JD. Sexually Dimorphic Role of Toll-like Receptor 4 (TLR4) in High Molecular Weight Hyaluronan (HMWH)-induced Anti-hyperalgesia. THE JOURNAL OF PAIN 2021; 22:1273-1282. [PMID: 33892155 PMCID: PMC8500912 DOI: 10.1016/j.jpain.2021.03.152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
High molecular weight hyaluronan (HMWH), a prominent component of the extracellular matrix binds to and signals via multiple receptors, including cluster of differentiation 44 (CD44) and toll-like receptor 4 (TLR4). We tested the hypothesis that, in the setting of inflammation, HMWH acts at TLR4 to attenuate hyperalgesia. We found that the attenuation of prostaglandin E2 (PGE2)-induced hyperalgesia by HMWH was attenuated by a TLR4 antagonist (NBP2-26245), but only in male and ovariectomized female rats. In this study we sought to evaluated the role of the TLR4 signaling pathway in anti-hyperalgesia induced by HMWH in male rats. Decreasing expression of TLR4 in nociceptors, by intrathecal administration of an oligodeoxynucleotide (ODN) antisense to TLR4 mRNA, also attenuated HMWH-induced anti-hyperalgesia, in male and ovariectomized female rats. Estrogen replacement in ovariectomized females reconstituted the gonad-intact phenotype. The administration of an inhibitor of myeloid differentiation factor 88 (MyD88), a TLR4 second messenger, attenuated HMWH-induced anti-hyperalgesia, while an inhibitor of the MyD88-independent TLR4 signaling pathway did not. Since it has previously been shown that HMWH-induced anti-hyperalgesia is also mediated, in part by CD44 we evaluated the effect of the combination of ODN antisense to TLR4 and CD44 mRNA. This treatment completely reversed HMWH-induced anti-hyperalgesia in male rats. Our results demonstrate a sex hormone-dependent, sexually dimorphic involvement of TLR4 in HMWH-induced anti-hyperalgesia, that is MyD88 dependent. PERSPECTIVE: The role of TLR4 in anti-hyperalgesia induced by HMWH is a sexually dimorphic, TLR4 dependent inhibition of inflammatory hyperalgesia that provides a novel molecular target for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Ivan J M Bonet
- Departments of Medicine and Oral & Maxillofacial Surgery, San Francisco; UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco
| | - Dionéia Araldi
- Departments of Medicine and Oral & Maxillofacial Surgery, San Francisco; UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco
| | - Paul G Green
- Departments of Medicine and Oral & Maxillofacial Surgery, San Francisco; UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco; Departments of Preventative and Restorative Dental Sciences, University of California at San Francisco, San Francisco
| | - Jon D Levine
- Departments of Medicine and Oral & Maxillofacial Surgery, San Francisco; UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco; Departments of Medicine, University of California at San Francisco, San Francisco.
| |
Collapse
|
80
|
Parnigoni A, Caon I, Moretto P, Viola M, Karousou E, Passi A, Vigetti D. The role of the multifaceted long non-coding RNAs: A nuclear-cytosolic interplay to regulate hyaluronan metabolism. Matrix Biol Plus 2021; 11:100060. [PMID: 34435179 PMCID: PMC8377009 DOI: 10.1016/j.mbplus.2021.100060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
In the extracellular matrix (ECM), the glycosaminoglycan (GAG) hyaluronan (HA) has different physiological roles favouring hydration, elasticity and cell survival. Three different isoforms of HA synthases (HAS1, 2, and 3) are responsible for the production of HA. In several pathologies the upregulation of HAS enzymes leads to an abnormal HA accumulation causing cell dedifferentiation, proliferation and migration thus favouring cancer progression, fibrosis and vascular wall thickening. An intriguing new player in HAS2 gene expression regulation and HA production is the long non-coding RNA (lncRNA) hyaluronan synthase 2 antisense 1 (HAS2-AS1). A significant part of mammalian genomes corresponds to genes that transcribe lncRNAs; they can regulate gene expression through several mechanisms, being involved not only in maintaining the normal homeostasis of cells and tissues, but also in the onset and progression of different diseases, as demonstrated by the increasing number of studies published through the last decades. HAS2-AS1 is no exception: it can be localized both in the nucleus and in the cytosol, regulating cancer cells as well as vascular smooth muscle cells behaviour. Hyaluronan is a component of the extracellular matrix and is synthetised by three isoenzymes named HAS1, 2, and 3. In several pathologies an upregulation of HAS2 leads to an abnormal accumulation of HA. The long non-coding RNA is a new specific epigenetic regulator of HAS2. In the nucleus HAS2-AS1 modulates chromatin structure around HAS2 promoter increasing transcription. In the cytosol, HAS2-AS1 can interact with several miRNAs altering the expression of several genes as well as can stabilise HAS2 mRNA forming RNA: RNA duplex.
Collapse
Key Words
- 4-MU, 4-methylubelliferone
- 4-MUG, 4-methylumbelliferyl glucuronide
- Atherosclerosis
- Cancer
- ECM, extracellular matrix
- EMT, epithelial to mesenchymal transition
- Epigenetics
- Extracellular matrix
- GAG, glycosaminoglycans
- Glycosaminoglycans
- HA, hyaluronan
- HAS2
- HAS2, hyaluronan synthase 2
- HAS2-AS1
- HAS2–AS1, hyaluronan synthase 2 natural antisense 1
- HIFs, hypoxia-inducible factors
- NF-κB, nuclear factor κ–light-chain enhancer of activated B cell
- PG, proteoglycan
- PTM, post-translational modification
- Proteoglycans
- RBP, RNA-binding protein
- SIRT1, sirtuin 1
- SMCs, smooth muscle cells
- TNF-α, tumour necrosis factor alpha
- UDP-GlcNAc, UDP-N-acetylglucosamine
- UDP-GlcUA, UDP-glucuronic acid
- ceRNA, competitive endogenous RNA
- lncRNA, long non-coding RNA
- miRNA, micro-RNA
Collapse
Affiliation(s)
- Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| |
Collapse
|
81
|
Ray SK, Mukherjee S. Consequences of Extracellular Matrix Remodeling in Headway and Metastasis of Cancer along with Novel Immunotherapies: A Great Promise for Future Endeavor. Anticancer Agents Med Chem 2021; 22:1257-1271. [PMID: 34254930 DOI: 10.2174/1871520621666210712090017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/23/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022]
Abstract
Tissues are progressively molded by bidirectional correspondence between denizen cells and extracellular matrix (ECM) via cell-matrix connections along with ECM remodeling. The composition and association of ECM are spatiotemporally directed to control cell conduct and differentiation; however, dysregulation of ECM dynamics prompts the development of diseases, for example, cancer. Emerging information demonstrates that hypoxia may have decisive roles in metastasis. In addition, the sprawling nature of neoplastic cells and chaotic angiogenesis are increasingly influencing microcirculation as well as altering the concentration of oxygen. In various regions of the tumor microenvironment, hypoxia, an essential player in the multistep phase of cancer metastasis, is necessary. Hypoxia can be turned into an advantage for selective cancer therapy because it is much more severe in tumors than in normal tissues. Cellular matrix gives signaling cues that control cell behavior and organize cells' elements in tissue development and homeostasis. The interplay between intrinsic factors of cancer cells themselves, including their genotype and signaling networks, and extrinsic factors of tumor stroma, for example, ECM and ECM remodeling, together decide the destiny and behavior of tumor cells. Tumor matrix encourages the development, endurance, and invasion of neoplastic and immune cell activities to drive metastasis and debilitate treatment. Incipient evidence recommends essential parts of tumor ECM segments and their remodeling in controlling each progression of the cancer-immunity cycle. Scientists have discovered that tumor matrix dynamics as well as matrix remodeling in perspective to anti-tumor immune reactions are especially important for matrix-based biomarkers recognition and followed by immunotherapy and targeting specific drugs.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Department of Applied Sciences, Indira Gandhi Technological and Medical Sciences University, India
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences Bhopal, Madhya pradesh-462020, India
| |
Collapse
|
82
|
Kotla NG, Bonam SR, Rasala S, Wankar J, Bohara RA, Bayry J, Rochev Y, Pandit A. Recent advances and prospects of hyaluronan as a multifunctional therapeutic system. J Control Release 2021; 336:598-620. [PMID: 34237401 DOI: 10.1016/j.jconrel.2021.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Hyaluronan (HA) is a naturally occurring non-sulfated glycosaminoglycan (GAG), cell-surface-associated biopolymer and is the key component of tissue extracellular matrix (ECM). Along with remarkable physicochemical properties, HA also has multifaceted biological effects that include but not limited to ECM organization, immunomodulation, and various cellular processes. Environmental cues such as tissue injury, infection or cancer change downstream signaling functionalities of HA. Unlike native HA, the fragments of HA have diversified effects on inflammation, cancer, fibrosis, angiogenesis and autoimmune response. In this review, we aim to discuss HA as a therapeutic delivery system development process, source, biophysical-chemical properties, and associated biological pathways (especially via cell surface receptors) of native and fragmented HA. We also tried to address an overview of the potential role of HA (native HA vs fragments) in the modulation of inflammation, immune response and various cancer targeting delivery applications. This review will also highlight the HA based therapeutic systems, medical devices and future perspectives of various biomedical applications were discussed in detail.
Collapse
Affiliation(s)
- Niranjan G Kotla
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
| | - Swetha Rasala
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Jitendra Wankar
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Raghvendra A Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France; Indian Institute of Technology Palakkad, Palakkad 678 623, Kerala, India
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland; Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow 119992, Russia.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland.
| |
Collapse
|
83
|
Hyaluronic acid in ocular drug delivery. Carbohydr Polym 2021; 264:118006. [DOI: 10.1016/j.carbpol.2021.118006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
|
84
|
Yang Y, Lu Y, Zeng K, Heinze T, Groth T, Zhang K. Recent Progress on Cellulose-Based Ionic Compounds for Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000717. [PMID: 32270900 PMCID: PMC11469321 DOI: 10.1002/adma.202000717] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 05/06/2023]
Abstract
Glycans play important roles in all major kingdoms of organisms, such as archea, bacteria, fungi, plants, and animals. Cellulose, the most abundant polysaccharide on the Earth, plays a predominant role for mechanical stability in plants, and finds a plethora of applications by humans. Beyond traditional use, biomedical application of cellulose becomes feasible with advances of soluble cellulose derivatives with diverse functional moieties along the backbone and modified nanocellulose with versatile functional groups on the surface due to the native features of cellulose as both cellulose chains and supramolecular ordered domains as extractable nanocellulose. With the focus on ionic cellulose-based compounds involving both these groups primarily for biomedical applications, a brief introduction about glycoscience and especially native biologically active glycosaminoglycans with specific biomedical application areas on humans is given, which inspires further development of bioactive compounds from glycans. Then, both polymeric cellulose derivatives and nanocellulose-based compounds synthesized as versatile biomaterials for a large variety of biomedical applications, such as for wound dressings, controlled release, encapsulation of cells and enzymes, and tissue engineering, are separately described, regarding the diverse routes of synthesis and the established and suggested applications for these highly interesting materials.
Collapse
Affiliation(s)
- Yang Yang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Road 381Guangzhou510640P. R. China
| | - Yi‐Tung Lu
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
| | - Kui Zeng
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| | - Thomas Heinze
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaCentre of Excellence for Polysaccharide ResearchHumboldt Straße 10JenaD‐07743Germany
| | - Thomas Groth
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
- Interdisciplinary Center of Materials ScienceMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
- Laboratory of Biomedical NanotechnologiesInstitute of Bionic Technologies and EngineeringI. M. Sechenov First Moscow State UniversityTrubetskaya Street 8119991MoscowRussian Federation
| | - Kai Zhang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| |
Collapse
|
85
|
Unfer V, Tilotta M, Kaya C, Noventa M, Török P, Alkatout I, Gitas G, Bilotta G, Laganà AS. Absorption, distribution, metabolism and excretion of hyaluronic acid during pregnancy: a matter of molecular weight. Expert Opin Drug Metab Toxicol 2021; 17:823-840. [PMID: 33999749 DOI: 10.1080/17425255.2021.1931682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION For many years hyaluronic acid (HA) was mainly used for its hydrating properties. However, new applications have recently arisen, considering the biological properties of HA and its molecular weight. Clinical application of low molecular weight HA (LMW-HA) initially was supported by specific absorption data. The identification of high molecular weight HA (HMW-HA) absorption pathways and the knowledge of its physiological role allowed to evaluate its clinical application. Based on the immunomodulatory properties of HMW-HA and its physiological involvement as signaling molecule, pregnancy represents an interesting context of application. AREA COVERED This expert opinion includes in-vitro, in-vivo, ex-vivo and clinical studies on gestational models. It provides an overview of the physiological and the therapeutic role of HMW-HA in pregnancy starting from its metabolism. Indeed, HMW-HA is widely involved in several physiological processes as implantation, immune response, uterine quiescence and cervical remodeling, and therefore is an essential molecule for a successful pregnancy. EXPERT OPINION Available evidence suggests that HMW-HA administration can support physiological pregnancy, favoring blastocyst adhesion and development, preventing miscarriage and pre-term birth. For this reason, supplementation in pregnancy should be evaluated.
Collapse
Affiliation(s)
| | | | - Cihan Kaya
- Department of Obstetrics and Gynaecology, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Marco Noventa
- Department of Women and Children's Health, Clinic of Gynecology and Obstetrics, University of Padua, Padua, Italy
| | - Péter Török
- Faculty of Medicine, Institute of Obstetrics and Gynecology, University of Debrecen, Hungary
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Georgios Gitas
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Lübeck, Germany
| | | | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital,University of Insubria, Varese, Italy
| |
Collapse
|
86
|
Neill T, Kapoor A, Xie C, Buraschi S, Iozzo RV. A functional outside-in signaling network of proteoglycans and matrix molecules regulating autophagy. Matrix Biol 2021; 100-101:118-149. [PMID: 33838253 PMCID: PMC8355044 DOI: 10.1016/j.matbio.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Proteoglycans and selected extracellular matrix constituents are emerging as intrinsic and critical regulators of evolutionarily conversed, intracellular catabolic pathways. Often, these secreted molecules evoke sustained autophagy in a variety of cell types, tissues, and model systems. The unique properties of proteoglycans have ushered in a paradigmatic shift to broaden our understanding of matrix-mediated signaling cascades. The dynamic cellular pathway controlling autophagy is now linked to an equally dynamic and fluid signaling network embedded in a complex meshwork of matrix molecules. A rapidly emerging field of research encompasses multiple matrix-derived candidates, representing a menagerie of soluble matrix constituents including decorin, biglycan, endorepellin, endostatin, collagen VI and plasminogen kringle 5. These matrix constituents are pro-autophagic and simultaneously anti-angiogenic. In contrast, perlecan, laminin α2 chain, and lumican have anti-autophagic functions. Mechanistically, each matrix constituent linked to intracellular catabolic events engages a specific cell surface receptor that often converges on a common core of the autophagic machinery including AMPK, Peg3 and Beclin 1. We consider this matrix-evoked autophagy as non-canonical given that it occurs in an allosteric manner and is independent of nutrient availability or prevailing bioenergetics control. We propose that matrix-regulated autophagy is an important outside-in signaling mechanism for proper tissue homeostasis that could be therapeutically leveraged to combat a variety of diseases.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Aastha Kapoor
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher Xie
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
87
|
Huang HM, Wu PH, Chou PC, Hsiao WT, Wang HT, Chiang HP, Lee CM, Wang SH, Hsiao YC. Enhancement of T2* Weighted MRI Imaging Sensitivity of U87MG Glioblastoma Cells Using γ-Ray Irradiated Low Molecular Weight Hyaluronic Acid-Conjugated Iron Nanoparticles. Int J Nanomedicine 2021; 16:3789-3802. [PMID: 34103915 PMCID: PMC8179824 DOI: 10.2147/ijn.s307648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/17/2021] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION It has been reported that low-molecular-weight hyaluronic acid (LMWHA) exhibits a potentially beneficial effect on cancer therapy through targeting of CD44 receptors on tumor cell surfaces. However, its applicability towards tumor detection is still unclear. In this regard, LMWHA-conjugated iron (Fe3O4) nanoparticles (LMWHA-IONPs) were prepared in order to evaluate its application for enhancing the T2* weighted MRI imaging sensitivity for tumor detection. METHODS LMWHA and Fe3O4 NPs were produced using γ-ray irradiation and chemical co-precipitation methods, respectively. First, LMWHA-conjugated FITC was prepared to confirm the ability of LMWHA to target U87MG cells using fluorescence microscopy. The hydrodynamic size distribution and dispersion of the IONPs and prepared LMWHA-IONPs were analyzed using dynamic light scattering (DLS). In addition, cell viability assays were performed to examine the biocompatibility of LMWHA and LMWHA-IONPs toward U87MG human glioblastoma and NIH3T3 fibroblast cell lines. The ability of LMWHA-IONPs to target tumor cells was confirmed by detecting iron (Fe) ion content using the thiocyanate method. Finally, time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging and in vitro magnetic resonance imaging (MRI) were performed to confirm the contrast enhancement effect of LMWHA-IONPs. RESULTS Florescence analysis results showed that LMWHA-FITC successfully targeted the surfaces of both tested cell types. The ability of LMWHA to target U87MG cells was higher than for NIH3T3 cells. Cell viability experiments showed that the fabricated LMWHA-IONPs possessed good biocompatibility for both cell lines. After co-culturing test cells with the LMWHA-IONPs, detected Fe ion content in the U87MG cells was much higher than that of the NIH3T3 cells in both thiocyanate assays and TOF-SIMs images. Finally, the addition of LMWHA-IONPs to the U87MG cells resulted in an obvious improvement in T2* weighted MR image contrast compared to control NIH3T3 cells. DISCUSSION Overall, the present results suggest that LMWHA-IONPs fabricated in this study provide an effective MRI contrast agent for improving the diagnosis of early stage glioblastoma in MRI examinations.
Collapse
Affiliation(s)
- Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ping-Han Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Po-Chien Chou
- School of Organic and Polymeric, National Taipei University of Technology, Taipei, Taiwan
| | - Wen-Tien Hsiao
- Department of Medical Imaging and Radiological Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Hsin-Ta Wang
- School of Organic and Polymeric, National Taipei University of Technology, Taipei, Taiwan
| | - Hsin-Pei Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chi-Ming Lee
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Shwu-Huey Wang
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Yu-Cheng Hsiao
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
88
|
Lepedda AJ, Nieddu G, Formato M, Baker MB, Fernández-Pérez J, Moroni L. Glycosaminoglycans: From Vascular Physiology to Tissue Engineering Applications. Front Chem 2021; 9:680836. [PMID: 34084767 PMCID: PMC8167061 DOI: 10.3389/fchem.2021.680836] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular diseases represent the number one cause of death globally, with atherosclerosis a major contributor. Despite the clinical need for functional arterial substitutes, success has been limited to arterial replacements of large-caliber vessels (diameter > 6 mm), leaving the bulk of demand unmet. In this respect, one of the most challenging goals in tissue engineering is to design a "bioactive" resorbable scaffold, analogous to the natural extracellular matrix (ECM), able to guide the process of vascular tissue regeneration. Besides adequate mechanical properties to sustain the hemodynamic flow forces, scaffold's properties should include biocompatibility, controlled biodegradability with non-toxic products, low inflammatory/thrombotic potential, porosity, and a specific combination of molecular signals allowing vascular cells to attach, proliferate and synthesize their own ECM. Different fabrication methods, such as phase separation, self-assembly and electrospinning are currently used to obtain nanofibrous scaffolds with a well-organized architecture and mechanical properties suitable for vascular tissue regeneration. However, several studies have shown that naked scaffolds, although fabricated with biocompatible polymers, represent a poor substrate to be populated by vascular cells. In this respect, surface functionalization with bioactive natural molecules, such as collagen, elastin, fibrinogen, silk fibroin, alginate, chitosan, dextran, glycosaminoglycans (GAGs), and growth factors has proven to be effective. GAGs are complex anionic unbranched heteropolysaccharides that represent major structural and functional ECM components of connective tissues. GAGs are very heterogeneous in terms of type of repeating disaccharide unit, relative molecular mass, charge density, degree and pattern of sulfation, degree of epimerization and physicochemical properties. These molecules participate in a number of vascular events such as the regulation of vascular permeability, lipid metabolism, hemostasis, and thrombosis, but also interact with vascular cells, growth factors, and cytokines to modulate cell adhesion, migration, and proliferation. The primary goal of this review is to perform a critical analysis of the last twenty-years of literature in which GAGs have been used as molecular cues, able to guide the processes leading to correct endothelialization and neo-artery formation, as well as to provide readers with an overall picture of their potential as functional molecules for small-diameter vascular regeneration.
Collapse
Affiliation(s)
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Matthew Brandon Baker
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| | - Julia Fernández-Pérez
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| |
Collapse
|
89
|
Diao S, Xiao M, Chen C. The role of hyaluronan in myelination and remyelination after white matter injury. Brain Res 2021; 1766:147522. [PMID: 34010609 DOI: 10.1016/j.brainres.2021.147522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Hyaluronan is one of the major components of the neural extracellular matrix (ECM) and provides structural support in physiological conditions. Altered hyaluronan regulation is implicated in the pathogenesis of white matter injury (WMI), such as perinatal WMI, multiple sclerosis (MS), traumatic brain injury (TBI). Early research reported diverse central nervous system (CNS) insults led to accumulated high-molecular-weight (HMW) hyaluronan in hypomyelinating/demyelinating lesions. Furthermore, recent findings have shown an elevated production of hyaluronan fragments in WMI, possibly resulting from HMW hyaluronan degradation. Subsequent in vitro studies identified bioactive hyaluronan fragments with a specific molecular weight (around 2x105 Da) regulating oligodendrocyte precursor cells (OPCs) maturation and myelination/remyelination in WMI. However, it is unclear about the effective hyaluronidases in generating bioactive hyaluronan fragments. Several hyaluronidases are proposed recently. Although PH20 is shown to block OPCs maturation by generating bioactive hyaluronan fragments in vitro, it seems unlikely to play a primary role in WMI with negligible expression levels in vivo. The role of other hyaluronidases on OPCs maturation and myelination/remyelination is still unknown. Other than hyaluronidases, CD44 and Toll-like receptors 2 (TLR2) are also implicated in HMW hyaluronan degradation in WMI. Moreover, recent studies elucidated bioactive hyaluronan fragments interact with TLR4, initiating signaling cascades to mediate myelin basic protein (MBP) transcription. Identifying key factors in hyaluronan actions may provide novel therapeutic targets to promote OPCs maturation and myelination/remyelination in WMI.
Collapse
Affiliation(s)
- Sihao Diao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Mili Xiao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China; Key Laboratory of Neonatal Diseases, National Health Commission, China.
| |
Collapse
|
90
|
Farion IA, Burdukovskii VF, Kholkhoev BC, Timashev PS. Unsaturated and thiolated derivatives of polysaccharides as functional matrixes for tissue engineering and pharmacology: A review. Carbohydr Polym 2021; 259:117735. [PMID: 33673996 DOI: 10.1016/j.carbpol.2021.117735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
This review examines investigations into the functionalization of polysaccharides by substituents containing multiple (CC) bonds and thiol (SH) groups that are prone to (co)polymerization in the presence of thermal, redox and photoinitiators or Michael addition reactions. A comparative analysis of the approaches to grafting the mentioned substituents onto the polysaccharide macromolecules was conducted. The use of the modified polysaccharides for the design of the 3D structures, including for the development of the pore bearing matrixes of cells or scaffolds utilized in regenerative medicine was examined. These modified polymers were also examined toward the design of excipient matrixes in pharmacological compositions, including with controllable release of active pharmaceuticals, as wel as of antibacterial and antifungal agents and others. In addition, a few examples of the use of modified derivatives in other areas are given.
Collapse
Affiliation(s)
- Ivan A Farion
- Laboratory of Polymer Chemistry, Baikal Institute of Nature Management Siberian Branch of Russian Academy of Sciences, Sakhyanovoy str. 6, Ulan-Ude, 670047, Russian Federation.
| | - Vitalii F Burdukovskii
- Laboratory of Polymer Chemistry, Baikal Institute of Nature Management Siberian Branch of Russian Academy of Sciences, Sakhyanovoy str. 6, Ulan-Ude, 670047, Russian Federation.
| | - Bato Ch Kholkhoev
- Laboratory of Polymer Chemistry, Baikal Institute of Nature Management Siberian Branch of Russian Academy of Sciences, Sakhyanovoy str. 6, Ulan-Ude, 670047, Russian Federation.
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation; Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, Kosygin str. 4, Moscow, 119991, Russian Federation; Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, 119991, Russian Federation.
| |
Collapse
|
91
|
Fang R, Jiang Q, Guan Y, Gao P, Zhang R, Zhao Z, Jiang Z. Golgi apparatus-synthesized sulfated glycosaminoglycans mediate polymerization and activation of the cGAMP sensor STING. Immunity 2021; 54:962-975.e8. [PMID: 33857420 DOI: 10.1016/j.immuni.2021.03.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 03/16/2021] [Indexed: 12/26/2022]
Abstract
Activation of the cyclic guanosine monophosphate (GMP)-AMP (cGAMP) sensor STING requires its translocation from the endoplasmic reticulum to the Golgi apparatus and subsequent polymerization. Using a genome-wide CRISPR-Cas9 screen to define factors critical for STING activation in cells, we identified proteins critical for biosynthesis of sulfated glycosaminoglycans (sGAGs) in the Golgi apparatus. Binding of sGAGs promoted STING polymerization through luminal, positively charged, polar residues. These residues are evolutionarily conserved, and selective mutation of specific residues inhibited STING activation. Purified or chemically synthesized sGAGs induced STING polymerization and activation of the kinase TBK1. The chain length and O-linked sulfation of sGAGs directly affected the level of STING polymerization and, therefore, its activation. Reducing the expression of Slc35b2 to inhibit GAG sulfation in mice impaired responses to vaccinia virus infection. Thus, sGAGs in the Golgi apparatus are necessary and sufficient to drive STING polymerization, providing a mechanistic understanding of the requirement for endoplasmic reticulum (ER)-to-Golgi apparatus translocation for STING activation.
Collapse
Affiliation(s)
- Run Fang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qifei Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yukun Guan
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Pengfei Gao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhen Zhao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
92
|
Chen W, Guan Y, Xu F, Jiang B. 4-Methylumbelliferone promotes the migration and odontogenetic differentiation of human dental pulp stem cells exposed to lipopolysaccharide in vitro. Cell Biol Int 2021; 45:1415-1422. [PMID: 33675275 DOI: 10.1002/cbin.11579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/27/2021] [Indexed: 01/04/2023]
Abstract
Hyaluronic acid (HA), a major component of the extracellular matrix, is essential to inflammatory regulation. 4-Methylumbelliferone (4-mu), as the specific inhibitor of HA synthesis, is an anti-inflammatory in multiple systems. However, there have been no studies, to our knowledge, regarding 4-mu treatment in pulp inflammation. Therefore, the purpose of this study was to investigate the effects of 4-mu on biological behaviors in human dental pulp stem cells (hDPSCs) exposed to lipopolysaccharide (LPS) in vitro. hDPSCs were exposed to LPS to construct the inflammation model in vitro. Immunocytochemistry, quantitative polymerase chain reaction, western blotting, Cell Counting Kit-8, scratch/Transwell assay, and alizarin red staining/alkaline phosphatase staining were selected to explore the effect of 4-mu on the expression of inflammatory factors, cell proliferation, cell migration, and the odontogenic differentiation ability of hDPSCs. LPS stimulated hDPSCs to highly express the related inflammatory factors and CD44 (the major HA receptor), which were all inhibited by 0.1 mM of 4-mu. In addition, the cell proliferation ability of hDPSCs was suppressed by 4-mu, while cell migration and odontogenic differentiation abilities were significantly improved under inflammation. In conclusion, 4-mu suppressed inflammatory cytokines in inflamed hDPSCs and had a positive effect on the migration and odontogenic differentiation of hDPSCs.
Collapse
Affiliation(s)
- Weiting Chen
- Department of Pediatric Dentistry, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yun Guan
- Department of Pediatric Dentistry, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Fangfang Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Beizhan Jiang
- Department of Pediatric Dentistry, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
93
|
Lepedda AJ, Nieddu G, Piperigkou Z, Kyriakopoulou K, Karamanos N, Formato M. Circulating Heparan Sulfate Proteoglycans as Biomarkers in Health and Disease. Semin Thromb Hemost 2021; 47:295-307. [PMID: 33794553 DOI: 10.1055/s-0041-1725063] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell-surface heparan sulfate proteoglycans (HSPGs) play key roles in regulating cell behavior, cell signaling, and cell matrix interactions in both physiological and pathological conditions. Their soluble forms from glycocalyx shedding are not merely waste products, but, rather, bioactive molecules, detectable in serum, which may be useful as diagnostic and prognostic markers. In addition, as in the case of glypican-3 in hepatocellular carcinoma, they may be specifically expressed by pathological tissue, representing promising targets for immunotherapy. The primary goal of this comprehensive review is to critically survey the main findings of the clinical data from the last 20 years and provide readers with an overall picture of the diagnostic and prognostic value of circulating HSPGs. Moreover, issues related to the involvement of HSPGs in various pathologies, including cardiovascular disease, thrombosis, diabetes and obesity, kidney disease, cancer, trauma, sepsis, but also multiple sclerosis, preeclampsia, pathologies requiring surgery, pulmonary disease, and others will be discussed.
Collapse
Affiliation(s)
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Nikolaos Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
94
|
Bonet IJM, Green PG, Levine JD. Sexual dimorphism in the nociceptive effects of hyaluronan. Pain 2021; 162:1116-1125. [PMID: 33065736 PMCID: PMC7969372 DOI: 10.1097/j.pain.0000000000002116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
ABSTRACT Intradermal administration of low-molecular-weight hyaluronan (LMWH) in the hind paw induced dose-dependent (0.1, 1, or 10 µg) mechanical hyperalgesia of similar magnitude in male and female rats. However, the duration of LMWH hyperalgesia was greater in females. This sexual dimorphism was eliminated by bilateral ovariectomy and by intrathecal administration of an oligodeoxynucleotide (ODN) antisense to the G-protein-coupled estrogen receptor (GPR30) mRNA in females, indicating estrogen dependence. To assess the receptors at which LMWH acts to induce hyperalgesia, LMWH was administered to groups of male and female rats that had been pretreated with ODN antisense (or mismatch) to the mRNA for 1 of 3 hyaluronan receptors, cluster of differentiation 44 (CD44), toll-like receptor 4, or receptor for hyaluronan-mediated motility (RHAMM). Although LMWH-induced hyperalgesia was attenuated in both male and female rats pretreated with ODN antisense for CD44 and toll-like receptor 4 mRNA, RHAMM antisense pretreatment only attenuated LMWH-induced hyperalgesia in males. Oligodeoxynucleotide antisense for RHAMM, however, attenuated LMWH-induced hyperalgesia in female rats treated with ODN antisense to GPR30, as well as in ovariectomized females. Low-molecular-weight hyaluronan-induced hyperalgesia was significantly attenuated by pretreatment with high-molecular-weight hyaluronan (HMWH) in male, but not in female rats. After gonadectomy or treatment with ODN antisense to GPR30 expression in females, HMWH produced similar attenuation of LMWH-induced hyperalgesia to that seen in males. These experiments identify nociceptors at which LMWH acts to produce mechanical hyperalgesia, establishes estrogen dependence in the role of RHAMM in female rats, and establishes estrogen dependence in the inhibition of LMWH-induced hyperalgesia by HMWH.
Collapse
Affiliation(s)
- Ivan J. M. Bonet
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
95
|
Shchegravina ES, Sachkova AA, Usova SD, Nyuchev AV, Gracheva YA, Fedorov AY. Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
96
|
Eftimov P, Yokoi N, Melo AM, Daull P, Georgiev GA. Interactions of Meibum and Tears with Mucomimetic Polymers: A Hint towards the Interplay between the Layers of the Tear Film. Int J Mol Sci 2021; 22:ijms22052747. [PMID: 33803116 PMCID: PMC7963170 DOI: 10.3390/ijms22052747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Recent clinical findings suggest that mucomimetic polymers (MMP) can alter not only the texture of the aqueous tear but also the spreading and structure of the tear film (TF) lipid layer, thereby allowing for their synchronized performance in vivo. Thus, we aimed to evaluate in vitro (i) the capability of pharmaceutically applicable MMP to ensure the formation of post-evaporative ferning patterns (a characteristic feature of the “healthy” tear colloid) and (ii) the MMP interactions with human meibum films accessed in the course of blink-like deformations via Langmuir surface balance and Brewster angle microscopy (BAM). Four MMP were used- hyaluronic acid (HA), cross-linked hyaluronic acid (CHA), carboxymethyl cellulose (CMC) and gellan gum (GG)- at the concentrations of 0.0001%, 0.001%, 0.01%, 0.05% and 0.1%. Significant differences were observed in the MMP fern formation capability: CHA (≥0.001%) > HA (≥0.01%) = CMC (≥0.01%) > GG (≥0.05%). All MMP affected the spreading of meibum, with BAM micrographs revealing thickening of the films. CHA was particularly efficient, showing concentration-dependent enhancement of tear ferning and of meibomian layer structure, surfactant properties and viscoelasticity. Thus, endogenous and exogenous MMP may play key roles for the concerted action of the TF layers at the ocular surface, revealing novel routes for TF-oriented therapeutic applications.
Collapse
Affiliation(s)
- Petar Eftimov
- Department of Cytology, Histology and Embryology, Faculty of Biology, St. Kliment Ohridski University of Sofia, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria;
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Ana M. Melo
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1649-004 Lisbon, Portugal;
| | - Philippe Daull
- Novagali Innovation Center, Santen SAS, 91058 Evry, France;
| | - Georgi As. Georgiev
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1649-004 Lisbon, Portugal;
- Correspondence: ; Tel.: +351-218-419-065
| |
Collapse
|
97
|
Berdiaki A, Neagu M, Giatagana EM, Kuskov A, Tsatsakis AM, Tzanakakis GN, Nikitovic D. Glycosaminoglycans: Carriers and Targets for Tailored Anti-Cancer Therapy. Biomolecules 2021; 11:395. [PMID: 33800172 PMCID: PMC8001210 DOI: 10.3390/biom11030395] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded by the components of the extracellular matrix (ECM). Glycosaminoglycans (GAGs), natural biomacromolecules, essential ECM, and cell membrane components are extensively altered in cancer tissues. During disease progression, the GAG fine structure changes in a manner associated with disease evolution. Thus, changes in the GAG sulfation pattern are immediately correlated to malignant transformation. Their molecular weight, distribution, composition, and fine modifications, including sulfation, exhibit distinct alterations during cancer development. GAGs and GAG-based molecules, due to their unique properties, are suggested as promising effectors for anticancer therapy. Considering their participation in tumorigenesis, their utilization in drug development has been the focus of both industry and academic research efforts. These efforts have been developing in two main directions; (i) utilizing GAGs as targets of therapeutic strategies and (ii) employing GAGs specificity and excellent physicochemical properties for targeted delivery of cancer therapeutics. This review will comprehensively discuss recent developments and the broad potential of GAG utilization for cancer therapy.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| |
Collapse
|
98
|
Adeniyi T, Horne G, Ruane PT, Brison DR, Roberts SA. Clinical efficacy of hyaluronate-containing embryo transfer medium in IVF/ICSI treatment cycles: a cohort study. Hum Reprod Open 2021; 2021:hoab004. [PMID: 33718621 PMCID: PMC7937422 DOI: 10.1093/hropen/hoab004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/19/2020] [Indexed: 12/29/2022] Open
Abstract
STUDY QUESTION Does the duration of embryo exposure to hyaluronic acid (HA) enriched medium improve the rate of live birth events (LBEs)? SUMMARY ANSWER The use of embryo transfer (ET) medium rich in HA improves LBE (a singleton or twin live birth) regardless of the duration of exposure evaluated in this study, but does not alter gestation or birthweight (BW). WHAT IS KNOWN ALREADY HA-enriched medium is routinely used for ET in ART to facilitate implantation, despite inconclusive evidence on safety and efficacy. STUDY DESIGN SIZE DURATION A cohort study was performed evaluating clinical treatment outcomes before and after HA-enriched ET medium was introduced into routine clinical practice. In total, 3391 fresh ET procedures were performed using low HA and HA-rich medium in women undergoing publicly funded IVF/ICSI treatment cycles between May 2011 and April 2015 were included in this cohort study. PARTICIPANTS/MATERIALS SETTING METHODS A total of 1018 ET performed using low HA medium were compared with 1198, and 1175 ET following exposure to HA-rich medium for 2-4 h (long HA exposure) or for 10-30 min (short HA exposure), respectively. A multiple logistic regression analysis was used to compare clinical outcomes including BW, gestational age and sex ratios between groups, whilst adjusting for patient age, previous attempt, incubator type and the number of embryos transferred. MAIN RESULTS AND THE ROLE OF CHANCE The use of HA-rich medium for ET was positively and significantly associated with improved clinical pregnancy rate and LBE, for both exposure durations: long HA (odds ratio (OR) = 1.21, 95% CI: 0.99-1.48), short HA (OR = 1.32, 95% CI: 1.02-1.72) and pooled OR = 1.26, 95% CI: 1.03-1.54, relative to the use of low HA medium. A comparative analysis of the risks of early pregnancy loss following long HA exposure (OR = 0.76, 95% CI: 0.54-1.06), short HA exposure (OR = 0.84, 95% CI: 0.54-1.30) and late miscarriage (OR = 0.88, 95% CI: 0.51-1.53) (OR = 1.41, 95% CI 0.72-2.77), were lower and not statistically significant. Similarly, ordinary regression analysis of the differences in BW at both HA exposures; pooled OR = -0.9 (-117.1 to 115.3), and adjusted BW between both HA cohorts; pooled OR = -13.8 (-106.1 to 78.6) did not show any differences. However, a difference in gestational age (pooled OR -0.3 (-3.4 to 2.9)) and sex ratio (pooled OR 1.43 (0.95-2.15)) were observed but these were not statistically significant relative to low HA medium. LIMITATIONS REASONS FOR CAUTION The strength of a randomized treatment allocation was not available in this evaluation study, therefore effects of unmeasured or unknown confounding variables cannot be ruled out. WIDER IMPLICATIONS OF THE FINDINGS The result of this large cohort study strengthens the case for using HA-rich medium routinely at transfer, while adding the important clinical information that duration of exposure may not be critical. The composition and effects of commercial IVF culture media on success rate and safety remains a major controversy despite increasing calls for transparency and evidence-based practice in ART. Nonetheless, the lack of differences in BW and gestational age observed in this study were reassuring. However, an appraisal of clinical outcomes and appropriate research investigations are required for the continuous evaluation of efficacy and safety of HA. STUDY FUNDING/COMPETING INTERESTS T.A. is funded by a Clinical Doctoral Research Fellowship (CDRF) grant (reference: ICA-CDRF-2015-01-068) from the National Institute for Health Research (NIHR). The views expressed in this publication are those of the authors and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Tope Adeniyi
- Department of Reproductive Medicine, Old Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gregory Horne
- Department of Reproductive Medicine, Old Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Peter T Ruane
- Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Daniel R Brison
- Department of Reproductive Medicine, Old Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephen A Roberts
- Division of Population Health, Health Services Research & Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, Centre for Biostatistics, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
99
|
Selman G, Martinez L, Lightle A, Aguilar A, Woltmann D, Xiao Y, Vazquez-Padron RI, Salman LH. A hyaluronan synthesis inhibitor delays the progression of diabetic kidney disease in a mouse experimental model. KIDNEY360 2021; 2:809-818. [PMID: 34350420 PMCID: PMC8330520 DOI: 10.34067/kid.0004642020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The role of hyaluronan (HA) in the development and progression of diabetic kidney disease (DKD), as well as the precise mechanisms and consequences of HA involvement in this pathology are still to be clarified. METHODS In this study, we assayed the effects of the HA synthesis inhibitor 4-methylumbelliferone (4-MU) on the development of DKD. Diabetic type 2 model mice (eNOS-/- C57BLKS/Jdb) were fed artificial diets containing 5% 4-MU or not for 9 weeks. Plasma glucose, glomerular filtration rate (GFR), albumin to creatinine ratio (ACR), and biomarkers of kidney function and systemic inflammation were measured at baseline and after treatment. Diabetic nephropathy was further characterized in treated and control mice by histopathology. RESULTS Treated animals consumed a daily dose of approximately 6.2 g of 4-MU per kg of body weight. At the end of the experimental period, the 4-MU supplemented diet resulted in a significant decrease in non-fasting plasma glucose (516 [interquartile range 378-1170] vs. 1149 [875.8-1287] mg/dL, P=0.050) and a trend toward lower HA kidney content (5.6 ± 1.5 vs. 8.8 ± 3.1 ng/mg of kidney weight, P=0.070) compared to the control diet, respectively. Diabetic animals treated with 4-MU showed significantly higher GFR and lower urine ACR and plasma cystatin C levels than diabetic controls. Independent histological assessment of DKD also demonstrated a significant decrease in mesangial expansion score and glomerular injury index in 4-MU-treated mice compared to controls. Plasma glucose showed a strong correlation with kidney HA levels (r=0.66, P=0.0098). Both total hyaluronan (r=0.76, P=0.0071) and low-molecular-weight hyaluronan content (r=0.64, P=0.036) in the kidneys correlated with urine ACR in mice. CONCLUSION These results show that the hyaluronan synthesis inhibitor 4-MU effectively slowed the progression of DKD and constitutes a potential new therapeutic approach to treat DKD.
Collapse
Affiliation(s)
- Guillermo Selman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Andrea Lightle
- Department of Pathology, Albany Medical Center, Albany, New York
| | - Alejandra Aguilar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Daniel Woltmann
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Loay H. Salman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York,Division of Nephrology and Hypertension, Albany Medical Center, Albany, New York
| |
Collapse
|
100
|
Tavianatou AG, Piperigkou Z, Koutsakis C, Barbera C, Beninatto R, Franchi M, Karamanos NK. The action of hyaluronan in functional properties, morphology and expression of matrix effectors in mammary cancer cells depends on its molecular size. FEBS J 2021; 288:4291-4310. [PMID: 33512780 DOI: 10.1111/febs.15734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer constitutes a heterogeneous disease. The expression profiles of estrogen receptors (ERs), as well as the expression patterns of extracellular matrix (ECM) macromolecules, determine its development and progression. Hyaluronan (HA) is an ECM molecule that regulates breast cancer cells' properties in a molecular size-dependent way. Previous studies have shown that 200-kDa HA fragments modulate the functional properties, morphology, and expression of several matrix mediators of the highly metastatic ERα- /ERβ+ MDA-MB-231 cells. In order to evaluate the effects of HA fragments (< 10, 30 and 200-kDa) in ERβ-suppressed breast cancer cells, the shERβ MDA-MB-231 cells were used. These cells are less aggressive when compared with MDA-MB-231 cells. To this end, the functional properties, the morphology, and the expression of the molecules associated with breast cancer cells metastatic potential were studied. Notably, both cell proliferation and invasion were significantly reduced after treatment with 200-kDa HA. Moreover, as assessed by scanning electron microscopy, 200-kDa HA affected cellular morphology, and as assessed by qPCR, upregulated the epithelial marker Ε-cadherin. The expression profiles of ECM mediators, such as HAS2, CD44, and MMP7, were also altered. On the other hand, cellular migration and the expression levels of syndecan-4 (SDC-4) were not significantly affected in contrast to our observations regarding MDA-MB-231 cells. These novel data demonstrate that the molecular size of the HA determines its effects on ERβ-suppressed breast cancer cells and that 200-kDa HA exhibits antiproliferative effects on these cells. A deeper understanding of this mechanism may contribute to the development of therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- Anastasia-Gerasimoula Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | | | | | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|