51
|
Huang J, Guan B, Lin L, Wang Y. Improvement of intestinal barrier function, gut microbiota, and metabolic endotoxemia in type 2 diabetes rats by curcumin. Bioengineered 2021; 12:11947-11958. [PMID: 34818970 PMCID: PMC8810160 DOI: 10.1080/21655979.2021.2009322] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is known as a complex genetic disease characterized by genetic and environmental factors. The imbalanced intestinal flora and intestinal mucosal barrier are considered to be related to T2DM. Curcumin has been proved to affect the progression of T2DM. T2DM animal was established by low-dose streptozotocin intraperitoneal injection combined with high-fat diet (HFD) feeding. Hematoxylin and eosin (HE) staining and transfer electron microscopy (TEM) were used to observe morphological changes of intestinal tissues of T2DM rats. Insulin and glucose tolerance tests were performed to investigate the influence of curcumin on blood glucose. Curcumin significantly improved the intestinal integrity, hyperglycemia and insulin resistance in diabetic rats. The metabolic endotoxemia induced by HFD in diabetic rats was inhibited remarkably. Curcumin reversed gut microbiota dysbiosis in diabetic rats caused by HFD. We demonstrated that curcumin could protect intestinal mucosal barrier, improve insulin resistance and reduce blood glucose in diabetic rats. This study might provide experimental evidence for the prevention and treatment in T2DM.
Collapse
Affiliation(s)
- Jingze Huang
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Binbin Guan
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Lijing Lin
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yanping Wang
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
52
|
Mechanistic Insight into the Effects of Curcumin on Neuroinflammation-Driven Chronic Pain. Pharmaceuticals (Basel) 2021; 14:ph14080777. [PMID: 34451874 PMCID: PMC8397941 DOI: 10.3390/ph14080777] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Chronic pain is a persistent and unremitting condition that has immense effects on patients' quality of life. Studies have shown that neuroinflammation is associated with the induction and progression of chronic pain. The activation of microglia and astrocytes is the major hallmark of spinal neuroinflammation leading to neuronal excitability in the projection neurons. Excessive activation of microglia and astrocytes is one of the major contributing factors to the exacerbation of pain. However, the current chronic pain treatments, mainly by targeting the neuronal cells, remain ineffective and unable to meet the patients' needs. Curcumin, a natural plant product found in the Curcuma genus, improves chronic pain by diminishing the release of inflammatory mediators from the spinal glia. This review details the role of curcumin in microglia and astrocytes both in vitro and in vivo and how it improves pain. We also describe the mechanism of curcumin by highlighting the major glia-mediated cascades in pain. Moreover, the role of curcumin on inflammasome and epigenetic regulation is discussed. Furthermore, we discuss the strategies used to improve the efficacy of curcumin. This review illustrates that curcumin modulating microglia and astrocytes could assure the treatment of chronic pain by suppressing spinal neuroinflammation.
Collapse
|
53
|
Dai X, Feng J, Chen Y, Huang S, Shi X, Liu X, Sun Y. Traditional Chinese Medicine in nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Chin Med 2021; 16:68. [PMID: 34344394 PMCID: PMC8330116 DOI: 10.1186/s13020-021-00469-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the world's largest chronic liver disease, while there is still no specific drug to treat NAFLD. Traditional Chinese Medicine (TCM) have been widely used in hepatic diseases for centuries in Asia, and TCM's holistic concept and differentiation treatment of NAFLD show their advantages in the treatment of this complex metabolic disease. However, the multi-compounds and multi-targets are big obstacle for the study of TCM. Here, we summarize the pharmacological actions of active ingredients from frequently used single herbs in TCM compounds. The combined mechanism of herbs in TCM compounds are further discussed to explore their comprehensive effects on NAFLD. This article aims to summarize multiple functions and find the common ground for TCM treatment on NAFLD, thus providing enrichment to the scientific connotation of TCM theories and promotes the exploration of TCM therapies on NAFLD.
Collapse
Affiliation(s)
- Xianmin Dai
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Jiayi Feng
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Yi Chen
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Si Huang
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Xiaofei Shi
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China.
| | - Yang Sun
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China.
| |
Collapse
|
54
|
Abd El-Hack ME, Alaidaroos BA, Farsi RM, Abou-Kassem DE, El-Saadony MT, Saad AM, Shafi ME, Albaqami NM, Taha AE, Ashour EA. Impacts of Supplementing Broiler Diets with Biological Curcumin, Zinc Nanoparticles and Bacillus licheniformis on Growth, Carcass Traits, Blood Indices, Meat Quality and Cecal Microbial Load. Animals (Basel) 2021; 11:1878. [PMID: 34202621 PMCID: PMC8300294 DOI: 10.3390/ani11071878] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
The current study aimed to investigate the influence of dietary zinc nanoparticles (ZnNPs), curcumin nanoparticles (CurNPs), and Bacillus licheniformis (Bl) on the growth, carcass, blood metabolites, and the count of some cecal microorganisms of Indian River (IR) broilers. Chicks were allotted into seven experimental groups: control group, 1st, 2nd and 3rd groups were given diets enriched with ZnNPs, CurNPs and Bl (3.0, 5.0 and 2.0 cm3/kg diet, respectively). The 4th, 5th and 6th groups were given diets supplemented with ZnNPs (3.0) + Bl (2.0) (ZP); ZnNPs (3.0) + CurNPs (5.0) (ZC) and ZnNPs (3.0) + CurNPs (5.0) + Bl (2.0) (ZCP) cm3/kg diet, respectively. The results revealed that ZnNPs and CurNPs exhibited a considerable antimicrobial activity against pathogenic bacteria and fungi. They also inhibited the growth of microbes in a range of 50-95 µg/mL. The diet supplemented with ZnNPs, CurNPs, and Bl increased the body weight compared to the control after five weeks of age. Additionally, values of daily feed intake increased in these groups; however, the feed conversion ratio decreased. All values of carcass traits were better than that of the control. The treatments led to decreased abdominal lipids compared to the control. The activity of liver enzymes and malondialdehyde (MDA) activity decreased in the treated groups. In a converse trend, the levels of oxidative enzymes, amylase, protease, lipase and immunoglobulin were higher than that of the control. Meat quality properties were improved and cecal microbial counts were decreased. In conclusion, the ZnNPs, CurNPs, and Bl improved the broiler's weights, carcass traits, meat quality traits, as well as some blood indices and cecal microbial load. Therefore, the inclusion of ZnNPs, CurNPs, or Bl is recommended for broiler feeding regimens to improve the performance and health status.
Collapse
Affiliation(s)
| | - Bothaina A. Alaidaroos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21577, Saudi Arabia; (B.A.A.); (R.M.F.); (M.E.S.); (N.M.A.)
| | - Reem M. Farsi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21577, Saudi Arabia; (B.A.A.); (R.M.F.); (M.E.S.); (N.M.A.)
| | - Diaa E. Abou-Kassem
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig 44519, Egypt;
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Manal E. Shafi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21577, Saudi Arabia; (B.A.A.); (R.M.F.); (M.E.S.); (N.M.A.)
| | - Najah M. Albaqami
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21577, Saudi Arabia; (B.A.A.); (R.M.F.); (M.E.S.); (N.M.A.)
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22756, Egypt;
| | - Elwy A. Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| |
Collapse
|
55
|
Jabczyk M, Nowak J, Hudzik B, Zubelewicz-Szkodzińska B. Curcumin and Its Potential Impact on Microbiota. Nutrients 2021; 13:2004. [PMID: 34200819 PMCID: PMC8230423 DOI: 10.3390/nu13062004] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Curcumin is one of the most frequently researched herbal substances; however, it has been reported to have a poor bioavailability and fast metabolism, which has led to doubts about its effectiveness. Curcumin has antioxidant and anti-inflammatory effects, and has demonstrated favorable health effects. Nevertheless, well-reported in vivo pharmacological activities of curcumin are limited by its poor solubility, bioavailability, and pharmacokinetic profile. The bidirectional interactions between curcumin and gut microbiota play key roles in understanding the ambiguity between the bioavailability and biological activity of curcumin, including its wider health impact.
Collapse
Affiliation(s)
- Marzena Jabczyk
- Department of Nutrition-Related Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, 41-900 Bytom, Poland; (M.J.); (B.Z.-S.)
| | - Justyna Nowak
- Department of Cardiovascular Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, 41-900 Bytom, Poland;
| | - Bartosz Hudzik
- Department of Cardiovascular Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, 41-900 Bytom, Poland;
- Silesian Center for Heart Diseases, Third Department of Cardiology, Faculty of Medical Science in Zabrze, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Barbara Zubelewicz-Szkodzińska
- Department of Nutrition-Related Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, 41-900 Bytom, Poland; (M.J.); (B.Z.-S.)
| |
Collapse
|
56
|
|
57
|
Wang Z, Zeng M, Wang Z, Qin F, Chen J, He Z. Dietary Polyphenols to Combat Nonalcoholic Fatty Liver Disease via the Gut-Brain-Liver Axis: A Review of Possible Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3585-3600. [PMID: 33729777 DOI: 10.1021/acs.jafc.1c00751] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyphenols are a group of micronutrients widely existing in plant foods including fruits, vegetables, and teas that can improve nonalcoholic fatty liver disease (NAFLD). In this review, the existing knowledge of dietary polyphenols for the development of NAFLD regulated by intestinal microecology is discussed. Polyphenols can influence the vagal afferent pathway in the central and enteric nervous system to control NAFLD via gut-brain-liver cross-talk. The possible mechanisms involve in the alteration of microbial community structure, effects of gut metabolites (short-chain fatty acids (SCFAs), bile acids (BAs), endogenous ethanol (EnEth)), and stimulation of gut-derived hormones (ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and leptin) based on the targets excavated from the gut-brain-liver axis. Consequently, the communication among the intestine, brain, and liver paves the way for new approaches to understand the underlying roles and mechanisms of dietary polyphenols in NAFLD pathology.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
58
|
Liao J, Xie X, Gao J, Zhang Z, Qu F, Cui H, Cao Y, Han X, Zhao J, Wen W, Wang H. Jian-Gan-Xiao-Zhi Decoction Alleviates Inflammatory Response in Nonalcoholic Fatty Liver Disease Model Rats through Modulating Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5522755. [PMID: 33824675 PMCID: PMC8007356 DOI: 10.1155/2021/5522755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Jian-Gan-Xiao-Zhi decoction (JGXZ), composed of Salvia miltiorrhiza Bunge, Panax notoginseng, Curcuma zedoaria, and other 9 types of herbs, has demonstrated beneficial effects on nonalcoholic fatty liver disease (NAFLD). However, the mechanisms behind JGXZ's impact on NAFLD remain unknown. METHODS In this study, a NAFLD rat model induced by a high-fat diet (HFD) received oral treatment of JGXZ (8 or 16 g crude herb/kg) for 12 weeks. The therapeutic effects of JGXZ on NAFLD model rats were investigated through blood lipid levels and pathological liver changes. 16S rRNA analysis was used to study the changes in gut microbiota after JGXZ treatment. The expressions of occludin and tight junction protein 1 (ZO-1) in the colon were investigated using immunostaining to study the effects of JGXZ on gut permeability. The anti-inflammatory effects of JGXZ were also studied through measuring the levels of IL-1β, IL-6, and TNF-α in the serum and liver. RESULTS JGXZ treatment could decrease body weight and ameliorate dyslipidemia in NAFLD model rats. H&E and Oil Red O staining indicated that JGXZ reduced steatosis and infiltration of inflammatory cells in the liver. 16S rRNA analysis showed that JGXZ impacted the diversity of gut microbiota, decreasing the Firmicutes-to-Bacteroidetes ratio, and increasing the relative abundance of probiotics, such as Alloprevotella, Lactobacillus, and Turicibacter. Gut permeability evaluation found that the expressions of ZO-1 and occludin in the colon were increased after JGXZ treatment. Moreover, JGXZ treatment could decrease the levels of IL-1β, IL-6, and TNF-α in the serum and liver. CONCLUSIONS Our study illustrated that JGXZ could ameliorate NAFLD through modulating gut microbiota, decreasing gut permeability, and alleviating inflammatory response.
Collapse
Affiliation(s)
- Jiabao Liao
- Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, Zhejiang, China
| | - Xuehua Xie
- Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan, China
| | - Jinmei Gao
- Fujian People's Hospital of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhaiyi Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fei Qu
- Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, Zhejiang, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yongjun Cao
- Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, China
| | - Xue Han
- Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan, China
| | - Jie Zhao
- Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan, China
| | - Weibo Wen
- Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan, China
| | - Hongwu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
59
|
Li S, You J, Wang Z, Liu Y, Wang B, Du M, Zou T. Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice. Food Res Int 2021; 143:110270. [PMID: 33992371 DOI: 10.1016/j.foodres.2021.110270] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/09/2023]
Abstract
Curcumin (Cur) is a natural polyphenol with beneficial effect against obesity and related metabolic disorders, but its precise mechanisms of action remain to be defined due to its limited systemic bioavailability. We hypothesized that gut microbiota may be a prospective therapeutic target for Cur-induced metabolic benefits. This study aimed to investigate whether the metabolic adaptations resulting from Cur supplementation were mediated by the gut microbiota in high-fat diet (HFD)-fed obese mice. C57BL/6 mice were fed a control diet or a HFD diet with or without 0.2% Cur for 10 weeks. Lipid profiles, insulin sensitivity, hepatic metabolism, gut microbiota composition and short-chain fatty acid (SCFA) production were determined. Dietary Cur reduced fat mass, hepatic steatosis and circulating lipopolysaccharide levels and improved the insulin sensitivity in HFD-fed mice. More importantly, Cur supplementation modulated the gut microbiota composition and ameliorated intestinal dysbiosis by decreasing the ratio of Firmicutes/Bacteroidetes and endotoxin-producing Desulfovibrio bacteria and increasing the abundance of Akkermansia population and SCFA-producing bacteria, such as Bacteroides, Parabacteroides, Alistipes and Alloprevotella, along with increases in caecal and colonic SCFA concentrations. These dominant bacterial genera altered by Cur showed strong correlations with the obesity-related metabolic parameters in HFD-fed mice. In conclusion, our data suggest that Cur alleviated metabolic features of hepatic steatosis and insulin resistance in HFD-fed obese mice, which might be associated with the modulation of gut microbiota composition and metabolites.
Collapse
Affiliation(s)
- Shuo Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Zirui Wang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Yue Liu
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100094, China
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China.
| |
Collapse
|
60
|
Zhou H, Ma C, Wang C, Gong L, Zhang Y, Li Y. Research progress in use of traditional Chinese medicine monomer for treatment of non-alcoholic fatty liver disease. Eur J Pharmacol 2021; 898:173976. [PMID: 33639194 DOI: 10.1016/j.ejphar.2021.173976] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
With the improvement of people's living standards and the change of eating habits, non-alcoholic fatty liver disease (NAFLD) has gradually become one of the most common chronic liver diseases in the world. However, there are no effective drugs for the treatment of NAFLD. Therefore, it is urgent to find safe, efficient, and economical anti-NAFLD drugs. Compared with western medicines that possess fast lipid-lowering effect, traditional Chinese medicines (TCM) have attracted increasing attention for the treatment of NAFLD due to their unique advantages such as multi-targets and multi-channel mechanisms of action. TCM monomers have been proved to treat NAFLD through regulating various pathways, including inflammation, lipid production, insulin sensitivity, mitochondrial dysfunction, autophagy, and intestinal microbiota. In particular, peroxisome proliferator-activated receptor α (PPAR-α), sterol regulatory element-binding protein 1c (SREBP-1c), nuclear transcription factor kappa (NF-κB), phosphoinositide 3-kinase (PI3K), sirtuin1 (SIRT1), AMP-activated protein kinase (AMPK), p53 and nuclear factor erythroid 2-related factor 2 (Nrf2) are considered as important molecular targets for ameliorating NAFLD by TCM monomers. Therefore, by searching PubMed, Web of Science and SciFinder databases, this paper updates and summarizes the experimental and clinical evidence of TCM monomers for the treatment of NAFLD in the past six years (2015-2020), thus providing thoughts and prospects for further exploring the pathogenesis of NAFLD and TCM monomer therapies.
Collapse
Affiliation(s)
- Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
61
|
Moszak M, Szulińska M, Walczak-Gałęzewska M, Bogdański P. Nutritional Approach Targeting Gut Microbiota in NAFLD-To Date. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1616. [PMID: 33567710 PMCID: PMC7916007 DOI: 10.3390/ijerph18041616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant clinical and epidemiological problem that affects around 25% of the adult global population. A large body of clinical evidence highlights that NAFLD is associated with increased liver-related morbidity and mortality and an increased risk of cardiovascular disease, extrahepatic cancers, type 2 diabetes, and chronic kidney disease. Recently, a series of studies revealed the pivotal role of gut microbiota (GM) dysbiosis in NAFLD's pathogenesis. The GM plays an essential role in different metabolic pathways, including the fermentation of diet polysaccharides, energy harvest, choline regulation, and bile acid metabolism. One of the most critical factors in GM stabilization is the diet; therefore, nutritional therapyappearsto be a promising tool in NAFLD therapy. This paper aims to review the current knowledge regardingthe nutritional approach and its implications with GM and NAFLD treatment. We discuss the positive impact of probiotics, prebiotics, and symbiotics in a reverse dysbiosis state in NAFLD and show the potential beneficial effects of bioactive substances from the diet. The full description of the mechanism of action and comprehensive examination of the impact of nutritional interventions on GM modulation may, in the future, be a simple but essential tool supporting NAFLD therapy.
Collapse
Affiliation(s)
- Małgorzata Moszak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.S.); (P.B.)
| | - Monika Szulińska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.S.); (P.B.)
| | - Marta Walczak-Gałęzewska
- Department of Internal Medicine, Metabolic Disorders, and Hypertension, Poznań University of Medical Sciences, 61-701 Poznań, Poland;
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.S.); (P.B.)
| |
Collapse
|
62
|
Li R, Yao Y, Gao P, Bu S. The Therapeutic Efficacy of Curcumin vs. Metformin in Modulating the Gut Microbiota in NAFLD Rats: A Comparative Study. Front Microbiol 2021; 11:555293. [PMID: 33584555 PMCID: PMC7874275 DOI: 10.3389/fmicb.2020.555293] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Structural disruption of gut microbiota is closely related to the occurrence of non-alcoholic fatty liver disease (NAFLD). Previous research has demonstrated that both curcumin (CUR) and metformin (MET) have a therapeutic effect against NAFLD and play a role in modulating the gut microbiota. However, there is a lack of direct comparison between the two medications in terms of the therapeutic efficacy and the regulatory effect on gut microbiota. In this study, we administered either CUR or MET to rats with high-fat diet (HFD)-induced obesity to observe changes in body parameters, biochemical parameters, liver, and ileum pathology and gut microbiota, and used next generation sequencing and multivariate analysis to evaluate the structural changes of gut microbiota in a NAFLD rat model before and after CUR and MET intervention. It was found that both CUR and MET attenuated hepatic ectopic fat deposition, alleviated inflammatory factors, and improved intestinal barrier integrity in HFD-fed rats. More importantly, CUR and MET reduced the Firmicutes/Bacteroidetes ratio and reverted the composition of the HFD-disrupted gut microbiota. Both CUR and MET treatments effectively modified the gut microbiome, enriched the abundance of beneficial bacteria and reduced opportunistic pathogens in obese rats. The abundance of Butyricicoccus was increased while the abundance of Dorea was decreased in HFD + CUR group. Besides, some beneficial bacteria such as Prevotella were increased in MET-treated animals. Spearman’s correlation analysis showed that Helicobacter, Akkermansia, Desulfovibrio, Romboutsia, Corynebacterium, Lactobacillus, Ruminococcaceae_unclassified, Lachnospiraceae_unclassified, and Clostridiales_unclassified showed significantly positive correlations with TG, TC, LDL-C, GLU, IL-6, IL-1β, and TNF-α, and negative correlations with HDL-C (both p < 0.05). However, Prevotella and Stomatobaculum showed an opposite trend. In summary, CUR and MET showed similar effects in alleviating hepatic steatosis, improving intestinal barrier integrity and modulating gut microbiota in HFD-induced obesity rats, and therefore may prove to be a novel adjunctive therapy for NAFLD.
Collapse
Affiliation(s)
- Ruifang Li
- Department of Gastroenterology, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yurong Yao
- Department of Infection, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Pengfei Gao
- Department of Traditional Chinese Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shurui Bu
- Department of Gastroenterology, Jinshan Hospital Affiliated to Fudan University, Shanghai, China.,Department of Infection, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
63
|
Can curcumin supplementation reduce plasma levels of gut-derived uremic toxins in hemodialysis patients? A pilot randomized, double-blind, controlled study. Int Urol Nephrol 2021; 53:1231-1238. [PMID: 33438085 DOI: 10.1007/s11255-020-02760-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gut dysbiosis is common in patients with chronic kidney disease (CKD) and is closely related to inflammatory processes. Some nutritional strategies, such as bioactive compounds present in curcumin, have been proposed as an option to modulate the gut microbiota and decrease the production of uremic toxins such as indoxyl sulfate (IS), p-cresyl sulfate (pCS) and indole-3 acetic acid (IAA). OBJECTIVE To evaluate the effects of curcumin supplementation on uremic toxins plasma levels produced by gut microbiota in patients with CKD on hemodialysis (HD). METHODS Randomized, double-blind trial in 28 patients [53.6 ± 13.4 years, fourteen men, BMI 26.7 ± 3.7 kg/m2, dialysis vintage 37.5 (12-193) months]. Fourteen patients were randomly allocated to the curcumin group and received 100 mL of orange juice with 12 g carrot and 2.5 g of turmeric and 14 patients to the control group who received the same juice but without turmeric three times per week after HD sessions for three months. IS, pCS, IAA plasma levels were measured by reverse-phase high-performance liquid chromatography RESULTS: After three months of supplementation, the curcumin group showed a significant decrease in pCS plasma levels [from 32.4 (22.1-45.9) to 25.2 (17.9-37.9) mg/L, p = 0.009], which did not occur in the control group. No statistical difference was observed in IS and IAA levels in both groups. CONCLUSION The oral supplementation of curcumin for three months seems to reduce p-CS plasma levels in HD patients, suggesting a gut microbiota modulation.
Collapse
|
64
|
A Systematic Review of the Clinical Use of Curcumin for the Management of Gastrointestinal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:295-326. [PMID: 34331698 DOI: 10.1007/978-3-030-56153-6_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gastrointestinal (GI) diseases are highly prevalent worldwide, with considerable morbidity and mortality. Curcumin has been used for many years as a plant-derived product for the management of various conditions such as abdominal pain and poor digestion. This systematic review was undertaken with the aim of investigating the effect of curcumin or turmeric supplementation on GI diseases. A comprehensive systematic search was conducted in PubMed, Scopus, Web of Science and Google Scholar up to March 2020 to identify clinical trials assessing the effect of curcumin/turmeric alone or in combination with other herbs or nutrients on GI diseases. Twenty-one studies comprising 1478 GI patients were included in the study. Four out of seven studies showed a beneficial effect of curcumin/turmeric supplementation on irritable bowel syndrome (IBS) and six out of seven showed positive effects of these herbs on ulcerative colitis. Two out of four studies highlighted the potential role of curcumin/turmeric in eradication of H. pylori infection. Both studies conducted on peptic ulcer disease and two out of four studies performed on Crohn's disease demonstrated positive effects of curcumin/turmeric supplementation. One study showed curcumin supplementation had no effect on familial adenomatous polyposis. However, in another study, curcumin had favorable effects on proctosigmoiditis. Nine studies reported some minor adverse effects. The results of this systematic review suggest a beneficial effect of curcumin/turmeric supplementation on the management of GI diseases. More randomized clinical controlled trials are needed to confirm these results.
Collapse
|
65
|
Trošelj KG, Samaržija I, Tomljanović M, Kujundžić RN, Đaković N, Mojzeš A. Implementing Curcumin in Translational Oncology Research. Molecules 2020; 25:E5240. [PMID: 33182817 PMCID: PMC7698148 DOI: 10.3390/molecules25225240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Most data published on curcumin and curcumin-based formulations are very promising. In cancer research, the majority of data has been obtained in vitro. Less frequently, researchers used experimental animals. The results of several clinical studies are conclusive, and these studies have established a good foundation for further research focusing on implementing curcumin in clinical oncology. However, the issues regarding timely data reporting and lack of disclosure of the exact curcumin formulations used in these studies should not be neglected. This article is a snapshot of the current status of publicly available data on curcumin clinical trials and a detailed presentation of results obtained so far with some curcumin formulations. Phenomena related to the observed effects of curcumin shown in clinical trials are presented, and its modifying effect on gut microbiota and metabolic reprogramming is discussed. Based on available data, there is a strong indication that curcumin and its metabolites present molecules that do not necessarily need to be abundant in order to act locally and benefit systemically. Future clinical studies should be designed in a way that will take that fact into consideration.
Collapse
Affiliation(s)
- Koraljka Gall Trošelj
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| | - Ivana Samaržija
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| | - Marko Tomljanović
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| | - Renata Novak Kujundžić
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| | - Nikola Đaković
- Institute for Clinical Medical Research and Education, University Hospital Centre Sisters of Charity, 10000 Zagreb, Croatia;
- Department of Clinical Oncology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anamarija Mojzeš
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| |
Collapse
|
66
|
Anter A, El-Ghany MA, Abou El Dahab M, Mahana N. Does Curcumin Have a Role in the Interaction between Gut Microbiota and Schistosoma mansoni in Mice? Pathogens 2020; 9:pathogens9090767. [PMID: 32961786 PMCID: PMC7558489 DOI: 10.3390/pathogens9090767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
There is strong correlation between changes in abundance of specific bacterial species and several diseases including schistosomiasis. Several studies have described therapeutic effects of curcumin (CUR) which may arise from its regulative effects on intestinal microbiota. Thus, we examined the impact of CUR on the diversity of intestinal microbiota with/without infection by Schistosoma mansoni cercariae for 56 days. Enterobacteriaceae was dominating in a naive and S. mansoni infected mice group without CUR treatment, the most predominant species was Escherichia coli with relative density (R.D%) = 80.66% and the least one was Pseudomonas sp. (0.52%). The influence of CUR on murine microbiota composition was examined one week after oral administration of high (40) and low (20 mg/kg b.w.) CUR doses were administered three times, with two day intervals. CUR induced high variation in the Enterobacteriaceae family, characterized by a significant (p < 0.001) reduction in E. coli and asignificant (p < 0.001) increase in Pseudomonas sp. in both naïve and S. mansoni-infected mice, compared to untreated mice, in a dose-dependent manner. Additionally, our study showed the effects of high CUR doses on S. mansoni infection immunological and parasitological parameters. These data support CUR’s ability to promote Pseudomonas sp. known to produce schistosomicidal toxins and offset the sequelae of murine schistosomiasis.
Collapse
Affiliation(s)
- Assmaa Anter
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mohamed Abd El-Ghany
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Marwa Abou El Dahab
- Zoology Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;
| | - Noha Mahana
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Correspondence: or ; Tel.: +20-2-3567-6708
| |
Collapse
|
67
|
Hassanzadeh K, Buccarello L, Dragotto J, Mohammadi A, Corbo M, Feligioni M. Obstacles against the Marketing of Curcumin as a Drug. Int J Mol Sci 2020; 21:E6619. [PMID: 32927725 PMCID: PMC7554750 DOI: 10.3390/ijms21186619] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Among the extensive public and scientific interest in the use of phytochemicals to prevent or treat human diseases in recent years, natural compounds have been highly investigated to elucidate their therapeutic effect on chronic human diseases including cancer, cardiovascular disease, and neurodegenerative disease. Curcumin, an active principle of the perennial herb Curcuma longa, has attracted an increasing research interest over the last half-century due to its diversity of molecular targets, including transcription factors, enzymes, protein kinases, growth factors, inflammatory cytokines, receptors, and it's interesting pharmacological activities. Despite that, the clinical effectiveness of the native curcumin is weak, owing to its low bioavailability and rapid metabolism. Preclinical data obtained from animal models and phase I clinical studies done in human volunteers confirmed a small amount of intestinal absorption, hepatic first pass effect, and some degree of intestinal metabolism, might explain its poor systemic availability when it is given via the oral route. During the last decade, researchers have attempted with new pharmaceutical methods such as nanoparticles, liposomes, micelles, solid dispersions, emulsions, and microspheres to improve the bioavailability of curcumin. As a result, a significant number of bioavailable curcumin-based formulations were introduced with a varying range of enhanced bioavailability. This manuscript critically reviews the available scientific evidence on the basic and clinical effects and molecular targets of curcumin. We also discuss its pharmacokinetic and problems for marketing curcumin as a drug.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-15175, Iran;
| | - Lucia Buccarello
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
| | - Jessica Dragotto
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-15175, Iran;
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milano, Italy;
| | - Marco Feligioni
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milano, Italy;
| |
Collapse
|
68
|
Scazzocchio B, Minghetti L, D’Archivio M. Interaction between Gut Microbiota and Curcumin: A New Key of Understanding for the Health Effects of Curcumin. Nutrients 2020; 12:E2499. [PMID: 32824993 PMCID: PMC7551052 DOI: 10.3390/nu12092499] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Curcumin, a lipophilic polyphenol contained in the rhizome of Curcuma longa (turmeric), has been used for centuries in traditional Asian medicine, and nowadays it is widely used in food as dietary spice worldwide. It has received considerable attention for its pharmacological activities, which appear to act primarily through anti-inflammatory and antioxidant mechanisms. For this reason, it has been proposed as a tool for the management of many diseases, among which are gastrointestinal and neurological diseases, diabetes, and several types of cancer. However, the pharmacology of curcumin remains to be elucidated; indeed, a discrepancy exists between the well-documented in vitro and in vivo activities of curcumin and its poor bioavailability and chemical instability that should limit any therapeutic effect. Recently, it has been hypothesized that curcumin could exert direct regulative effects primarily in the gastrointestinal tract, where high concentrations of this polyphenol have been detected after oral administration. Consequently, it might be hypothesized that curcumin directly exerts its regulatory effects on the gut microbiota, thus explaining the paradox between its low systemic bioavailability and its wide pharmacological activities. It is well known that the microbiota has several important roles in human physiology, and its composition can be influenced by a multitude of environmental and lifestyle factors. Accordingly, any perturbations in gut microbiome profile or dysbiosis can have a key role in human disease progression. Interestingly, curcumin and its metabolites have been shown to influence the microbiota. It is worth noting that from the interaction between curcumin and microbiota two different phenomena arise: the regulation of intestinal microflora by curcumin and the biotransformation of curcumin by gut microbiota, both of them potentially crucial for curcumin activity. This review summarizes the most recent studies on this topic, highlighting the strong connection between curcumin and gut microbiota, with the final aim of adding new insight into the potential mechanisms by which curcumin exerts its effects.
Collapse
Affiliation(s)
- Beatrice Scazzocchio
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Luisa Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Massimo D’Archivio
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| |
Collapse
|
69
|
Di Ciaula A, Baj J, Garruti G, Celano G, De Angelis M, Wang HH, Di Palo DM, Bonfrate L, Wang DQH, Portincasa P. Liver Steatosis, Gut-Liver Axis, Microbiome and Environmental Factors. A Never-Ending Bidirectional Cross-Talk. J Clin Med 2020; 9:2648. [PMID: 32823983 PMCID: PMC7465294 DOI: 10.3390/jcm9082648] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide and parallels comorbidities such as obesity, metabolic syndrome, dyslipidemia, and diabetes. Recent studies describe the presence of NAFLD in non-obese individuals, with mechanisms partially independent from excessive caloric intake. Increasing evidences, in particular, point towards a close interaction between dietary and environmental factors (including food contaminants), gut, blood flow, and liver metabolism, with pathways involving intestinal permeability, the composition of gut microbiota, bacterial products, immunity, local, and systemic inflammation. These factors play a critical role in the maintenance of intestinal, liver, and metabolic homeostasis. An anomalous or imbalanced gut microbial composition may favor an increased intestinal permeability, predisposing to portal translocation of microorganisms, microbial products, and cell wall components. These components form microbial-associated molecular patterns (MAMPs) or pathogen-associated molecular patterns (PAMPs), with potentials to interact in the intestine lamina propria enriched in immune cells, and in the liver at the level of the immune cells, i.e., Kupffer cells and stellate cells. The resulting inflammatory environment ultimately leads to liver fibrosis with potentials to progression towards necrotic and fibrotic changes, cirrhosis. and hepatocellular carcinoma. By contrast, measures able to modulate the composition of gut microbiota and to preserve gut vascular barrier might prevent or reverse NAFLD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Giuseppe Celano
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (G.C.); (M.D.A.)
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (G.C.); (M.D.A.)
| | - Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.H.W.); (D.Q.-H.W.)
| | - Domenica Maria Di Palo
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (G.C.); (M.D.A.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.H.W.); (D.Q.-H.W.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
| |
Collapse
|
70
|
Zhao H, Jiang X, Chu W. Shifts in the gut microbiota of mice in response to dexamethasone administration. Int Microbiol 2020; 23:565-573. [PMID: 32356148 DOI: 10.1007/s10123-020-00129-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/14/2020] [Accepted: 04/13/2020] [Indexed: 01/06/2023]
Abstract
Glucocorticoids (GCs) are an important anti-inflammatory drug, used widely, regardless of its side effects. GCs can affect intestinal flora directly or indirectly, though few studies have focused on the changes of gut microbiota composition. In this study, ICR mice were randomly divided into three groups, gavage administration with saline, and different doses of dexamethasone (DEX): 0.1 mg/kg and 1 mg/kg. Five days later, the microbial diversity of the colon contents was analyzed. A significant loss in weight was observed in the DEX1.0 group as compared with the control group (P = 0.011). The gut microbiota richness (ACE, P = 0.01; Chao, P = 0.013) and diversity (Shannon, P = 0.035; Simpson, P = 0.032) were decreased in DEX group. The proportions of genus Butyricicoccus, Oscillibacter, Anaerotruncus, Ruminiclostridium, Ruminococcaceae, and Lachnospiraceae were the most abundant and predominant followed by Lactobacillus, Pseudomonas, and Enterorhabdus. Dex administration led to changes in the liver/body ratio and spleen/body ratio. The results obtained from our study indicate that DEX can decrease the level of WBC and change the structure of the gut microbiota composition; moreover, the results of this study provide new insight into alleviating the clinical side effects of GC therapy.
Collapse
Affiliation(s)
- Haichao Zhao
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xueyuan Jiang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
71
|
Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, Clément K. Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to Improve Severity? Gastroenterology 2020; 158:1881-1898. [PMID: 32044317 DOI: 10.1053/j.gastro.2020.01.049] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Gut microbiota plays a role in the pathophysiology of metabolic diseases, which include nonalcoholic fatty liver diseases, through the gut-liver axis. To date, clinical guidelines recommend a weight loss goal of 7%-10% to improve features of nonalcoholic fatty liver diseases. Because this target is not easily achieved by all patients, alternative therapeutic options are currently being evaluated. This review focuses on therapeutics that aim to modulate the gut microbiota and the gut-liver axis. We discuss how probiotics, prebiotics, synbiotic, fecal microbiota transfer, polyphenols, specific diets, and exercise interventions have been found to modify gut microbiota signatures; improve nonalcoholic fatty liver disease outcomes; and detail, when available, the different mechanisms by which these beneficial outcomes might occur. Apart from probiotics that have already been tested in human randomized controlled trials, most of these potential therapeutics have been studied in animals. Their efficacy still warrants confirmation in humans using appropriate design.
Collapse
Affiliation(s)
- Judith Aron-Wisnewsky
- Sorbonne Université, INSERM, UMRS U1269, Nutriomics Research Unit, Paris, France; Nutrition Department, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Centre de Recherche en Nutrition Humaine d'Ile de France, Paris, France; Department of Vascular Medicine, University of Amsterdam Medical Center, Amsterdam, The Netherlands.
| | - Moritz V Warmbrunn
- Department of Vascular Medicine, University of Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, University of Amsterdam Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, University of Amsterdam Medical Center, Free University, Amsterdam, The Netherlands
| | - Karine Clément
- Sorbonne Université, INSERM, UMRS U1269, Nutriomics Research Unit, Paris, France; Nutrition Department, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Centre de Recherche en Nutrition Humaine d'Ile de France, Paris, France.
| |
Collapse
|
72
|
Ibrahim KG, Chivandi E, Nkomozepi P, Matumba MG, Mukwevho E, Erlwanger KH. The long-term protective effects of neonatal administration of curcumin against nonalcoholic steatohepatitis in high-fructose-fed adolescent rats. Physiol Rep 2020; 7:e14032. [PMID: 30912307 PMCID: PMC6692695 DOI: 10.14814/phy2.14032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022] Open
Abstract
There is an increased prevalence of nonalcoholic steatohepatitis (NASH) in adolescents. The suckling period is developmentally plastic, affecting later health outcomes. We investigated whether neonatal administration of curcumin would provide protection against the development of NASH later in adolescence in rats fed a high-fructose diet. From postnatal day (PN) 6 to PN 21, the pups (N = 128) were allocated to four groups and orally gavaged daily with either 0.5% dimethyl sulfoxide solution (vehicle control), curcumin (500 mg·kg-1 ), fructose (20%, w/v) or curcumin and fructose combined. All the pups were weaned and half the rats in each group had tap water, whereas the other received fructose (20%) as their drinking fluid ad libitum for 6 weeks. The rats' liver NASH scores, lipid content, and RNA gene expression ratios of AMPKα and TNFα were determined. Hepatic lipid content was similar across the treatment groups in the males (P > 0.05, ANOVA). In the females, the hepatic lipid content in the treatment groups ranged from 2.7 to 4.3%. The livers of male and female rats that had fructose either as neonates and/or postweaning had significantly marked inflammation (P = 0.0112, Kruskal-Wallis) and fibrosis (P < 0.0001, ANOVA) which were attenuated by curcumin. The hepatic gene expression ratios for AMPKα in both sexes were significantly downregulated (P < 0.0001, ANOVA), whereas the expression ratios of TNFα were significantly upregulated (P < 0.0001) in rats fed a high-fructose diet pre and/or postweaning compared to the other groups. Neonatal curcumin administration is a potential natural pharmacological candidate for the prevention of NASH.
Collapse
Affiliation(s)
- Kasimu G Ibrahim
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Mashudu G Matumba
- Department of Biochemistry, Faculty of Natural Sciences & Agriculture, North-West University, Mmabatho, Mafikeng, South Africa
| | - Emmanuel Mukwevho
- Department of Biochemistry, Faculty of Natural Sciences & Agriculture, North-West University, Mmabatho, Mafikeng, South Africa
| | - Kennedy H Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
73
|
Reda FM, El-Saadony MT, Elnesr SS, Alagawany M, Tufarelli V. Effect of Dietary Supplementation of Biological Curcumin Nanoparticles on Growth and Carcass Traits, Antioxidant Status, Immunity and Caecal Microbiota of Japanese Quails. Animals (Basel) 2020; 10:E754. [PMID: 32357410 PMCID: PMC7277682 DOI: 10.3390/ani10050754] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/28/2022] Open
Abstract
This study was planned to evaluate the impact of different nano-curcumin levels on the growth rate, carcass, blood chemistry and caecal microbes of growing quail. A total of 270 Japanese quails at one-week-old were distributed to six equal groups; each group consisted of 45 unsexed birds with five replications (nine quails each). The 1st group was fed a basal diet, whereas the 2nd, 3rd, 4th, 5th and 6th groups were fed diets containing nano-curcumin (0.1, 0.2, 0.3, 0.4 and 0.5 g/kg diet, respectively). Nano-curcumin levels significantly increased (p ≤ 0.0001) body weight at 3 weeks and 5 weeks of age. Body weight gain during 1-3, 3-5 and 1-5 weeks of age was significantly increased (p < 0.0001) in groups treated with nano-curcumin levels (except at 0.3 g/kg; 1-3 weeks) compared to control. During 1 to 5 weeks, feed intake was decreased (p < 0.0001) in birds receiving nano-curcumin (0.1, 0.3 and 0.4 g/kg) diets. The best values of feed conversion ratio were recorded for the 0.4 g nano-curcumin-treated group. Carcass traits were not affected Nano-curcumin levels. The inclusion of nano-curcumin (0.2, 0.3 or 0.5 g/kg) significantly increased serum TP (p = 0.0004), albumin (p = 0.0078) and globulin (p < 0.0001). Quails fed with nano-curcumin (0.2 g/kg) exhibited the highest SOD and GSH activities, serum IgG and IgM concentrations and complement values compared to control. The addition of any level of nano-curcumin in the quail diet also significantly improved the lipid profile. In conclusion, supplemental nano-curcumin had beneficial impacts on growth, lipid profile, blood constituents, antioxidant indices, and immunity of growing quail, as well as increasing counts of lactic acid bacteria and reducing pathogenic bacteria.
Collapse
Affiliation(s)
- Fayiz M. Reda
- Poultry Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt;
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt;
| | - Shaaban S. Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt;
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt;
| | - Vincenzo Tufarelli
- DETO—Section of Veterinary Science and Animal Production, University of Bari ‘Aldo Moro’, 70010 Valenzano, Italy
| |
Collapse
|
74
|
Wang H, Tang W, Zhang P, Zhang Z, He J, Zhu D, Bi Y. Modulation of gut microbiota contributes to effects of intensive insulin therapy on intestinal morphological alteration in high-fat-diet-treated mice. Acta Diabetol 2020; 57:455-467. [PMID: 31749050 DOI: 10.1007/s00592-019-01436-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
AIMS Disturbance of intestinal homeostasis promotes the development of type 2 diabetes. Although intensive insulin therapy has been shown to promote extended glycemic remission in newly diagnosed type 2 diabetic patients through multiple mechanisms, its effect on intestinal homeostasis remains unknown. METHODS This study evaluated the effects of intensive insulin therapy on intestinal morphometric parameters in a hyperglycemic mice model induced by high-fat diet (HFD). 16S rRNA V4 region sequencing and multivariate analysis were utilized to evaluate the structural changes of gut microbiota. RESULTS HFD-induced increases in the lengths of villus, microvillus and crypt depth were significantly reversed after intensive insulin therapy. Moreover, intestinal proliferation was notably decreased after intensive insulin therapy, whereas intestinal apoptosis was further increased. Importantly, intensive insulin therapy significantly shifted the overall structure of the HFD-disrupted gut microbiota toward that of mice fed a normal diet and changed the gut microbial composition. The abundances of 54 operational taxonomic units (OTUs) were changed by intensive insulin therapy. Thirty altered OTUs correlated with two or more intestinal morphometric parameters and were designated 'functionally relevant phylotypes.' CONCLUSIONS For the first time, our data indicate that intensive insulin therapy recovers diabetes-associated gut structural abnormalities and restores the microbiome landscape. Moreover, specific altered 'functionally relevant phylotypes' correlates with improvement in diabetes-associated gut structural alterations.
Collapse
Affiliation(s)
- Hongdong Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Wenjuan Tang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Pengzi Zhang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Zhou Zhang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jielei He
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
75
|
Tan X, Sun Z, Ye C. Dietary Ginkgo biloba leaf extracts supplementation improved immunity and intestinal morphology, antioxidant ability and tight junction proteins mRNA expression of hybrid groupers (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) fed high lipid diets. FISH & SHELLFISH IMMUNOLOGY 2020; 98:611-618. [PMID: 31533081 DOI: 10.1016/j.fsi.2019.09.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/08/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
For many years, Ginkgo biloba has been used as a traditional Chinese medicine because of its antioxidant, anti-inflammatory and hepatoprotective effects. The present study aimed to investigate the effects of dietary Ginkgo biloba leaf extract (GBLE) supplementation on immune response, intestinal morphology, antioxidant ability and tight junction proteins mRNA expression of hybrid groupers fed high lipid diets. Basal diets supplemented with GBLE at 0, 0.50, 1.00, 2.00, 4.00 and 10.00 g/kg were fed to hybrid grouper for 8 weeks. The study showed that dietary GBLE supplementation significantly improved immune ability by increasing plasma complement 3, complement 4 and Immunoglobulin M content. Dietary supplementation of 0.50-2.00 g/kg GBLE improved intestinal morphology and increased the expression of zonula occludens 1, zonula occludens 2, zonula occludens 3, occludin and claudin 3a. Dietary supplementation of 0.50-2.00 g/kg GBLE improved antioxidant ability by increasing activities and expressions of glutathione peroxidase, catalase and glutathione reductase, suppressed inflammatory by increasing expression of interleukin 10, transforming growth factor β1 and target of rapamycin, and decreased apoptotic responses by reducing the expression of caspase 3, caspase 8 and caspase 9 in the intestine of hybrid grouper fed high lipid diets. This study indicated that dietary GBLE supplementation was clearly beneficial for intestinal health and immunity in hybrid groupers fed high lipid diets and it could be used as a functional feed additive in aquaculture to promote the application of high lipid diets.
Collapse
Affiliation(s)
- Xiaohong Tan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Zhenzhu Sun
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Chaoxia Ye
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
76
|
Zhai SS, Ruan D, Zhu YW, Li MC, Ye H, Wang WC, Yang L. Protective effect of curcumin on ochratoxin A-induced liver oxidative injury in duck is mediated by modulating lipid metabolism and the intestinal microbiota. Poult Sci 2020; 99:1124-1134. [PMID: 32036964 PMCID: PMC7587726 DOI: 10.1016/j.psj.2019.10.041] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Curcumin has antioxidant functions, regulates the intestinal microbial composition, and alleviates mycotoxin toxicity. The present study aimed to explore whether curcumin could alleviate ochratoxin A (OTA)-induced liver injury via the intestinal microbiota. A total of 720 mixed-sex 1-day-old White Pekin ducklings were randomly assigned into 4 groups: CON (control group, without OTA), OTA (fed a diet with 2 mg/kg OTA), CUR (ducks fed a diet with 400 mg/kg curcumin), and OTA + CUR (2 mg/kg OTA plus 400 mg/kg curcumin). Each treatment consisted of 6 replicates and 30 ducklings per replicate. Treatment lasted for 21 D. Results were analyzed by a two-tailed Student t test between 2 groups. Our results demonstrated that OTA treatment had the highest serum low-density lipoprotein (LDL) level among 4 groups. Compared with OTA group, OTA + CUR decreased serum LDL level (P < 0.05). OTA decreased liver catalase (CAT) activity in ducks (P < 0.05), while addition of curcumin in OTA group increased liver CAT activity (P < 0.05). 16S ribosomal RNA sequencing suggested that curcumin increased the richness indices (ACE index) and diversity indices (Simpson index) compared with OTA group (P < 0.05) and recovered the OTA-induced alterations in composition of the intestinal microbiota. Curcumin supplementation relieved the decreased abundance of butyric acid producing bacteria, including blautia, butyricicoccus, and butyricimonas, induced by OTA (P < 0.05). OTA also significantly influenced the metabolism of the intestinal microbiota, such as tryptophan metabolism and glyceropholipid metabolism. Curcumin could alleviate the upregulation of oxidative stress pathways induced by OTA. OTA treatment also increased SREBP-1c expression (P < 0.05). The curcumin group had the lowest expression of FAS and PPARG mRNA (P < 0.05) and the highest expression of NRF2 and HMOX1 mRNA. These results indicated that curcumin could alleviate OTA-induced oxidative injury and lipid metabolism disruption by modulating the cecum microbiota.
Collapse
Affiliation(s)
- S S Zhai
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Y W Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - M C Li
- Dayitongchuang Biotech Co., Ltd., Tianjin 300000, China
| | - H Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - W C Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - L Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
77
|
Xie J, Lu W, Zhong L, Hu Y, Li Q, Ding R, Zhong Z, Liu Z, Xiao H, Xie D, Zheng G, Ye B, Zhong Y, Liu Z. Alterations in gut microbiota of abdominal aortic aneurysm mice. BMC Cardiovasc Disord 2020; 20:32. [PMID: 31992206 PMCID: PMC6988222 DOI: 10.1186/s12872-020-01334-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The gut microbiome plays an important role in various cardiovascular diseases, such as atherosclerosis and hypertension, which are associated with abdominal aortic aneurysms (AAAs). METHODS Here, we used 16S rRNA sequencing to explore gut microbiota in C57BL ApoE-/- mice with AAAs. A mouse model of abdominal aortic aneurysms was induced with angiotensin II (Ang II) (1000 ng/min per kg). On day 28 after the operation, fecal samples were collected and stored at - 80 °C until DNA extraction. We determined the relative abundances of bacterial taxonomic groups using 16S rRNA amplicon metabarcoding, and sequences were analyzed using a combination of mother software and UPARSE. RESULTS We found that the gut microbiome was different between control and AAA mice. The results of correlation analysis between AAA diameter and the gut microbiome as well as LEfSe of the genera Akkermansia, Odoribacter, Helicobacter and Ruminococcus might be important in the progression of AAAs. CONCLUSIONS AAA mice is subjected to gut microbial dysbiosis, and gut microbiota might be a potential target for further investigation.
Collapse
Affiliation(s)
- Jiahe Xie
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People's Republic of China
| | - Weiling Lu
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People's Republic of China
| | - Lintao Zhong
- Department of Cardiology, Zhuhai Hospital, Jinan University, Zhuhai, China
| | - Yuhua Hu
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People's Republic of China
| | - Qingrui Li
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People's Republic of China
| | - Rongming Ding
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People's Republic of China
| | - Zhonggao Zhong
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People's Republic of China
| | - Ziyou Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People's Republic of China
| | - Hai Xiao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People's Republic of China
| | - Dongming Xie
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People's Republic of China
| | - Guofu Zheng
- Department of Vascular Surgery, the Affiliated Ganzhou Hospital of Nanchang University, Guangzhou, China
| | - Bo Ye
- Department of Vascular Surgery, the Affiliated Ganzhou Hospital of Nanchang University, Guangzhou, China
| | - Yiming Zhong
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China. .,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People's Republic of China.
| | - Zuheng Liu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, Southern Medical University, Guangzhou, China.
| |
Collapse
|
78
|
Liu J, He Z, Ma N, Chen ZY. Beneficial Effects of Dietary Polyphenols on High-Fat Diet-Induced Obesity Linking with Modulation of Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:33-47. [PMID: 31829012 DOI: 10.1021/acs.jafc.9b06817] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Obesity is caused by an imbalance of energy intake and expenditure. It is characterized by a higher accumulation of body fat with a chronic low-grade inflammation. Many reports have shown that gut microbiota in the host plays a pivotal role in mediating the interaction between consumption of a high-fat diet (HFD) and onset of obesity. Accumulative evidence has suggested that the changes in the composition of gut microbiota may affect the host's energy homeostasis, systemic inflammation, lipid metabolism, and insulin sensitivity. As one of the major components in human diet, polyphenols have demonstrated to be capable of modulating the composition of gut microbiota and reducing the HFD-induced obesity. The present review summarizes the findings of recent studies on dietary polyphenols regarding their metabolism and interaction with bacteria in the intestine as well as the underlying mechanisms by which they modulate the gut microbiota and alleviate the HFD-induced obesity.
Collapse
Affiliation(s)
- Jianhui Liu
- College of Food Science and Engineering , Nanjing University of Finance & Economics , Nanjing , China
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Zouyan He
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Ning Ma
- College of Food Science and Engineering , Nanjing University of Finance & Economics , Nanjing , China
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Zhen-Yu Chen
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| |
Collapse
|
79
|
Yan T, Yan N, Wang P, Xia Y, Hao H, Wang G, Gonzalez FJ. Herbal drug discovery for the treatment of nonalcoholic fatty liver disease. Acta Pharm Sin B 2020; 10:3-18. [PMID: 31993304 PMCID: PMC6977016 DOI: 10.1016/j.apsb.2019.11.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/23/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Few medications are available for meeting the increasing disease burden of nonalcoholic fatty liver disease (NAFLD) and its progressive stage, nonalcoholic steatohepatitis (NASH). Traditional herbal medicines (THM) have been used for centuries to treat indigenous people with various symptoms but without clarified modern-defined disease types and mechanisms. In modern times, NAFLD was defined as a common chronic disease leading to more studies to understand NAFLD/NASH pathology and progression. THM have garnered increased attention for providing therapeutic candidates for treating NAFLD. In this review, a new model called “multiple organs-multiple hits” is proposed to explain mechanisms of NASH progression. Against this proposed model, the effects and mechanisms of the frequently-studied THM-yielded single anti-NAFLD drug candidates and multiple herb medicines are reviewed, among which silymarin and berberine are already under U.S. FDA-sanctioned phase 4 clinical studies. Furthermore, experimental designs for anti-NAFLD drug discovery from THM in treating NAFLD are discussed. The opportunities and challenges of reverse pharmacology and reverse pharmacokinetic concepts-guided strategies for THM modernization and its global recognition to treat NAFLD are highlighted. Increasing mechanistic evidence is being generated to support the beneficial role of THM in treating NAFLD and anti-NAFLD drug discovery.
Collapse
Affiliation(s)
- Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding authors.
| | - Nana Yan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yangliu Xia
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding authors.
| |
Collapse
|
80
|
Di Meo F, Margarucci S, Galderisi U, Crispi S, Peluso G. Curcumin, Gut Microbiota, and Neuroprotection. Nutrients 2019; 11:2426. [PMID: 31614630 PMCID: PMC6835970 DOI: 10.3390/nu11102426] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
Abstract
Curcumin, a nontoxic, naturally occurring polyphenol, has been recently proposed for the management of neurodegenerative and neurological diseases. However, a discrepancy exists between the well-documented pharmacological activities that curcumin seems to possess in vivo and its poor aqueous solubility, bioavailability, and pharmacokinetic profiles that should limit any therapeutic effect. Thus, it is possible that curcumin could exert direct regulative effects primarily in the gastrointestinal tract, where high concentrations of curcumin are present after oral administration. Indeed, a new working hypothesis that could explain the neuroprotective role of curcumin despite its limited availability is that curcumin acts indirectly on the central nervous system by influencing the "microbiota-gut-brain axis", a complex bidirectional system in which the microbiome and its composition represent a factor which preserves and determines brain "health". Interestingly, curcumin and its metabolites might provide benefit by restoring dysbiosis of gut microbiome. Conversely, curcumin is subject to bacterial enzymatic modifications, forming pharmacologically more active metabolites than curcumin. These mutual interactions allow to keep proper individual physiologic functions and play a key role in neuroprotection.
Collapse
Affiliation(s)
- Francesco Di Meo
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 80100 Naples, Italy.
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo via Cinthia, 80100 Naples, Italy.
| | - Sabrina Margarucci
- Institute of Research on Terrestrial Ecosystems, 05010 Porano TR, Italy.
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Santa Maria di Costantinopoli, 80100 Naples, Italy.
| | - Stefania Crispi
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 80100 Naples, Italy.
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo via Cinthia, 80100 Naples, Italy.
| | - Gianfranco Peluso
- Institute of Research on Terrestrial Ecosystems, 05010 Porano TR, Italy.
| |
Collapse
|
81
|
Wu R, Mei X, Ye Y, Xue T, Wang J, Sun W, Lin C, Xue R, Zhang J, Xu D. Zn(II)-curcumin solid dispersion impairs hepatocellular carcinoma growth and enhances chemotherapy by modulating gut microbiota-mediated zinc homeostasis. Pharmacol Res 2019; 150:104454. [PMID: 31526871 DOI: 10.1016/j.phrs.2019.104454] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023]
Abstract
Zinc(II) complexes of curcumin display moderate cytotoxicity towards cancer cells at low micromolar concentrations. However, the clinical use of zinc(II) complexes is hampered by hydrolytic insolubility and poor bioavailability and their anticancer mechanisms remain unclear. Here, we investigated the efficacy and mechanism of action of a polyvinylpyrrolidone (PVP-k30)-based solid dispersion of Zn(II)-curcumin (ZnCM-SD) against hepatocellular carcinoma (HCC) in vitro and in vivo. In vitro assays revealed ZnCM-SD not only reduced the viability of HepG2 cells and SK-HEP1 cells in a dose-dependent manner, but also potently and synergistically enhanced cell growth inhibition and cell death in response to doxorubicin by regulating cellular zinc homeostasis. ZnCM-SD was internalized into the cells via non-specific endocytosis and degraded to release curcumin and Zn2+ ions within cells. The anticancer effects also occur in vivo in animals following the oral administration of ZnCM-SD, without significantly affecting the weight of the animals. Interestingly, ZnCM-SD did not reduce tumor growth or affect zinc homeostasis in HepG2-bearing mice after gut microbiome depletion. Moreover, administration of ZnCM-SD alone or in combination with doxorubicin significantly attenuated gut dysbiosis and zinc dyshomeostasis in a rat HCC model. Notably, fecal microbiota transplantation revealed the ability of ZnCM-SD to regulate zinc homeostasis and act as a chemosensitizer for doxorubicin were dependent on the gut microbiota. The crucial role of the gut microbiota in the chemosensitizing ability of ZnCM-SD was confirmed by broad-spectrum antibiotic treatment. Collectively, ZnCM-SD could represent a simple, well-tolerated, safe, effective therapy and function as a novel chemosensitizing agent for cancer.
Collapse
Affiliation(s)
- Rihui Wu
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xueting Mei
- Laboratory Animal Center of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Yibiao Ye
- Department of Hepato-Billiary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Xue
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Jiasheng Wang
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Wenjia Sun
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Caixia Lin
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Ruoxue Xue
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Jiabao Zhang
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Donghui Xu
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
82
|
Relationship between Changes in Microbiota and Liver Steatosis Induced by High-Fat Feeding-A Review of Rodent Models. Nutrients 2019; 11:nu11092156. [PMID: 31505802 PMCID: PMC6770892 DOI: 10.3390/nu11092156] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
Several studies have observed that gut microbiota can play a critical role in nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) development. The gut microbiota is influenced by different environmental factors, which include diet. The aim of the present review is to summarize the information provided in the literature concerning the impact of changes in gut microbiota on the effects which dietary fat has on liver steatosis in rodent models. Most studies in which high-fat feeding has induced steatosis have reported reduced microbiota diversity, regardless of the percentage of energy provided by fat. At the phylum level, an increase in Firmicutes and a reduction in Bacteroidetes is commonly found, although widely diverging results have been described at class, order, family, and genus levels, likely due to differences in experimental design. Unfortunately, this fact makes it difficult to reach clear conclusions concerning the specific microbiota patterns associated with this feeding pattern. With regard to the relationship between high-fat feeding-induced changes in liver and microbiota composition, although several mechanisms such as alteration of gut integrity and increased permeability, inflammation, and metabolite production have been proposed, more scientific evidence is needed to address this issue and thus further studies are needed.
Collapse
|
83
|
Wu R, Mei X, Wang J, Sun W, Xue T, Lin C, Xu D. Zn(ii)-Curcumin supplementation alleviates gut dysbiosis and zinc dyshomeostasis during doxorubicin-induced cardiotoxicity in rats. Food Funct 2019; 10:5587-5604. [PMID: 31432062 DOI: 10.1039/c9fo01034c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Doxorubicin is a powerful anticancer agent used to treat a variety of human neoplasms. However, the clinical use of doxorubicin is hampered by cardiotoxicity and effective cardioprotective adjuvants do not exist. Dietary zinc, an essential nutrient, is required to maintain steady-state tissue zinc levels and intestinal homeostasis and may yield therapeutic benefits in diseases associated with zinc dysregulation or gut dysbiosis. Here, we investigated the effects of dietary Zn(ii)-curcumin (ZnCM) solid dispersions on gut dysbiosis and zinc dyshomeostasis during doxorubicin-induced cardiotoxicity in rats. Rats were injected with multiple low doses of doxorubicin and orally administered ZnCM daily over four weeks. Daily administration of ZnCM not only alleviated Dox-induced gut dysbiosis-as indicated by the increased Firmicutes-to-Bacteroidetes ratio and the maintenance of the relative abundances of major beneficial bacteria including Clostridium_XIVa, Clostridium_IV, Roseburia, Butyricicoccus and Akkermansia-but also maintained intestinal barrier integrity and decreased the lipopolysaccharide (LPS) contents of feces and plasma. ZnCM also significantly attenuated doxorubicin-induced zinc dyshomeostasis, which was mirrored by preservation of zinc levels and expression of zinc-related transporters. Furthermore, ZnCM significantly improved heart function and reduced cardiomyocyte apoptosis and myocardial injury in doxorubicin-treated rats. Notably, the regulation of zinc homeostasis and cardioprotective and microbiota-modulating effects of ZnCM were transmissible through horizontal feces transfer from ZnCM-treated rats to normal rats. Thus, ZnCM supplementation has potential as an effective therapeutic strategy to alleviate gut dysbiosis and zinc dyshomeostasis during doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Rihui Wu
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| | - Xueting Mei
- Laboratory Animal Center of Sun Yat-sen University, Sun Yat-sen University, 510275 Guangzhou, China
| | - Jiasheng Wang
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| | - Wenjia Sun
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| | - Ting Xue
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| | - Caixia Lin
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| | - Donghui Xu
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| |
Collapse
|
84
|
Martínez-González AE, Andreo-Martínez P. The Role of Gut Microbiota in Gastrointestinal Symptoms of Children with ASD. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E408. [PMID: 31357482 PMCID: PMC6722942 DOI: 10.3390/medicina55080408] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022]
Abstract
Background and objectives: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired communication, social interaction disorder, and repetitive behavior. Dysbiotic gut microbiota (GM) could be a contributing factor to the appearance of ASD, as gastrointestinal (GI) symptoms are comorbidities frequently reported in ASD. As there is a lack of reviews about the role played by GM in the GI symptoms of ASD, this work aimed to carry out a systematic review of current studies comparing the GM of children with ASD and GI symptoms with those of healthy controls in the last six years. Materials and Methods: The systematic review was performed following the PRISMA guidelines. The databases chosen were Web of Science, Scopus, PubMed, and PsycINFO, and the keywords were (gut* OR intestine* OR bowel* OR gastrointestinal*) AND (microbiota* OR microflora* OR bacteria* OR microbiome* OR flora* OR bacterial* OR bacteria* OR microorganism* OR feces* OR stool*) AND (autistic* OR autism* OR ASD*). Results: A total of 16 articles were included. Ten articles performed correlations analysis between GI symptoms and ASD. Among those 10 articles, 7 found differences between the GI symptoms present in children with ASD and healthy controls. The most common GI symptom was constipation. Among the seven articles that found differences, three performed correlations analysis between GI symptoms and gut microbe abundance. Candida, Prevotella, Streptococcus, and Veillonella showed higher and lower abundance, respectively, in children with ASD and GI symptoms in more than one article. Bacteroidetes, Firmicutes, Actinomyces, Dorea, Lactobacillus, Faecalibacterium prausnitzii, and Bacteroidetes/Firmicutes ratios showed abundance discrepancies. Conclusions: It is still too early to draw a conclusion about the gut microbes involved in GI symptoms of ASD. Future research should consider the relationship between ASD behavior, GM, and GI symptoms in a multidisciplinary way and homogenize sample characteristics.
Collapse
Affiliation(s)
| | - Pedro Andreo-Martínez
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100 Murcia, Spain.
- Department of Chemical Engineering, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
85
|
Fu S, Zhuang F, Guo L, Qiu Y, Xiong J, Ye C, Liu Y, Wu Z, Hou Y, Hu CAA. Effect of Baicalin-Aluminum Complexes on Fecal Microbiome in Piglets. Int J Mol Sci 2019; 20:ijms20102390. [PMID: 31091773 PMCID: PMC6566245 DOI: 10.3390/ijms20102390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
The gut microbiome has important effects on gastrointestinal diseases. Diarrhea attenuation functions of baicalin (BA) is not clear. Baicalin-aluminum complexes (BBA) were synthesized from BA, but the BBA's efficacy on the diarrhea of piglets and the gut microbiomes have not been explored and the mechanism remains unclear. This study has explored whether BBA could modulate the composition of the gut microbiomes of piglets during diarrhea. The results showed that the diarrhea rate reduced significantly after treatment with BBA. BBA altered the overall structure of the gut microbiomes. In addition, the Gene Ontology (GO) enrichment analysis indicated that the functional differentially expressed genes, which were involved in the top 30 GO enrichments, were associated with hydrogenase (acceptor) activity, nicotinamide-nucleotide adenylyltransferase activity, and isocitrate lyase activity, belong to the molecular function. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that flagellar assembly, bacterial chemotaxis, lipopolysaccharide biosynthesis, ATP-binding cassette transporters (ABC) transporters, biosynthesis of amino acids, and phosphotransferase system (PTS) were the most enriched during BBA treatment process. Taken together, our results first demonstrated that BBA treatment could modulate the gut microbiomes composition of piglets with diarrhea, which may provide new potential insights on the mechanisms of gut microbiomes associated underlying the antimicrobial efficacy of BBA.
Collapse
Affiliation(s)
- Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Feng Zhuang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Jianglin Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Chien-An Andy Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
86
|
Wei Z, Liu N, Tantai X, Xing X, Xiao C, Chen L, Wang J. The effects of curcumin on the metabolic parameters of non-alcoholic fatty liver disease: a meta-analysis of randomized controlled trials. Hepatol Int 2019; 13:302-313. [PMID: 30446932 DOI: 10.1007/s12072-018-9910-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022]
Abstract
AIMS Evidence indicates that curcumin seems to improve outcomes in non-alcoholic fatty liver disease (NAFLD). A meta-analysis was performed to evaluate the effects of curcumin inNAFLD. METHODS We searched PubMed, EMBASE, and the Cochrane Library from inception through March 2018 to identify randomized controlled trials (RCTs) evaluating the role of curcumin inNAFLD. The mean difference (MD) and 95% confidence interval (CI) were calculated. RESULTS Four RCTs with a total of 229 NAFLD patients were included. Curcumin was more likely to lower LDL-C, triglycerides, FBS, HOMA-IR, weight and AST levels compared with placebo, and the difference was statistically significant [MD = - 27.02, 95% CI (- 52.30, - 1.74); MD = - 33.20, 95% CI (- 42.30, - 24.09); MD = - 5.63, 95% CI (- 10.36, - 0.90); MD = - 0.53, 95% CI (- 1.00, - 0.05); MD = - 2.27, 95% CI (- 3.11, - 1.44); MD = - 7.43, 95% CI (- 11.31, - 3.54), respectively]. However, the beneficial effect of curcumin did not achieve statistical significance in lowering total cholesterol, HDL-C, HbA1c, ALT or insulin levels [MD = - 30.47,95% CI (- 60.89. - 0.06); MD = - 0.98, 95% CI (- 2.88, 0.92); MD = - 0.41, 95% CI (- 1.41, 0.59); MD = - 6.02, 95% CI (- 15.61, 3.57); MD = - 0.92, 95% CI (- 2.33, 0.49)]. CONCLUSIONS Curcumin is effective in lowering LDL-C, triglycerides, FBS, HOMA-IR, weight, and AST levels in NAFLD patients, and it is well tolerated. Further RCTs are required to confirm our findings.
Collapse
Affiliation(s)
- Zhongcao Wei
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, Shanxi, People's Republic of China
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, Shanxi, People's Republic of China.
| | - Xinxing Tantai
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, Shanxi, People's Republic of China
| | - Xin Xing
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, Shanxi, People's Republic of China
| | - Cailan Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, Shanxi, People's Republic of China
| | - Lirong Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, Shanxi, People's Republic of China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, Shanxi, People's Republic of China.
| |
Collapse
|
87
|
Ghosh S. Curcumin as a potential therapeutic option for NAFLD and other metabolic diseases: need for establishing the underlying mechanism(s) of action. Hepatol Int 2019; 13:245-247. [PMID: 30888627 DOI: 10.1007/s12072-019-09942-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/20/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Shobha Ghosh
- Virginia Commonwealth University Medical Center, Richmond, VA, USA.
| |
Collapse
|
88
|
Burge K, Gunasekaran A, Eckert J, Chaaban H. Curcumin and Intestinal Inflammatory Diseases: Molecular Mechanisms of Protection. Int J Mol Sci 2019; 20:ijms20081912. [PMID: 31003422 PMCID: PMC6514688 DOI: 10.3390/ijms20081912] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal inflammatory diseases, such as Crohn’s disease, ulcerative colitis, and necrotizing enterocolitis, are becoming increasingly prevalent. While knowledge of the pathogenesis of these related diseases is currently incomplete, each of these conditions is thought to involve a dysfunctional, or overstated, host immunological response to both bacteria and dietary antigens, resulting in unchecked intestinal inflammation and, often, alterations in the intestinal microbiome. This inflammation can result in an impaired intestinal barrier allowing for bacterial translocation, potentially resulting in systemic inflammation and, in severe cases, sepsis. Chronic inflammation of this nature, in the case of inflammatory bowel disease, can even spur cancer growth in the longer-term. Recent research has indicated certain natural products with anti-inflammatory properties, such as curcumin, can help tame the inflammation involved in intestinal inflammatory diseases, thus improving intestinal barrier function, and potentially, clinical outcomes. In this review, we explore the potential therapeutic properties of curcumin on intestinal inflammatory diseases, including its antimicrobial and immunomodulatory properties, as well as its potential to alter the intestinal microbiome. Curcumin may play a significant role in intestinal inflammatory disease treatment in the future, particularly as an adjuvant therapy.
Collapse
Affiliation(s)
- Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Aarthi Gunasekaran
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| |
Collapse
|
89
|
Anlu W, Dongcheng C, He Z, Qiuyi L, Yan Z, Yu Q, Hao X, Keji C. Using herbal medicine to target the “microbiota-metabolism-immunity” axis as possible therapy for cardiovascular disease. Pharmacol Res 2019; 142:205-222. [DOI: 10.1016/j.phrs.2019.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
|
90
|
Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, Barrea L, Hassan ST, Šmejkal K, Malaník M, Sychrová A, Barreca D, Ziberna L, Mahomoodally MF, Zengin G, Xu S, Nabavi SM, Shen AZ. Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics 2019; 9:1923-1951. [PMID: 31037148 PMCID: PMC6485276 DOI: 10.7150/thno.30787] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular and metabolic diseases (CVMD) are the leading causes of death worldwide, underscoring the urgent necessity to develop new pharmacotherapies. Berberine (BBR) is an eminent component of traditional Chinese and Ayurvedic medicine for more than 2000 years. Recently, BBR has attracted much interest for its pharmacological actions in treating and/or managing CVMD. Recent discoveries of basic, translational and clinical studies have identified many novel molecular targets of BBR (such as AMPK, SIRT1, LDLR, PCSK9, and PTP1B) and provided novel evidences supporting the promising therapeutic potential of BBR to combat CVMD. Thus, this review provides a timely overview of the pharmacological properties and therapeutic application of BBR in CVMD, and underlines recent pharmacological advances which validate BBR as a promising lead drug against CVMD.
Collapse
|
91
|
A pilot study of the effect of phospholipid curcumin on serum metabolomic profile in patients with non-alcoholic fatty liver disease: a randomized, double-blind, placebo-controlled trial. Eur J Clin Nutr 2019; 73:1224-1235. [PMID: 30647436 DOI: 10.1038/s41430-018-0386-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND/OBJECTIVES Curcumin, a natural polyphenol compound in the spice turmeric, has been found to have potent anti-oxidative and anti-inflammatory activity. Curcumin may treat non-alcoholic fatty liver disease (NAFLD) through its beneficial effects on biomarkers of oxidative stress (OS) and inflammation, which are considered as two feature of this disease. However, the effects of curcumin on NAFLD have been remained poorly understood. This investigation evaluated the effects of administrating curcumin on metabolic status in NAFLD patients. SUBJECTS/METHODS Fifty-eight NAFLD patients participated in a randomized, double-blind, placebo-controlled parallel design of study. The subjects were allocated randomly into two groups, which either received 250 mg phospholipid curcumin or placebo, one capsule per day for a period of 8 weeks. Fasting blood samples were taken from each subject at the start and end of the study period. Subsequently, metabolomics analysis was performed for serum samples using NMR. RESULTS Compared with the placebo, supplementing phospholipid curcumin resulted in significant decreases in serum including 3- methyl-2-oxovaleric acid, 3-hydroxyisobutyrate, kynurenine, succinate, citrate, α-ketoglutarate, methylamine, trimethylamine, hippurate, indoxyl sulfate, chenodeoxycholic acid, taurocholic acid, and lithocholic acid. This profile of metabolic biomarkers could distinguish effectively NAFLD subjects who were treated with curcumin and placebo groups, achieving value of 0.99 for an area under receiver operating characteristic curve (AUC). CONCLUSIONS Characterizing the serum metabolic profile of the patients with NAFLD at the end of the intervention using NMR-based metabolomics method indicated that the targets of curcumin treatment included some amino acids, TCA cycle, bile acids, and gut microbiota.
Collapse
|
92
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
93
|
Shen L, Ji HF. Bidirectional interactions between dietary curcumin and gut microbiota. Crit Rev Food Sci Nutr 2018; 59:2896-2902. [DOI: 10.1080/10408398.2018.1478388] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People’s Republic of China
- Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, Shandong University of Technology, Zibo, Shandong, People’s Republic of China
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People’s Republic of China
| | - Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People’s Republic of China
- Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, Shandong University of Technology, Zibo, Shandong, People’s Republic of China
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People’s Republic of China
| |
Collapse
|
94
|
Porras D, Nistal E, Martínez-Flórez S, González-Gallego J, García-Mediavilla MV, Sánchez-Campos S. Intestinal Microbiota Modulation in Obesity-Related Non-alcoholic Fatty Liver Disease. Front Physiol 2018; 9:1813. [PMID: 30618824 PMCID: PMC6305464 DOI: 10.3389/fphys.2018.01813] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity and associated comorbidities, including non-alcoholic fatty liver disease (NAFLD), are a major concern to public well-being worldwide due to their high prevalence among the population, and its tendency on the rise point to as important threats in the future. Therapeutic approaches for obesity-associated disorders have been circumscribed to lifestyle modifications and pharmacological therapies have demonstrated limited efficacy. Over the last few years, different studies have shown a significant role of intestinal microbiota (IM) on obesity establishment and NAFLD development. Therefore, modulation of IM emerges as a promising therapeutic strategy for obesity-associated diseases. Administration of prebiotic and probiotic compounds, fecal microbiota transplantation (FMT) and exercise protocols have shown a modulatory action over the IM. In this review we provide an overview of current approaches targeting IM which have shown their capacity to counteract NAFLD and metabolic syndrome features in human patients and animal models.
Collapse
Affiliation(s)
- David Porras
- Institute of Biomedicine, University of León, León, Spain
| | - Esther Nistal
- Institute of Biomedicine, University of León, León, Spain.,Department of Gastroenterology, Complejo Asistencial Universitario de León, León, Spain
| | | | - Javier González-Gallego
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - María Victoria García-Mediavilla
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Sonia Sánchez-Campos
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| |
Collapse
|
95
|
Gut Microbiota as a Prospective Therapeutic Target for Curcumin: A Review of Mutual Influence. J Nutr Metab 2018; 2018:1367984. [PMID: 30647970 PMCID: PMC6311836 DOI: 10.1155/2018/1367984] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/06/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Background Turmeric is a spice that has recently received much interest and has been widely used in Ayurvedic medicine. Turmeric products are diarylheptanoids and have been characterized as safe. They are termed as curcuminoids that consists essentially of three major compounds: curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Curcumin is a lipophilic polyphenol that has poor systemic bioavailability and suffers from biotransformation by human intestinal microflora to yield different metabolites that are easily conjugated to glucuronides and sulfate O-conjugated derivatives. Recently, an increasing number of studies have indicated that dysbiosis is linked with many metabolic diseases, though gut microbiota could be a novel potential therapeutic target. Scope and Approach Thus, it is suspected that curcumin and its derivatives exert direct regulative effects on the gut microbiota which could explain the paradox between curcumin's poor systemic bioavailability and its widely reported pharmacological activities. Key Findings and Conclusions This article summarizes a range of studies that highlight the interaction between curcumin and gut microbiota and considers opportunities for microbiome-targeting therapies using turmeric extract.
Collapse
|
96
|
Kim Y, Clifton P. Curcumin, Cardiometabolic Health and Dementia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102093. [PMID: 30250013 PMCID: PMC6210685 DOI: 10.3390/ijerph15102093] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Current research indicates curcumin [diferuloylmethane; a polyphenolic compound isolated from the rhizomes of the dietary spice turmeric (Curcuma longa)] exerts a beneficial effect on health which may be partly attributable to its anti-oxidative and anti-inflammatory properties. The aim of this review is to examine potential mechanisms of the actions of curcumin in both animal and human studies. Curcumin modulates relevant molecular target pathways to improve glucose and lipid metabolism, suppress inflammation, stimulate antioxidant enzymes, facilitate insulin signalling and reduce gut permeability. Curcumin also inhibits Aβ and tau accumulation in animal models and enhances mitochondria and synaptic function. In conclusion, in high-dose animal studies and in vitro, curcumin exerts a potential beneficial effect on cardiometabolic disease. However, human studies are relatively unconvincing. More intervention studies should be conducted with the new curcumin formulation with improved oral bioavailability.
Collapse
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition/Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Peter Clifton
- School of Pharmacy and Medical Sciences, University of South Australia, General Post Office Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
97
|
Ng QX, Soh AYS, Loke W, Venkatanarayanan N, Lim DY, Yeo WS. A Meta-Analysis of the Clinical Use of Curcumin for Irritable Bowel Syndrome (IBS). J Clin Med 2018; 7:298. [PMID: 30248988 PMCID: PMC6210149 DOI: 10.3390/jcm7100298] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) remains a prevalent and difficult-to-manage gastrointestinal condition. There is growing interest in the use of traditional medicine to manage IBS. In particular, curcumin, a biologically active phytochemical, has demonstrated anti-inflammatory and anti-oxidant properties and mucosal protective effects in rat models of colitis. This meta-analysis thus aimed to investigate the hypothesis that curcumin improves IBS symptoms. Using the keywords (curcumin OR turmeric OR Indian saffron OR diferuloylmethane OR curcuminoid) AND (irritable bowel syndrome OR IBS), a preliminary search on the PubMed, Medline, Embase, PsychINFO, Web of Science, and Google Scholar databases yielded 1080 papers published in English between 1 January 1988 and 1 May 2018. Five randomized, controlled trials were systematically reviewed and 3 were included in the final meta-analysis. Random-effects meta-analysis based on three studies and 326 patients found curcumin to have a beneficial albeit not statistically significant effect on IBS symptoms (pooled standardized mean difference from baseline IBS severity rating -0.466, 95% CI: -1.113 to 0.182, p = 0.158). This is the first meta-analysis to examine the use of curcumin in IBS. With its unique anti-oxidant and anti-inflammatory activities and ability to modulate gut microbiota, curcumin is a potentially useful addition to our armamentarium of agents for IBS. It also appears safe and well-tolerated, with no adverse events reported in the available trials. However, current findings are based on a considerably limited evidence base with marked heterogeneity. More robust clinical trials involving a standardized curcumin preparation and larger sample sizes should be encouraged.
Collapse
Affiliation(s)
- Qin Xiang Ng
- National University Hospital, National University Health System, Singapore 119074, Singapore.
- MOH Holdings Pte Ltd., 1 Maritime Square, Singapore 099253, Singapore.
| | - Alex Yu Sen Soh
- National University Hospital, National University Health System, Singapore 119074, Singapore.
| | - Wayren Loke
- MOH Holdings Pte Ltd., 1 Maritime Square, Singapore 099253, Singapore.
| | | | - Donovan Yutong Lim
- Institute of Mental Health, Buangkok Green Medical Park, 10 Buangkok View, Singapore 539747, Singapore.
| | - Wee-Song Yeo
- National University Hospital, National University Health System, Singapore 119074, Singapore.
| |
Collapse
|
98
|
Peterson CT, Vaughn AR, Sharma V, Chopra D, Mills PJ, Peterson SN, Sivamani RK. Effects of Turmeric and Curcumin Dietary Supplementation on Human Gut Microbiota: A Double-Blind, Randomized, Placebo-Controlled Pilot Study. J Evid Based Integr Med 2018; 23:2515690X18790725. [PMID: 30088420 PMCID: PMC6083746 DOI: 10.1177/2515690x18790725] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background. Curcuma longa (common name: turmeric) and one of its biologically
active constituents, curcumin, have received increased clinical attention. Insufficient
data exist on the effects of curcumin and turmeric on the gut microbiota and such
studies in humans are lacking. Methods. Turmeric tablets with extract of piperine (Bioperine) (n = 6), curcumin with Bioperine
tablets (n = 5), or placebo tablets (n = 3) were provided to healthy human subjects and
subsequent changes in the gut microbiota were determined by 16S rDNA sequencing. Results. The number of taxa detected ranged from 172 to 325 bacterial species. The placebo group
displayed an overall reduction in species by 15%, whereas turmeric-treated subjects
displayed a modest 7% increase in observed species posttreatment. Subjects taking
curcumin displayed an average increase of 69% in detected species. The gut microbiota
response to treatment was highly personalized, thus leading to responders and
nonresponders displaying response concordance. These “responsive” subjects defined a
signature involving uniform increases in most Clostridium spp.,
Bacteroides spp., Citrobacter spp.,
Cronobacter spp., Enterobacter spp.,
Enterococcus spp., Klebsiella spp.,
Parabacteroides spp., and Pseudomonas spp. Common to
these subjects was the reduced relative abundance of several Blautia
spp. and most Ruminococcus spp. Conclusions. All participants’ microbiota displayed significant variation over time and
individualized response to treatment. Among the responsive participants, both turmeric
and curcumin altered the gut microbiota in a highly similar manner, suggesting that
curcumin may drive the majority of observed changes observed in turmeric-treated
subjects.
Collapse
Affiliation(s)
| | - Alexandra R Vaughn
- 2 University of California Davis, Sacramento, CA, USA.,3 Drexel University, Philadelphia, PA, USA
| | - Vandana Sharma
- 4 Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Deepak Chopra
- 1 University of California San Diego, La Jolla, CA, USA.,5 Chopra Foundation, Carlsbad, CA, USA
| | - Paul J Mills
- 1 University of California San Diego, La Jolla, CA, USA
| | - Scott N Peterson
- 4 Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Raja K Sivamani
- 2 University of California Davis, Sacramento, CA, USA.,6 California State University, Sacramento, CA, USA.,7 Pacific Skin Institute, Sacramento, CA, USA
| |
Collapse
|
99
|
Oral hydroxysafflor yellow A reduces obesity in mice by modulating the gut microbiota and serum metabolism. Pharmacol Res 2018; 134:40-50. [PMID: 29787870 DOI: 10.1016/j.phrs.2018.05.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/25/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022]
Abstract
Given the high and increasing prevalence of obesity, the safe and effective treatment of obesity would be beneficial. Here, we examined whether oral hydroxysafflor yellow A (HSYA), an active compound from the dried florets of Carthamus tinctorius L., can reduce high-fat (HF) diet-induced obesity in C57BL/6 J mice. Our results showed that the average body weight of HF group treated by HSYA was significantly lower than that of the HF group (P < 0.01). HSYA also reduced fat accumulation, ameliorated insulin resistance, restored glucose homeostasis, reduced inflammation, enhanced intestinal integrity, and increased short-chain fatty acids (SCFAs) production in HF diet-fed mice. Sequencing of 16S rRNA genes in fecal samples demonstrated that HSYA reversed HF diet induced gut microbiota dysbiosis. Particularly, HSYA increased the relative abundances of genera Akkermansia and Romboutsia, as well as SCFAs-producing bacteria, including genera Butyricimonas and Alloprevotella, whereas it decreased the phyla Firmicutes/Bacteroidetes ratio of HF diet-fed mice. Additionally, serum metabolomics analysis revealed that HSYA increased lysophosphatidylcholines (lysoPCs), L-carnitine and sphingomyelin, and decreased phosphatidylcholines in mice fed a HF diet, as compared to HF group. These changed metabolites were mainly linked with the pathways of glycerophospholipid metabolism and sphingolipid metabolism. Spearman's correlation analysis further revealed that Firmicutes was positively while Bacteroidetes and Akkermansia were negatively correlated with body weight, fasting serum glucose and insulin. Moreover, Akkermansia and Butyricimonas had positive correlations with lysoPCs, suggestive of the role of gut microbiota in serum metabolites. Our findings suggest HSYA may be a potential therapeutic drug for obesity and the gut microbiota may be potential territory for targeting of HSYA.
Collapse
|
100
|
Lopresti AL, Gupta H, Smith SJ. A poly-herbal blend (Herbagut®) on adults presenting with gastrointestinal complaints: a randomised, double-blind, placebo-controlled study. Altern Ther Health Med 2018; 18:98. [PMID: 29554961 PMCID: PMC5859649 DOI: 10.1186/s12906-018-2168-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
Abstract
Background To evaluate the efficacy and tolerability of a poly-herbal formulation, Herbagut, for the treatment of gastrointestinal symptoms and its effect on quality of life parameters in patients presenting with self-reported, unsatisfactory bowel habits. Methods This was a randomised, double-blind, placebo-controlled trial. Fifty adults with self-reported unsatisfactory bowel habits, primarily characterised by chronic constipation were randomly allocated to take Herbagut or a matching placebo for 28 days. Efficacy of gastrointestinal changes was measured by the completion of a patient daily diary evaluating changes in stool type (Bristol Stool Form Scale), ease of bowel movements, and feeling of complete evacuation; and the Gastrointestinal Symptom Rating Scale (GSRS). Changes in quality of life were also examined using the World Health Organization Quality of Life – abbreviated version (WHOQOL-BREF), and the Patient Assessment of Constipation-Quality of Life (PAC-QOL). Results All participants completed the 28-day trial with no adverse events reported. Compared to the placebo, weekly bowel movements increased over time (p < .001), as did self-reported, normal bowel motions (76% vs 4%; p < .001). Self-reported incomplete evacuation was also lower in the Herbagut group compared to placebo (24% vs 76%; p = <.001). GSRS domain ratings for abdominal pain, constipation, diarrhoea, indigestion, and reflux also decreased significantly in people taking Herbagut compared to placebo (p < .001, for all domains). Moreover, quality of life significantly improved in the Herbagut group compared to placebo as indicated by significantly greater improvement in WHOQOL-BREF domain ratings for overall quality of life, social relations, environmental health, psychological health, and physical health (p < .001, for all domains); and PAC-QOL domain ratings for physical discomfort, psychosocial discomfort, worries and concerns, and life satisfaction (p < .001, for all domains). The changes were considered clinically meaningful as evidenced by their large effect sizes. Conclusion Herbagut ingestion over a 28-day period resulted in improvements in several gastrointestinal symptoms and overall quality of life. Further investigation utilising larger sample sizes and diverse clinical and cultural populations are needed. Trial registration Clinical Trials Registry- India /2016/11/007479. Registered 24 April 2015 (retrospectively registered). Electronic supplementary material The online version of this article (10.1186/s12906-018-2168-y) contains supplementary material, which is available to authorized users.
Collapse
|