51
|
More GK, Chokwe CR, Meddows-Taylor S. The attenuation of antibiotic resistant non-albicans Candida species, cytotoxicity, anti-inflammatory effects and phytochemical profiles of five Vachellia species by FTIR and UHPLC-Q/Orbitrap/MS. Heliyon 2021; 7:e08425. [PMID: 34877423 PMCID: PMC8632836 DOI: 10.1016/j.heliyon.2021.e08425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/22/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
This work investigated the antifungal, cytotoxic and LPS-induced anti-inflammatory effects of five Vachellia species (V. karroo, V. kosiensis, V. sieberiana, V. tortalis and V. xanthophloea). The antifungal activity of the aqueous-methanolic extracts were performed using the broth dilution method against four non-albicans Candida species (C. glabrata, C. auris, C. tropicalis and C. parapsilosis). The cytotoxic and anti-inflammatory effects of the extracts were evaluated on African green monkey Vero kidney cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay and the 2ʹ,7ʹ-dichlorofluorescin diacetate (H2DCF-DA) method. The fourier-transform infrared spectroscopy (FTIR) and Q Exactive plus orbitrap™ Ultra-high-performance liquid chromatography-mass spectrometer (UHPLC-MS) analysis was conducted to evaluate phytochemical constituents of the extracts. The plant extracts selected in this study displayed potency against the Candida species tested, with MIC values ≤0.62 mg/mL for V. karroo, V. kosiensis and V. xanthophloea. A dose-dependent cell viability was observed on Vero cells with all extracts showing LC50 values >20 μg/mL. Extracts tested at 10 μg/mL elicited a significant decrease in lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) in Vero cells with V. sieberiana, V. tortilis, V. karroo, V. kosiensis and V. xanthophloea displaying inhibitory percentages of 35%, 32%, 55%, 52% and 49%, respectively. Characterisation of functional groups representing compounds in the extracts demonstrated the presence of different classes of compounds of the aliphatic, sugar and aromatic types. The Q Exactive plus orbitrap™ mass spectrometer enabled tentative identification of three major compounds in the extracts, including epigallocatechin, methyl gallate and quercetin amongst others. Based on the mass spectrometer results, it is postulated that quercetin found mostly in active extracts of V. karroo, V. xanthophloea, and V. kosiensis may be responsible for the observed antifungal and anti-inflammatory activity. This data demonstrates that the Vachellia species that were investigated could potentially be promising candidates for the management of fungal infections and related inflammation.
Collapse
Affiliation(s)
- Garland Kgosi More
- College of Agriculture and Environmental Sciences Laboratories, University of South Africa, Florida, Johannesburg, 1710, South Africa
| | - Christinah Ramakwala Chokwe
- Department of Chemistry, College of Science Engineering and Technology, University of South Africa, Florida, Johannesburg, 1710, South Africa
| | - Stephen Meddows-Taylor
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, Johannesburg, 1710, South Africa
| |
Collapse
|
52
|
Grosfeld EV, Bidiuk VA, Mitkevich OV, Ghazy ESMO, Kushnirov VV, Alexandrov AI. A Systematic Survey of Characteristic Features of Yeast Cell Death Triggered by External Factors. J Fungi (Basel) 2021; 7:886. [PMID: 34829175 PMCID: PMC8626022 DOI: 10.3390/jof7110886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Cell death in response to distinct stimuli can manifest different morphological traits. It also depends on various cell death signaling pathways, extensively characterized in higher eukaryotes but less so in microorganisms. The study of cell death in yeast, and specifically Saccharomyces cerevisiae, can potentially be productive for understanding cell death, since numerous killing stimuli have been characterized for this organism. Here, we systematized the literature on external treatments that kill yeast, and which contains at least minimal data on cell death mechanisms. Data from 707 papers from the 7000 obtained using keyword searches were used to create a reference table for filtering types of cell death according to commonly assayed parameters. This table provides a resource for orientation within the literature; however, it also highlights that the common view of similarity between non-necrotic death in yeast and apoptosis in mammals has not provided sufficient progress to create a clear classification of cell death types. Differences in experimental setups also prevent direct comparison between different stimuli. Thus, side-by-side comparisons of various cell death-inducing stimuli under comparable conditions using existing and novel markers that can differentiate between types of cell death seem like a promising direction for future studies.
Collapse
Affiliation(s)
- Erika V. Grosfeld
- Moscow Institute of Physics and Technology, 9 Institutskiy per, Dolgoprudny, 141700 Moscow, Russia;
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Victoria A. Bidiuk
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Olga V. Mitkevich
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Eslam S. M. O. Ghazy
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Vitaliy V. Kushnirov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Alexander I. Alexandrov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| |
Collapse
|
53
|
Cdk8 Kinase Module: A Mediator of Life and Death Decisions in Times of Stress. Microorganisms 2021; 9:microorganisms9102152. [PMID: 34683473 PMCID: PMC8540245 DOI: 10.3390/microorganisms9102152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/18/2023] Open
Abstract
The Cdk8 kinase module (CKM) of the multi-subunit mediator complex plays an essential role in cell fate decisions in response to different environmental cues. In the budding yeast S. cerevisiae, the CKM consists of four conserved subunits (cyclin C and its cognate cyclin-dependent kinase Cdk8, Med13, and Med12) and predominantly negatively regulates a subset of stress responsive genes (SRG’s). Derepression of these SRG’s is accomplished by disassociating the CKM from the mediator, thus allowing RNA polymerase II-directed transcription. In response to cell death stimuli, cyclin C translocates to the mitochondria where it induces mitochondrial hyper-fission and promotes regulated cell death (RCD). The nuclear release of cyclin C requires Med13 destruction by the ubiquitin-proteasome system (UPS). In contrast, to protect the cell from RCD following SRG induction induced by nutrient deprivation, cyclin C is rapidly destroyed by the UPS before it reaches the cytoplasm. This enables a survival response by two mechanisms: increased ATP production by retaining reticular mitochondrial morphology and relieving CKM-mediated repression on autophagy genes. Intriguingly, nitrogen starvation also stimulates Med13 destruction but through a different mechanism. Rather than destruction via the UPS, Med13 proteolysis occurs in the vacuole (yeast lysosome) via a newly identified Snx4-assisted autophagy pathway. Taken together, these findings reveal that the CKM regulates cell fate decisions by both transcriptional and non-transcriptional mechanisms, placing it at a convergence point between cell death and cell survival pathways.
Collapse
|
54
|
Pérez G, Lopez-Moya F, Chuina E, Ibañez-Vea M, Garde E, López-Llorca LV, Pisabarro AG, Ramírez L. Strain Degeneration in Pleurotus ostreatus: A Genotype Dependent Oxidative Stress Process Which Triggers Oxidative Stress, Cellular Detoxifying and Cell Wall Reshaping Genes. J Fungi (Basel) 2021; 7:jof7100862. [PMID: 34682283 PMCID: PMC8537115 DOI: 10.3390/jof7100862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022] Open
Abstract
Strain degeneration has been defined as a decrease or loss in the yield of important commercial traits resulting from subsequent culture, which ultimately leads to Reactive Oxygen Species (ROS) production. Pleurotus ostreatus is a lignin-producing nematophagous edible mushroom. Mycelia for mushroom production are usually maintained in subsequent culture in solid media and frequently show symptoms of strain degeneration. The dikaryotic strain P. ostreatus (DkN001) has been used in our lab as a model organism for different purposes. Hence, different tools have been developed to uncover genetic and molecular aspects of this fungus. In this work, strain degeneration was studied in a full-sib monokaryotic progeny of the DkN001 strain with fast (F) and slow (S) growth rates by using different experimental approaches (light microscopy, malondialdehyde levels, whole-genome transcriptome analysis, and chitosan effect on monokaryotic mycelia). The results obtained showed that: (i) strain degeneration in P. ostreatus is linked to oxidative stress, (ii) the oxidative stress response in monokaryons is genotype dependent, (iii) stress and detoxifying genes are highly expressed in S monokaryons with symptoms of strain degeneration, (iv) chitosan addition to F and S monokaryons uncovered the constitutive expression of both oxidative stress and cellular detoxifying genes in S monokaryon strains which suggest their adaptation to oxidative stress, and (v) the overexpression of the cell wall genes, Uap1 and Cda1, in S monokaryons with strain degeneration phenotype indicates cell wall reshaping and the activation of High Osmolarity Glycerol (HOG) and Cell Wall Integrity (CWI) pathways. These results could constitute a hallmark for mushroom producers to distinguish strain degeneration in commercial mushrooms.
Collapse
Affiliation(s)
- Gumer Pérez
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - Federico Lopez-Moya
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain; (F.L.-M.); (L.V.L.-L.)
| | - Emilia Chuina
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - María Ibañez-Vea
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - Edurne Garde
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - Luis V. López-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain; (F.L.-M.); (L.V.L.-L.)
| | - Antonio G. Pisabarro
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - Lucía Ramírez
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
- Correspondence:
| |
Collapse
|
55
|
Chen YC, Yang Y, Zhang C, Chen HY, Chen F, Wang KJ. A Novel Antimicrobial Peptide Sparamosin 26-54 From the Mud Crab Scylla paramamosain Showing Potent Antifungal Activity Against Cryptococcus neoformans. Front Microbiol 2021; 12:746006. [PMID: 34690992 PMCID: PMC8531530 DOI: 10.3389/fmicb.2021.746006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/17/2021] [Indexed: 11/20/2022] Open
Abstract
Due to the increasing prevalence of drug-resistant fungi and the limitations of current treatment strategies to fungal infections, exploration and development of new antifungal drugs or substituents are necessary. In the study, a novel antimicrobial peptide, named Sparamosin, was identified in the mud crab Scylla paramamosain, which contains a signal peptide of 22 amino acids and a mature peptide of 54 amino acids. The antimicrobial activity of its synthetic mature peptide and two truncated peptides (Sparamosin1-25 and Sparamosin26-54) were determined. The results showed that Sparamosin26-54 had the strongest activity against a variety of Gram-negative bacteria, Gram-positive bacteria and fungi, in particular had rapid fungicidal kinetics (killed 99% Cryptococcus neoformans within 10 min) and had potent anti-biofilm activity against C. neoformans, but had no cytotoxic effect on mammalian cells. The RNA-seq results showed that after Sparamosin26-54 treatment, the expression of genes involved in cell wall component biosynthesis, cell wall integrity signaling pathway, anti-oxidative stress, apoptosis and DNA repair were significantly up-regulated, indicating that Sparamosin26-54 might disrupt the cell wall of C. neoformans, causing oxidative stress, DNA damage and cell apoptosis. The underlying mechanism was further confirmed. Sparamosin26-54 could bind to several phospholipids in the cell membrane and effectively killed C. neoformans through disrupting the integrity of the cell wall and cell membrane observed by electron microscope and staining assay. In addition, it was found that the accumulation of reactive oxygen species (ROS) increased, the mitochondrial membrane potential (MMP) was disrupted, and DNA fragmentation was induced after Sparamosin26-54 treatment, which are all hallmarks of apoptosis. Taken together, Sparamosin26-54 has a good application prospect as an effective antimicrobial agent, especially for C. neoformans infections.
Collapse
Affiliation(s)
- Yan-Chao Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ying Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chang Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hui-Yun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
56
|
Wang S, Zhang H, Qi T, Deng L, Yi L, Zeng K. Influence of arginine on the biocontrol efficiency of Metschnikowia citriensis against Geotrichum citri-aurantii causing sour rot of postharvest citrus fruit. Food Microbiol 2021; 101:103888. [PMID: 34579848 DOI: 10.1016/j.fm.2021.103888] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022]
Abstract
This study investigated the effect of arginine (Arg) on the antagonistic activity of Metschnikowia citriensis against sour rot caused by Geotrichum citri-aurantii in postharvest citrus, and evaluated the possible mechanism therein. Arg treatment up-regulated the PUL genes expression, and significantly induced the pulcherriminic acid (PA) production of M. citriensis, which related to the capability of iron depletion of M. citriensis. By comparing the biocontrol effects of Arg-treated and untreated yeast cells, it was found that Arg treatment significantly enhanced the biocontrol efficacy of M. citriensis, and 5 mmol L-1 Arg exerted the best effect. Additionally, the biofilm formation ability of M. citriensis was greatly enhanced by Arg, and the higher population density of yeast cells in citrus wounds was also observed in Arg treatment groups stored both at 25 °C and 4 °C. Moreover, Arg was shown to function as a cell protectant to elevate antioxidant enzyme activity [including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX)] and intracellular trehalose content to resist oxidative stress damage, that directly helped to enhance colonization ability of yeasts in fruit wounds. These results suggest the application of Arg is a useful approach to improve the biocontrol performance of M. citriensis.
Collapse
Affiliation(s)
- Shupei Wang
- College of Food Science, Southwest University, Chongqing, 400715, PR China; College of Environmental and Life Sciences, Nanning Normal University, Nanning, 530001, PR China
| | - Hongyan Zhang
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Teng Qi
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Lili Deng
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Key Laboratory of Plant Hormones and Development Regulation of Chongqing, Chongqing, 401331, PR China
| | - Lanhua Yi
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Food Storage and Logistics Research Center, Southwest University, Chongqing, 400715, PR China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Food Storage and Logistics Research Center, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
57
|
Chang CK, Kao MC, Lan CY. Antimicrobial Activity of the Peptide LfcinB15 against Candida albicans. J Fungi (Basel) 2021; 7:jof7070519. [PMID: 34209722 PMCID: PMC8306953 DOI: 10.3390/jof7070519] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Lactoferricin (Lfcin) is an amphipathic, cationic peptide derived from proteolytic cleavage of the N-lobe of lactoferrin (Lf). Lfcin and its derivatives possess broad-spectrum antibacterial and antifungal activities. However, unlike their antibacterial functions, the modes of action of Lfcin and its derivatives against pathogenic fungi are less well understood. In this study, the mechanisms of LfcinB15, a derivative of bovine Lfcin, against Candida albicans were, therefore, extensively investigated. LfcinB15 exhibited inhibitory activity against planktonic cells, biofilm cells, and clinical isolates of C. albicans and non-albicans Candida species. We further demonstrated that LfcinB15 is localized on the cell surface and vacuoles of C. albicans cells. Moreover, LfcinB15 uses several different methods to kill C. albicans, including disturbing the cell membrane, inducing reactive oxygen species (ROS) generation, and causing mitochondrial dysfunction. Finally, the Hog1 and Mkc1 mitogen-activated protein kinases were both activated in C. albicans cells in response to LfcinB15. These findings help us to obtain more insight into the complex mechanisms used by LfcinB15 and other Lfcin-derived peptides to fight fungal pathogens.
Collapse
Affiliation(s)
- Che-Kang Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: (M.-C.K.); ; (C.-Y.L.); Tel.: +886-3-5742473 (M.-C.K.); +886-3-5742472 (C.-Y.L.)
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: (M.-C.K.); ; (C.-Y.L.); Tel.: +886-3-5742473 (M.-C.K.); +886-3-5742472 (C.-Y.L.)
| |
Collapse
|
58
|
Veerabhadrappa B, Subramanian S, S J S, Dyavaiah M. Evaluating the genetic basiss of anti-cancer property of Taxol in Saccharomyces cerevisiae model. FEMS Microbiol Lett 2021; 368:6307513. [PMID: 34156070 DOI: 10.1093/femsle/fnab077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/18/2021] [Indexed: 01/24/2023] Open
Abstract
Taxol has been regarded as one of the most successful anti-cancer drugs identified from natural sources to date. Although Taxol is known to sensitize cells by stabilizing microtubules, its ability to cause DNA damage in peripheral blood lymphocytes and to induce oxidative stress and apoptosis indicates that Taxol may have other modes of cytotoxic action. This study focuses on identifying the additional targets of Taxol that may contribute to its multifaceted cell killing property, using Saccharomyces cerevisiae. We show that yeast oxidative stress response mutants (sod1Δ, tsa1Δ and cta1Δ) and DNA damage response mutants (mre11∆, sgs1∆ and sub1∆) are highly sensitive to Taxol. Our results also show that Taxol increases the level of reactive oxygen species (ROS) in yeast oxidative stress response mutant strains. Further, 4',6-Diamidino-2'-phenylindole (DAPI) and acridine orange/ethidium bromide (AO/EB) staining show that Taxol induces apoptotic features such as nuclear fragmentation and chromatin condensation in DNA repair mutants. On the whole, our results suggest that Taxol's cytotoxic property is attributed to its multifaceted mechanism of action. Yeast S. cerevisiae anti-oxidant and DNA repair gene mutants are sensitive to Taxol compared to wild-type, suggesting yeast model can be used to identify the genetic targets of anti-cancer drugs.
Collapse
Affiliation(s)
- Bhavana Veerabhadrappa
- Department of Biochemistry and Molecular Biology Pondicherry University Pondicherry - 605014, India
| | - Subasri Subramanian
- Department of Biochemistry and Molecular Biology Pondicherry University Pondicherry - 605014, India
| | - Sudharshan S J
- Department of Biochemistry and Molecular Biology Pondicherry University Pondicherry - 605014, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology Pondicherry University Pondicherry - 605014, India
| |
Collapse
|
59
|
Domi B, Bhorkar K, Rumbo C, Sygellou L, Martin SM, Quesada R, Yannopoulos SN, Tamayo-Ramos JA. Toxicological assessment of commercial monolayer tungsten disulfide nanomaterials aqueous suspensions using human A549 cells and the model fungus Saccharomyces cerevisiae. CHEMOSPHERE 2021; 272:129603. [PMID: 33485043 DOI: 10.1016/j.chemosphere.2021.129603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
The utilization of tungsten disulfide (WS2) nanomaterials in distinct applications is raising due to their unique physico-chemical properties, such as low friction coefficient and high strength, which highlights the necessity to study their potential toxicological effects, due to the potential increase of environmental and human exposure. The aim of this work was to analyze commercially available aqueous dispersions of monolayer tungsten disulfide (2D WS2) nanomaterials with distinct lateral size employing a portfolio of physico-chemical and toxicological evaluations. The structure and stoichiometry of monolayer tungsten disulfide (WS2-ACS-M) and nano size monolayer tungsten disulfide (WS2-ACS-N) was analyzed by Raman spectroscopy, whereas a more quantitative approach to study the nature of formed oxidized species was undertaken employing X-ray photoelectron spectroscopy. Adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the ecotoxicology model Saccharomyces cerevisiae were selected as unicellular eukaryotic systems to assess the cytotoxicity of the nanomaterials. Cell viability and reactive oxygen species (ROS) determinations demonstrated different toxicity levels depending on the cellular model used. While both 2D WS2 suspensions showed very low toxicity towards the A549 cells, a comparable concentration (160 mg L-1) reduced the viability of yeast cells. The toxicity of a nano size 2D WS2 commercialized in dry form from the same provider was also assessed, showing ability to reduce yeast cells viability as well. Overall, the presented data reveal the physico-chemical properties and the potential toxicity of commercial 2D WS2 aqueous suspensions when interacting with distinct eukaryotic organisms, showing differences in function of the biological system exposed.
Collapse
Affiliation(s)
- Brixhilda Domi
- International Research Centre in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Banuelos S/n, 09001, Burgos, Spain
| | - Kapil Bhorkar
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504, Rio-Patras, Greece; Univ Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| | - Carlos Rumbo
- International Research Centre in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Banuelos S/n, 09001, Burgos, Spain
| | - Labrini Sygellou
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504, Rio-Patras, Greece
| | - Sonia Martel Martin
- International Research Centre in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Banuelos S/n, 09001, Burgos, Spain
| | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Spyros N Yannopoulos
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504, Rio-Patras, Greece
| | - Juan Antonio Tamayo-Ramos
- International Research Centre in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Banuelos S/n, 09001, Burgos, Spain.
| |
Collapse
|
60
|
Porras-Agüera JA, Moreno-García J, García-Martínez T, Moreno J, Mauricio JC. Impact of CO 2 overpressure on yeast mitochondrial associated proteome during the "prise de mousse" of sparkling wine production. Int J Food Microbiol 2021; 348:109226. [PMID: 33964807 DOI: 10.1016/j.ijfoodmicro.2021.109226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/07/2021] [Accepted: 04/25/2021] [Indexed: 11/25/2022]
Abstract
The "prise de mousse" stage during sparkling wine elaboration by the traditional method (Champenoise) involves a second fermentation in a sealed bottle followed by a prolonged aging period, known to contribute significantly to the unique organoleptic properties of these wines. During this stage, CO2 overpressure, nutrient starvation and high ethanol concentrations are stress factors that affect yeast cells viability and metabolism. Since mitochondria are responsible for energy generation and are required for cell aging and response to numerous stresses, we hypothesized that these organelles may play an essential role during the prise de mousse. The objective of this study is to characterize the mitochondrial response of a Saccharomyces cerevisiae strain traditionally used in sparkling wine production along the "prise de mousse" and study the effect of CO2 overpressure through a proteomic analysis. We observed that pressure negatively affects the content of mitochondrion-related proteome, especially to those proteins involved in tricarboxylic acid cycle. However, proteins required for the branched-amino acid synthesis, implied in wine aromas, and respiratory chain, also previously reported by transcriptomic analyses, were found over-represented in the sealed bottles. Multivariate analysis of proteins required for tricarboxylic cycle, respiratory chain and amino acid metabolism revealed differences in concentrations, allowing the wine samples to group depending on the time and CO2 overpressure parameters. Ethanol content along the second fermentation could be the main reason for this changing behavior observed at proteomic level. Further research including genetic studies, determination of ROS, characterization of mitochondrial activity and targeted metabolomics analyses is required. The list of mitochondrial proteins provided in this work will lead to a better understanding of the yeast behavior under these conditions of special interest in the wine industry.
Collapse
Affiliation(s)
- Juan Antonio Porras-Agüera
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| |
Collapse
|
61
|
Dawes IW, Perrone GG. Stress and ageing in yeast. FEMS Yeast Res 2021; 20:5670642. [PMID: 31816015 DOI: 10.1093/femsyr/foz085] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
There has long been speculation about the role of various stresses in ageing. Some stresses have beneficial effects on ageing-dependent on duration and severity of the stress, others have negative effects and the question arises whether these negative effects are causative of ageing or the result of the ageing process. Cellular responses to many stresses are highly coordinated in a concerted way and hence there is a great deal of cross-talk between different stresses. Here the relevant aspects of the coordination of stress responses and the roles of different stresses on yeast cell ageing are discussed, together with the various functions that are involved. The cellular processes that are involved in alleviating the effects of stress on ageing are considered, together with the possible role of early stress events on subsequent ageing of cells.
Collapse
Affiliation(s)
- Ian W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriel G Perrone
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
62
|
Wang Y, Lu C, Zhao X, Wang D, Liu Y, Sun S. Antifungal activity and potential mechanism of Asiatic acid alone and in combination with fluconazole against Candida albicans. Biomed Pharmacother 2021; 139:111568. [PMID: 33845374 DOI: 10.1016/j.biopha.2021.111568] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Candida albicans (C. albicans) infection remains a challenge to clinicians due to the limited available antifungals. With the widespread use of antifungals in the clinic, the drug resistance has been emerging continuously, especially fluconazole. Therefore, searching for new antifungals, active constituents of natural or traditional medicines, and approaches to overcome antifungals resistance is needed. This study investigated the activity of Asiatic acid (AA) alone and in combination with fluconazole (FLC) against C. albicans in vitro and in vivo. The in vitro studies indicated that the drug combination had a synergistic effect on FLC-resistant C. albicans, with fractional inhibitory concentration index (FICI) of 0.25. And when AA at the dose of 32 µg/mL, the drug combination group could decrease the sessile minimum inhibitory concentration (sMIC) of FLC from > 1024 µg/mL to 0.125-0.25 µg/mL within 8 h against C. albicans biofilms, even with the FICI > 0.5. In vivo, the antifungal efficacy of AA used alone and in combination with FLC was evaluated by Galleria mellonella (G. mellonella) larvae. The drug combination group prolonged the survival rate and reduced tissue invasion of larvae infected with resistant C. albicans. Furthermore, mechanism studies indicated that the antifungal effects of AA in combination with FLC might be associated with the inhibition of drug efflux pump, the accumulation of reactive oxygen species (ROS) and the inhibition of hyphal growth. These findings might provide novel insights for overcoming drug resistance of C. albicans and bring new reference data for the development and application of AA in future.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province 250014, People's Republic of China
| | - Chunyan Lu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province 250014, People's Republic of China
| | - Xia Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province 250014, People's Republic of China
| | - Decai Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province 27100, People's Republic of China
| | - Yaxin Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province 250014, People's Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province 250014, People's Republic of China.
| |
Collapse
|
63
|
Sinha A, Pick E. Fluorescence Detection of Increased Reactive Oxygen Species Levels in Saccharomyces cerevisiae at the Diauxic Shift. Methods Mol Biol 2021; 2202:81-91. [PMID: 32857348 DOI: 10.1007/978-1-0716-0896-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The budding yeast Saccharomyces cerevisiae is a facultative organism that is able to utilize both anaerobic and aerobic metabolism, depending on the composition of carbon source in the growth medium. When glucose is abundant, yeast catabolizes it to ethanol and other by-products by anaerobic fermentation through the glycolysis pathway. Following glucose exhaustion, cells switch to oxygenic respiration (a.k.a. "diauxic shift"), which allows catabolizing ethanol and the other carbon compounds via the TCA cycle and oxidative phosphorylation in the mitochondria. The diauxic shift is accompanied by elevated reactive oxygen species (ROS) levels and is characterized by activation of ROS defense mechanisms. Traditional measurement of the diauxic shift is done through measuring optical density of cultures grown in a batch at intermediate time points and generating a typical growth curve or by estimating the reduction of glucose and accumulation of ethanol in growth media over time. In this manuscript, we describe a method for determining changes in ROS levels upon yeast growth, using carboxy-H(2)-dichloro-dihydrofluorescein diacetate (carboxy-H(2)-DCFDA). H2-DCFDA is a widely used fluorescent dye for measuring intracellular ROS levels. H2-DCFDA enables a direct measurement of ROS in yeast cells at intermediate time points. The outcome of H2-DCFDA fluorescent readout measurements correlates with the growth curve information, hence providing a clear understanding of the diauxic shift.
Collapse
Affiliation(s)
- Abhishek Sinha
- Department of Biology and Environment, University of Haifa at Oranim, Tivon, Israel
- Department of Microbiology, Swami Vivekand University, Sagar, Madhya Pradesh, India
| | - Elah Pick
- Department of Biology and Environment, University of Haifa at Oranim, Tivon, Israel.
| |
Collapse
|
64
|
Jayakody LN, Jin YS. In-depth understanding of molecular mechanisms of aldehyde toxicity to engineer robust Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 105:2675-2692. [PMID: 33743026 DOI: 10.1007/s00253-021-11213-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 11/25/2022]
Abstract
Aldehydes are ubiquitous electrophilic compounds that ferment microorganisms including Saccharomyces cerevisiae encounter during the fermentation processes to produce food, fuels, chemicals, and pharmaceuticals. Aldehydes pose severe toxicity to the growth and metabolism of the S. cerevisiae through a variety of toxic molecular mechanisms, predominantly via damaging macromolecules and hampering the production of targeted compounds. Compounds with aldehyde functional groups are far more toxic to S. cerevisiae than all other functional classes, and toxic potency depends on physicochemical characteristics of aldehydes. The yeast synthetic biology community established a design-build-test-learn framework to develop S. cerevisiae cell factories to valorize the sustainable and renewable biomass, including the lignin-derived substrates. However, thermochemically pretreated biomass-derived substrate streams contain diverse aldehydes (e.g., glycolaldehyde and furfural), and biological conversions routes of lignocellulosic compounds consist of toxic aldehyde intermediates (e.g., formaldehyde and methylglyoxal), and some of the high-value targeted products have aldehyde functional group (e.g., vanillin and benzaldehyde). Numerous studies comprehensively characterized both single and additive effects of aldehyde toxicity via systems biology investigations, and novel molecular approaches have been discovered to overcome the aldehyde toxicity. Based on those novel approaches, researchers successfully developed synthetic yeast cell factories to convert lignocellulosic substrates to valuable products, including aldehyde compounds. In this mini-review, we highlight the salient relationship of physicochemical characteristics and molecular toxicity of aldehydes, the molecular detoxification and macromolecules protection mechanisms of aldehydes, and the advances of engineering robust S. cerevisiae against complex mixtures of aldehyde inhibitors. KEY POINTS: • We reviewed structure-activity relationships of aldehyde toxicity on S. cerevisiae. • Two-tier protection mechanisms to alleviate aldehyde toxicity are presented. • We highlighted the strategies to overcome the synergistic toxicity of aldehydes.
Collapse
Affiliation(s)
- Lahiru N Jayakody
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, IL, USA.
- Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
65
|
Weber M, Basu S, González B, Greslehner GP, Singer S, Haskova D, Hasek J, Breitenbach M, W.Gourlay C, Cullen PJ, Rinnerthaler M. Actin Cytoskeleton Regulation by the Yeast NADPH Oxidase Yno1p Impacts Processes Controlled by MAPK Pathways. Antioxidants (Basel) 2021; 10:322. [PMID: 33671669 PMCID: PMC7926930 DOI: 10.3390/antiox10020322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS) that exceed the antioxidative capacity of the cell can be harmful and are termed oxidative stress. Increasing evidence suggests that ROS are not exclusively detrimental, but can fulfill important signaling functions. Recently, we have been able to demonstrate that a NADPH oxidase-like enzyme (termed Yno1p) exists in the single-celled organism Saccharomyces cerevisiae. This enzyme resides in the peripheral and perinuclear endoplasmic reticulum and functions in close proximity to the plasma membrane. Its product, hydrogen peroxide, which is also produced by the action of the superoxide dismutase, Sod1p, influences signaling of key regulatory proteins Ras2p and Yck1p/2p. In the present work, we demonstrate that Yno1p-derived H2O2 regulates outputs controlled by three MAP kinase pathways that can share components: the filamentous growth (filamentous growth MAPK (fMAPK)), pheromone response, and osmotic stress response (hyperosmolarity glycerol response, HOG) pathways. A key structural component and regulator in this process is the actin cytoskeleton. The nucleation and stabilization of actin are regulated by Yno1p. Cells lacking YNO1 showed reduced invasive growth, which could be reversed by stimulation of actin nucleation. Additionally, under osmotic stress, the vacuoles of a ∆yno1 strain show an enhanced fragmentation. During pheromone response induced by the addition of alpha-factor, Yno1p is responsible for a burst of ROS. Collectively, these results broaden the roles of ROS to encompass microbial differentiation responses and stress responses controlled by MAPK pathways.
Collapse
Affiliation(s)
- Manuela Weber
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| | - Sukanya Basu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260-1300, USA; (S.B.); (B.G.)
| | - Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260-1300, USA; (S.B.); (B.G.)
| | - Gregor P. Greslehner
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| | - Stefanie Singer
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| | - Danusa Haskova
- Laboratory of Cell Reproduction, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (D.H.); (J.H.)
| | - Jiri Hasek
- Laboratory of Cell Reproduction, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (D.H.); (J.H.)
| | - Michael Breitenbach
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| | - Campbell W.Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Kent CT2 9HY, UK;
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260-1300, USA; (S.B.); (B.G.)
| | - Mark Rinnerthaler
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| |
Collapse
|
66
|
Bereta M, Teplan M, Chafai DE, Radil R, Cifra M. Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell culture. Sci Rep 2021; 11:328. [PMID: 33431983 PMCID: PMC7801494 DOI: 10.1038/s41598-020-79668-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Normal or excessive oxidative metabolism in organisms is essential in physiological and pathophysiological processes, respectively. Therefore, monitoring of biological oxidative processes induced by the chemical or physical stimuli is nowadays of extreme importance due to the environment overloaded with various physicochemical factors. Current techniques typically require the addition of chemical labels or light illumination, which perturb the samples to be analyzed. Moreover, the current techniques are very demanding in terms of sample preparation and equipment. To alleviate these limitations, we propose a label-free monitoring tool of oxidation based on biological autoluminescence (BAL). We demonstrate this tool on Saccharomyces cerevisiae cell culture. We showed that BAL can be used to monitor chemical perturbation of yeast due to Fenton reagents initiated oxidation-the BAL intensity changes with hydrogen peroxide concentration in a dose-dependent manner. Furthermore, we also showed that BAL reflects the effects of low-frequency magnetic field on the yeast cell culture, where we observed a disturbance of the BAL kinetics in the exposed vs. control case. Our results contribute to the development of novel techniques for label-free, real-time, noninvasive monitoring of oxidative processes and approaches for their modulation.
Collapse
Affiliation(s)
- Martin Bereta
- Institute of Measurement Science of the Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Health, Catholic University in Ruzomberok, Ruzomberok, Slovakia
| | - Michal Teplan
- Institute of Measurement Science of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Djamel Eddine Chafai
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia
| | - Roman Radil
- Faculty of Electrical Engineering and Information Technology, University of Zilina, Zilina, Slovakia
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
67
|
Domi B, Bhorkar K, Rumbo C, Sygellou L, Yannopoulos SN, Barros R, Quesada R, Tamayo-Ramos JA. Assessment of Physico-Chemical and Toxicological Properties of Commercial 2D Boron Nitride Nanopowder and Nanoplatelets. Int J Mol Sci 2021; 22:E567. [PMID: 33430016 PMCID: PMC7827597 DOI: 10.3390/ijms22020567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Boron nitride (BN) nanomaterials have been increasingly explored for potential applications in chemistry and biology fields (e.g., biomedical, pharmaceutical, and energy industries) due to their unique physico-chemical properties. However, their safe utilization requires a profound knowledge on their potential toxicological and environmental impact. To date, BN nanoparticles have been considered to have a high biocompatibility degree, but in some cases, contradictory results on their potential toxicity have been reported. Therefore, in the present study, we assessed two commercial 2D BN samples, namely BN-nanopowder (BN-PW) and BN-nanoplatelet (BN-PL), with the objective to identify whether distinct physico-chemical features may have an influence on the biological responses of exposed cellular models. Morphological, structural, and composition analyses showed that the most remarkable difference between both commercial samples was the diameter of their disk-like shape, which was of 200-300 nm for BN-PL and 100-150 nm for BN-PW. Their potential toxicity was investigated using adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the unicellular fungus Saccharomycescerevisiae, as human and environmental eukaryotic models respectively, employing in vitro assays. In both cases, cellular viability assays and reactive oxygen species (ROS) determinations where performed. The impact of the selected nanomaterials in the viability of both unicellular models was very low, with only a slight reduction of S. cerevisiae colony forming units being observed after a long exposure period (24 h) to high concentrations (800 mg/L) of both nanomaterials. Similarly, BN-PW and BN-PL showed a low capacity to induce the formation of reactive oxygen species in the studied conditions. Even at the highest concentration and exposure times, no major cytotoxicity indicators were observed in human cells and yeast. The results obtained in the present study provide novel insights into the safety of 2D BN nanomaterials, indicating no significant differences in the toxicological potential of similar commercial products with a distinct lateral size, which showed to be safe products in the concentrations and exposure conditions tested.
Collapse
Affiliation(s)
- Brixhilda Domi
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| | - Kapil Bhorkar
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504 Rio-Patras, Greece; (K.B.); (L.S.); (S.N.Y.)
- CNRS, ISCR-UMR 6226, University of Rennes, F-35000 Rennes, France
| | - Carlos Rumbo
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| | - Labrini Sygellou
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504 Rio-Patras, Greece; (K.B.); (L.S.); (S.N.Y.)
| | - Spyros N. Yannopoulos
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504 Rio-Patras, Greece; (K.B.); (L.S.); (S.N.Y.)
| | - Rocio Barros
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain;
| | - Juan Antonio Tamayo-Ramos
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| |
Collapse
|
68
|
Ayers MC, Sherman ZN, Gallagher JEG. Oxidative Stress Responses and Nutrient Starvation in MCHM Treated Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2020; 10:4665-4678. [PMID: 33109726 PMCID: PMC7718757 DOI: 10.1534/g3.120.401661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
In 2014, the coal cleaning chemical 4-methylcyclohexane methanol (MCHM) spilled into the water supply for 300,000 West Virginians. Initial toxicology tests showed relatively mild results, but the underlying effects on cellular biology were underexplored. Treated wildtype yeast cells grew poorly, but there was only a small decrease in cell viability. Cell cycle analysis revealed an absence of cells in S phase within thirty minutes of treatment. Cells accumulated in G1 over a six-hour time course, indicating arrest instead of death. A genetic screen of the haploid knockout collection revealed 329 high confidence genes required for optimal growth in MCHM. These genes encode three major cell processes: mitochondrial gene expression/translation, the vacuolar ATPase, and aromatic amino acid biosynthesis. The transcriptome showed an upregulation of pleiotropic drug response genes and amino acid biosynthetic genes and downregulation in ribosome biosynthesis. Analysis of these datasets pointed to environmental stress response activation upon treatment. Overlap in datasets included the aromatic amino acid genes ARO1, ARO3, and four of the five TRP genes. This implicated nutrient deprivation as the signal for stress response. Excess supplementation of nutrients and amino acids did not improve growth on MCHM, so the source of nutrient deprivation signal is still unclear. Reactive oxygen species and DNA damage were directly detected with MCHM treatment, but timepoints showed these accumulated slower than cells arrested. We propose that wildtype cells arrest from nutrient deprivation and survive, accumulating oxidative damage through the implementation of robust environmental stress responses.
Collapse
Affiliation(s)
- Michael C Ayers
- Department of Biology, West Virginia University, Morgantown, WV 26506
| | - Zachary N Sherman
- Department of Biology, West Virginia University, Morgantown, WV 26506
| | | |
Collapse
|
69
|
González J, Castillo R, García-Campos MA, Noriega-Samaniego D, Escobar-Sánchez V, Romero-Aguilar L, Alba-Lois L, Segal-Kischinevzky C. Tolerance to Oxidative Stress in Budding Yeast by Heterologous Expression of Catalases A and T from Debaryomyces hansenii. Curr Microbiol 2020; 77:4000-4015. [PMID: 33064189 DOI: 10.1007/s00284-020-02237-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/01/2020] [Indexed: 01/24/2023]
Abstract
The function of catalases A and T from the budding yeast Saccharomyces cerevisiae (ScCta1 and ScCtt1) is to decompose hydrogen peroxide (H2O2) to mitigate oxidative stress. Catalase orthologs are widely found in yeast, suggesting that scavenging H2O2 is crucial to avoid the oxidative damage caused by reactive oxygen species (ROS). However, the function of catalase orthologs has not yet been experimentally characterized in vivo. Here, we heterologously expressed Debaryomyces hansenii DhCTA1 and DhCTT1 genes, encoding ScCta1 and ScCtt1 orthologs, respectively, in a S. cerevisiae acatalasemic strain (cta1Δ ctt1Δ). We performed a physiological analysis evaluating growth, catalase activity, and H2O2 tolerance of the strains grown with glucose or ethanol as carbon source, as well as under NaCl stress. We found that both genes complement the catalase function in S. cerevisiae. Particularly, the strain harboring DhCTT1 showed improved growth when ethanol was used as carbon source both in the absence or presence of salt stress. This phenotype is attributed to the high catalase activity of DhCtt1 detected at the exponential growth phase, which prevents intracellular ROS accumulation and confers oxidative stress resistance.
Collapse
Affiliation(s)
- James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Cd. Universitaria, 04510, Coyoacán, Ciudad de México, México
| | - Román Castillo
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Cd. Universitaria, 04510, Coyoacán, Ciudad de México, México
| | - Miguel Angel García-Campos
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Cd. Universitaria, 04510, Coyoacán, Ciudad de México, México
| | - Diego Noriega-Samaniego
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Cd. Universitaria, 04510, Coyoacán, Ciudad de México, México
| | - Viviana Escobar-Sánchez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Cd. Universitaria, 04510, Coyoacán, Ciudad de México, México
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Facultad de Medicina, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Cd. Universitaria, 04510, Coyoacán, Ciudad de México, México
| | - Luisa Alba-Lois
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Cd. Universitaria, 04510, Coyoacán, Ciudad de México, México
| | - Claudia Segal-Kischinevzky
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Cd. Universitaria, 04510, Coyoacán, Ciudad de México, México.
| |
Collapse
|
70
|
Contreras-Arzate D, Islas-Espinoza M, Fall C, Alcántara-Díaz D, Olguin MT, López-Callejas R, Peña-Eguiluz R. Microbial mortality behavior promoted by silver (Ag +/Ag o)-modified zeolite-rich tuffs for water disinfection. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:755-768. [PMID: 33312600 PMCID: PMC7721831 DOI: 10.1007/s40201-020-00501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND In developing countries, death due to diseases caused by fecal-oral ingestion can be avoided by taking action on drinking water issues. Adequate access to water treatment systems to reduce infections is a critical cause. Silver has been used as an antibacterial product, including biomedical applications. Therefore, in this paper, the effect of the chemical speciation of silver from silver-modified zeolite-rich tuffs on the mortality of Escherichia coli (E. coli), Streptococcus faecalis (S. faecalis) and Candida albicans (C. albicans) suspended in aqueous solution was investigated for disinfection purposes. METHODS The following aspects were considered to develop the investigation: a) the technique to prepare the modified zeolitic materials, either with ionic silver or silver nanoparticles, which were obtained in two ways: one, with grapefruit extract and the second, by using non-thermal plasma generated in a dielectric barrier discharge reactor of parallel plates; b) the response of the prokaryotes (bacteria) and eukaryote (yeast) microorganisms to disinfectant agents in batch systems; c) the disinfection processes as a function of time to obtain kinetics parameters; and d) the kinetics of the silver release from the silver-modified zeolite-rich tuffs, considering the models of Higuchi and Korsmeyer. The zeolitic materials were characterized by low-vacuum scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). RESULTS The non-thermal plasma reduced ionic silver is more efficient at generating silver compounds with several oxidation states, which are essential during the microbial inhibition process. For the bacterial (E. coli and S. faecalis), the materials with nanoparticles were efficient to inactivate them. However, the yeast (C. albicans) reaches the total inactivation when the zeolitic material contains ionic silver in the crystalline network. CONCLUSION The E. coli, S. faecalis and C. albicans survival behavior suspended in aqueous solutions after contact with Ag-modified natural zeolites depends on the chemical speciation of the silver present in these materials, Ag+1 in the case of OAgiZ or nanoparticles of Ago promoted by the grapefruit extract (OAgnpTZ), as well as by non-thermal plasma generated in a dielectric barrier discharge reactor of parallel plates (OAgnpPZ). In general, the concentration of silver in the aqueous solution after the disinfection process cannot exceed the recommended levels established for international organizations. The OAgnpPZ is a potential microbicide agent against E. coli and C. albicans, and the OAgn pTZ for F. faecalis.Graphical abstractARTWORK.
Collapse
Affiliation(s)
- D. Contreras-Arzate
- Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Básicas, Carretera México Toluca s/n, La Marquesa, Ocoyoacac, Estado de México, CP 52750, Estado de Mexico, Mexico
- Instituto Interamericano de Tecnología y Ciencias del Agua, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco Km 14.5, Unidad de San Cayetano Estado de México, CP 50200, Estado de Mexico, Mexico
| | - M. Islas-Espinoza
- Instituto Interamericano de Tecnología y Ciencias del Agua, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco Km 14.5, Unidad de San Cayetano Estado de México, CP 50200, Estado de Mexico, Mexico
| | - C. Fall
- Instituto Interamericano de Tecnología y Ciencias del Agua, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco Km 14.5, Unidad de San Cayetano Estado de México, CP 50200, Estado de Mexico, Mexico
| | - D. Alcántara-Díaz
- Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Básicas, Carretera México Toluca s/n, La Marquesa, Ocoyoacac, Estado de México, CP 52750, Estado de Mexico, Mexico
| | - M. T. Olguin
- Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Básicas, Carretera México Toluca s/n, La Marquesa, Ocoyoacac, Estado de México, CP 52750, Estado de Mexico, Mexico
| | - R. López-Callejas
- Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Básicas, Carretera México Toluca s/n, La Marquesa, Ocoyoacac, Estado de México, CP 52750, Estado de Mexico, Mexico
| | - R. Peña-Eguiluz
- Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Básicas, Carretera México Toluca s/n, La Marquesa, Ocoyoacac, Estado de México, CP 52750, Estado de Mexico, Mexico
| |
Collapse
|
71
|
Finding MEMO-Emerging Evidence for MEMO1's Function in Development and Disease. Genes (Basel) 2020; 11:genes11111316. [PMID: 33172038 PMCID: PMC7694686 DOI: 10.3390/genes11111316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022] Open
Abstract
Although conserved throughout animal kingdoms, the protein encoded by the gene Mediator of ERBB2 Driven Cell Motility 1 or MEMO1, has only recently come into focus. True to its namesake, MEMO1 first emerged from a proteomic screen of molecules bound to the ERBB2 receptor and was found to be necessary for efficient cell migration upon receptor activation. While initially placed within the context of breast cancer metastasis—a pathological state that has provided tremendous insight into MEMO1′s cellular roles—MEMO1′s function has since expanded to encompass additional cancer cell types, developmental processes during embryogenesis and homeostatic regulation of adult organ systems. Owing to MEMO1′s deep conservation, a variety of model organisms have been amenable to uncovering biological facets of this multipurpose protein; facets ranging from the cellular (e.g., receptor signaling, cytoskeletal regulation, redox flux) to the organismal (e.g., mineralization and mineral homeostasis, neuro/gliogenesis, vasculogenesis) level. Although these facets emerge at the intersection of numerous biological and human disease processes, how and if they are interconnected remains to be resolved. Here, we review our current understanding of this ‘enigmatic’ molecule, its role in development and disease and open questions emerging from these previous studies.
Collapse
|
72
|
Ibrahim AB, Mahmoud GA. Chemical‐ vs sonochemical‐assisted synthesis of ZnO nanoparticles from a new zinc complex for improvement of carotene biosynthesis from
Rhodotorula toruloides
MH023518. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ahmed B.M. Ibrahim
- Department of Chemistry, Faculty of Science Assiut University Assiut 71516 Egypt
| | | |
Collapse
|
73
|
Zhao W, Liu JX, Guo F, Liu XG. Yeast MED2 is involved in the endoplasmic reticulum stress response and modulation of the replicative lifespan. Mech Ageing Dev 2020; 192:111381. [PMID: 33045248 DOI: 10.1016/j.mad.2020.111381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022]
Abstract
Saccharomyces cerevisiae MED2/YDL005C is a subunit of the mediator complex (Mediator), which is responsible for tightly controlling the transcription of protein-coding genes by mediating the interaction of RNA polymerase II with gene-specific transcription factors. Although a high-throughput analysis in yeast showed that the MED2 protein exhibits altered cellular localization under hypoxic stress, no specific function of MED2 has been described to date. In this study, we first provided evidence that MED2 is involved in the endoplasmic reticulum (ER) stress response and modulation of the replicative life span. We showed that deletion of MED2 leads to sensitivity to the ER stress inducer tunicamycin (TM) as well as a shortened replicative lifespan (RLS), accompanied by increased intracellular ROS levels and hyperpolarization of mitochondria. On the other hand, overexpression of MED2 in wild-type (WT) yeast enhanced TM resistance and extended the RLS. In addition, the IRE1-HAC1 pathway was essential for the TM resistance of MED2-overexpressing cells. Moreover, we showed that MED2 deficiency enhances ER unfolded protein response (UPR) activity compared to that in WT cells. Collectively, these results suggest the novel role of MED2 as a regulator in maintaining ER homeostasis and longevity.
Collapse
Affiliation(s)
- Wei Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China; Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Jia-Xin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China; Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Fang Guo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China; Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Xin-Guang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China; Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
74
|
Yalage Don SM, Schmidtke LM, Gambetta JM, Steel CC. Volatile organic compounds produced by Aureobasidium pullulans induce electrolyte loss and oxidative stress in Botrytis cinerea and Alternaria alternata. Res Microbiol 2020; 172:103788. [PMID: 33049328 DOI: 10.1016/j.resmic.2020.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Aureobasidium pullulans is a yeast-like fungus that produces volatile organic compounds (VOCs) with antifungal properties. VOCs have the potential to trigger the production of intracellular reactive oxygen species (ROS), lipid peroxidation and electrolyte loss in microorganisms. The relationship among A. pullulans VOCs, induced ROS accumulation and electrolyte leakage was investigated in Botrytis cinerea and Alternaria alternata in vitro. Exposure to a mixture of A. pullulans VOCs: ethanol, 2-methyl-1-propanol, 3-methyl-1-butanol and 2-phenylethanol, resulted in electrolyte leakage in both B. cinerea and A. alternata. Fluorescence microscopy using 2',7'-dichlorofluorescein diacetate indicated triggered ROS accumulation in exposed fungal mycelia and the presence of the superoxide radical was evident by intense red fluorescence with dihydroethidium. Partial inhibition of enzymes of the mitochondrial respiratory chain complex I of B. cinerea and A. alternata by pre-treatment with rotenone reduced ROS accumulation in hypha exposed to A. pullulans VOCs and reversed the VOCs inhibition of fungal growth. Scanning electron micrographs revealed that B. cinerea and A. alternata hypha exposed to A. pullulans VOCs had altered cell wall structures. Our findings give insights into the potential mechanisms involved in the antifungal properties of A. pullulans in the suppression of B. cinerea and A. alternata growth in vitro.
Collapse
Affiliation(s)
- Sashika M Yalage Don
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia.
| | - Leigh M Schmidtke
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia.
| | - Joanna M Gambetta
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia.
| | - Christopher C Steel
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia.
| |
Collapse
|
75
|
Zheng J, Yu H, Zhou A, Wu B, Liu J, Jia Y, Xiang L. It takes two to tango: coupling of Hippo pathway and redox signaling in biological process. Cell Cycle 2020; 19:2760-2775. [PMID: 33016196 DOI: 10.1080/15384101.2020.1824448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hippo pathway is a chain of kinases consists of a series of protein kinases and transcription factors. Meanwhile, oxidative stress is a condition of elevated concentrations of reactive oxygen species (ROS) that cause molecular damage to vital structures and functions. Both of them are key regulators in cell proliferation, survival, and development. These processes are strictly regulated by highly coordinated mechanisms, including c-Jun n-terminal kinase (JNK) pathway, mTOR pathway and a number of extrinsic and intrinsic factors. Recently, emerging evidence suggests that Hippo pathway is involved in the responses to cellular stresses, including mechanic stress, DNA damage, and oxidative stress, to mediate biological process, such as apoptosis, pyroptosis, and metastasis. But the exact mechanism remains to be further explored. Therefore, the purpose of this review is to summarize recent findings and discuss how Hippo pathway, oxidative stress, and the crosstalk between them regulate some biological process which determines cell fate.
Collapse
Affiliation(s)
- Jianan Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Hui Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Anqi Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Bingfeng Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Jiayi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Yinan Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| |
Collapse
|
76
|
Liu Y, Ren H, Wang D, Zhang M, Sun S, Zhao Y. The synergistic antifungal effects of gypenosides combined with fluconazole against resistant Candida albicans via inhibiting the drug efflux and biofilm formation. Biomed Pharmacother 2020; 130:110580. [DOI: 10.1016/j.biopha.2020.110580] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 01/11/2023] Open
|
77
|
Akintade D, Chaudhuri B. The effect of copy number on α-synuclein's toxicity and its protective role in Bax-induced apoptosis, in yeast. Biosci Rep 2020; 40:BSR20201912. [PMID: 32794578 PMCID: PMC7468099 DOI: 10.1042/bsr20201912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Apoptosis is a form of programmed cell death which is essential for the growth of dividing human cells whereas, in contrast, it is deleterious for post-mitotic cells such as neurons. Bax and α-synuclein are two human proteins which play a role in the induction of neuronal apoptosis in neurodegenerative diseases like Alzheimer's and Parkinson's. Human Bax and α-synuclein also induce cell death when expressed in baker's yeast, Saccharomyces cerevisiae. Quite unexpectedly, the human α-synuclein gene had been identified as an inhibitor of pro-apoptotic Bax using a yeast-based screen of a human hippocampal cDNA library. Plasmids were constructed with different promoters, which allow expression of wildtype and Parkinson's disease (PD)-related mutant α-synuclein genes, from (i) multi-copy 2µ (episomal) plasmids and (ii) integrative plasmids that compel expression of genes from chromosomal sites in varying copy numbers (1-3). All α-synuclein-containing plasmids were introduced, through transformation, into a yeast strain which already contained a chromosomally integrated copy of Bax. It is for the first time that it was observed that, depending on gene dosage, only wildtype α-synuclein is anti-apoptotic while mutant α-synuclein is not. The results also indicate that wildtype α-synuclein has a remarkable ability to manifest two contrasting effects depending on its level of expression: (i) normally, it would negate apoptosis but (ii) when overexpressed, it tends to induce apoptosis which is probably what happens in PD.
Collapse
Affiliation(s)
- Damilare D. Akintade
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, NG7 2UH, U.K
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, U.K
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, U.K
| |
Collapse
|
78
|
Chen X, Shi Y, Li Y, Su S, Wang P, Sun S. Antifungal effects and potential mechanisms of lonidamine in combination with fluconazole against Candida albicans. Expert Rev Anti Infect Ther 2020; 19:109-115. [PMID: 32924656 DOI: 10.1080/14787210.2020.1811684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The resistance of Candida albicans (C. albicans) to classical antifungals has been increasing significantly and poses great challenges to clinical treatment. The objective of this research is to evaluate whether the combination of lonidamine (LND) and fluconazole (FLC) have synergistic antifungal activity against C. albicans and to explore the underlying synergistic mechanisms against FLC-resistant C. albicans. METHODS The antifungal effect on resistant planktonic C. albicans and preformed biofilms were performed by broth microdilution assay and XTT reduction assay. The influence on hyphal growth, cellular ROS level, metacaspase activity and drug transporters were investigated by morphogenesis observation, DCFH-DA, FITC-VAD-FMK and rhodamine6G assay, respectively. RESULTS LND in combination with FLC exhibited synergistic antifungal effects against resistant planktonic C. albicans and preformed biofilms of C. albicans in the early stages (performed at 4 h and 8 h). The synergistic mechanisms associated with the inhibition of the hyphal growth and the activation of metacaspase, but were not related to mediate cellular ROS level or drug uptake and efflux in resistant C. albicans. CONCLUSION LND combined with FLC exhibited synergistic antifungal activity against resistant C. albicans, and the synergistic mechanisms were related to anti-biofilms and reduce virulence factors. EXPERT OPINION The emergence of fluconazole-resistant Candida albicans strains poses great challenges to clinical treatment. Drug combination of non-antifungals and fluconazole has attracted a lot of attention to overcome Candida albicans drug resistance.
Collapse
Affiliation(s)
- Xueqi Chen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, People's Republic of China
| | - Yinping Shi
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University , Jinan, People's Republic of China
| | - Yiman Li
- Department of Pharmacy, Beijing Tongren Hospital Affiliated to Capital Medical University , Beijing, China
| | - Shan Su
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, People's Republic of China
| | - Peng Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University , Jinan, People's Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University , Jinan, People's Republic of China.,Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan, People's Republic of China
| |
Collapse
|
79
|
Akintade DD, Chaudhuri B. Identification of proteins involved in transcription/translation (eEF 1A1) as an inhibitor of Bax induced apoptosis. Mol Biol Rep 2020; 47:6785-6792. [PMID: 32875432 PMCID: PMC7561549 DOI: 10.1007/s11033-020-05736-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
Abstract
Eukaryotic elongation factor 1A1 (eEF1A1) is central to translational activity. It is involved in complexes that form signal transduction with protein kinase C, as well as being a signal transducer and activator of transcription 3. eEF1A1 and eEF1A2 are isoforms of the alpha subunit of elongating factor 1 complex. It has been reported that eEF1A1 is expressed in most human tissues but the brain, skeletal muscle and heart. eEF1A1 has been linked to both apoptosis and anti-apoptotic activities. In this study, eEF1A1 was co-expressed with Bax, a proapoptotic protein via heterologous expression of recombinant DNA in yeast cells. Assays were carried out to monitor the fate and state of yeast cells when eEF1A1 was co-expressed with Bax. The yeast strain (bearing an integrated copy of the Bax gene) was transformed with an episomal 2-micron plasmid that encodes HA-tagged eEF1A1 gene. The resultant strain would allow co-expression of Bax and eEF1A1 in yeast cells, Bax being under the control of the GAL1 promoter, while the PGK1 promoter drives eEF1A1 expression. Bcl 2A1, a known anti-apoptotic protein, was also co-expressed with Bax in yeast cells as a positive control, to study the anti-apoptotic characteristic of eEF-1A1. The part eEF1A1 plays in apoptosis has been contentious, amidst the pro and anti-apoptotic properties of eEF1A1, it was shown clearly, in this study that eEF1A1 portrays only anti-apoptotic property in the presence of pro-apoptotic protein, Bax.
Collapse
Affiliation(s)
- Damilare D Akintade
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, NG7 2UH, UK. .,Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK.
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| |
Collapse
|
80
|
Kavakcıoğlu Yardımcı B, Mollaoğlu Z. Antioxidant or pro-oxidant? The effects of boron compounds on Saccharomyces cerevisiae BY4741 strain. Prep Biochem Biotechnol 2020; 51:96-103. [PMID: 32684091 DOI: 10.1080/10826068.2020.1793175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Boron is one of the most important elements with its indisputable biological importance and widespread use. The most studied derivatives of the boron element are boric acid and its salts. In this article, we searched the effects of boric acid and its lithium salt, lithium metaborate, on enzymatic defense system, cell damage, and cell surface morphology of Saccharomyces cerevisiae BY4741 strain. It was found that while all studied concentrations of boric acid showed toxicity against the yeast, even the highest studied concentration of lithium metaborate could not effectively inhibit cell viability. In addition, we observed reverse effect of lithium metaborate depend on its concentration on yeast cell proliferation and metabolic activity. As a defense mechanism, superoxide dismutase and glutathione S-transferase activities were significantly induced in yeast cells treated with boric acid. But these inductions could not protect cells from boric acid induced lipid peroxidation. It was determined that glutathione S-transferase was the only enzyme induced after lithium metaborate treatment. Finally, we visualized the signs of features of necrotic and early apoptotic mechanisms in yeast cells treated with boric acid and lithium metaborate, respectively, which should be investigated with further studies.
Collapse
Affiliation(s)
| | - Zehra Mollaoğlu
- Chemistry Department, Graduate School of Natural and Applied Sciences, Pamukkale University, Denizli, Turkey
| |
Collapse
|
81
|
Akintade DD, Chaudhuri B. Sensing the Generation of Intracellular Free Electrons Using the Inactive Catalytic Subunit of Cytochrome P450s as a Sink. SENSORS 2020; 20:s20144050. [PMID: 32708163 PMCID: PMC7411652 DOI: 10.3390/s20144050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022]
Abstract
Cytochrome P450 reductase (CPR) abstracts electrons from Nicotinamide adenine dinucleotide phosphate H (NADPH), transferring them to an active Cytochrome P450 (CYP) site to provide a functional CYP. In the present study, a yeast strain was genetically engineered to delete the endogenous CPR gene. A human CYP expressed in a CPR-null (yRD−) strain was inactive. It was queried if Bax—which induces apoptosis in yeast and human cells by generating reactive oxygen species (ROS)—substituted for the absence of CPR. Since Bax-generated ROS stems from an initial release of electrons, is it possible for these released electrons to be captured by an inactive CYP to make it active once again? In this study, yeast cells that did not contain any CPR activity (i.e., because the yeasts’ CPR gene was completely deleted) were used to show that (a) human CYPs produced within CPR-null (yRD-) yeast cells were inactive and (b) low levels of the pro-apoptotic human Bax protein could activate inactive human CYPs within this yeast cells. Surprisingly, Bax activated three inactive CYP proteins, confirming that it could compensate for CPR’s absence within yeast cells. These findings could be useful in research, development of bioassays, bioreactors, biosensors, and disease diagnosis, among others.
Collapse
Affiliation(s)
- Damilare D. Akintade
- School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
- Correspondence: ; Tel.: +44-07712452922
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
| |
Collapse
|
82
|
Huang CH, Wang FT, Chan WH. Dose-dependent beneficial and harmful effects of berberine on mouse oocyte maturation and fertilization and fetal development. Toxicol Res (Camb) 2020; 9:431-443. [PMID: 32905254 DOI: 10.1093/toxres/tfaa043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022] Open
Abstract
Previous studies have shown that berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines, suppresses growth and induces apoptosis in some tumor cell lines. It has also been shown that berberine possesses anti-atherosclerosis and antioxidant activities in hyperlipidemic model rats. Our previous study in mice found that berberine causes harmful effects on preimplantation and postimplantation embryonic development, both in vitro and in vivo, by triggering reactive oxygen species (ROS)-mediated apoptotic cascades in mouse blastocysts. In the current investigation, we further showed that berberine treatment has distinct dose-dependent effects on oocyte maturation and subsequent development. Preincubation of oocytes with 2.5 μM berberine significantly enhanced maturation and in vitro fertilization (IVF) rates, with subsequent beneficial effects on embryonic development. In contrast, preincubation with 10 μM berberine negatively impacted mouse oocyte maturation, decreased IVF rates and impaired subsequent embryonic development. Similar dose-dependent effects were also demonstrated in vivo. Specifically, intravenous injection of berberine significantly enhanced mouse oocyte maturation, IVF rate and early-stage embryo development after fertilization at a dose of 1 mg/kg body weight but significantly impaired oocyte maturation and IVF rates and caused harmful effects on early embryonic development at a dose of 5 mg/kg. Mechanistically, we found that berberine enhanced intracellular ROS production and apoptosis of oocytes at a concentration of 10 μM but actually significantly decreased total intracellular ROS content and had no apoptotic effect at a concentration of 2.5 μM. Moreover, pretreatment of oocytes with Ac-DEVD-cho, a caspase-3-specific inhibitor, effectively blocked berberine-induced negative impacts on oocyte maturation, fertilization and subsequent development. Collectively, these findings establish the dose-dependent beneficial versus deleterious effects of berberine and suggest that the mechanism underlying the deleterious effects of berberine involves a caspase-3-dependent apoptotic process acting downstream of an increase in intracellular ROS levels.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, hongshan Road, Taoyuan District, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Shipai Road, Beitou District, Taipei City 11217, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology, Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan
| |
Collapse
|
83
|
Kuzmin E, VanderSluis B, Nguyen Ba AN, Wang W, Koch EN, Usaj M, Khmelinskii A, Usaj MM, van Leeuwen J, Kraus O, Tresenrider A, Pryszlak M, Hu MC, Varriano B, Costanzo M, Knop M, Moses A, Myers CL, Andrews BJ, Boone C. Exploring whole-genome duplicate gene retention with complex genetic interaction analysis. Science 2020; 368:eaaz5667. [PMID: 32586993 PMCID: PMC7539174 DOI: 10.1126/science.aaz5667] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
Whole-genome duplication has played a central role in the genome evolution of many organisms, including the human genome. Most duplicated genes are eliminated, and factors that influence the retention of persisting duplicates remain poorly understood. We describe a systematic complex genetic interaction analysis with yeast paralogs derived from the whole-genome duplication event. Mapping of digenic interactions for a deletion mutant of each paralog, and of trigenic interactions for the double mutant, provides insight into their roles and a quantitative measure of their functional redundancy. Trigenic interaction analysis distinguishes two classes of paralogs: a more functionally divergent subset and another that retained more functional overlap. Gene feature analysis and modeling suggest that evolutionary trajectories of duplicated genes are dictated by combined functional and structural entanglement factors.
Collapse
Affiliation(s)
- Elena Kuzmin
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Benjamin VanderSluis
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex N Nguyen Ba
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Wen Wang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth N Koch
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matej Usaj
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anton Khmelinskii
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | | | | | - Oren Kraus
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Amy Tresenrider
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Michael Pryszlak
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Ming-Che Hu
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Brenda Varriano
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Michael Costanzo
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
- Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alan Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Evolution and Function, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Brenda J Andrews
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Boone
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
84
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 23:788-99. [PMID: 32404435 DOI: 10.1111/imb.12124] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
85
|
Winans MJ, Gallagher JEG. Metallomic and lipidomic analysis of S. cerevisiae response to cellulosic copper nanoparticles uncovers drivers of toxicity. Metallomics 2020; 12:799-812. [PMID: 32239052 DOI: 10.1039/d0mt00018c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanotechnology is a promising new technology, of which antimicrobial metal nanocomposites are predicted to become valuable in medical and food packaging applications. Copper is a redox-active antimicrobial metal that can become increasingly toxic depending on the target biomolecule's donor atom selectivity and the chemical species of copper present. Mass is the traditional measurement of the intrinsic elemental chemistry, but this practice fails to reflect the morphology and surface area reactivity of nanotechnology. The carboxymethyl cellulose copper nanoparticles (CMC-Cu) investigated in this study have unique and undefined toxicity to Saccharomyces cerevisiae that is different from CuSO4. Cellular surface damage was found in scanning electron micrographs upon CMC-Cu exposure. Further investigation into the lipids revealed altered phosphatidylcholine and phosphatidylethanolamine membrane composition, as well as depleted triacylglycerols, suggesting an impact on the Kennedy lipid pathway. High levels of reactive oxygen species were measured which likely played a role in the lipid peroxidation detected with CMC-Cu treatment. Metal homeostasis was affected by CMC-Cu treatment. The copper sensitive yeast strain, YJM789, significantly decreased cellular zinc concentrations while the copper concentrations increased, suggesting a possible ionic mimicry relationship. In contrast to other compounds that generate ROS, no evidence of genotoxicity was found. As commonplace objects become more integrated with nanotechnology, humanity must look forward past traditional measurements of toxicity.
Collapse
Affiliation(s)
- Matthew J Winans
- West Virginia University - Biology Department, 53 Campus Drive LSB 3140, Morgantown, WV 26506, USA.
| | | |
Collapse
|
86
|
Jones SM, Heppner DE, Vu K, Kosman DJ, Solomon EI. Rapid Decay of the Native Intermediate in the Metallooxidase Fet3p Enables Controlled Fe II Oxidation for Efficient Metabolism. J Am Chem Soc 2020; 142:10087-10101. [PMID: 32379440 DOI: 10.1021/jacs.0c02384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The multicopper oxidases (MCOs) couple four 1e- oxidations of substrate to the 4e- reduction of O2 to H2O. These divide into two groups: those that oxidize organic substrates with high turnover frequencies (TOFs) up to 560 s-1 and those that oxidize metal ions with low TOFs, ∼1 s-1 or less. The catalytic mechanism of the organic oxidases has been elucidated, and the high TOF is achieved through rapid intramolecular electron transfer (IET) to the native intermediate (NI), which only slowly decays to the resting form. Here, we uncover the factors that govern the low TOF in Fet3p, a prototypical metallooxidase, in the context of the MCO mechanism. We determine that the NI decays rapidly under optimal turnover conditions, and the mechanism thereby becomes rate-limited by slow IET to the resting enzyme. Development of a catalytic model leads to the important conclusions that proton delivery to the NI controls the mechanism and enables the slow turnover in Fet3p that is functionally significant in Fe metabolism enabling efficient ferroxidase activity while avoiding ROS generation.
Collapse
Affiliation(s)
- Stephen M Jones
- Department of Chemistry, Stanford University, 333 Campus Drive Stanford, California 94305, United States
| | - David E Heppner
- Department of Chemistry, Stanford University, 333 Campus Drive Stanford, California 94305, United States
| | - Kenny Vu
- Department of Biochemistry, The University at Buffalo, 140 Farber Hall, 3435 Main Street, Buffalo, New York 14214, United States
| | - Daniel J Kosman
- Department of Biochemistry, The University at Buffalo, 140 Farber Hall, 3435 Main Street, Buffalo, New York 14214, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, 333 Campus Drive Stanford, California 94305, United States
| |
Collapse
|
87
|
Human Antimicrobial Peptide Hepcidin 25-Induced Apoptosis in Candida albicans. Microorganisms 2020; 8:microorganisms8040585. [PMID: 32316661 PMCID: PMC7232333 DOI: 10.3390/microorganisms8040585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
Hepcidin 25 (hep 25) is a cysteine-rich 25-amino acid antimicrobial peptide containing the amino-terminal Cu(II)/Ni(II)-binding (ATCUN) motif. Upon metal binding, the ATCUN motif is known to be involved in the generation of reactive oxygen species (ROS), especially hydrogen peroxide and hydroxyl radicals, which act against different bacterial species. However, the antifungal activity and its correlation to the Cu(II)-ATCUN complex of Hep 25 are still poorly understood. Here, we found that ROS accumulation plays an important role in the fungicidal activity of hep 25 against Candida albicans. In addition, Annexin V-FITC staining and TUNEL assay results provide clues about the apoptosis induced by hep 25. Moreover, hep 25 also increases the generation of ROS, possibly because of copper binding to the ATCUN motif, which is relevant to its activity against C. albicans. Finally, the C. albicans killing action of hep 25 is an energy- and temperature-dependent process that does not involve targeting the membrane. Taken together, our results provide new insights into the mechanisms of hep 25 against C. albicans cells and the potential use of hep 25 and its derivatives as novel antifungal agents.
Collapse
|
88
|
Wang H, Li Q, Peng Y, Zhang Z, Kuang X, Hu X, Ayepa E, Han X, Abrha GT, Xiang Q, Yu X, Zhao K, Zou L, Gu Y, Li X, Li X, Chen Q, Zhang X, Liu B, Ma M. Cellular Analysis and Comparative Transcriptomics Reveal the Tolerance Mechanisms of Candida tropicalis Toward Phenol. Front Microbiol 2020; 11:544. [PMID: 32373081 PMCID: PMC7179700 DOI: 10.3389/fmicb.2020.00544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/12/2020] [Indexed: 12/03/2022] Open
Abstract
Phenol is a ubiquitous pollutant and can contaminate natural water resources. Hence, the removal of phenol from wastewater is of significant importance. A series of biological methods were used to remove phenol based on the natural ability of microorganisms to degrade phenol, but the tolerance mechanism of phenol-degraded strains to phenol are not very clear. Morphological observation on Candida tropicalis showed that phenol caused the reactive oxygen species (ROS) accumulation, damaging the mitochondrial and the endoplasmic reticulum. On the basis of transcriptome data and cell wall susceptibility analysis, it was found that C. tropicalis prevented phenol-caused cell damage through improvement of cell wall resistance, maintenance of high-fidelity DNA replication, intracellular protein homeostasis, organelle integrity, and kept the intracellular phenol concentration at a low level through cell-wall remodeling and removal of excess phenol via MDR/MXR transporters. The knowledge obtained will promote the genetic modification of yeast strains in general to tolerate the high concentrations of phenol and improve their efficiency of phenol degradation.
Collapse
Affiliation(s)
- Hanyu Wang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qian Li
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yuanyuan Peng
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Zhengyue Zhang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiaolin Kuang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiangdong Hu
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ellen Ayepa
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xuebing Han
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Getachew Tafere Abrha
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoying Li
- School of Forestry and Life Science, Chongqing University of Arts and Sciences, Chongqing, China
| | - Qiang Chen
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Zhang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteburg, Sweden.,State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Menggen Ma
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China.,Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
89
|
de Araújo Neto LN, de Lima MDCA, de Oliveira JF, de Souza ER, Feitosa Machado SE, de Souza Lima GM, Silva Buonafina MD, Brayner FA, Alves LC, Sandes JM, da Silva MV, de Castro MCAB, Pereira Neves R, Bezerra Mendonça-Junior FJ. Thiophene-thiosemicarbazone derivative (L10) exerts antifungal activity mediated by oxidative stress and apoptosis in C. albicans. Chem Biol Interact 2020; 320:109028. [PMID: 32119865 DOI: 10.1016/j.cbi.2020.109028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 11/26/2022]
Abstract
Reactive oxygen species (ROS) cause cell damage and death. To reverse these effects, cells produce substances such as reduced glutathione (GSH) that serve as substrates for antioxidant enzymes. One way to combat microbial resistance includes nullifying the effect of glutathione in microbial cells, causing them to die from oxidative stress. The compound 2-((5-nitrothiophen-2-yl)methylene)-N-(pyridin-3-yl) hydrazine carbothioamide (L10) is a new thiophene-thiosemicarbazone derivative with promising antifungal activity. The aim of this study was to evaluate its mechanism of action against Candida albicans using assays that evaluate its effects on redox balance. Treatment with L10 promoted significant changes in the minimum inhibitory concentration (MIC) values in ascorbic acid and GSH protection tests, the latter increasing up to 64-fold of the MIC. Using nuclear magnetic resonance, we demonstrated interaction of L10 and GSH. At concentrations of 4.0 and 8.0 μg/mL, significant changes were observed in ROS production and mitochondrial membrane potential. The cell death profile showed characteristics of initial apoptosis at inhibitory concentrations (4.0 μg/mL). Transmission electron microscopy data corroborated these results and indicated signs of apoptosis, damage to plasma and nuclear membranes, and to mitochondria. Taken together, these results suggest a possible mechanism of action for L10 antifungal activity, involving changes in cellular redox balance, ROS production, and apoptosis-compatible cellular changes.
Collapse
Affiliation(s)
- Luiz Nascimento de Araújo Neto
- Medical Mycology Laboratory, Federal University of Pernambuco, 50670-901, Brazil; Chemistry Laboratory and Therapeutic Innovation, Federal University of Pernambuco, 50670-901, Brazil
| | | | | | - Edson Rubhens de Souza
- Chemistry Laboratory and Therapeutic Innovation, Federal University of Pernambuco, 50670-901, Brazil
| | | | | | | | - Fábio André Brayner
- Aggeu Magalhães Institute- IAM/FIOCRUZ and Imunopatology Keizo Asami Laboratory-LIKA/ Federal University of Pernambuco, 50670-901, Brazil
| | - Luiz Carlos Alves
- Aggeu Magalhães Institute- IAM/FIOCRUZ and Imunopatology Keizo Asami Laboratory-LIKA/ Federal University of Pernambuco, 50670-901, Brazil
| | - Jana Messias Sandes
- Aggeu Magalhães Institute- IAM/FIOCRUZ and Imunopatology Keizo Asami Laboratory-LIKA/ Federal University of Pernambuco, 50670-901, Brazil
| | | | - Maria Carolina Accioly Brelaz de Castro
- Laboratory of Immunology IAM/ FIOCRUZ, Federal University of Pernambuco, 50670-901, Brazil; Laboratory of Parasitology, Academic Center of Vitória - Federal University of Pernambuco, 55608-680, Brazil
| | - Rejane Pereira Neves
- Medical Mycology Laboratory, Federal University of Pernambuco, 50670-901, Brazil.
| | | |
Collapse
|
90
|
Candido JP, Claro EMT, de Paula CBC, Shimizu FL, de Oliveria Leite DAN, Brienzo M, de Angelis DDF. Detoxification of sugarcane bagasse hydrolysate with different adsorbents to improve the fermentative process. World J Microbiol Biotechnol 2020; 36:43. [DOI: 10.1007/s11274-020-02820-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
|
91
|
Zhao YY, Cao CL, Liu YL, Wang J, Li SY, Li J, Deng Y. Genetic analysis of oxidative and endoplasmic reticulum stress responses induced by cobalt toxicity in budding yeast. Biochim Biophys Acta Gen Subj 2020; 1864:129516. [DOI: 10.1016/j.bbagen.2020.129516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/07/2019] [Accepted: 12/31/2019] [Indexed: 12/23/2022]
|
92
|
Moon JE, Heo W, Lee SH, Lee SH, Lee HG, Lee JH, Kim YJ. Trehalose Protects the Probiotic Yeast Saccharomyces boulardii against Oxidative Stress-Induced Cell Death. J Microbiol Biotechnol 2020; 30:54-61. [PMID: 31546305 PMCID: PMC9728326 DOI: 10.4014/jmb.1906.06041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Saccharomyces boulardii is the only probiotic yeast with US Food and Drug Administration approval. It is routinely used to prevent or treat acute diarrhea and other gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. The formation of reactive oxygen species (ROS), specifically H2O2 during normal aerobic metabolism, contributes to programmed cell death and represents a risk to the viability of the probiotic microbe. Moreover, a loss of viability reduces the efficacy of the probiotic treatment. Therefore, inhibiting the accumulation of ROS in the oxidant environment could improve the viability of the probiotic yeast and lead to more efficacious treatment. Here, we provide evidence that supplementation with a non-reducing disaccharide, namely trehalose, enhanced the viability of S. boulardii exposed to an oxidative environment by preventing metacaspase YCA1-mediated programmed cell death through inhibition of intracellular ROS production. Our results suggest that supplementation with S. boulardii together with trehalose could increase the viability of the organism, and thus improve its effectiveness as a probiotic and as a treatment for acute diarrhea and other gastrointestinal disorders.
Collapse
Affiliation(s)
- Ji Eun Moon
- Department of Food and Biotechnology, Korea University, Sejong 3009, Republic of Korea
| | - Wan Heo
- Institutes of Natural Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Sang Hoon Lee
- Department of Food and Biotechnology, Korea University, Sejong 3009, Republic of Korea
| | - Suk Hee Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Taegu 41566, Republic of Korea
| | - Hong Gu Lee
- Department of Animal Science and Technology, College of Animal Bioscience and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong 3009, Republic of Korea,Corresponding authors J.H.L. Phone: +82-44-860-1764 Fax: +82-44-860-1430 E-mail:
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 3009, Republic of Korea,Y.J.K. Phone: +82-44-860-1435 Fax: +82-44-860-1780 E-mail:
| |
Collapse
|
93
|
Wu D, Forghani F, Daliri EBM, Li J, Liao X, Liu D, Ye X, Chen S, Ding T. Microbial response to some nonthermal physical technologies. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
94
|
Proteomic response of Euglena gracilis to heavy metal exposure – Identification of key proteins involved in heavy metal tolerance and accumulation. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101764] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
95
|
Truong T, Zeng G, Lim TK, Cao T, Pang LM, Lee YM, Lin Q, Wang Y, Seneviratne CJ. Proteomics Analysis ofCandida albicans dnm1Haploid Mutant Unraveled the Association between Mitochondrial Fission and Antifungal Susceptibility. Proteomics 2019; 20:e1900240. [DOI: 10.1002/pmic.201900240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/05/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Thuyen Truong
- Oral Sciences, Faculty of DentistryNational University of Singapore 9 Lower Kent Ridge Road Singapore 119085
| | - Guisheng Zeng
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research 61 Biopolis Drive, Proteos Singapore 138673
| | - Teck Kwang Lim
- Department of Biological SciencesFaculty of Science, National University of Singapore 16 Science Drive 4, S2 Singapore 117558
| | - Tong Cao
- Oral Sciences, Faculty of DentistryNational University of Singapore 9 Lower Kent Ridge Road Singapore 119085
| | - Li Mei Pang
- National Dental Research Institute SingaporeSinghealth Duke NUS, Singapore 5 Second Hospital Ave Singapore 168938
| | - Yew Mun Lee
- Department of Biological SciencesFaculty of Science, National University of Singapore 16 Science Drive 4, S2 Singapore 117558
| | - Qingsong Lin
- Department of Biological SciencesFaculty of Science, National University of Singapore 16 Science Drive 4, S2 Singapore 117558
| | - Yue Wang
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research 61 Biopolis Drive, Proteos Singapore 138673
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of Singapore 10 Medical Dr Singapore 117597
| | | |
Collapse
|
96
|
Ramos-Pérez C, Dominska M, Anaissi-Afonso L, Cazorla-Rivero S, Quevedo O, Lorenzo-Castrillejo I, Petes TD, Machín F. Cytological and genetic consequences for the progeny of a mitotic catastrophe provoked by Topoisomerase II deficiency. Aging (Albany NY) 2019; 11:11686-11721. [PMID: 31812950 PMCID: PMC6932922 DOI: 10.18632/aging.102573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/24/2019] [Indexed: 02/07/2023]
Abstract
Topoisomerase II (Top2) removes topological linkages between replicated chromosomes. Top2 inhibition leads to mitotic catastrophe (MC) when cells unsuccessfully try to split their genetic material between the two daughter cells. Herein, we have characterized the fate of these daughter cells in the budding yeast. Clonogenic and microcolony experiments, in combination with vital and apoptotic stains, showed that 75% of daughter cells become senescent in the short term; they are unable to divide but remain alive. Decline in cell vitality then occurred, yet slowly, uncoordinatedly when comparing pairs of daughters, and independently of the cell death mediator Mca1/Yca1. Furthermore, we showed that senescence can be modulated by ploidy, suggesting that gross chromosome imbalances during segregation may account for this phenotype. Indeed, we found that diploid long-term survivors of the MC are prone to genomic imbalances such as trisomies, uniparental disomies and terminal loss of heterozygosity (LOH), the latter affecting the longest chromosome arms.
Collapse
Affiliation(s)
- Cristina Ramos-Pérez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Tenerife, Spain.,Present address: BenchSci Analytics Inc., Toronto, Canada
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Laura Anaissi-Afonso
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Tenerife, Spain
| | - Sara Cazorla-Rivero
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Tenerife, Spain
| | - Oliver Quevedo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Present address: Genomic Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Isabel Lorenzo-Castrillejo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain.,Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
97
|
Overexpression of the transcription factor HAC1 improves nerolidol production in engineered yeast. Enzyme Microb Technol 2019; 134:109485. [PMID: 32044032 DOI: 10.1016/j.enzmictec.2019.109485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 11/24/2022]
Abstract
Increasing the metabolic flux of the mevalonate pathway, reducing the metabolic flux of competing pathway and utilizing the diauxie-inducible system constructed by GAL promoters are strategies commonly used in yeast metabolic engineering for the production of terpenoids. Using these strategies, we constructed a series of yeast strains with a strengthened mevalonate pathway and finally produced 336.5 mg/L nerolidol in a shake flask. The spliced HAC1 mRNA assay indicated that the unfolded protein response (UPR) occurred in the strains that we constructed. UPR strains exhibited the low transcriptional activities of GAL1 promoter. HAC1-overexpressing strain exhibited dramatically enhanced transcriptional activity of GAL1 promoter at 72 h of fermentation in flasks. HAC1 overexpression also increased the nerolidol titer by 47.7 %, reaching 497.0 mg/L and increased cell vitality. RNA-seq showed that the genes whose transcription responded to HAC1-overexpression were involved in the regulation of monocarboxylic acid metabolic processes and cellular amino acid biosynthetic process, indicating that the metabolic regulation may be part of the reason of the improved nerolidol synthesis. Our findings enrich the knowledge of the relationship between the construction of sesquiterpene-producing cell factories and UPR regulation. This study provides an effective strategy for sesquiterpene production in yeast.
Collapse
|
98
|
Lu H, Shu Q, Lou H, Chen Q. Mitochondria-Mediated Programmed Cell Death in Saccharomyces cerevisiae Induced by Betulinic Acid Is Accelerated by the Deletion of PEP4 Gene. Microorganisms 2019; 7:microorganisms7110538. [PMID: 31703462 PMCID: PMC6920885 DOI: 10.3390/microorganisms7110538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/27/2019] [Accepted: 11/05/2019] [Indexed: 11/22/2022] Open
Abstract
In this work, using Saccharomyces cerevisiae as a model, we showed that BetA could inhibit cell proliferation and lead to lethal cytotoxicity accompanying programmed cell death (PCD). Interestingly, it was found that vacuolar protease Pep4p played a pivotal role in BetA-induced S. cerevisiae PCD. The presence of Pep4p reduced the damage of BetA-induced cells. This work implied that BetA may induce cell death of S. cerevisiae through mitochondria-mediated PCD, and the deletion of Pep4 gene possibly accelerated the effect of PCD. The present investigation provided the preliminary research for the complicated mechanism of BetA-induced cell PCD regulated by vacular protease Pep4p and lay the foundation for understanding of the Pep4p protein in an animal model.
Collapse
Affiliation(s)
| | | | | | - Qihe Chen
- Correspondence: ; Tel.: +86-0571-8698-4316
| |
Collapse
|
99
|
Shcherbik N, Pestov DG. The Impact of Oxidative Stress on Ribosomes: From Injury to Regulation. Cells 2019; 8:cells8111379. [PMID: 31684095 PMCID: PMC6912279 DOI: 10.3390/cells8111379] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The ribosome is a complex ribonucleoprotein-based molecular machine that orchestrates protein synthesis in the cell. Both ribosomal RNA and ribosomal proteins can be chemically modified by reactive oxygen species, which may alter the ribosome′s functions or cause a complete loss of functionality. The oxidative damage that ribosomes accumulate during their lifespan in a cell may lead to reduced or faulty translation and contribute to various pathologies. However, remarkably little is known about the biological consequences of oxidative damage to the ribosome. Here, we provide a concise summary of the known types of changes induced by reactive oxygen species in rRNA and ribosomal proteins and discuss the existing experimental evidence of how these modifications may affect ribosome dynamics and function. We emphasize the special role that redox-active transition metals, such as iron, play in ribosome homeostasis and stability. We also discuss the hypothesis that redox-mediated ribosome modifications may contribute to adaptive cellular responses to stress.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| |
Collapse
|
100
|
ClTI, a Kunitz trypsin inhibitor purified from Cassia leiandra Benth. seeds, exerts a candidicidal effect on Candida albicans by inducing oxidative stress and necrosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183032. [DOI: 10.1016/j.bbamem.2019.183032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/11/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
|