51
|
Ko W, Porter JJ, Sipple MT, Edwards KM, Lueck JD. Efficient suppression of endogenous CFTR nonsense mutations using anticodon-engineered transfer RNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:685-701. [PMID: 35664697 PMCID: PMC9126842 DOI: 10.1016/j.omtn.2022.04.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Nonsense mutations or premature termination codons (PTCs) comprise ∼11% of all genetic lesions, which result in over 7,000 distinct genetic diseases. Due to their outsized impact on human health, considerable effort has been made to find therapies for nonsense-associated diseases. Suppressor tRNAs have long been identified as a possible therapeutic for nonsense-associated diseases; however, their ability to inhibit nonsense-mediated mRNA decay (NMD) and support significant protein translation from endogenous transcripts has not been determined in mammalian cells. Here, we investigated the ability of anticodon edited (ACE)-tRNAs to suppress cystic fibrosis (CF) causing PTCs in the cystic fibrosis transmembrane regulator (CFTR) gene in gene-edited immortalized human bronchial epithelial (16HBEge) cells. Delivery of ACE-tRNAs to 16HBEge cells harboring three common CF mutations G542XUGA-, R1162XUGA-, and W1282XUGA-CFTR PTCs significantly inhibited NMD and rescued endogenous mRNA expression. Furthermore, delivery of our highly active leucine-encoding ACE-tRNA resulted in rescue of W1282X-CFTR channel function to levels that significantly exceed the necessary CFTR channel function for therapeutic relevance. This study establishes the ACE-tRNA approach as a potential standalone therapeutic for nonsense-associated diseases due to its ability to rescue both mRNA and full-length protein expression from PTC-containing endogenous genes.
Collapse
Affiliation(s)
- Wooree Ko
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joseph J. Porter
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Matthew T. Sipple
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katherine M. Edwards
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John D. Lueck
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
52
|
Sala D, Ornaghi F, Morena F, Argentati C, Valsecchi M, Alberizzi V, Di Guardo R, Bolino A, Aureli M, Martino S, Gritti A. Therapeutic advantages of combined gene/cell therapy strategies in a murine model of GM2 gangliosidosis. Mol Ther Methods Clin Dev 2022; 25:170-189. [PMID: 35434178 PMCID: PMC8983315 DOI: 10.1016/j.omtm.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/13/2022] [Indexed: 11/28/2022]
Abstract
Genetic deficiency of β-N-acetylhexosaminidase (Hex) functionality leads to accumulation of GM2 ganglioside in Tay-Sachs disease and Sandhoff disease (SD), which presently lack approved therapies. Current experimental gene therapy (GT) approaches with adeno-associated viral vectors (AAVs) still pose safety and efficacy issues, supporting the search for alternative therapeutic strategies. Here we leveraged the lentiviral vector (LV)-mediated intracerebral (IC) GT platform to deliver Hex genes to the CNS and combined this strategy with bone marrow transplantation (BMT) to provide a timely, pervasive, and long-lasting source of the Hex enzyme in the CNS and periphery of SD mice. Combined therapy outperformed individual treatments in terms of lifespan extension and normalization of the neuroinflammatory/neurodegenerative phenotypes of SD mice. These benefits correlated with a time-dependent increase in Hex activity and a remarkable reduction in GM2 storage in brain tissues that single treatments failed to achieve. Our results highlight the synergic mode of action of LV-mediated IC GT and BMT, clarify the contribution of treatments to the therapeutic outcome, and inform on the realistic threshold of corrective enzymatic activity. These results have important implications for interpretation of ongoing experimental therapies and for design of more effective treatment strategies for GM2 gangliosidosis.
Collapse
Affiliation(s)
- Davide Sala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Francesca Ornaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Francesco Morena
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Chiara Argentati
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090 Segrate, MI, Italy
| | - Valeria Alberizzi
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, 20132 Milan, Italy
| | - Roberta Di Guardo
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, 20132 Milan, Italy
| | - Alessandra Bolino
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, 20132 Milan, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090 Segrate, MI, Italy
| | - Sabata Martino
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
53
|
Wiesinger AM, Bigger B, Giugliani R, Scarpa M, Moser T, Lampe C, Kampmann C, Lagler FB. The Inflammation in the Cytopathology of Patients With Mucopolysaccharidoses- Immunomodulatory Drugs as an Approach to Therapy. Front Pharmacol 2022; 13:863667. [PMID: 35645812 PMCID: PMC9136158 DOI: 10.3389/fphar.2022.863667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/31/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases (LSDs), characterized by the accumulation of glycosaminoglycans (GAGs). GAG storage-induced inflammatory processes are a driver of cytopathology in MPS and pharmacological immunomodulation can bring improvements in brain, cartilage and bone pathology in rodent models. This manuscript reviews current knowledge with regard to inflammation in MPS patients and provides hypotheses for the therapeutic use of immunomodulators in MPS. Thus, we aim to set the foundation for a rational repurposing of the discussed molecules to minimize the clinical unmet needs still remaining despite enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Anna-Maria Wiesinger
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- *Correspondence: Anna-Maria Wiesinger,
| | - Brian Bigger
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Roberto Giugliani
- Department of Genetics, Medical Genetics Service and Biodiscovery Laboratory, HCPA, UFRGS, Porto Alegre, Brazil
| | - Maurizio Scarpa
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Regional Coordinating Center for Rare Diseases, University Hospital Udine, Udine, Italy
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christina Lampe
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Department of Child and Adolescent Medicine, Center of Rare Diseases, University Hospitals Giessen/Marburg, Giessen, Germany
| | - Christoph Kampmann
- Department of Pediatric Cardiology, University Hospital Mainz, Mainz, Germany
| | - Florian B. Lagler
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
| |
Collapse
|
54
|
Molnár M, Sőth Á, Simon-Vecsei Z. Pathways of integrins in the endo-lysosomal system. Biol Futur 2022; 73:171-185. [DOI: 10.1007/s42977-022-00120-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/09/2022] [Indexed: 12/13/2022]
Abstract
AbstractIn this review, we present recent scientific advances about integrin trafficking in the endo-lysosomal system. In the last few years, plenty of new information has emerged about the endo-lysosomal system, integrins, and the mechanism, how exactly the intracellular trafficking of integrins is regulated. We review the internalization and recycling pathways of integrins, and we provide information about the possible ways of lysosomal degradation through the endosomal and autophagic system. The regulation of integrin internalization and recycling proved to be a complex process worth studying. Trafficking of integrins, together with the regulation of their gene expression, defines cellular adhesion and cellular migration through bidirectional signalization and ligand binding. Thus, any malfunction in this system can potentially (but not necessarily) lead to tumorigenesis or metastasis. Hence, extensive examinations of integrins in the endo-lysosomal system raise the possibility to identify potential new medical targets. Furthermore, this knowledge can also serve as a basis for further determination of integrin signaling- and adhesion-related processes.
Collapse
|
55
|
Eising S, Esch B, Wälte M, Vargas Duarte P, Walter S, Ungermann C, Bohnert M, Fröhlich F. A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways. J Cell Biol 2022; 221:213011. [PMID: 35175277 PMCID: PMC8859911 DOI: 10.1083/jcb.202107148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/20/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
The lysosome is the major catabolic organelle in the cell that has been established as a key metabolic signaling center. Mutations in many lysosomal proteins have catastrophic effects and cause neurodegeneration, cancer, and age-related diseases. The vacuole is the lysosomal analog of Saccharomyces cerevisiae that harbors many evolutionary conserved proteins. Proteins reach vacuoles via the Vps10-dependent endosomal vacuolar protein sorting pathway, via the alkaline phosphatase (ALP or AP-3) pathway, and via the cytosol-to-vacuole transport (CVT) pathway. A systematic understanding of the cargo spectrum of each pathway is completely lacking. Here, we use quantitative proteomics of purified vacuoles to generate the yeast lysosomal biogenesis map. This dataset harbors information on the cargo-receptor relationship of almost all vacuolar proteins. We map binding motifs of Vps10 and the AP-3 complex and identify a novel cargo of the CVT pathway under nutrient-rich conditions. Our data show how organelle purification and quantitative proteomics can uncover fundamental insights into organelle biogenesis.
Collapse
Affiliation(s)
- Sebastian Eising
- Molecular Membrane Biology Group, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Bianca Esch
- Molecular Membrane Biology Group, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Mike Wälte
- Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany
| | - Prado Vargas Duarte
- Biochemistry Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics Osnabrück, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Biochemistry Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany.,Center of Cellular Nanoanalytics Osnabrück, Osnabrück University, Osnabrück, Germany
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany.,Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Florian Fröhlich
- Molecular Membrane Biology Group, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany.,Biochemistry Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
56
|
Tagliatti E, Cortese K. Imaging Endocytosis Dynamics in Health and Disease. MEMBRANES 2022; 12:membranes12040393. [PMID: 35448364 PMCID: PMC9028293 DOI: 10.3390/membranes12040393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Endocytosis is a critical process for cell growth and viability. It mediates nutrient uptake, guarantees plasma membrane homeostasis, and generates intracellular signaling cascades. Moreover, it plays an important role in dead cell clearance and defense against external microbes. Finally, endocytosis is an important cellular route for the delivery of nanomedicines for therapeutic treatments. Thus, it is not surprising that both environmental and genetic perturbation of endocytosis have been associated with several human conditions such as cancer, neurological disorders, and virus infections, among others. Over the last decades, a lot of research has been focused on developing advanced imaging methods to monitor endocytosis events with high resolution in living cells and tissues. These include fluorescence imaging, electron microscopy, and correlative and super-resolution microscopy. In this review, we outline the major endocytic pathways and briefly discuss how defects in the molecular machinery of these pathways lead to disease. We then discuss the current imaging methodologies used to study endocytosis in different contexts, highlighting strengths and weaknesses.
Collapse
Affiliation(s)
- Erica Tagliatti
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Milano, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK
- Correspondence: (E.T.); (K.C.)
| | - Katia Cortese
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine (DIMES), Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
- Correspondence: (E.T.); (K.C.)
| |
Collapse
|
57
|
Puhl AC, Ekins S. Advancing the Research and Development of Enzyme Replacement Therapies for Lysosomal Storage Diseases. GEN BIOTECHNOLOGY 2022; 1:156-162. [PMID: 35706761 PMCID: PMC9192161 DOI: 10.1089/genbio.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the increasing interest in developing gene therapies for rare diseases, it is easy to overlook that there are numerous rare lysosomal storage diseases (LSD) with treatments that have been approved by regulatory agencies in the United States and Europe. These primarily consist of enzyme replacement therapies (ERT), which are recombinant human proteins that are delivered for the life of the patient via different routes and may have distinct safety and distribution advantages over gene therapies. The research and development of ERT is a lengthy and expensive process, which is usually performed in academic laboratories before transfer to pharmaceutical companies and is hence a process ripe for disruption. There may still be considerable scientific and investment potential for ERT, however we need to develop a pipeline of proteins analogous to what has been created in some open science efforts as well as apply technologies to decrease manufacturing costs. In this Perspective, we illustrate the opportunity to fill the rare LSD treatment gap with ERTs while gene therapies are in development for these life-shortening diseases.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina, USA
- Address correspondence to: Ana C. Puhl, Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, USA.
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina, USA
- Address correspondence to: Sean Ekins, Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, USA.
| |
Collapse
|
58
|
Papini N, Giallanza C, Brioschi L, Ranieri FR, Giussani P, Mauri L, Ciampa MG, Viani P, Tringali C. Galactocerebrosidase deficiency induces an increase in lactosylceramide content: A new hallmark of Krabbe disease? Int J Biochem Cell Biol 2022; 145:106184. [PMID: 35217188 DOI: 10.1016/j.biocel.2022.106184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/03/2022] [Accepted: 02/19/2022] [Indexed: 12/11/2022]
Abstract
Galactocerebrosidase (GALC) hydrolyses galactose residues from various substrates, including galactosylceramide, psychosine (galactosylsphingosine), and lactosylceramide. Its severe deficiency has been associated with the accumulation of psychosine, a toxic molecule with detergent-like features, which alters membrane structures and signalling pathways, inducing the death of oligodendrocytes and a sequence of events in the nervous system that explain the appearance of many clinical signs typical of Krabbe disease. Nevertheless, new evidence suggests the existence of other possible links among GALC action, myelination, and myelin stability, apart from psychosine release. In this study, we demonstrated that lactosylceramide metabolism is impaired in fibroblasts isolated from patients with Krabbe disease in the absence of psychosine accumulation. This event is responsible for the aberrant and constitutive activation of the AKT/prolin-rich AKT substrate of 40 kDa (PRAS40) signalling axis, inducing B cell lymphoma 2 (BCL2) overexpression and glycogen synthase kinase 3 beta (GSK-3β) inhibition. In addition, nuclear factor E2-related factor 2 (NRF2) showed increased nuclear translocation. Due to the relevance of these molecular alterations in neurodegeneration, lactosylceramide increase should be evaluated as a novel marker of Krabbe disease, and because of its significant connections with signalling pathways.
Collapse
Affiliation(s)
- Nadia Papini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Chiara Giallanza
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Loredana Brioschi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Francesca Romana Ranieri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy.
| |
Collapse
|
59
|
Oliveira Miranda C. Mesenchymal stem cells for lysosomal storage and polyglutamine disorders: Possible shared mechanisms. Eur J Clin Invest 2022; 52:e13707. [PMID: 34751953 DOI: 10.1111/eci.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/28/2021] [Accepted: 11/07/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mesenchymal stem cells' (MSC) therapeutic potential has been investigated for the treatment of several neurodegenerative diseases. The fact these cells can mediate a beneficial effect in different neurodegenerative contexts strengthens their competence to target diverse mechanisms. On the other hand, distinct disorders may share similar mechanisms despite having singular neuropathological characteristics. METHODS We have previously shown that MSC can be beneficial for two disorders, one belonging to the groups of Lysosomal Storage Disorders (LSDs) - the Krabbe Disease or Globoid Cell Leukodystrophy, and the other to the family of Polyglutamine diseases (PolyQs) - the Machado-Joseph Disease or Spinocerebellar ataxia type 3. We gave also input into disease characterization since neuropathology and MSC's effects are intrinsically associated. This review aims at describing MSC's multimode of action in these disorders while emphasizing to possible mechanistic alterations they must share due to the accumulation of cellular toxic products. RESULTS Lysosomal storage disorders and PolyQs have different aetiology and associated symptoms, but both result from the accumulation of undegradable products inside neuronal cells due to inefficient clearance by the endosomal/lysosomal pathway. Moreover, numerous cellular mechanisms that become compromised latter are also shared by these two disease groups. CONCLUSIONS Here, we emphasize MSC's effect in improving proteostasis and autophagy cycling turnover, neuronal survival, synaptic activity and axonal transport. LSDs and PolyQs, though rare in their predominance, collectively affect many people and require our utmost dedication and efforts to get successful therapies due to their tremendous impact on patient s' lives and society.
Collapse
Affiliation(s)
- Catarina Oliveira Miranda
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
60
|
Wang D, Kang L, Chen C, Guo J, Du L, Zhou D, Li G, Zhang Y, Mi X, Zhang M, Liu S, Tan X. Loss of legumain induces premature senescence and mediates aging-related renal fibrosis. Aging Cell 2022; 21:e13574. [PMID: 35195326 PMCID: PMC8920435 DOI: 10.1111/acel.13574] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 12/14/2022] Open
Abstract
Aging is an independent risk factor for acute kidney injury and subsequent chronic kidney diseases, while the underlying mechanism is still elusive. Here, we found that renal tubules highly express a conserved lysosomal endopeptidase, legumain, which is significantly downregulated with the growing of age. Tubule‐specific legumain‐knockout mice exhibit spontaneous renal interstitial fibrosis from the 3rd month. In the tubule‐specific legumain‐knockout mice and the cultured legumain‐knockdown HK‐2 cells, legumain deficiency induces the activation of tubular senescence and thus increases the secretion of profibrotic senescence‐associated cytokines, which in turn accelerates the activation of fibroblasts. Blockage of senescence mitigates the fibrotic lesion caused by legumain deficiency. Mechanistically, we found that silencing down of legumain leads to the elevated lysosome pH value, enlargement of lysosome size, and increase of lysosomal voltage dependent membrane channel proteins. Either legumain downregulation or aging alone induces the activation of nuclear transcription factors EB (TFEB) while it fails to further upregulate in the elderly legumain‐knockdown tubules, accompanied with impaired mitophagy and increased mitochondrial ROS (mtROS) accumulation. Therapeutically, supplementation of exosomal legumain ameliorated fibronectin and collagen I production in an in vitro coculture system of tubular cells and fibroblasts. Altogether, our data demonstrate that loss of legumain in combined with aging dysregulates lysosomal homeostasis, although either aging or legumain deficiency alone induces lysosome adaptation via stimulating lysosomal biogenesis. Consequently, impaired mitophagy leads to mtROS accumulation and therefore activates tubular senescence and boosts the interstitial fibrosis.
Collapse
Affiliation(s)
- Dekun Wang
- Department of Pathology School of Medicine Nankai University Tianjin China
| | - Lichun Kang
- Department of Pathology School of Medicine Nankai University Tianjin China
| | - Chuan'ai Chen
- Department of Pathology School of Medicine Nankai University Tianjin China
| | - Jiasen Guo
- College of Life Science Nankai University Tianjin China
| | - Lingfang Du
- Department of Pathology School of Medicine Nankai University Tianjin China
| | - Donghui Zhou
- Department of Pathology School of Medicine Nankai University Tianjin China
| | - Gang Li
- Nephrology Division The Second Hospital of Tianjin Medical University Tianjin China
| | - Yuying Zhang
- Department of Pathology School of Medicine Nankai University Tianjin China
| | - Xue Mi
- Department of Pathology School of Medicine Nankai University Tianjin China
| | - Mianzhi Zhang
- Dongfang Hospital of Beijing University of Chinese medicine Beijing China
| | - Shuxia Liu
- Hebei Key Laboratory of Nephrology Department of Pathology Hebei Medical University Shijiazhuang China
| | - Xiaoyue Tan
- Department of Pathology School of Medicine Nankai University Tianjin China
| |
Collapse
|
61
|
Benincore-Flórez E, El-Azaz J, Solarte GA, Rodríguez A, Reyes LH, Alméciga-Díaz CJ, Cardona C. Iduronate-2-sulfatase interactome: Validation by Yeast Two-Hybrid Assay. Heliyon 2022; 8:e09031. [PMID: 35284671 PMCID: PMC8913312 DOI: 10.1016/j.heliyon.2022.e09031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a rare X-linked recessive disease caused by a deficiency of the lysosomal enzyme iduronate-2-sulfatase (IDS), which activates intracellular accumulation of nonmetabolized glycosaminoglycans such as heparan sulfate and dermatan sulfate. This accumulation causes severe damage to several tissues, principally the central nervous system. Previously, we identified 187 IDS-protein interactions in the mouse brain. To validate a subset of these interactions, we selected and cloned the coding regions of 10 candidate genes to perform a targeted yeast two-hybrid assay. The results allowed the identification of the physical interaction of IDS with LSAMP and SYT1. Although the physiological relevance of these complexes is unknown, recent advances allow us to point out that these interactions could be involved in vesicular trafficking of IDS through the interaction with SYT1, as well as to the ability to form a transcytosis module between the cellular components of the blood-brain-barrier (BBB) through its interaction with LSAMP. These results may shed light on the role of IDS on cellular homeostasis and may also contribute to the understanding of MPS II physiopathology and the development of novel therapeutic strategies to transport recombinant IDS through the brain endothelial cells toward the brain parenchyma.
Collapse
|
62
|
Paramasivam P, Franke C, Stöter M, Höijer A, Bartesaghi S, Sabirsh A, Lindfors L, Arteta MY, Dahlén A, Bak A, Andersson S, Kalaidzidis Y, Bickle M, Zerial M. Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale. J Cell Biol 2022; 221:e202110137. [PMID: 34882187 PMCID: PMC8666849 DOI: 10.1083/jcb.202110137] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/09/2023] Open
Abstract
Delivery of exogenous mRNA using lipid nanoparticles (LNPs) is a promising strategy for therapeutics. However, a bottleneck remains in the poor understanding of the parameters that correlate with endosomal escape versus cytotoxicity. To address this problem, we compared the endosomal distribution of six LNP-mRNA formulations of diverse chemical composition and efficacy, similar to those used in mRNA-based vaccines, in primary human adipocytes, fibroblasts, and HeLa cells. Surprisingly, we found that total uptake is not a sufficient predictor of delivery, and different LNPs vary considerably in endosomal distributions. Prolonged uptake impaired endosomal acidification, a sign of cytotoxicity, and caused mRNA to accumulate in compartments defective in cargo transport and unproductive for delivery. In contrast, early endocytic/recycling compartments have the highest probability for mRNA escape. By using super-resolution microscopy, we could resolve a single LNP-mRNA within subendosomal compartments and capture events of mRNA escape from endosomal recycling tubules. Our results change the view of the mechanisms of endosomal escape and define quantitative parameters to guide the development of mRNA formulations toward higher efficacy and lower cytotoxicity.
Collapse
Affiliation(s)
- Prasath Paramasivam
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Christian Franke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Stöter
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andreas Höijer
- Advanced Drug Delivery, Pharmaceutical Science Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Stefano Bartesaghi
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Science Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Science Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Marianna Yanez Arteta
- Advanced Drug Delivery, Pharmaceutical Science Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Science Research and Development, AstraZeneca, Boston, MA
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
63
|
Development and clinical translation of ex vivo gene therapy. Comput Struct Biotechnol J 2022; 20:2986-3003. [PMID: 35782737 PMCID: PMC9218169 DOI: 10.1016/j.csbj.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022] Open
Abstract
Retroviral gene therapy has emerged as a promising therapeutic modality for multiple inherited and acquired human diseases. The capability of delivering curative treatment or mediating therapeutic benefits for a long-term period following a single application fundamentally distinguishes this medical intervention from traditional medicine and various lentiviral/γ-retroviral vector-mediated gene therapy products have been approved for clinical use. Continued advances in retroviral vector engineering, genomic editing, synthetic biology and immunology will broaden the medical applications of gene therapy and improve the efficacy and safety of the treatments based on genetic correction and alteration. This review will summarize the advent and clinical translation of ex vivo gene therapy, with the focus on the milestones during the exploitation of genetically engineered hematopoietic stem cells (HSCs) tackling a variety of pathological conditions which led to marketing approval. Finally, current statue and future prospects of gene editing as an alternative therapeutic approach are also discussed.
Collapse
|
64
|
Ambiliraj DB, Francis B, MLP R. Lysosome-targeting luminescent lanthanide complexes: From molecular design to bioimaging. Dalton Trans 2022; 51:7748-7762. [DOI: 10.1039/d2dt00128d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysosomes are essential acidic cytoplasmic membrane-bound organelles in human cells that play a critical role in many cellular events. A comprehensive understanding of lysosome-specific imaging can ultimately help us to...
Collapse
|
65
|
Chromosomal Rearrangements and Altered Nuclear Organization: Recent Mechanistic Models in Cancer. Cancers (Basel) 2021; 13:cancers13225860. [PMID: 34831011 PMCID: PMC8616464 DOI: 10.3390/cancers13225860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary New methodologies and technologies developed in the last few decades have highlighted the precise spatial organization of the genome into the cell nucleus, with chromatin architecture playing a central role in controlling several genome functions. Genes are expressed in a well-defined way and at a well-defined time during cell differentiation, and alterations in genome organization can lead to genetic diseases, such as cancers. Here we review how the genome is organized in the cell nucleus and the evidence of genome misorganization leading to cancer diseases. Abstract The last decade has seen significant progress in understanding how the genome is organized spatially within interphase nuclei. Recent analyses have confirmed earlier molecular cytogenetic studies on chromosome positioning within interphase nuclei and provided new information about the topologically associated domains (TADs). Examining the nuances of how genomes are organized within interphase nuclei will provide information fundamental to understanding gene regulation and expression in health and disease. Indeed, the radial spatial positioning of individual gene loci within nuclei has been associated with up- and down-regulation of specific genes, and disruption of normal genome organization within nuclei will result in compromised cellular health. In cancer cells, where reorganization of the nuclear architecture may occur in the presence of chromosomal rearrangements such as translocations, inversions, or deletions, gene repositioning can change their expression. To date, very few studies have focused on radial gene positioning and the correlation to gene expression in cancers. Further investigations would improve our understanding of the biological mechanisms at the basis of cancer and, in particular, in leukemia initiation and progression, especially in those cases where the molecular consequences of chromosomal rearrangements are still unclear. In this review, we summarize the main milestones in the field of genome organization in the nucleus and the alterations to this organization that can lead to cancer diseases.
Collapse
|
66
|
Corrêa T, Feltes BC, Giugliani R, Matte U. Disruption of morphogenic and growth pathways in lysosomal storage diseases. WIREs Mech Dis 2021; 13:e1521. [PMID: 34730292 DOI: 10.1002/wsbm.1521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/12/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
The lysosome achieved a new protagonism that highlights its multiple cellular functions, such as in the catabolism of complex substrates, nutrient sensing, and signaling pathways implicated in cell metabolism and growth. Lysosomal storage diseases (LSDs) cause lysosomal accumulation of substrates and deficiency in trafficking of macromolecules. The substrate accumulation can impact one or several pathways which contribute to cell damage. Autophagy impairment and immune response are widely studied, but less attention is paid to morphogenic and growth pathways and its impact on the pathophysiology of LSDs. Hedgehog pathway is affected with abnormal expression and changes in distribution of protein levels, and a reduced number and length of primary cilia. Moreover, growth pathways are identified with delay in reactivation of mTOR that deregulate termination of autophagy and reformation of lysosomes. Insulin resistance caused by changes in lipids rafts has been described in different LSDs. While the genetic and biochemical bases of deficient proteins in LSDs are well understood, the secondary molecular mechanisms that disrupt wider biological processes associated with LSDs are only now becoming clearer. Therefore, we explored how specific signaling pathways can be related to specific LSDs, showing that a system medicine approach could be a valuable tool for the better understanding of LSD pathogenesis. This article is categorized under: Metabolic Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Thiago Corrêa
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruno C Feltes
- Department of Theoretical Informatics, Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberto Giugliani
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Ursula Matte
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
67
|
Hatstat AK, Pupi MD, Reinhart MC, McCafferty DG. Small Molecule Improvement of Trafficking Defects in Models of Neurodegeneration. ACS Chem Neurosci 2021; 12:3972-3984. [PMID: 34652126 DOI: 10.1021/acschemneuro.1c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Disrupted cellular trafficking and transport processes are hallmarks of many neurodegenerative disorders (NDs). Recently, efforts have been made toward developing and implementing experimental platforms to identify small molecules that may help restore normative trafficking functions. There have been a number of successes in targeting endomembrane trafficking with the identification of compounds that restore cell viability through rescue of protein transport and trafficking. Here, we describe some of the experimental platforms implemented for small molecule screening efforts for rescue of trafficking defects in neurodegeneration. A survey of phenotypically active small molecules identified to date is provided, including a summary of medicinal chemistry efforts and insights into putative targets and mechanisms of action. In particular, emphasis is put on ligands that demonstrate activity in more than one model of neurodegeneration as retention of phenotypic activity across ND models suggests conservation of biological targets across NDs.
Collapse
Affiliation(s)
- A. Katherine Hatstat
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael D. Pupi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michaela C. Reinhart
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Dewey G. McCafferty
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
68
|
Martynov VI, Pakhomov AA. BODIPY derivatives as fluorescent reporters of molecular activities in living cells. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Fluorescent compounds have become indispensable tools for imaging molecular activities in the living cell. 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is currently one of the most popular fluorescent reporters due to its unique photophysical properties. This review provides a general survey and presents a summary of recent advances in the development of new BODIPY-based cellular biomarkers and biosensors. The review starts with the consideration of the properties of BODIPY derivatives required for their application as cellular reporters. Then review provides examples of the design of sensors for different biologically important molecules, ions, membrane potential, temperature and viscosity defining the live cell status. Special attention is payed to BODPY-based phototransformable reporters.
The bibliography includes 339 references.
Collapse
|
69
|
Knockdown of Vacuolar ATPase Subunit G Gene Affects Larval Survival and Impaired Pupation and Adult Emergence in Henosepilachna vigintioctopunctata. INSECTS 2021; 12:insects12100935. [PMID: 34680704 PMCID: PMC8538789 DOI: 10.3390/insects12100935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Vacuolar ATPase (vATPase), a proton pump driven by ATP hydrolysis, acts as a membrane energizer to motivate the movement of ions and nutrients across the cellular membrane in insect guts and Malpighian tubules, among others. The vATPase holoenzyme contains 16 subunits. Out of these subunits, mammalian G subunit includes three isoforms (G1-G3) which are encoded by three distinctive genes. The physiological role of a specific G isoform can be compensated by others. Thus, current experimental evidence on the in vivo function of G is rather limited among eight V1 subunits. In the present paper, particular attention was paid to an insect model, Henosepilachna vigintioctopunctata ladybird, a serious defoliator of Solanaceae and Cucurbitaceae plants in many Asian countries. Given that the beetle is sensitive to RNA interference (RNAi), HvvATPaseG gene was knocked down by ingestion of its corresponding dsRNA at the fourth-instar larval stage. Silence of HvvATPaseG affected larval growth and survival, impaired pupation and adult emergence. Our results provide a basis for further functional research on the vATPase G subunit in insects and suggest new ideas for the management of H. vigintioctopunctata. Abstract The vATPase holoenzyme consists of two functional subcomplexes, the cytoplasmic (peripheral) V1 and the membrane-embedded V0. Both V1 and V0 sectors contain eight subunits, with stoichiometry of A3B3CDE3FG3H in V1 and ac8c’c”def(Voa1p) in V0 respectively. However, the function of G subunit has not been characterized in any non-Drosophilid insect species. In the present paper, we uncovered that HvvATPaseG was actively transcribed from embryo to adult in a Coleopteran pest Henosepilachna vigintioctopunctata. Its mRNA levels peaked in larval hindgut and Malpighian tubules. RNA interference (RNAi)-mediated knockdown of HvvATPaseG significantly reduced larval feeding, affected chitin biosynthesis, destroyed midgut integrity, damaged midgut peritrophic membrane, and retarded larval growth. The function of Malpighian tubules was damaged, the contents of glucose, trehalose, lipid, total soluble amino acids and protein were lowered and the fat bodies were lessened in the HvvATPaseG RNAi larvae, compared with those in the PBS- and dsegfp-fed beetles. In contrast, the amount of glycogen was dramatically increased in the HvvATPaseG depletion ladybirds. As a result, the development was arrested, pupation was inhibited and adult emergence was impaired in the HvvATPaseG hypomorphs. Our results demonstrated that G subunit plays a critical role during larval development in H. vigintioctopunctata.
Collapse
|
70
|
Sevin C, Deiva K. Clinical Trials for Gene Therapy in Lysosomal Diseases With CNS Involvement. Front Mol Biosci 2021; 8:624988. [PMID: 34604300 PMCID: PMC8481654 DOI: 10.3389/fmolb.2021.624988] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
There are over 70 known lysosomal storage disorders (LSDs), most caused by mutations in genes encoding lysosomal hydrolases. Central nervous system involvement is a hallmark of the majority of LSDs and, if present, generally determines the prognosis of the disease. Nonetheless, brain disease is currently poorly targeted by available therapies, including systemic enzyme replacement therapy, mostly (but not only) due to the presence of the blood–brain barrier that restricts the access of orally or parenterally administered large molecules into the brain. Thus, one of the greatest and most exciting challenges over coming years will be to succeed in developing effective therapies for the treatment of central nervous system manifestations in LSDs. Over recent years, gene therapy (GT) has emerged as a promising therapeutic strategy for a variety of inherited neurodegenerative diseases. In LSDs, the ability of genetically corrected cells to cross-correct adjacent lysosomal enzyme-deficient cells in the brain after gene transfer might enhance the diffusion of the recombinant enzyme, making this group of diseases a strong candidate for such an approach. Both in vivo (using the administration of recombinant adeno-associated viral vectors) and ex vivo (auto-transplantation of lentiviral vector-modified hematopoietic stem cells-HSCs) strategies are feasible. Promising results have been obtained in an ever-increasing number of preclinical studies in rodents and large animal models of LSDs, and these give great hope of GT successfully correcting neurological defects, once translated to clinical practice. We are now at the stage of treating patients, and various clinical trials are underway, to assess the safety and efficacy of in vivo and ex vivo GT in several neuropathic LSDs. In this review, we summarize different approaches being developed and review the current clinical trials related to neuropathic LSDs, their results (if any), and their limitations. We will also discuss the pitfalls and the remaining challenges.
Collapse
Affiliation(s)
- Caroline Sevin
- Pediatric Neurology Department, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Kumaran Deiva
- Pediatric Neurology Department, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| |
Collapse
|
71
|
Picking the arginine lock on PQLC2 cycling. Proc Natl Acad Sci U S A 2021; 118:2112682118. [PMID: 34453010 DOI: 10.1073/pnas.2112682118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
72
|
Retrieval of vector integration sites from cell-free DNA. Nat Med 2021; 27:1458-1470. [PMID: 34140705 DOI: 10.1038/s41591-021-01389-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/07/2021] [Indexed: 12/23/2022]
Abstract
Gene therapy (GT) has rapidly attracted renewed interest as a treatment for otherwise incurable diseases, with several GT products already on the market and many more entering clinical testing for selected indications. Clonal tracking techniques based on vector integration enable monitoring of the fate of engineered cells in the blood of patients receiving GT and allow assessment of the safety and efficacy of these procedures. However, owing to the limited number of cells that can be tested and the impracticality of studying cells residing in peripheral organs without performing invasive biopsies, this approach provides only a partial snapshot of the clonal repertoire and dynamics of genetically modified cells and reduces the predictive power as a safety readout. In this study, we developed liquid biopsy integration site sequencing, or LiBIS-seq, a polymerase chain reaction technique optimized to quantitatively retrieve vector integration sites from cell-free DNA released into the bloodstream by dying cells residing in several tissues. This approach enabled longitudinal monitoring of in vivo liver-directed GT and clonal tracking in patients receiving hematopoietic stem cell GT, improving our understanding of the clonal composition and turnover of genetically modified cells in solid tissues and, in contrast to conventional analyses based only on circulating blood cells, enabling earlier detection of vector-marked clones that are aberrantly expanding in peripheral tissues.
Collapse
|
73
|
Mangiameli E, Cecchele A, Morena F, Sanvito F, Matafora V, Cattaneo A, Della Volpe L, Gnani D, Paulis M, Susani L, Martino S, Di Micco R, Bachi A, Gritti A. Human iPSC-based neurodevelopmental models of globoid cell leukodystrophy uncover patient- and cell type-specific disease phenotypes. Stem Cell Reports 2021; 16:1478-1495. [PMID: 33989519 PMCID: PMC8190599 DOI: 10.1016/j.stemcr.2021.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/20/2022] Open
Abstract
Globoid cell leukodystrophy (GLD) is a rare neurodegenerative lysosomal storage disease caused by an inherited deficiency of β-galactocerebrosidase (GALC). GLD pathogenesis and therapeutic correction have been poorly studied in patient neural cells. Here, we investigated the impact of GALC deficiency and lentiviral vector-mediated GALC rescue/overexpression in induced pluripotent stem cell (iPSC)-derived neural progenitors and neuronal/glial progeny obtained from two GLD patients. GLD neural progeny displayed progressive psychosine storage, oligodendroglial and neuronal defects, unbalanced lipid composition, and early activation of cellular senescence, depending on the disease-causing mutation. The partial rescue of the neural differentiation program upon GALC reconstitution and psychosine clearance suggests multiple mechanisms contributing to neural pathology in GLD. Also, the pathological phenotype associated to supraphysiological GALC levels highlights the need of regulated GALC expression for proper human neural commitment/differentiation. These data have important implications for establishing safe therapeutic strategies to enhance disease correction of GLD.
Collapse
Affiliation(s)
- Elisabeth Mangiameli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Anna Cecchele
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Francesca Sanvito
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Vittoria Matafora
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Angela Cattaneo
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Lucrezia Della Volpe
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Daniela Gnani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Marianna Paulis
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy; National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy
| | - Lucia Susani
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy; National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
74
|
Lakpa KL, Khan N, Afghah Z, Chen X, Geiger JD. Lysosomal Stress Response (LSR): Physiological Importance and Pathological Relevance. J Neuroimmune Pharmacol 2021; 16:219-237. [PMID: 33751445 PMCID: PMC8099033 DOI: 10.1007/s11481-021-09990-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
Abstract
Extensive work has characterized endoplasmic reticulum (ER) and mitochondrial stress responses. In contrast, very little has been published about stress responses in lysosomes; subcellular acidic organelles that are physiologically important and are of pathological relevance. The greater lysosomal system is dynamic and is comprised of endosomes, lysosomes, multivesicular bodies, autophagosomes, and autophagolysosomes. They are important regulators of cellular physiology, they represent about 5% of the total cellular volume, they are heterogeneous in their sizes and distribution patterns, they are electron dense, and their subcellular positioning within cells varies in response to stimuli, insults and pH. These organelles are also integral to the pathogenesis of lysosomal storage diseases and it is increasingly recognized that lysosomes play important roles in the pathogenesis of such diverse conditions as neurodegenerative disorders and cancer. The purpose of this review is to focus attention on lysosomal stress responses (LSR), compare LSR with better characterized stress responses in ER and mitochondria, and form a framework for future characterizations of LSR. We synthesized data into the concept of LSR and present it here such that the definition of LSR can be modified as new knowledge is added and specific therapeutics are developed.
Collapse
Affiliation(s)
- Koffi L Lakpa
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Nabab Khan
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA.
| |
Collapse
|
75
|
Chung S, Son M, Chae Y, Oh S, Koh ES, Kim YK, Shin SJ, Park CW, Jung SC, Kim HS. Fabry disease exacerbates renal interstitial fibrosis after unilateral ureteral obstruction via impaired autophagy and enhanced apoptosis. Kidney Res Clin Pract 2021; 40:208-219. [PMID: 34024086 PMCID: PMC8237117 DOI: 10.23876/j.krcp.20.264] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background Fabry disease is a rare X-linked genetic lysosomal disorder caused by mutations in the GLA gene encoding alpha-galactosidase A. Despite some data showing that profibrotic and proinflammatory cytokines and oxidative stress could be involved in Fabry disease-related renal injury, the pathogenic link between metabolic derangement within cells and renal injury remains unclear. Methods Renal fibrosis was triggered by unilateral ureteral obstruction (UUO) in mice with Fabry disease to investigate the pathogenic mechanism leading to fibrosis in diseased kidneys. Results Compared to kidneys of wild-type mice, lamellar inclusion bodies were recognized in proximal tubules of mice with Fabry disease. Sirius red and trichrome staining revealed significantly increased fibrosis in all UUO kidneys, though it was more prominent in obstructed Fabry kidneys. Renal messenger RNA levels of inflammatory cytokines and profibrotic factors were increased in all UUO kidneys compared to sham-operated kidneys but were not significantly different between UUO control and UUO Fabry mice. Protein levels of Nox2, Nox4, NQO1, catalase, SOD1, SOD2, and Nrf2 were not significantly different between UUO control and UUO Fabry kidneys, while the protein contents of LC3-II and LC3-I and expression of Beclin1 were significantly decreased in UUO kidneys of Fabry disease mouse models compared with wild-type mice. Notably, TUNEL-positive cells were elevated in obstructed kidneys of Fabry disease mice compared to wild-type control and UUO mice. Conclusion These findings suggest that impaired autophagy and enhanced apoptosis are probable mechanisms involved in enhanced renal fibrosis under the stimulus of UUO in Fabry disease.
Collapse
Affiliation(s)
- Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mina Son
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yura Chae
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Songhee Oh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sil Koh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Kyun Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Chul Jung
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
76
|
Yang Y, Li R, Zhang S, Zhang X. A fluorescent nanoprobe based on cell-penetrating peptides and quantum dots for ratiometric monitoring of pH fluctuation in lysosomes. Talanta 2021; 227:122208. [PMID: 33714476 DOI: 10.1016/j.talanta.2021.122208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
A lysosome-targeting ratiometric fluorescent nanoprobe based on cell-penetrating peptides (CPPs) and quantum dots (QDs) has been developed for monitoring pH fluctuation in living cells. The as-prepared nanoprobe is constructed by Rhodamine B labeled R9RGD CPPs as H+ response unit and the red fluorescent QDs as reference unit to achieve ratiometric pH measurement. With the help of RhB-R9RGD CPPs, the nanoprobe efficiently stains lysosomes and enables discernment of lysosomal pH fluctuation in cells treated with different pH buffers and drug stimulation. The method of using dye labeled CPPs to realize functionalization of nanoparticle in one-step reported herein is expected to obtain wider applications in the detection of subcellular active substances by combining different small molecular probes and functional peptides.
Collapse
Affiliation(s)
- Yan Yang
- College of Chemical Engineering, Qinghai University, Xining, 810016, China; Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Rui Li
- College of Chemical Engineering, Qinghai University, Xining, 810016, China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
77
|
Köse S, Aerts-Kaya F, Uçkan Çetinkaya D, Korkusuz P. Stem Cell Applications in Lysosomal Storage Disorders: Progress and Ongoing Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:135-162. [PMID: 33977438 DOI: 10.1007/5584_2021_639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysosomal storage disorders (LSDs) are rare inborn errors of metabolism caused by defects in lysosomal function. These diseases are characterized by accumulation of completely or partially degraded substrates in the lysosomes leading to cellular dysfunction of the affected cells. Currently, enzyme replacement therapies (ERTs), treatments directed at substrate reduction (SRT), and hematopoietic stem cell (HSC) transplantation are the only treatment options for LSDs, and the effects of these treatments depend strongly on the type of LSD and the time of initiation of treatment. However, some of the LSDs still lack a durable and curative treatment. Therefore, a variety of novel treatments for LSD patients has been developed in the past few years. However, despite significant progress, the efficacy of some of these treatments remains limited because these therapies are often initiated after irreversible organ damage has occurred.Here, we provide an overview of the known effects of LSDs on stem cell function, as well as a synopsis of available stem cell-based cell and gene therapies that have been/are being developed for the treatment of LSDs. We discuss the advantages and disadvantages of use of hematopoietic stem cell (HSC), mesenchymal stem cell (MSC), and induced pluripotent stem cell (iPSC)-related (gene) therapies. An overview of current research data indicates that when stem cell and/or gene therapy applications are used in combination with existing therapies such as ERT, SRT, and chaperone therapies, promising results can be achieved, showing that these treatments may result in alleviation of existing symptoms and/or prevention of progression of the disease. All together, these studies offer some insight in LSD stem cell biology and provide a hopeful perspective for the use of stem cells. Further development and improvement of these stem cell (gene) combination therapies may greatly improve the current treatment options and outcomes of patients with a LSD.
Collapse
Affiliation(s)
- Sevil Köse
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey.,Hacettepe University Center for Stem Cell Research and Development (PEDI-STEM), Ankara, Turkey
| | - Duygu Uçkan Çetinkaya
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Hematology, Hacettepe University Center for Stem Cell Research and Development (PEDI-STEM), Ankara, Turkey.,Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
78
|
Abed Rabbo M, Khodour Y, Kaguni LS, Stiban J. Sphingolipid lysosomal storage diseases: from bench to bedside. Lipids Health Dis 2021; 20:44. [PMID: 33941173 PMCID: PMC8094529 DOI: 10.1186/s12944-021-01466-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/14/2021] [Indexed: 01/13/2023] Open
Abstract
Johann Ludwig Wilhelm Thudicum described sphingolipids (SLs) in the late nineteenth century, but it was only in the past fifty years that SL research surged in importance and applicability. Currently, sphingolipids and their metabolism are hotly debated topics in various biochemical fields. Similar to other macromolecular reactions, SL metabolism has important implications in health and disease in most cells. A plethora of SL-related genetic ailments has been described. Defects in SL catabolism can cause the accumulation of SLs, leading to many types of lysosomal storage diseases (LSDs) collectively called sphingolipidoses. These diseases mainly impact the neuronal and immune systems, but other systems can be affected as well. This review aims to present a comprehensive, up-to-date picture of the rapidly growing field of sphingolipid LSDs, their etiology, pathology, and potential therapeutic strategies. We first describe LSDs biochemically and briefly discuss their catabolism, followed by general aspects of the major diseases such as Gaucher, Krabbe, Fabry, and Farber among others. We conclude with an overview of the available and potential future therapies for many of the diseases. We strive to present the most important and recent findings from basic research and clinical applications, and to provide a valuable source for understanding these disorders.
Collapse
Affiliation(s)
- Muna Abed Rabbo
- Department of Biology and Biochemistry, Birzeit University, P.O. Box 14, Ramallah, West Bank, 627, Palestine
| | - Yara Khodour
- Department of Biology and Biochemistry, Birzeit University, P.O. Box 14, Ramallah, West Bank, 627, Palestine
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, P.O. Box 14, Ramallah, West Bank, 627, Palestine.
| |
Collapse
|
79
|
Castroflorio E, den Hoed J, Svistunova D, Finelli MJ, Cebrian-Serrano A, Corrochano S, Bassett AR, Davies B, Oliver PL. The Ncoa7 locus regulates V-ATPase formation and function, neurodevelopment and behaviour. Cell Mol Life Sci 2021; 78:3503-3524. [PMID: 33340069 PMCID: PMC8038996 DOI: 10.1007/s00018-020-03721-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/08/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Members of the Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic (TLDc) protein family are associated with multiple neurodevelopmental disorders, although their exact roles in disease remain unclear. For example, nuclear receptor coactivator 7 (NCOA7) has been associated with autism, although almost nothing is known regarding the mode-of-action of this TLDc protein in the nervous system. Here we investigated the molecular function of NCOA7 in neurons and generated a novel mouse model to determine the consequences of deleting this locus in vivo. We show that NCOA7 interacts with the cytoplasmic domain of the vacuolar (V)-ATPase in the brain and demonstrate that this protein is required for normal assembly and activity of this critical proton pump. Neurons lacking Ncoa7 exhibit altered development alongside defective lysosomal formation and function; accordingly, Ncoa7 deletion animals exhibited abnormal neuronal patterning defects and a reduced expression of lysosomal markers. Furthermore, behavioural assessment revealed anxiety and social defects in mice lacking Ncoa7. In summary, we demonstrate that NCOA7 is an important V-ATPase regulatory protein in the brain, modulating lysosomal function, neuronal connectivity and behaviour; thus our study reveals a molecular mechanism controlling endolysosomal homeostasis that is essential for neurodevelopment.
Collapse
Affiliation(s)
| | - Joery den Hoed
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Daria Svistunova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | | | - Silvia Corrochano
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
- Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos, Calle del Prof Martín Lagos s/n, 28040, Madrid, Spain
| | - Andrew R Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Peter L Oliver
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
80
|
Joseph J, Doles JD. Disease-associated metabolic alterations that impact satellite cells and muscle regeneration: perspectives and therapeutic outlook. Nutr Metab (Lond) 2021; 18:33. [PMID: 33766031 PMCID: PMC7992337 DOI: 10.1186/s12986-021-00565-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Many chronic disease patients experience a concurrent loss of lean muscle mass. Skeletal muscle is a dynamic tissue maintained by continuous protein turnover and progenitor cell activity. Muscle stem cells, or satellite cells, differentiate (by a process called myogenesis) and fuse to repair and regenerate muscle. During myogenesis, satellite cells undergo extensive metabolic alterations; therefore, pathologies characterized by metabolic derangements have the potential to impair myogenesis, and consequently exacerbate skeletal muscle wasting. How disease-associated metabolic disruptions in satellite cells might be contributing to wasting is an important question that is largely neglected. With this review we highlight the impact of various metabolic disruptions in disease on myogenesis and skeletal muscle regeneration. We also discuss metabolic therapies with the potential to improve myogenesis, skeletal muscle regeneration, and ultimately muscle mass.
Collapse
Affiliation(s)
- Josiane Joseph
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | - Jason D Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
81
|
Percival BC, Latour YL, Tifft CJ, Grootveld M. Rapid Identification of New Biomarkers for the Classification of GM1 Type 2 Gangliosidosis Using an Unbiased 1H NMR-Linked Metabolomics Strategy. Cells 2021; 10:572. [PMID: 33807817 PMCID: PMC7998791 DOI: 10.3390/cells10030572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/04/2023] Open
Abstract
Biomarkers currently available for the diagnosis, prognosis, and therapeutic monitoring of GM1 gangliosidosis type 2 (GM1T2) disease are mainly limited to those discovered in targeted proteomic-based studies. In order to identify and establish new, predominantly low-molecular-mass biomarkers for this disorder, we employed an untargeted, multi-analyte approach involving high-resolution 1H NMR analysis coupled to a range of multivariate analysis and computational intelligence technique (CIT) strategies to explore biomolecular distinctions between blood plasma samples collected from GM1T2 and healthy control (HC) participants (n = 10 and 28, respectively). The relationship of these differences to metabolic mechanisms underlying the pathogenesis of GM1T2 disorder was also investigated. 1H NMR-linked metabolomics analyses revealed significant GM1T2-mediated dysregulations in ≥13 blood plasma metabolites (corrected p < 0.04), and these included significant upregulations in 7 amino acids, and downregulations in lipoprotein-associated triacylglycerols and alanine. Indeed, results acquired demonstrated a profound distinctiveness between the GM1T2 and HC profiles. Additionally, employment of a genome-scale network model of human metabolism provided evidence that perturbations to propanoate, ethanol, amino-sugar, aspartate, seleno-amino acid, glutathione and alanine metabolism, fatty acid biosynthesis, and most especially branched-chain amino acid degradation (p = 10-12-10-5) were the most important topologically-highlighted dysregulated pathways contributing towards GM1T2 disease pathology. Quantitative metabolite set enrichment analysis revealed that pathological locations associated with these dysfunctions were in the order fibroblasts > Golgi apparatus > mitochondria > spleen ≈ skeletal muscle ≈ muscle in general. In conclusion, results acquired demonstrated marked metabolic imbalances and alterations to energy demand, which are consistent with GM1T2 disease pathogenesis mechanisms.
Collapse
Affiliation(s)
- Benita C. Percival
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Yvonne L. Latour
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232-0252, USA;
| | - Cynthia J. Tifft
- Deputy Clinical Director, National Human Genome Research Institute, Director, National Institutes of Health, Bethesda, MD 20892-1205, USA;
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| |
Collapse
|
82
|
Jiang Z, Lau YK, Wu M, Casal ML, Smith LJ. Ultrastructural analysis of different skeletal cell types in mucopolysaccharidosis dogs at the onset of postnatal growth. J Anat 2021; 238:416-425. [PMID: 32895948 PMCID: PMC7812126 DOI: 10.1111/joa.13305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/13/2020] [Accepted: 08/07/2020] [Indexed: 02/03/2023] Open
Abstract
The mucopolysaccharidoses (MPS) are a family of lysosomal storage disorders characterized by deficient activity of enzymes that degrade glycosaminoglycans (GAGs). Abnormal development of the vertebrae and long bones is a hallmark of skeletal disease in several MPS subtypes; however, the underlying cellular mechanisms remain poorly understood. The objective of this study was to conduct an ultrastructural examination of how lysosomal storage differentially affects major skeletal cell types in MPS I and VII using naturally occurring canine disease models. We showed that both bone and cartilage cells from MPS I and VII dog vertebrae exhibit significantly elevated storage from early in postnatal life, with storage generally greater in MPS VII than MPS I. Storage was most striking for vertebral osteocytes, occupying more than forty percent of cell area. Secondary to storage, dilation of the rough endoplasmic reticulum (ER), a marker of ER stress, was observed most markedly in MPS I epiphyseal chondrocytes. Significantly elevated immunostaining of light chain 3B (LC3B) in MPS VII epiphyseal chondrocytes suggested impaired autophagy, while significantly elevated apoptotic cell death in both MPS I and VII chondrocytes was also evident. The results of this study provide insights into how lysosomal storage differentially effects major skeletal cell types in MPS I and VII, and suggests a potential relationship between storage, ER stress, autophagy, and cell death in the pathogenesis of MPS skeletal defects.
Collapse
Affiliation(s)
- Zhirui Jiang
- Department of Orthopedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Yian Khai Lau
- Department of Orthopedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Meilun Wu
- Department of Orthopedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Margret L. Casal
- Department of Clinical Sciences and Advanced MedicineSchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Lachlan J. Smith
- Department of Orthopedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
83
|
Allende ML, Zhu H, Kono M, Hoachlander-Hobby LE, Huso VL, Proia RL. Genetic defects in the sphingolipid degradation pathway and their effects on microglia in neurodegenerative disease. Cell Signal 2021; 78:109879. [PMID: 33296739 PMCID: PMC7775721 DOI: 10.1016/j.cellsig.2020.109879] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Sphingolipids, which function as plasma membrane lipids and signaling molecules, are highly enriched in neuronal and myelin membranes in the nervous system. They are degraded in lysosomes by a defined sequence of enzymatic steps. In the related group of disorders, the sphingolipidoses, mutations in the genes that encode the individual degradative enzymes cause lysosomal accumulation of sphingolipids and often result in severe neurodegenerative disease. Here we review the information indicating that microglia, which actively clear sphingolipid-rich membranes in the brain during development and homeostasis, are directly affected by these mutations and promote neurodegeneration in the sphingolipidoses. We also identify parallels between the sphingolipidoses and more common forms of neurodegeneration, which both exhibit evidence of defective sphingolipid clearance in the nervous system.
Collapse
Affiliation(s)
- Maria L Allende
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongling Zhu
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mari Kono
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lila E Hoachlander-Hobby
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vienna L Huso
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard L Proia
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
84
|
Mosen P, Sanner A, Singh J, Winter D. Targeted Quantification of the Lysosomal Proteome in Complex Samples. Proteomes 2021; 9:4. [PMID: 33530589 PMCID: PMC7931001 DOI: 10.3390/proteomes9010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 01/29/2023] Open
Abstract
In eukaryotic cells, lysosomes play a crucial role in the breakdown of a variety of components ranging from small molecules to complex structures, ascertaining the continuous turnover of cellular building blocks. Furthermore, they act as a regulatory hub for metabolism, being crucially involved in the regulation of major signaling pathways. Currently, ~450 lysosomal proteins can be reproducibly identified in a single cell line by mass spectrometry, most of which are low-abundant, restricting their unbiased proteomic analysis to lysosome-enriched fractions. In the current study, we applied two strategies for the targeted investigation of the lysosomal proteome in complex samples: data-independent acquisition (DIA) and parallel reaction monitoring (PRM). Using a lysosome-enriched fraction, mouse embryonic fibroblast whole cell lysate, and mouse liver whole tissue lysate, we investigated the capabilities of DIA and PRM to investigate the lysosomal proteome. While both approaches identified and quantified lysosomal proteins in all sample types, and their data largely correlated, DIA identified on average more proteins, especially for lower complex samples and longer chromatographic gradients. For the highly complex tissue sample and shorter gradients, however, PRM delivered a better performance regarding both identification and quantification of lysosomal proteins. All data are available via ProteomeXchange with identifier PXDD023278.
Collapse
Affiliation(s)
| | | | | | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany; (P.M.); (A.S.); (J.S.)
| |
Collapse
|
85
|
Parenti G, Medina DL, Ballabio A. The rapidly evolving view of lysosomal storage diseases. EMBO Mol Med 2021; 13:e12836. [PMID: 33459519 PMCID: PMC7863408 DOI: 10.15252/emmm.202012836] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Lysosomal storage diseases are a group of metabolic disorders caused by deficiencies of several components of lysosomal function. Most commonly affected are lysosomal hydrolases, which are involved in the breakdown and recycling of a variety of complex molecules and cellular structures. The understanding of lysosomal biology has progressively improved over time. Lysosomes are no longer viewed as organelles exclusively involved in catabolic pathways, but rather as highly dynamic elements of the autophagic-lysosomal pathway, involved in multiple cellular functions, including signaling, and able to adapt to environmental stimuli. This refined vision of lysosomes has substantially impacted on our understanding of the pathophysiology of lysosomal disorders. It is now clear that substrate accumulation triggers complex pathogenetic cascades that are responsible for disease pathology, such as aberrant vesicle trafficking, impairment of autophagy, dysregulation of signaling pathways, abnormalities of calcium homeostasis, and mitochondrial dysfunction. Novel technologies, in most cases based on high-throughput approaches, have significantly contributed to the characterization of lysosomal biology or lysosomal dysfunction and have the potential to facilitate diagnostic processes, and to enable the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Giancarlo Parenti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.,SSM School for Advanced Studies, Federico II University, Naples, Italy
| |
Collapse
|
86
|
Ain NU, Muhammad N, Dianatpour M, Baroncelli M, Iqbal M, Fard MAF, Bukhari I, Ahmed S, Hajipour M, Tabatabaie Z, Foroutan H, Nilsson O, Faghihi MA, Makitie O, Naz S. Biallelic TMEM251 variants in patients with severe skeletal dysplasia and extreme short stature. Hum Mutat 2021; 42:89-101. [PMID: 33252156 DOI: 10.1002/humu.24139] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/19/2020] [Accepted: 11/01/2020] [Indexed: 11/07/2022]
Abstract
Skeletal dysplasias are a heterogeneous group of disorders ranging from mild to lethal skeletal defects. We investigated two unrelated families with individuals presenting with a severe skeletal disorder. In family NMD02, affected individuals had a dysostosis multiplex-like skeletal dysplasia and severe short stature (<-8.5 SD). They manifested increasingly coarse facial features, protruding abdomens, and progressive skeletal changes, reminiscent of mucopolysaccharidosis. The patients gradually lost mobility and the two oldest affected individuals died in their twenties. The affected child in family ID01 had coarse facial features and severe skeletal dysplasia with clinical features similar to mucopolysaccharidosis. She had short stature, craniosynostosis, kyphoscoliosis, and hip-joint subluxation. She died at the age of 5 years. Whole-exome sequencing identified two homozygous variants c.133C>T; p.(Arg45Trp) and c.215dupA; p.(Tyr72Ter), respectively, in the two families, affecting an evolutionary conserved gene TMEM251 (NM_001098621.1). Immunofluorescence and confocal studies using human osteosarcoma cells indicated that TMEM251 is localized to the Golgi complex. However, p.Arg45Trp mutant TMEM251 protein was targeted less efficiently and the localization was punctate. Tmem251 knockdown by small interfering RNA induced dedifferentiation of rat primary chondrocytes. Our work implicates TMEM251 in the pathogenesis of a novel disorder and suggests its potential function in chondrocyte differentiation.
Collapse
Affiliation(s)
- Noor U Ain
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Niaz Muhammad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mehdi Dianatpour
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marta Baroncelli
- Division of pediatric endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Muddassar Iqbal
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Ihtisham Bukhari
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Sufian Ahmed
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | | | - Hamidreza Foroutan
- Laparoscopy research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ola Nilsson
- Division of pediatric endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
- School of Medical Sciences, Örebro University and Örebro University Hospital, Örebro, Sweden
| | | | - Outi Makitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
87
|
Álvarez VJ, Bravo SB, Chantada-Vazquez MP, Colón C, De Castro MJ, Morales M, Vitoria I, Tomatsu S, Otero-Espinar FJ, Couce ML. Characterization of New Proteomic Biomarker Candidates in Mucopolysaccharidosis Type IVA. Int J Mol Sci 2020; 22:ijms22010226. [PMID: 33379360 PMCID: PMC7795692 DOI: 10.3390/ijms22010226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is a lysosomal storage disease caused by mutations in the N-acetylgalactosamine-6-sulfatase (GALNS) gene. Skeletal dysplasia and the related clinical features of MPS IVA are caused by disruption of the cartilage and its extracellular matrix, leading to a growth imbalance. Enzyme replacement therapy (ERT) with recombinant human GALNS has yielded positive results in activity of daily living and endurance tests. However, no data have demonstrated improvements in bone lesions and bone grow thin MPS IVA after ERT, and there is no correlation between therapeutic efficacy and urine levels of keratan sulfate, which accumulates in MPS IVA patients. Using qualitative and quantitative proteomics approaches, we analyzed leukocyte samples from healthy controls (n = 6) and from untreated (n = 5) and ERT-treated (n = 8, sampled before and after treatment) MPS IVA patients to identify potential biomarkers of disease. Out of 690 proteins identified in leukocytes, we selected a group of proteins that were dysregulated in MPS IVA patients with ERT. From these, we identified four potential protein biomarkers, all of which may influence bone and cartilage metabolism: lactotransferrin, coronin 1A, neutral alpha-glucosidase AB, and vitronectin. Further studies of cartilage and bone alterations in MPS IVA will be required to verify the validity of these proteins as potential biomarkers of MPS IVA.
Collapse
Affiliation(s)
- Víctor J. Álvarez
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. du Pont Hospital for Children, 1600 Rockland Road., Wilmington, DE 19803, USA;
| | - Susana B. Bravo
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (S.B.B.); (M.P.C.-V.)
| | - Maria Pilar Chantada-Vazquez
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (S.B.B.); (M.P.C.-V.)
| | - Cristóbal Colón
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
| | - María J. De Castro
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
| | - Montserrat Morales
- Minority Diseases Unit Hospital Universitario12 de Octubre, 28041 Madrid, Spain;
| | - Isidro Vitoria
- Nutrition and Metabolophaties Unit, Hospital Universitario La Fe, 46026 Valencia, Spain;
| | - Shunji Tomatsu
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. du Pont Hospital for Children, 1600 Rockland Road., Wilmington, DE 19803, USA;
| | - Francisco J. Otero-Espinar
- Paraquasil Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - María L. Couce
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
- Correspondence: or ; Tel.: +34-981-951-100
| |
Collapse
|
88
|
Davis OB, Shin HR, Lim CY, Wu EY, Kukurugya M, Maher CF, Perera RM, Ordonez MP, Zoncu R. NPC1-mTORC1 Signaling Couples Cholesterol Sensing to Organelle Homeostasis and Is a Targetable Pathway in Niemann-Pick Type C. Dev Cell 2020; 56:260-276.e7. [PMID: 33308480 DOI: 10.1016/j.devcel.2020.11.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/05/2020] [Accepted: 11/17/2020] [Indexed: 01/22/2023]
Abstract
Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function, and neurodegeneration. The compositional and functional alterations in NPC lysosomes and nature of aberrant cholesterol-mTORC1 signaling contribution to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage, and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC.
Collapse
Affiliation(s)
- Oliver B Davis
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hijai R Shin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chun-Yan Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emma Y Wu
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Department of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California, San Diego, La Jolla, CA 92037, USA
| | - Matthew Kukurugya
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Claire F Maher
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rushika M Perera
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - M Paulina Ordonez
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Department of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
89
|
Caputo S, Di Martino S, Cilibrasi V, Tardia P, Mazzonna M, Russo D, Penna I, Summa M, Bertozzi SM, Realini N, Margaroli N, Migliore M, Ottonello G, Liu M, Lansbury P, Armirotti A, Bertorelli R, Ray SS, Skerlj R, Scarpelli R. Design, Synthesis, and Biological Evaluation of a Series of Oxazolone Carboxamides as a Novel Class of Acid Ceramidase Inhibitors. J Med Chem 2020; 63:15821-15851. [PMID: 33290061 PMCID: PMC7770833 DOI: 10.1021/acs.jmedchem.0c01561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Acid
ceramidase (AC) is a cysteine hydrolase that plays a crucial
role in the metabolism of lysosomal ceramides, important members of
the sphingolipid family, a diversified class of bioactive molecules
that mediate many biological processes ranging from cell structural
integrity, signaling, and cell proliferation to cell death. In the
effort to expand the structural diversity of the existing collection
of AC inhibitors, a novel class of substituted oxazol-2-one-3-carboxamides
were designed and synthesized. Herein, we present the chemical optimization
of our initial hits, 2-oxo-4-phenyl-N-(4-phenylbutyl)oxazole-3-carboxamide 8a and 2-oxo-5-phenyl-N-(4-phenylbutyl)oxazole-3-carboxamide 12a, which resulted in the identification of 5-[4-fluoro-2-(1-methyl-4-piperidyl)phenyl]-2-oxo-N-pentyl-oxazole-3-carboxamide 32b as a potent
AC inhibitor with optimal physicochemical and metabolic properties,
showing target engagement in human neuroblastoma SH-SY5Y cells and
a desirable pharmacokinetic profile in mice, following intravenous
and oral administration. 32b enriches the arsenal of
promising lead compounds that may therefore act as useful pharmacological
tools for investigating the potential therapeutic effects of AC inhibition
in relevant sphingolipid-mediated disorders.
Collapse
Affiliation(s)
- Samantha Caputo
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| | - Simona Di Martino
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| | - Vincenzo Cilibrasi
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| | - Piero Tardia
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| | - Marco Mazzonna
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| | - Debora Russo
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,D3-Pharma Chemistry, Via Morego 30, I-16163 Genova, Italy
| | - Ilaria Penna
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,D3-Pharma Chemistry, Via Morego 30, I-16163 Genova, Italy
| | - Maria Summa
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Analytical Chemistry and Translational Pharmacology, Via Morego 30, I-16163 Genova, Italy
| | - Sine Mandrup Bertozzi
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Analytical Chemistry and Translational Pharmacology, Via Morego 30, I-16163 Genova, Italy
| | - Natalia Realini
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| | - Natasha Margaroli
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| | - Marco Migliore
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| | - Giuliana Ottonello
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Analytical Chemistry and Translational Pharmacology, Via Morego 30, I-16163 Genova, Italy
| | - Min Liu
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | - Peter Lansbury
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | - Andrea Armirotti
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Analytical Chemistry and Translational Pharmacology, Via Morego 30, I-16163 Genova, Italy
| | - Rosalia Bertorelli
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Analytical Chemistry and Translational Pharmacology, Via Morego 30, I-16163 Genova, Italy
| | - Soumya S Ray
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | - Renato Skerlj
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | - Rita Scarpelli
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| |
Collapse
|
90
|
Kim HY, Um SH, Sung Y, Shim MK, Yang S, Park J, Kim ES, Kim K, Kwon IC, Ryu JH. Epidermal growth factor (EGF)-based activatable probe for predicting therapeutic outcome of an EGF-based doxorubicin prodrug. J Control Release 2020; 328:222-236. [DOI: 10.1016/j.jconrel.2020.08.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
|
91
|
Gowrishankar S, Cologna SM, Givogri MI, Bongarzone ER. Deregulation of signalling in genetic conditions affecting the lysosomal metabolism of cholesterol and galactosyl-sphingolipids. Neurobiol Dis 2020; 146:105142. [PMID: 33080336 PMCID: PMC8862610 DOI: 10.1016/j.nbd.2020.105142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The role of lipids in neuroglial function is gaining momentum in part due to a better understanding of how many lipid species contribute to key cellular signalling pathways at the membrane level. The description of lipid rafts as membrane domains composed by defined classes of lipids such as cholesterol and sphingolipids has greatly helped in our understanding of how cellular signalling can be regulated and compartmentalized in neurons and glial cells. Genetic conditions affecting the metabolism of these lipids greatly impact on how some of these signalling pathways work, providing a context to understand the biological function of the lipid. Expectedly, abnormal metabolism of several lipids such as cholesterol and galactosyl-sphingolipids observed in several metabolic conditions involving lysosomal dysfunction are often accompanied by neuronal and myelin dysfunction. This review will discuss the role of lysosomal biology in the context of deficiencies in the metabolism of cholesterol and galactosyl-sphingolipids and their impact on neural function in three genetic disorders: Niemann-Pick type C, Metachromatic leukodystrophy and Krabbe's disease.
Collapse
Affiliation(s)
- S Gowrishankar
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - S M Cologna
- Department of Chemistry, University of Illinois, Chicago, IL, USA.
| | - M I Givogri
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - E R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
92
|
Jiang Z, Byers S, Casal ML, Smith LJ. Failures of Endochondral Ossification in the Mucopolysaccharidoses. Curr Osteoporos Rep 2020; 18:759-773. [PMID: 33064251 PMCID: PMC7736118 DOI: 10.1007/s11914-020-00626-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The mucopolysaccharidoses (MPS) are a group of inherited lysosomal storage disorders characterized by abnormal accumulation of glycosaminoglycans (GAGs) in cells and tissues. MPS patients frequently exhibit failures of endochondral ossification during postnatal growth leading to skeletal deformity and short stature. In this review, we outline the current understanding of the cellular and molecular mechanisms underlying failures of endochondral ossification in MPS and discuss associated treatment challenges and opportunities. RECENT FINDINGS Studies in MPS patients and animal models have demonstrated that skeletal cells and tissues exhibit significantly elevated GAG storage from early in postnatal life and that this is associated with impaired cartilage-to-bone conversion in primary and secondary ossification centers, and growth plate dysfunction. Recent studies have begun to elucidate the underlying cellular and molecular mechanisms, including impaired chondrocyte proliferation and hypertrophy, diminished growth factor signaling, disrupted cell cycle progression, impaired autophagy, and increased cell stress and apoptosis. Current treatments such as hematopoietic stem cell transplantation and enzyme replacement therapy fail to normalize endochondral ossification in MPS. Emerging treatments including gene therapy and small molecule-based approaches hold significant promise in this regard. Failures of endochondral ossification contribute to skeletal deformity and short stature in MPS patients, increasing mortality and reducing quality of life. Early intervention is crucial for effective treatment, and there is a critical need for new approaches that normalize endochondral ossification by directly targeting affected cells and signaling pathways.
Collapse
Affiliation(s)
- Zhirui Jiang
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Sharon Byers
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Paediatrics, The University of Adelaide, Adelaide, SA, Australia
- Genetics and Evolution, The University of Adelaide, Adelaide, SA, Australia
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lachlan J Smith
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
93
|
Tang T, Yang ZY, Wang D, Yang XY, Wang J, Li L, Wen Q, Gao L, Bian XW, Yu SC. The role of lysosomes in cancer development and progression. Cell Biosci 2020; 10:131. [PMID: 33292489 PMCID: PMC7677787 DOI: 10.1186/s13578-020-00489-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023] Open
Abstract
Lysosomes are an important component of the inner membrane system and participate in numerous cell biological processes, such as macromolecular degradation, antigen presentation, intracellular pathogen destruction, plasma membrane repair, exosome release, cell adhesion/migration and apoptosis. Thus, lysosomes play important roles in cellular activity. In addition, previous studies have shown that lysosomes may play important roles in cancer development and progression through the abovementioned biological processes and that the functional status and spatial distribution of lysosomes are closely related to cancer cell proliferation, energy metabolism, invasion and metastasis, immune escape and tumor-associated angiogenesis. Therefore, identifying the factors and mechanisms that regulate the functional status and spatial distribution of lysosomes and elucidating the relationship between lysosomes and the development and progression of cancer can provide important information for cancer diagnosis and prognosis prediction and may yield new therapeutic targets. This study briefly reviews the above information and explores the potential value of lysosomes in cancer therapy.
Collapse
Affiliation(s)
- Tao Tang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ze-Yu Yang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Di Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xian-Yan Yang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lin Li
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qian Wen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Xiu-Wu Bian
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
94
|
Yun HR, Jo YH, Kim J, Nguyen NNY, Shin Y, Kim SS, Choi TG. Palmitoyl Protein Thioesterase 1 Is Essential for Myogenic Autophagy of C2C12 Skeletal Myoblast. Front Physiol 2020; 11:569221. [PMID: 33178040 PMCID: PMC7593845 DOI: 10.3389/fphys.2020.569221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/10/2020] [Indexed: 01/20/2023] Open
Abstract
Skeletal muscle differentiation is an essential process for the maintenance of muscle development and homeostasis. Reactive oxygen species (ROS) are critical signaling molecules involved in muscle differentiation. Palmitoyl protein thioesterase 1 (PPT1), a lysosomal enzyme, is involved in removing thioester-linked fatty acid groups from modified cysteine residues in proteins. However, the role of PPT1 in muscle differentiation remains to be elucidated. Here, we found that PPT1 plays a critical role in the differentiation of C2C12 skeletal myoblasts. The expression of PPT1 gradually increased in response to mitochondrial ROS (mtROS) during muscle differentiation, which was attenuated by treatment with antioxidants. Moreover, we revealed that PPT1 transactivation occurs through nuclear factor erythroid 2-regulated factor 2 (Nrf2) binding the antioxidant response element (ARE) in its promoter region. Knockdown of PPT1 with specific small interference RNA (siRNA) disrupted lysosomal function by increasing its pH. Subsequently, it caused excessive accumulation of autophagy flux, thereby impairing muscle fiber formation. In conclusion, we suggest that PPT1 is factor a responsible for myogenic autophagy in differentiating C2C12 myoblasts.
Collapse
Affiliation(s)
- Hyeong Rok Yun
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Jieun Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Ngoc Ngo Yen Nguyen
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Sung Soo Kim,
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
- Tae Gyu Choi,
| |
Collapse
|
95
|
Paris L, Como G, Vecchia I, Pisani F, Ferrara G. The protein interaction network of the inherited central nervous system diseases reveals new gene candidates for molecularly unclassified myelin disorders. JOURNAL OF COMPLEX NETWORKS 2020; 8. [DOI: 10.1093/comnet/cnaa040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Mutations in numerous genes cause the inherited disorders of the white matter in the central nervous system. Interestingly, all these mutations ultimately affect myelin, even though the corresponding proteins are involved in dissimilar functions. To address this system-level issue, we assembled the myelin disease network (MDN), in which each node represents a protein (either the mutated protein or one of its interactors), while each edge linking two nodes represents the physical interaction between the two proteins. Compared with control random networks, the MDN contains more pairs of disease proteins, whose members are linked either directly or via one intermediate protein. Then, we surmised that the interactions might not only cluster proteins into functionally homogenous and distinct modules but also link the modules together. This way, even gene mutations arising in functionally distinct modules might propagate their effects to the other modules, thus accounting for a similar pathological outcome. We found, however, that concerning the function the modules are neither homogeneous nor distinct, mostly because many proteins participate in more than one biological process. Rather, our analysis defines a region of the interactome, where different processes intersect. Finally, we propose that many non-disease proteins in the network might be candidates for molecularly unclassified myelin disorders.
Collapse
Affiliation(s)
- Luca Paris
- Department of Biochemistry and Molecular Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Via Mario Negri, 2, 20156 Milan, Italy
| | - Gianluca Como
- Department of Neuroscience, University of Trieste , Piazzale Europa 1, 34127, Trieste, Italy
| | | | - Francesco Pisani
- Child Neuropsychiatry Unit, Neuroscience Section, Medicine and Surgery Department, University of Parma , Via Gramsci, 14, 43126 Parma, Italy
| | - Giovanni Ferrara
- University of Genoa IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy and Department of Neurosciences, Rehabilitation Ophthalmology, Genetics and Maternal-Infantile Sciences, , Largo P. Daneo, 3, 16132, Genoa, Italy
| |
Collapse
|
96
|
Luciani M, Gritti A, Meneghini V. Human iPSC-Based Models for the Development of Therapeutics Targeting Neurodegenerative Lysosomal Storage Diseases. Front Mol Biosci 2020; 7:224. [PMID: 33062642 PMCID: PMC7530250 DOI: 10.3389/fmolb.2020.00224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/10/2020] [Indexed: 01/30/2023] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of rare genetic conditions. The absence or deficiency of lysosomal proteins leads to excessive storage of undigested materials and drives secondary pathological mechanisms including autophagy, calcium homeostasis, ER stress, and mitochondrial abnormalities. A large number of LSDs display mild to severe central nervous system (CNS) involvement. Animal disease models and post-mortem tissues partially recapitulate the disease or represent the final stage of CNS pathology, respectively. In the last decades, human models based on induced pluripotent stem cells (hiPSCs) have been extensively applied to investigate LSD pathology in several tissues and organs, including the CNS. Neural stem/progenitor cells (NSCs) derived from patient-specific hiPSCs (hiPS-NSCs) are a promising tool to define the effects of the pathological storage on neurodevelopment, survival and function of neurons and glial cells in neurodegenerative LSDs. Additionally, the development of novel 2D co-culture systems and 3D hiPSC-based models is fostering the investigation of neuron-glia functional and dysfunctional interactions, also contributing to define the role of neurodevelopment and neuroinflammation in the onset and progression of the disease, with important implications in terms of timing and efficacy of treatments. Here, we discuss the advantages and limits of the application of hiPS-NSC-based models in the study and treatment of CNS pathology in different LSDs. Additionally, we review the state-of-the-art and the prospective applications of NSC-based therapy, highlighting the potential exploitation of hiPS-NSCs for gene and cell therapy approaches in the treatment of neurodegenerative LSDs.
Collapse
Affiliation(s)
- Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
97
|
Nourbakhsh F, Read MI, Barreto GE, Sahebkar A. Boosting the autophagy-lysosomal pathway by phytochemicals: A potential therapeutic strategy against Alzheimer's disease. IUBMB Life 2020; 72:2360-2281. [PMID: 32894821 DOI: 10.1002/iub.2369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 01/14/2023]
Abstract
The lysosome is a membrane-enclosed organelle in eukaryotic cells, which has basic pattern recognition for nutrient-dependent signal transduction. In Alzheimer's disease, the already declining autophagy-lysosomal function is exacerbated by an increased need for clearance of damaged proteins and organelles in aged cells. Recent evidence suggests that numerous diseases are linked to impaired autophagy upstream of lysosomes. In this way, a comprehensive survey on the pathophysiology of the disease seems necessary. Hence, in the first section of this review, we will discuss the ultimate findings in lysosomal signaling functions and how they affect cellular metabolism and trafficking under neurodegenerative conditions, specifically Alzheimer's disease. In the second section, we focus on how natural products and their derivatives are involved in the regulation of inflammation and lysosomal dysfunction pathways, including how these should be considered a crucial target for Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morgayn I Read
- Department of Pharmacology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
98
|
Rintz E, Pierzynowska K, Podlacha M, Węgrzyn G. Has resveratrol a potential for mucopolysaccharidosis treatment? Eur J Pharmacol 2020; 888:173534. [PMID: 32877657 DOI: 10.1016/j.ejphar.2020.173534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022]
Abstract
Mucopolysaccharidoses (MPS) represent a devastating group of lysosomal storage diseases (LSD) affecting approximately 1 in 25,000 individuals, where degradation of glycosaminoglycans (GAG) by lysosomal enzymes is impaired due to mutations causing defects in one of GAG-degrading enzymes. The most commonly used therapy for MPS is enzyme replacement therapy, consisting of application of an active form of the missing enzyme. However, supply of the missing enzyme is not enough in case of MPS types whose symptoms are expressed in central nervous system (CNS), as enzyme does not cross the blood-brain barrier. Moreover, even though enzyme replacement therapy for non-neuronopathic MPS IVA type is approved, it has a limited impact on bone abnormalities, that are one of main symptoms in the disease. Therefore, research into alternative therapeutic approaches for these types of MPS is highly desirable. One such alternative strategy is accelerated degradation of GAG by induction of autophagy. Autophagy is a process of lysosomal degradation of macromolecules that become abnormal or unnecessary for cells. One of the latest discoveries is that GAGs can also be such molecules. Potential drug should also cross blood-brain barrier and be safe in long-term therapy. It seems that one of the polyphenols, resveratrol, can meet the requirements. The mechanism of its action in autophagy stimulation is pleiotropic. Therefore, in this review, we will briefly discuss potential of resveratrol treatment for mucopolysaccharidosis through autophagy stimulation based on research in diseases with similar outcome.
Collapse
Affiliation(s)
- Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308, Gdansk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308, Gdansk, Poland.
| |
Collapse
|
99
|
Kloska A, Węsierska M, Malinowska M, Gabig-Cimińska M, Jakóbkiewicz-Banecka J. Lipophagy and Lipolysis Status in Lipid Storage and Lipid Metabolism Diseases. Int J Mol Sci 2020; 21:E6113. [PMID: 32854299 PMCID: PMC7504288 DOI: 10.3390/ijms21176113] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
This review discusses how lipophagy and cytosolic lipolysis degrade cellular lipids, as well as how these pathway ys communicate, how they affect lipid metabolism and energy homeostasis in cells and how their dysfunction affects the pathogenesis of lipid storage and lipid metabolism diseases. Answers to these questions will likely uncover novel strategies for the treatment of aforementioned human diseases, but, above all, will avoid destructive effects of high concentrations of lipids-referred to as lipotoxicity-resulting in cellular dysfunction and cell death.
Collapse
Affiliation(s)
- Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Magdalena Węsierska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| |
Collapse
|
100
|
Stepien KM, Roncaroli F, Turton N, Hendriksz CJ, Roberts M, Heaton RA, Hargreaves I. Mechanisms of Mitochondrial Dysfunction in Lysosomal Storage Disorders: A Review. J Clin Med 2020; 9:jcm9082596. [PMID: 32796538 PMCID: PMC7463786 DOI: 10.3390/jcm9082596] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is emerging as an important contributory factor to the pathophysiology of lysosomal storage disorders (LSDs). The cause of mitochondrial dysfunction in LSDs appears to be multifactorial, although impaired mitophagy and oxidative stress appear to be common inhibitory mechanisms shared amongst these heterogeneous disorders. Once impaired, dysfunctional mitochondria may impact upon the function of the lysosome by the generation of reactive oxygen species as well as depriving the lysosome of ATP which is required by the V-ATPase proton pump to maintain the acidity of the lumen. Given the reported evidence of mitochondrial dysfunction in LSDs together with the important symbiotic relationship between these two organelles, therapeutic strategies targeting both lysosome and mitochondrial dysfunction may be an important consideration in the treatment of LSDs. In this review we examine the putative mechanisms that may be responsible for mitochondrial dysfunction in reported LSDs which will be supplemented with morphological and clinical information.
Collapse
Affiliation(s)
- Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
- Correspondence:
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, School of Biology, Medicine and Health, University of Manchester and Manchester Centre for Clinical Neuroscience, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK;
| | - Nadia Turton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| | - Christian J. Hendriksz
- Paediatrics and Child Health, Steve Biko Academic Unit, University of Pretoria, 0002 Pretoria, South Africa;
| | - Mark Roberts
- Neurology Department, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK;
| | - Robert A. Heaton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| | - Iain Hargreaves
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| |
Collapse
|