51
|
Matas-Rico E, García-Diaz B, Llebrez-Zayas P, López-Barroso D, Santín L, Pedraza C, Smith-Fernández A, Fernández-Llebrez P, Tellez T, Redondo M, Chun J, De Fonseca FR, Estivill-Torrús G. Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus. Mol Cell Neurosci 2008; 39:342-55. [PMID: 18708146 DOI: 10.1016/j.mcn.2008.07.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/10/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022] Open
Abstract
Neurogenesis persists in certain regions of the adult brain including the subgranular zone of the hippocampal dentate gyrus wherein its regulation is essential, particularly in relation to learning, stress and modulation of mood. Lysophosphatidic acid (LPA) is an extracellular signaling phospholipid with important neural regulatory properties mediated by specific G protein-coupled receptors, LPA(1-5). LPA(1) is highly expressed in the developing neurogenic ventricular zone wherein it is required for normal embryonic neurogenesis, and, by extension may play a role in adult neurogenesis as well. By means of the analyses of a variant of the original LPA(1)-null mutant mouse, termed the Malaga variant or "maLPA(1)-null," which has recently been reported to have defective neurogenesis within the embryonic cerebral cortex, we report here a role for LPA(1) in adult hippocampal neurogenesis. Proliferation, differentiation and survival of newly formed neurons are defective in the absence of LPA(1) under normal conditions and following exposure to enriched environment and voluntary exercise. Furthermore, analysis of trophic factors in maLPA(1)-null mice demonstrated alterations in brain-derived neurotrophic factor and insulin growth factor 1 levels after enrichment and exercise. Morphological analyses of doublecortin positive cells revealed the anomalous prevalence of bipolar cells in the subgranular zone, supporting the operation of LPA(1) signaling pathways in normal proliferation, maturation and differentiation of neuronal precursors.
Collapse
Affiliation(s)
- Elisa Matas-Rico
- Unidad de Investigación, Fundación IMABIS, Hospital Regional Universitario Carlos Haya, Málaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Asrar S, Meng Y, Zhou Z, Todorovski Z, Huang WW, Jia Z. Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1). Neuropharmacology 2008; 56:73-80. [PMID: 18644395 DOI: 10.1016/j.neuropharm.2008.06.055] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/19/2008] [Accepted: 06/20/2008] [Indexed: 11/27/2022]
Abstract
The Rho family small GTPases are critically involved in the regulation of spine and synaptic properties, but the underlying mechanisms are poorly defined. We took genetic approaches to create and analyze knockout mice deficient in the expression of the protein kinase PAK1 that is directly associated with and activated by the Rho GTPases. We demonstrated that while these knockout mice were normal in both basal and presynaptic function, they were selectively impaired in long-term potentiation (LTP) at hippocampal CA1 synapses. Consistent with the electrophysiological deficits, the PAK1 knockout mice showed changes in the actin cytoskeleton and the actin binding protein cofilin. These results indicate that PAK1 is critical in hippocampal synaptic plasticity via regulating cofilin activity and the actin cytoskeleton.
Collapse
Affiliation(s)
- Suhail Asrar
- Neurosciences and Mental Health, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | |
Collapse
|
53
|
Inan S, Büyükafşar K. Antiepileptic effects of two Rho-kinase inhibitors, Y-27632 and fasudil, in mice. Br J Pharmacol 2008; 155:44-51. [PMID: 18536751 DOI: 10.1038/bjp.2008.225] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Rho/Rho-kinase signalling is involved in many cellular events, including some in the CNS. However, the role of this pathway in epilepsy has not yet been assessed. Therefore, we determined the effects of two Rho-kinase inhibitors, Y-27632 and fasudil, on seizures induced by pentylenetetrazole (PTZ) or maximal electroconvulsive shock (MES). EXPERIMENTAL APPROACH Effects of Y-27632 (5-10 mg kg(-1)) and fasudil (5-25 mg kg(-1)) on duration of myoclonic jerks, clonic and tonic convulsions, tonic hindlimb extensions and percentage of tonic convulsion index, as well as recovery latency for righting reflex were investigated in mice stimulated with PTZ (65 mg kg(-1)) or MES (50 Hz, 50 mA and 0.4 s). These inhibitors were also tested on a model of kindling induced by PTZ (35 mg kg(-1), for 11 days). Membrane and cytosolic levels of RhoA protein were measured in brain homogenates from kindled mice. KEY RESULTS Y-27632 and fasudil diminished onset of myoclonic jerks, clonic convulsions and tonic hindlimb extensions in mice given PTZ. These inhibitors suppressed the percentage of tonic convulsion index and recovery latency for righting reflex in the mice excited with MES. Western blotting demonstrated that Rho translocation to plasma membrane increased in the brain homogenates obtained from PTZ-kindled mice. However, the Rho-kinase inhibitors at the given doses did not change motor coordination of the mice. CONCLUSIONS AND IMPLICATIONS Rho/Rho-kinase signalling may play a role in epilepsy induced by PTZ and MES. Furthermore, Rho-kinase inhibitors could be novel important antiepileptic agents.
Collapse
Affiliation(s)
- Sy Inan
- Department of Pharmacology, Medical Faculty, Mersin University, Mersin, Turkey
| | | |
Collapse
|
54
|
Estivill-Torrús G, Llebrez-Zayas P, Matas-Rico E, Santín L, Pedraza C, De Diego I, Del Arco I, Fernández-Llebrez P, Chun J, De Fonseca FR. Absence of LPA1 signaling results in defective cortical development. ACTA ACUST UNITED AC 2007; 18:938-50. [PMID: 17656621 DOI: 10.1093/cercor/bhm132] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid with extracellular signaling properties mediated by specific G protein-coupled receptors. At least 2 LPA receptors, LPA(1) and LPA(2), are expressed in the developing brain, the former enriched in the neurogenic ventricular zone (VZ), suggesting a normal role in neurogenesis. Despite numerous studies reporting the effects of exogenous LPA using in vitro neural models, the first LPA(1) loss-of-function mutants reported did not show gross cerebral cortical defects in the 50% that survived perinatal demise. Here, we report a role for LPA(1) in cortical neural precursors resulting from analysis of a variant of a previously characterized LPA(1)-null mutant that arose spontaneously during colony expansion. These LPA(1)-null mice, termed maLPA(1), exhibit almost complete perinatal viability and show a reduced VZ, altered neuronal markers, and increased cortical cell death that results in a loss of cortical layer cellularity in adults. These data support LPA(1) function in normal cortical development and suggest that the presence of genetic modifiers of LPA(1) influences cerebral cortical development.
Collapse
|
55
|
Diana G, Valentini G, Travaglione S, Falzano L, Pieri M, Zona C, Meschini S, Fabbri A, Fiorentini C. Enhancement of learning and memory after activation of cerebral Rho GTPases. Proc Natl Acad Sci U S A 2007; 104:636-41. [PMID: 17202256 PMCID: PMC1761909 DOI: 10.1073/pnas.0610059104] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism whereby the morphology and connectivity of the dendritic tree is regulated depends on an actin dynamics that, in turn, is controlled by Rho GTPases, a family of small GTP-binding proteins encompassing Rho, Rac, and Cdc42 subfamilies. Cytotoxic necrotizing factor 1 (CNF1), a protein toxin from Escherichia coli, constitutively activates Rho GTPases, thus leading to remodeling of the actin cytoskeleton in intact cells. Here, we show that the modulation of cerebral RhoA and Rac1 activity induced by CNF1 in mice leads to (i) rearrangement of cerebral actin cytoskeleton, (ii) enhanced neurotransmission and synaptic plasticity, and (iii) improved learning and memory in various behavioral tasks. The effects persist for weeks and are not observed in mice treated with a recombinant CNF1, in which the enzymatic activity was abolished by substituting serine to cysteine at position 866. The results suggest that learning ability can be improved through pharmacological manipulation of neural connectivity.
Collapse
Affiliation(s)
- Giovanni Diana
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Rothenfluh A, Threlkeld RJ, Bainton RJ, Tsai LTY, Lasek AW, Heberlein U. Distinct behavioral responses to ethanol are regulated by alternate RhoGAP18B isoforms. Cell 2006; 127:199-211. [PMID: 17018286 DOI: 10.1016/j.cell.2006.09.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 05/19/2006] [Accepted: 09/04/2006] [Indexed: 01/19/2023]
Abstract
In most organisms, low ethanol doses induce increased activity, while high doses are sedating. To investigate the underlying mechanisms, we isolated Drosophila mutants with altered ethanol responsiveness. Mutations in white rabbit (whir), disrupting RhoGAP18B, are strongly resistant to the sedating effects of ethanol. This resistance can be suppressed by reducing the levels of Rho1 or Rac, implicating these GTPases in the behavioral response to ethanol. Indeed, expression of constitutively active forms of Rho1 or Rac1 in adult flies results in ethanol resistance similar to that observed in whir mutants. The whir locus produces several transcripts, RA-RD, which are predicted to encode three distinct RhoGAPs that share only the GAP domain. The RC transcript mediates the sedating effects of ethanol, while the RA transcript regulates its stimulant effects. Thus, distinct RhoGAPs, encoded by the same gene, regulate different manifestations of acute ethanol intoxication.
Collapse
Affiliation(s)
- Adrian Rothenfluh
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Kramár EA, Lin B, Rex CS, Gall CM, Lynch G. Integrin-driven actin polymerization consolidates long-term potentiation. Proc Natl Acad Sci U S A 2006; 103:5579-84. [PMID: 16567651 PMCID: PMC1459396 DOI: 10.1073/pnas.0601354103] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term potentiation (LTP), like memory, becomes progressively more resistant to disruption with time after its formation. Here we show that threshold conditions for inducing LTP cause a rapid, long-lasting increase in polymerized filamentous actin in dendritic spines of adult hippocampus. Two independent manipulations that reverse LTP disrupted this effect when applied shortly after induction but not 30 min later. Function-blocking antibodies to beta1 family integrins selectively eliminated both actin polymerization and stabilization of LTP. We propose that the initial stages of consolidation involve integrin-driven events common to cells engaged in activities that require rapid morphological changes.
Collapse
Affiliation(s)
| | - Bin Lin
- Departments of *Psychiatry and Human Behavior
| | | | - Christine M. Gall
- Anatomy and Neurobiology, and
- Neurobiology and Behavior, University of California, Irvine, CA 92697
- To whom correspondence should be addressed. E-mail:
| | - Gary Lynch
- Departments of *Psychiatry and Human Behavior
| |
Collapse
|
58
|
Tamura H, Fukada M, Fujikawa A, Noda M. Protein tyrosine phosphatase receptor type Z is involved in hippocampus-dependent memory formation through dephosphorylation at Y1105 on p190 RhoGAP. Neurosci Lett 2006; 399:33-8. [PMID: 16513268 DOI: 10.1016/j.neulet.2006.01.045] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 01/11/2006] [Accepted: 01/13/2006] [Indexed: 10/25/2022]
Abstract
Ptprz is a receptor-type protein tyrosine phosphatase predominantly expressed in the brain as a chondroitin sulfate proteoglycan. Ptprz-deficient mice exhibit an age (maturation)-dependent impairment of spatial learning in the Morris water maze test and enhancement of long-term potentiation (LTP) in the CA1 region in hippocampal slices. The enhanced LTP is canceled out by pharmacological inhibition of Rho-associated kinase (ROCK), suggesting that the lack of Ptprz causes learning impairment due to aberrant activation of ROCK. Here, we report that Ptprz-deficient mice exhibit impairments in hippocampus-dependent contextual fear memory because of abnormal tyrosine phosphorylation of p190 RhoGAP, a GTPase-activating protein (GAP) for Rho GTPase. We found that phosphorylation at Y1105, a major tyrosine phosphorylation site on p190 RhoGAP, is decreased 1h after the conditioning in the hippocampus of wild-type mice, but not of Ptprz-deficient mice. Pleiotrophin, a ligand for Ptprz, increased tyrosine phosphorylation of p190 RhoGAP in B103 neuroblastoma cells. Furthermore, Ptprz selectively dephosphorylated pY1105 of p190 RhoGAP in vitro, and the tyrosine phosphorylation at Y1105 controls p190 RhoGAP activity in vivo. These results suggest that Ptprz plays a critical role in memory formation by modulating Rho GTPase activity through dephosphorylation at Y1105 on p190 RhoGAP.
Collapse
Affiliation(s)
- Hiroshi Tamura
- Division of Molecular Neurobiology, National Institute for Basic Biology, 5-1 Higashiyama, Okazaki 444-8787, Japan
| | | | | | | |
Collapse
|
59
|
McMullan R, Hiley E, Morrison P, Nurrish SJ. Rho is a presynaptic activator of neurotransmitter release at pre-existing synapses in C. elegans. Genes Dev 2006; 20:65-76. [PMID: 16391233 PMCID: PMC1356101 DOI: 10.1101/gad.359706] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 10/31/2005] [Indexed: 11/25/2022]
Abstract
Rho GTPases have important roles in neuronal development, but their function in adult neurons is less well understood. We demonstrate that presynaptic changes in Rho activity at Caenorhabditis elegans neuromuscular junctions can radically change animal behavior via modulation of two separate pathways. In one, presynaptic Rho increases acetylcholine (ACh) release by stimulating the accumulation of diacylglycerol (DAG) and the DAG-binding protein UNC-13 at sites of neurotransmitter release; this pathway requires binding of Rho to the DAG kinase DGK-1. A second DGK-1-independent mechanism is revealed by the ability of a Rho inhibitor (C3 transferase) to decrease levels of release even in the absence of DGK-1; this pathway is independent of UNC-13 accumulation at release sites. We do not detect any Rho-induced changes in neuronal morphology or synapse number; thus, Rho facilitates synaptic transmission by a novel mechanism. Surprisingly, many commonly available human RhoA constructs contain an uncharacterized mutation that severely reduces binding of RhoA to DAG kinase. Thus, a role for RhoA in controlling DAG levels is likely to have been underestimated.
Collapse
Affiliation(s)
- Rachel McMullan
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Pharmacology, University College, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
60
|
Abstract
Synapses are highly specialized intercellular junctions that mediate the transmission of information between axons and target cells. A fundamental property of synapses is their ability to modify the efficacy of synaptic communication through various forms of synaptic plasticity. Recent developments in imaging techniques have revealed that synapses exhibit a high degree of morphological plasticity under basal conditions and also in response to neuronal activity that induces alterations in synaptic strength. The underlying molecular basis for this morphological plasticity has attracted much attention, yet its functional significance to the mechanisms of synaptic transmission and synaptic plasticity remains elusive. These morphological changes ultimately require the dynamic actin cytoskeleton, which is the major structural component of synapses. Delineating the physiological roles of the actin cytoskeleton in supporting synaptic transmission and synaptic plasticity, therefore, paves the way for gaining molecular insights into when and how synaptic machineries couple synapse form and function.
Collapse
Affiliation(s)
- Christian Dillon
- MRC Cell Biology Unit and Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom.
| | | |
Collapse
|
61
|
Zhou FF, Xue Y, Chen GL, Yao X. GPS: a novel group-based phosphorylation predicting and scoring method. Biochem Biophys Res Commun 2004; 325:1443-8. [PMID: 15555589 DOI: 10.1016/j.bbrc.2004.11.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Indexed: 11/27/2022]
Abstract
Protein phosphorylation is an important reversible post-translational modification of proteins, and it orchestrates a variety of cellular processes. Experimental identification of phosphorylation site is labor-intensive and often limited by the availability and optimization of enzymatic reaction. In silico prediction may facilitate the identification of potential phosphorylation sites with ease. Here we present a novel computational method named GPS: group-based phosphorylation site predicting and scoring platform. If two polypeptides differ by only two consecutive amino acids, in particular when the two different amino acids are a conserved pair, e.g., isoleucine (I) and valine (V), or serine (S) and threonine (T), we view these two polypeptides bearing similar 3D structures and biochemical properties. Based on this rationale, we formulated GPS that carries greater computational power with superior performance compared to two existing phosphorylation sites prediction systems, ScanSite 2.0 and PredPhospho. With database in public domain, GPS can predict substrate phosphorylation sites from 52 different protein kinase (PK) families while ScanSite 2.0 and PredPhospho offer at most 30 PK families. Using PKA as a model enzyme, we first compared prediction profiles from the GPS method with those from ScanSite 2.0 and PredPhospho. In addition, we chose an essential mitotic kinase Aurora-B as a model enzyme since ScanSite 2.0 and PredPhospho offer no prediction. However, GPS offers satisfactory sensitivity (94.44%) and specificity (97.14%). Finally, the accuracy of phosphorylation on MCAK predicted by GPS was validated by experimentation, in which six out of seven predicted potential phosphorylation sites on MCAK (Q91636) were experimentally verified. Taken together, we have generated a novel method to predict phosphorylation sites, which offers greater precision and computing power over ScanSite 2.0 and PredPhospho.
Collapse
Affiliation(s)
- Feng-Feng Zhou
- Department of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | | | | | | |
Collapse
|