51
|
Sugumar D, Ghosh R, Rymbai E, Chandrasekaran J, Krishnamurthy PT, P RS, Sahu S, Selvaraj D. Ligandrol Ameliorates High-Fat Diet- and Streptozotocin-Induced Type 2 Diabetes Mellitus and Prevents Pancreatic Islets Degeneration. Assay Drug Dev Technol 2024; 22:397-408. [PMID: 39501873 DOI: 10.1089/adt.2024.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Androgen therapy has been shown to alleviate type 2 diabetes mellitus (T2DM) but is also associated with severe side effects such as prostate cancer. The present study aims to identify the best hit selective androgen receptor (AR) modulator by in silico studies and then investigates its antidiabetic effects in high-fat diet- and streptozotocin (STZ)-induced T2DM male rat model. Molecular docking and molecular dynamics (MD) studies were carried out using Maestro 13.1 and Desmond (2023-2024). Cytotoxicity and insulin secretion were measured in MIN6 cell lines. T2DM was induced using high-fat diet (HFD) for 4 weeks, followed by single STZ (40 mg/kg, intraperitoneally). OneTouch Ultra glucometer was used to measure fasting blood glucose. Gene expression was determined using reverse transcription polymerase chain reaction. Histopathology was carried out using hematoxylin and eosin stain. Through molecular docking, we identify ligandrol as a potential hit. Ligandrol showed a good binding affinity (-10.74 kcal/mol). MD showed that ligandrol is stable during the 100 ns simulation. Ligandrol increases insulin secretion in a dose-dependent manner in vitro in 2 h. Ligandrol (0.3 and 1 mg/kg, orally) significantly decreased the body weight and fasting blood glucose levels compared with the HFD and STZ group. Gene expression showed that ligandrol significantly increased the AR-targeted gene, neurogenic differentiation 1, compared with the HFD and STZ group. Histopathological staining studies showed that ligandrol prevents pancreatic islet degeneration compared with the HFD and STZ group. Our findings suggest that ligandrol's protective effect on pancreatic islets leading to its antidiabetic effect occurs through the activation of AR.
Collapse
MESH Headings
- Animals
- Male
- Streptozocin
- Diet, High-Fat/adverse effects
- Rats
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/prevention & control
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/chemically induced
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Molecular Docking Simulation
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/chemistry
- Rats, Wistar
- Dose-Response Relationship, Drug
- Mice
Collapse
Affiliation(s)
- Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, India
| | - Ritaban Ghosh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, India
| | - Jaikanth Chandrasekaran
- Department of Pharmacology, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Ranjith S P
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, India
| | - Shreya Sahu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, India
| |
Collapse
|
52
|
Wang YX, Pi JC, Yao YF, Peng XP, Li WJ, Xie MY. Hypoglycemic effects of white hyacinth bean polysaccharide on type 2 diabetes mellitus rats involvement with entero-insular axis and GLP-1 via metabolomics study. Int J Biol Macromol 2024; 281:136489. [PMID: 39393741 DOI: 10.1016/j.ijbiomac.2024.136489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/02/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
The present study aimed to investigate the potential effects of white hyacinth bean polysaccharide (WHBP) against type 2 diabetic mellitus (T2DM) which was established by high-glucose/high-fat for 8 weeks, combined with a low-dose streptozotocin (STZ) injection. Our results showed that WHBP behaved the hypoglycemic effect by attenuating fasting blood glucose in vivo. WHBP-mediated anti-diabetic effects associated with the attenuation of insulin resistance and pancreatic impairment, as evidenced by the mitigation of pathological changes, inflammatory response and oxidative stress in the pancreas of T2DM rats. Meanwhile, gut protection was also shown during WHBP-mediated anti-diabetic effects, and glucagon-like peptide-1 (GLP-1), a mediator of the entero-insular axis, was observed to be elevated in both gut and pancreas of WHBP groups when compared to DM group, suggesting that hypoglycemic effects of WHBP were implicated in gut-pancreas interaction. Subsequently, untargeted metabolomics analysis performed by UPLC-QTOF/MS and showed that WHBP administration significantly adjusted the levels of 40 metabolites when compared to DM group. Further data concerning pathway analysis showed that WHBP administration significantly regulated the phenylalanine metabolism, tryptophan metabolism, arginine and proline, isoleucine metabolism, and glycerophospholipid metabolism in T2DM rats. Together, our results suggested that WHBP performed hypoglycemic effects and pancreatic protection linked to entero-insular axis involvement with GLP-1 and reversed metabolic disturbances in T2DM rats.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jin-Chan Pi
- College of Future Technology, Nanchang University, Nanchang 330031, China
| | - Yu-Fei Yao
- Department of Critical Care Medicine, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Xiao-Ping Peng
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Wen-Juan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
53
|
Redhwan MAM, Hariprasad MG, Samaddar S, Bafail DA, Hard SAAA, Guha S. Chitosan/siRNA nanoparticles targeting PARP-1 attenuate Neuroinflammation and apoptosis in hyperglycemia-induced oxidative stress in Neuro2a cells. Int J Biol Macromol 2024; 282:136964. [PMID: 39490472 DOI: 10.1016/j.ijbiomac.2024.136964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Hyperglycemia induces an excessive production of superoxide by the mitochondria's electron-transport chain triggers several pathways of injury contributing to the development of diabetic complications. This increase in oxidative and nitrosative stress triggers the activation of PARP-1, a nuclear enzyme, through mechanisms such as DNA damage. siRNA-chitosan nanoparticles were formed based on electrostatic interaction, their particle size, zeta potential, STEM, and cellular uptake were characterized. Neuro2a cells were treated with low glucose (LG) and high glucose (HG) for 24 and 48 h. Neuro2a cells were pre-treated with negative siRNA, naked siRNA, siRNA-Lipofectamine™300, and ChNPs-5. qRT-PCR was used to analyze the expression of regulatory, inflammatory, and apoptotic biomarkers. The siRNA-chitosan complex at the weight ratio 1:3000 were approximately uniform spheres with particle size 150.5 nm and a positive zeta potential of about +41.5 mV. The uptake of FITC-labeled nanoparticles into Neuro2a cells was visualized using fluorescence microscopy with no significant cytotoxicity compared to the control cells. High glucose stimulation of Neuro2a cells increased PARP1 expression, and with siRNA-ChNP (1:3000) treatment, significant inhibition of PARP1 expression is observed that consequently reversed the expression of regulatory genes like SIRT1, FOXO1, FOXO3, and p53. PARP-1 inhibition reduced HG-induced inflammatory response, including NF-kB, IL6, IL1β, TNFα, iNOS, and TGF-β expression, and HG-induced apoptosis response, such as Cas-3, Cas-9, BAK, BAX, and AIF expression. This study highlights the crucial role of siRNA delivery via ChNPs and PARP-1 inhibition in hyperglycemia-induced oxidative stress in Neuro2a cells and PARP-1 inhibition may be a feasible strategy for the treatment of hyperglycemia-induced oxidative stress.
Collapse
Affiliation(s)
- Moqbel Ali Moqbel Redhwan
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, Karnataka, India; Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
| | - M G Hariprasad
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, Karnataka, India; Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India.
| | - Suman Samaddar
- Research Institute, BGS Global Institute of Medical Sciences, Bengaluru, Karnataka, India.
| | - Duaa Abdullah Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sumaia Abdulbari Ahmed Ali Hard
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India; Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Karnataka, India
| | - Sourav Guha
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, Karnataka, India; Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
54
|
Mutlu B, Sharabi K, Sohn JH, Yuan B, Latorre-Muro P, Qin X, Yook JS, Lin H, Yu D, Camporez JPG, Kajimura S, Shulman GI, Hui S, Kamenecka TM, Griffin PR, Puigserver P. Small molecules targeting selective PCK1 and PGC-1α lysine acetylation cause anti-diabetic action through increased lactate oxidation. Cell Chem Biol 2024; 31:1772-1786.e5. [PMID: 39341205 PMCID: PMC11500315 DOI: 10.1016/j.chembiol.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/27/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Small molecules selectively inducing peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α acetylation and inhibiting glucagon-dependent gluconeogenesis causing anti-diabetic effects have been identified. However, how these small molecules selectively suppress the conversion of gluconeogenic metabolites into glucose without interfering with lipogenesis is unknown. Here, we show that a small molecule SR18292 inhibits hepatic glucose production by increasing lactate and glucose oxidation. SR18292 increases phosphoenolpyruvate carboxykinase 1 (PCK1) acetylation, which reverses its gluconeogenic reaction and favors oxaloacetate (OAA) synthesis from phosphoenolpyruvate. PCK1 reverse catalytic reaction induced by SR18292 supplies OAA to tricarboxylic acid (TCA) cycle and is required for increasing glucose and lactate oxidation and suppressing gluconeogenesis. Acetylation mimetic mutant PCK1 K91Q favors anaplerotic reaction and mimics the metabolic effects of SR18292 in hepatocytes. Liver-specific expression of PCK1 K91Q mutant ameliorates hyperglycemia in obese mice. Thus, SR18292 blocks gluconeogenesis by enhancing gluconeogenic substrate oxidation through PCK1 lysine acetylation, supporting the anti-diabetic effects of these small molecules.
Collapse
Affiliation(s)
- Beste Mutlu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jee Hyung Sohn
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Bo Yuan
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Xin Qin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jin-Seon Yook
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Hua Lin
- Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL 33458, USA
| | - Deyang Yu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - João Paulo G Camporez
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520-8020, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520-8020, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 020815, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520-8020, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520-8020, USA; Howard Hughes Medical Institute, Chevy Chase, MD 020815, USA
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL 33458, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
55
|
Christodoulou A, Nikolaou PE, Symeonidi L, Katogiannis K, Pechlivani L, Nikou T, Varela A, Chania C, Zerikiotis S, Efentakis P, Vlachodimitropoulos D, Katsoulas N, Agapaki A, Dimitriou C, Tsoumani M, Kostomitsopoulos N, Davos CH, Skaltsounis AL, Tselepis A, Halabalaki M, Tseti I, Iliodromitis EK, Ikonomidis I, Andreadou I. Cardioprotective potential of oleuropein, hydroxytyrosol, oleocanthal and their combination: Unravelling complementary effects on acute myocardial infarction and metabolic syndrome. Redox Biol 2024; 76:103311. [PMID: 39153251 PMCID: PMC11378258 DOI: 10.1016/j.redox.2024.103311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Clinical studies have previously established the role of olive products in cardiovascular disease (CVD) prevention, whilst the identification of the responsible constituents for the beneficial effects is still pending. We sought to assess and compare the cardioprotective potential of oleuropein (OL), hydroxytyrosol (HT), oleocanthal (OC) and oleanolic Acid (OA), regarding Ischemia/Reperfusion Injury (IRI) and CVD risk factors alleviation. The scope of the study was to design a potent and safe combinatorial therapy for high-cardiovascular-risk patients on a bench-to-bedside approach. We evaluated the IRI-limiting potential of 6-weeks treatment with OL, HT, OC or OA at nutritional doses, in healthy and metabolic syndrome (MS)-burdened mice. Three combinatorial regimens were designed and the mixture with preponderant benefits (OL-HT-OC, Combo 2), including infarct sparing and antiglycemic potency, compared to the isolated compounds, was further investigated for its anti-atherosclerotic effects. In vivo experiments revealed that the combination regimen of Combo 2 presented the most favorable effects in limiting infarct size and hyperglycemia, which was selected to be further investigated in the clinical setting in Chronic Coronary Artery Syndrome (CCAS) patients. Cardiac function, inflammation markers and oxidative stress were assessed at baseline and after 4 weeks of treatment with the OL-HT-OC supplement in the clinical study. We found that OL, OC and OA significantly reduced infarct size in vivo compared to Controls. OL exhibited antihyperglycemic properties and OA attenuated hypercholesterolemia. OL-HT-OA, OL-HT-OC and OL-HT-OC-OA combination regimens were cardioprotective, whereas only OL-HT-OC mitigated hyperglycemia. Combo 2 cardioprotection was attributed to apoptosis suppression, enhanced antioxidant effects and upregulation of antioxidant enzymes. Additionally, it reduced atherosclerotic plaque extent in vivo. OL-HT-OC supplement ameliorated cardiac, vascular and endothelial function in the small-scale clinical study. Conclusively, OL-HT-OC combination therapy exerts potent cardioprotective, antihyperglycemic and anti-atherosclerotic properties in vivo, with remarkable and clinically translatable cardiovascular benefits in high-risk patients.
Collapse
Affiliation(s)
- Andriana Christodoulou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece
| | - Panagiota-Efstathia Nikolaou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece
| | - Lydia Symeonidi
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece
| | - Konstantinos Katogiannis
- Laboratory of Echocardiography and Preventive Cardiology, Second Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Louisa Pechlivani
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Theodora Nikou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Aimilia Varela
- Cardiovascular Research Laboratory, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Christina Chania
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece
| | - Stelios Zerikiotis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece
| | - Dimitris Vlachodimitropoulos
- Laboratory of Forensic Medicine and Toxicology, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Katsoulas
- Laboratory of Forensic Medicine and Toxicology, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Agapaki
- Histochemistry Unit, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Costantinos Dimitriou
- Centre of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Maria Tsoumani
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Centre of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Constantinos H Davos
- Cardiovascular Research Laboratory, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Alexios Leandros Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Ignatios Ikonomidis
- Laboratory of Echocardiography and Preventive Cardiology, Second Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece.
| |
Collapse
|
56
|
Garg SS, Dey R, Sharma A, Gupta J. Recent advances in polymer-based nanoformulations for enhancing oral drug delivery in diabetes. J Drug Deliv Sci Technol 2024; 100:106119. [DOI: 10.1016/j.jddst.2024.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
57
|
Uyanır E, Šoral M, Seyhan G, Akkaya D, Barut B, Sari S, Duman H, Renda G, Şöhretoğlu D. Alpha-Glucosidase Inhibitory Effects of Flavonoids, Phenolic Acids and Iridoids Isolated From Vinca Soneri: In Vitro and In Silico Perspectives. Chem Biodivers 2024; 21:e202401386. [PMID: 39031506 DOI: 10.1002/cbdv.202401386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
Various Vinca species have been traditionally used for their antihypertensive, sedative, and hemostatic properties, as well as for treating diabetes. In this study, some flavonoids, phenolic acids and iridoids were isolated from an endemic Vinca species, Vinca soneri for the first time. α-Glucosidase inhibitory effects of the isolates were tested and kaempferol-3-O-α-rhamnopyranosyl (1→6) β-galactopyranoside (1) was found to be the most active one with an IC50 value of 285.73 ±7.35 μM. Enzyme kinetic assay revealed that it inhibited α-glucosidase in competitive manner. Molecular geometry of 1 was predicted and Frontier molecular orbital analysis was performed using Density Functional Theory (DFT) calculations. Molecular docking and MM-GBSA calculations predicted good fit for 1 in the enzyme active site and key interactions with the catalytic residues. As a result, current study identifies 1 as a promising competitive α-glucosidase inhibitor to be developed as a potential antidiabetic drug candidate.
Collapse
Affiliation(s)
- Eliz Uyanır
- Faculty of Pharmacy, Department of Pharmacognosy, Hacettepe University, TR-06100, Ankara, Türkiye
| | - Michal Šoral
- Institute of Chemistry, Analytical Department, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovak Republic
| | - Gökçe Seyhan
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, TR-61080, Trabzon, Türkiye
| | - Didem Akkaya
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, TR-61080, Trabzon, Türkiye
| | - Burak Barut
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, TR-61080, Trabzon, Türkiye
| | - Suat Sari
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Hacettepe University, TR-06100, Ankara, Türkiye
| | - Hayri Duman
- Faculty of Science, Department of Biology, Gazi University, TR-06500, Ankara, Türkiye
| | - Gülin Renda
- Faculty of Pharmacy, Department of Pharmacognosy, Karadeniz Technical University, 61080, Trabzon, Türkiye
| | - Didem Şöhretoğlu
- Faculty of Pharmacy, Department of Pharmacognosy, Hacettepe University, TR-06100, Ankara, Türkiye
| |
Collapse
|
58
|
Vinod V, Rajagambeeram R, Samal R. Evaluation of Thyroid Function and Its Relation to Glycemic Status in Pregnant Women With Gestational Diabetes Mellitus. Cureus 2024; 16:e72339. [PMID: 39583465 PMCID: PMC11585484 DOI: 10.7759/cureus.72339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Background Gestational diabetes mellitus (GDM) is a prevalent complication during pregnancy that can lead to adverse outcomes for both the mother and the fetus. It also increases the likelihood of developing type 2 diabetes mellitus (T2DM) later in life. Thyroid hormones play an essential role in regulating growth and metabolism and often coexist with diabetes mellitus (DM), affecting glucose metabolism. Pregnant women with GDM frequently exhibit thyroid issues, impacting insulin secretion and beta-cell function. Aim This study aims to assess thyroid function and glycemic status in pregnant women with and without GDM and to evaluate the correlation between thyroid function and glycemic status in pregnant women with GDM. Methods This prospective case-control study was conducted over two months at a tertiary care hospital in Puducherry, India. It included 60 cases (pregnant women with GDM, blood glucose > 140 mg/dL per DIPSI guidelines) and 60 age- and parity-matched controls. Blood samples were collected, centrifuged, and analyzed for blood glucose and serum thyroid levels (FT3, FT4, thyroid-stimulating hormone (TSH)) using the Cobas e-411 autoanalyzer through an electrochemiluminescence assay. Results Serum plasma glucose levels were significantly higher in cases (159.25 ± 16.22 mg/dL) compared to controls (101.6 ± 17.30 mg/dL) (p < 0.05). FT3 levels were higher in cases (3.98 ± 4.18) compared to controls (2.87 ± 0.54) (p = 0.04). The FT3/FT4 ratio was also higher in cases (3.99 ± 4.927) than in controls (2.70 ± 0.58) (p = 0.04). No significant differences were found in FT4 or TSH levels between the groups. Correlation analysis revealed no significant correlations between plasma glucose levels and thyroid function parameters. Conclusion Pregnant women with GDM showed significantly higher plasma glucose levels, FT3 levels, and FT3/FT4 ratio compared to normal pregnant women. These findings suggest an association between altered thyroid function, particularly higher FT3 levels and the FT3/FT4 ratio, and GDM.
Collapse
Affiliation(s)
- Vishal Vinod
- Department of Biochemistry, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth (SBV), Puducherry, IND
| | - Reeta Rajagambeeram
- Department of Biochemistry, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth (SBV), Puducherry, IND
| | - Rupal Samal
- Department of Obstetrics and Gynaecology, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth (SBV), Puducherry, IND
| |
Collapse
|
59
|
Kwak SH, Han KA, Kim ES, Choi SH, Won JC, Yu JM, Oh S, Yoo HJ, Kim CH, Kim KS, Chun S, Kim YH, Cho SA, Kim DH, Park KS. Long-term efficacy and safety of enavogliflozin in Korean people with type 2 diabetes: A 52-week extension of a Phase 3 randomized controlled trial. Diabetes Obes Metab 2024; 26:4203-4212. [PMID: 39054871 DOI: 10.1111/dom.15738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
AIMS To evaluate the long-term safety and efficacy of enavogliflozin monotherapy (0.3 mg/day) in individuals with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS Following a 24-week randomized, double-blind treatment period with enavogliflozin 0.3 mg/day (n = 77) or placebo (n = 69), consenting participants received enavogliflozin 0.3 mg/day for an additional 28 weeks during an open-label extension (OLE) period. The safety and efficacy of enavogliflozin were assessed at Week 52. RESULTS A total of 37 participants continued enavogliflozin (maintenance group), and 26 participants switched from placebo to enavogliflozin (switch group). No additional adverse drug reactions related to enavogliflozin were observed during the OLE period. At Week 52, glycated haemoglobin (HbA1c) and fasting plasma glucose were significantly lower than at the baseline, by 0.9% and 24.9 mg/dL, respectively, in the maintenance group (p < 0.0001 for both), and by 0.7% and 18.0 mg/dL, respectively, in the switch group (p < 0.0001 and p = 0.002). The proportions of participants reaching HbA1c 7.0% (53 mmol/mol) at Week 52 were 69.4% in the maintenance group and 65.4% in the switch group. A significant increase in urine glucose-to-creatinine ratio was observed at Week 52, by 84.9 g/g and 67.1 g/g in the maintenance and switch groups, respectively (p < 0.0001 for both). Body weight in both groups decreased significantly (p < 0.0001) from baseline to Week 52, by 3.5 kg and 3.8 kg in the maintenance and switch groups, respectively. CONCLUSIONS Enavogliflozin 0.3 mg monotherapy provides long-term glycaemic control in T2DM and is safe and well tolerated during a 52-week treatment period.
Collapse
Affiliation(s)
- Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Kyung Ah Han
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, South Korea
| | - Eun Sook Kim
- Internal Medicine, Ulsan University Hospital, College of Medicine University of Ulsan, Ulsan, South Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jong Chul Won
- Department of Internal Medicine, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Jae Myung Yu
- Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, South Korea
| | - Seungjoon Oh
- Department of Internal Medicine, Kyung Hee University Hospital, Seoul, South Korea
| | - Hye Jin Yoo
- Department of Internal Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Chong Hwa Kim
- Department of Internal Medicine, Sejong General Hospital, Bucheon, South Korea
| | - Kyung-Soo Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - SungWan Chun
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Yong Hyun Kim
- Department of Internal Medicine, Bundang Jesaeng General Hospital, Seongnam, South Korea
| | - Seung Ah Cho
- Clinical Development Centre, Daewoong Pharmaceutical Co., Ltd, Seoul, Republic of Korea
| | - Da Hye Kim
- Clinical Development Centre, Daewoong Pharmaceutical Co., Ltd, Seoul, Republic of Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
60
|
Atsarina DM, Widyastiti NS, Muniroh M, Susilaningsih N, Maharani N. Combination of Metformin and Epigallocatechin-3-Gallate Lowers Cortisol, 11β-Hydroxysteroid Dehydrogenase Type 1, and Blood Glucose Levels in Sprague Dawley Rats with Obesity and Diabetes. J Obes Metab Syndr 2024; 33:261-269. [PMID: 39098053 PMCID: PMC11443325 DOI: 10.7570/jomes23080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/25/2024] [Indexed: 08/06/2024] Open
Abstract
Background The combined effects of metformin and epigallocatechin-3-gallate (EGCG) on cortisol, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), and blood glucose levels have not been investigated. This study evaluated the effectiveness of combining EGCG with metformin in regulating those levels in a rat model of diet-induced diabetes and obesity. Methods Thirty diabetic and obese rats on a high-fat diet were treated daily for 28 days with EGCG (100 mg/kg of body weight/day), metformin (200 mg/kg of body weight/day), or both. Control groups comprised lean rats, untreated obese diabetic rats, and metformin-only-treated rats. Blood samples were collected to measure cortisol and fasting blood glucose (FBG) levels and liver tissue samples were examined for 11β-HSD1 levels. Results Rats receiving combination therapy had significantly reduced cortisol levels (from 36.70±15.13 to 31.25±7.10 ng/mL) compared with the untreated obese diabetic rats but not the rats receiving monotherapy. Rats receiving combination therapy and EGCG monotherapy had significantly lower 11β-HSD1 levels compared with the untreated obese diabetic rats (92.68±10.82 and 93.74±18.11 ng/L vs. 120.66±14.00 ng/L). Combination therapy and metformin monotherapy significantly reduced FBG levels (440.83±133.30 to 140.50±7.36 mg/dL and 480.67±86.32 to 214.17±102.78 mg/dL, respectively) by approximately 68.1% and 55.4% compared with rats receiving EGCG monotherapy and untreated obese diabetic rats. Conclusion Combining EGCG with metformin exhibited synergistic effects compared with monotherapy for managing diabetes, leading to improved outcomes in reduction of baseline cortisol levels along with reduction in 11β-HSD1 and blood glucose levels.
Collapse
Affiliation(s)
- Diana Mazaya Atsarina
- Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Nyoman Suci Widyastiti
- Department of Clinical Pathology, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Muflihatul Muniroh
- Department of Physiology, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Neni Susilaningsih
- Department of Anatomy and Histology, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Nani Maharani
- Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| |
Collapse
|
61
|
Hatano R, Zhang X, Lee E, Kaneda A, Tanaka T, Miki T. Mosaic ablation of pancreatic β cells induces de-differentiation and repetitive proliferation of residual β cells in adult mice. iScience 2024; 27:110656. [PMID: 39310764 PMCID: PMC11416228 DOI: 10.1016/j.isci.2024.110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetes mellitus is induced by quantitative and qualitative decline in pancreatic β cells. Although its radical therapy has not yet been established, β cell regeneration is a promising option. We investigate here two mouse models of β cell regeneration induced after ∼80% reduction in β cell number: Cre/loxP-mediated β cell ablation and partial pancreatectomy. Cre/loxP-mediated, mosaic-pattern of β cell ablation by diphtheria toxin (DT) prompted rapid β cell replenishment through repeated proliferation of rare, highly proliferative DT receptor-negative β cells along with increase in Hes1, Neurog3, Ascl1, and Aldh1a3 (immature/dedifferentiated β cell markers) and decrease in Mafa (a mature β cell marker) in the islets. In contrast, pancreatectomy also prompted active proliferation, but with no change in these immature/dedifferentiated or mature β cell markers. Our findings demonstrate that the mode of β cell regeneration differs between Cre/loxP-mediated β cell ablation and surgical β cell reduction, and the former involves β cell dedifferentiation followed by active repetitive cell proliferation of a small population of β cells.
Collapse
Affiliation(s)
- Ryo Hatano
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Xilin Zhang
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Eunyoung Lee
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
- Research Institute of Disaster Medicine (RIDM), Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomoaki Tanaka
- Research Institute of Disaster Medicine (RIDM), Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
- Department of Molecular Diagnosis, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Takashi Miki
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
- Research Institute of Disaster Medicine (RIDM), Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
62
|
Naeimzadeh Y, Tajbakhsh A, Nemati M, Fallahi J. Exploring the anti-cancer potential of SGLT2 inhibitors in breast cancer treatment in pre-clinical and clinical studies. Eur J Pharmacol 2024; 978:176803. [PMID: 38950839 DOI: 10.1016/j.ejphar.2024.176803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
The link between type 2 diabetes mellitus (T2DM) and an increased risk of breast cancer (BC) has prompted the exploration of novel therapeutic strategies targeting shared metabolic pathways. This review focuses on the emerging evidence surrounding the potential anti-cancer effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors in the context of BC. Preclinical studies have demonstrated that various SGLT2 inhibitors, such as canagliflozin, dapagliflozin, ipragliflozin, and empagliflozin, can inhibit the proliferation of BC cells, induce apoptosis, and modulate key cellular signaling pathways. These mechanisms include the activation of AMP-activated protein kinase (AMPK), suppression of mammalian target of rapamycin (mTOR) signaling, and regulation of lipid metabolism and inflammatory mediators. The combination of SGLT2 inhibitors with conventional treatments, including chemotherapy and radiotherapy, as well as targeted therapies like phosphoinositide 3-kinases (PI3K) inhibitors, has shown promising results in enhancing the anti-cancer efficacy and potentially reducing treatment-related toxicities. The identification of specific biomarkers or genetic signatures that predict responsiveness to SGLT2 inhibitor therapy could enable more personalized treatment selection and optimization, particularly for challenging BC subtypes [e, g., triple negative BC (TNBC)]. Ongoing and future clinical trials investigating the use of SGLT2 inhibitors, both as monotherapy and in combination with other agents, will be crucial in elucidating their translational potential and guiding their integration into comprehensive BC care. Overall, SGLT2 inhibitors represent a novel and promising therapeutic approach with the potential to improve clinical outcomes for patients with various subtypes of BC, including the aggressive and chemo-resistant TNBC.
Collapse
Affiliation(s)
- Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran.
| |
Collapse
|
63
|
Orellana-Paucar AM. Turmeric Essential Oil Constituents as Potential Drug Candidates: A Comprehensive Overview of Their Individual Bioactivities. Molecules 2024; 29:4210. [PMID: 39275058 PMCID: PMC11397039 DOI: 10.3390/molecules29174210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
The therapeutic properties of turmeric essential oil have been extensively documented in both preclinical and clinical studies. Research indicates that its primary active compounds are promising candidates for addressing a wide range of pathologies, exhibiting anticancer, anti-inflammation, antioxidant, cardiovascular, hypoglycemic, dermatological, hepatoprotective, neurological, antiparasitic, antiviral, insecticidal, antifungal, and antivenom activities. While numerous compounds possess similar potential applications, the isolated active constituents of turmeric essential oil stand out due to their unique pharmacological profiles and absence of toxicity. This literature review meticulously compiles and analyzes the bioactivities of these constituents, emphasizing their molecular mechanisms of action, reported pharmacological effects, and potential therapeutic applications. The aim of this review is to provide a comprehensive synthesis of currently available clinical and preclinical findings related to individual turmeric essential oil compounds, while also identifying critical knowledge gaps. By summarizing these findings, this work encourages further research into the isolated compounds from turmeric oil as viable drug candidates, ultimately contributing to the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Adriana Monserrath Orellana-Paucar
- Nutrition and Dietetics School, Faculty of Medical Sciences, University of Cuenca, Cuenca 010204, Ecuador
- Pharmacology and Nutritional Sciences Interdisciplinary Research Group, Faculty of Medical Sciences, University of Cuenca, Cuenca 010204, Ecuador
| |
Collapse
|
64
|
Pradhan SP, Behera A, Sahu PK. Effect of selenium nanoparticles conjugated Vildagliptin on cognitive dysfunction associated with Diabetes mellitus. J Drug Deliv Sci Technol 2024; 98:105907. [DOI: 10.1016/j.jddst.2024.105907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
65
|
Chang S, Liu H. Effects of combined resistance training and Tai Chi on oxidative stress, blood glucose and lipid metabolism and quality of life in elderly patients with type 2 diabetes mellitus. Res Sports Med 2024; 32:871-884. [PMID: 38715371 DOI: 10.1080/15438627.2024.2349521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/16/2024] [Indexed: 08/06/2024]
Abstract
This study examined the effects of resistance training (RT), Tai Chi (TC) and combination intervention (RT & TC) on the oxidative stress, blood glucose and lipid metabolism and quality of life of elderly patients with type 2 diabetes mellitus (T2DM). Ninety-four elderly patients with T2DM were randomly divided into an RT group (RTG, n = 23), TC group (TCG, n = 24), combination intervention group (CIG, n = 24) and control group (CG, n = 23). All participants were given nutrition and medication. On this basis, RTG, TCG and CIG were administered for 24 weeks (3 times/week, 40 minutes/time). Observation indicators were malondialdehyde (MDA), superoxide dismutase (SOD), 8-hydroxy-2 deoxyguanosine (8-OHdG), fasting plasma glucose (FPG), postprandial plasma glucose (PPG), haemoglobin A1c (HbA1c) and diabetes specific quality of life (DSQL). RT, TC and joint intervention can reduce the oxidative stress damage on elderly patients with T2DM to different degrees, control the levels of blood sugar and blood lipid and improve the quality of life. Compared with single intervention, combination intervention can further reduce the level of oxidative stress but has no additional benefits on blood glucose and lipid control and quality of life.
Collapse
Affiliation(s)
- Shuwan Chang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
- Department of Sports Human Science, Sichuan Sports College, Chengdu, China
| | - Heng Liu
- College of Physical Education, Chongqing University, Chongqing, China
| |
Collapse
|
66
|
Su J, Xu J, Hu S, Ye H, Xie L, Ouyang S. Advances in small-molecule insulin secretagogues for diabetes treatment. Biomed Pharmacother 2024; 178:117179. [PMID: 39059347 DOI: 10.1016/j.biopha.2024.117179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes, a metabolic disease caused by abnormally high levels of blood glucose, has a high prevalence rate worldwide and causes a series of complications, including coronary heart disease, stroke, peripheral vascular disease, end-stage renal disease, and retinopathy. Small-molecule compounds have been developed as drugs for the treatment of diabetes because of their oral advantages. Insulin secretagogues are a class of small-molecule drugs used to treat diabetes, and include sulfonylureas, non-sulfonylureas, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase 4 inhibitors, and other novel small-molecule insulin secretagogues. However, many small-molecule compounds cause different side effects, posing huge challenges to drug monotherapy and drug selection. Therefore, the use of different small-molecule drugs must be improved. This article reviews the mechanism, advantages, limitations, and potential risks of small-molecule insulin secretagogues to provide future research directions on small-molecule drugs for the treatment of diabetes.
Collapse
Affiliation(s)
- Jingqian Su
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Jingran Xu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hui Ye
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Lian Xie
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
67
|
Rasheed RA, Venkatraman G, Vijayalakshmi S, Raja TAR, Senthil G, Renugadevi P. Effect of glimepiride versus teneligliptin in combination with metformin in type 2 diabetes mellitus patients. Indian J Pharmacol 2024; 56:317-321. [PMID: 39687954 PMCID: PMC11698296 DOI: 10.4103/ijp.ijp_107_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Long-term metabolic disease type 2 diabetes mellitus (T2DM) is distinguished by elevated blood glucose, insulin resistance, and drought of insulin with dyslipidemia. Oral hypoglycemic agents lower blood glucose levels as well as prevent both short-term and long-term complications such as micro/macrovascular atherosclerosis, chronic kidney diseases, and chronic heart disease. This study aims to compare the effect of glimepiride versus teneligliptin in combination with metformin in T2DM patients attending a tertiary care hospital. MATERIALS AND METHODS This prospective, randomized, open-label study was initiated in a tertiary care hospital after obtaining IEC approval. Written informed consent was obtained. The sample size was calculated using "Statistics and sample size software." Ninety-seven patients satisfying the inclusion criteria were assigned to two groups using simple randomization with allocation 1:1. Group A received metformin + glimepiride while Group B received metformin + teneligliptin for 12 weeks. Fasting blood sugar (FBS), postprandial blood sugar (PPBS), glycated hemoglobin (HbA1c), and lipid profile were recorded at the baseline and at the end of 12 weeks. This study was conducted for 1 year. Data were analyzed using SPSS version 23.0 software. RESULTS Out of 97 participants (Group A: 48 and Group B: 49), Group A showed a higher reduction in FBS (48.18 ± 9.64) whereas Group B showed 72.53 ± 5.01, 1.74 ± 0.42 of change in PPBS and HbA1c after 12 weeks. CONCLUSION The study found that combining metformin with teneligliptin was better tolerated and improved glycemic control and lipid profile compared to metformin plus glimepiride.
Collapse
Affiliation(s)
- Razia Abdul Rasheed
- Department of Pharmacology, Melmaruvathur Adhiparasakthi Institute of Medical Sciences and Research, Chengalpattu, Tamil Nadu, India
| | - G. Venkatraman
- Department of Orthopaedics, Vels Medical College and Hospital, Tiruvallur, Tamil Nadu, India
| | - S. Vijayalakshmi
- Department of Pharmacology, Melmaruvathur Adhiparasakthi Institute of Medical Sciences and Research, Chengalpattu, Tamil Nadu, India
| | - T. A. R. Raja
- Department of Pharmacology, Melmaruvathur Adhiparasakthi Institute of Medical Sciences and Research, Chengalpattu, Tamil Nadu, India
| | - G. Senthil
- Department of Pharmacology, Melmaruvathur Adhiparasakthi Institute of Medical Sciences and Research, Chengalpattu, Tamil Nadu, India
| | - P. Renugadevi
- Department of Pharmacology, Melmaruvathur Adhiparasakthi Institute of Medical Sciences and Research, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
68
|
Bayrami S, Chamani M, JamaliMoghadamSiahkali S, SeyedAlinaghi S, Shirmard LR, Bayrami S, Javar HA, Ghahremani MH, Amini M, Tehrani MR, Shahsavari S, Dorkoosh FA. Preparation, Characterization and In vitro Evaluation of Insulin-PHBV Nanoparticles/Alginate Hydrogel Composite System for Prolonged Delivery of Insulin. J Pharm Sci 2024; 113:2552-2559. [PMID: 38508339 DOI: 10.1016/j.xphs.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE In the present study, biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles (NPs) containing insulin were loaded in sodium alginate/jeffamine (ALG/jeff) hydrogel for prolonged delivery of insulin. The main aim of this work was to fabricate an efficient insulin delivery system to improve patient adherence by decreasing the repetition of injections. METHODS Swelling and morphological properties and crosslinking efficiency of ALG/jeff hydrogel were assessed. The composite hydrogel was prepared by adding PHBV NPs to ALG/jeff hydrogel concurrently with crosslinking process. The morphology and loading capacity of composite hydrogel were analyzed. RESULTS Circular dichroism measurement demonstrated that insulin remains stable following fabrication process. The release profile exhibited 54.6 % insulin release from composite hydrogel within 31 days with minor initial burst release equated to nanoparticles and hydrogels. MTT cell viability analysis was performed by applying L-929 cell line and no cytotoxic effect was observed. CONCLUSIONS Favorable results clearly introduced fabricated composite hydrogel as an excellent candidate for drug delivery systems and also paves the route for prolonged delivery systems of other proteins.
Collapse
Affiliation(s)
- Samane Bayrami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Chamani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Rezaie Shirmard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sepide Bayrami
- Islamic Azad University, North Tehran Branch, Faculty of Bioscience, Tehran, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Rafiee Tehrani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadab Shahsavari
- Chemical Engineering Department, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran 14399-56131, Iran.
| |
Collapse
|
69
|
Chuanboding, Wang N, He H, Sun X, Bi X, Li A, Sun P, Li J, Yan L, Gao Y, Shen L, Ting Z, Zhang S. Advances in the treatment of type 2 diabetes mellitus by natural plant polysaccharides through regulation of gut microbiota and metabolism: A review. Int J Biol Macromol 2024; 274:133466. [PMID: 38942411 DOI: 10.1016/j.ijbiomac.2024.133466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
The prevalence and impact of type 2 diabetes mellitus (T2DM) is a major global health problem. The treatment process of T2DM is long and difficult to cure. Therefore, it is necessary to explore alternative or complementary methods to deal with the various challenges brought by T2DM. Natural plant polysaccharides (NPPs) have certain potential in the treatment of T2DM. However, many studies have not considered the relationship between the structure of NPPs and their anti-T2DM activity. This paper reviews the relevant anti-T2DM mechanisms of NPPs, including modulation of insulin action, promotion of glucose metabolism and modulation of postprandial glucose levels, anti-inflammation and modulation of gut microbiota (GM) and metabolism. This paper provides an in-depth study of the conformational relationships of NPPs and facilitates the development of anti-T2DM drugs or dietary supplements with NPPs.
Collapse
Affiliation(s)
- Chuanboding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Huiying He
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Xiaohang Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoyu Bi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Anning Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Pingping Sun
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Jianguo Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Li Yan
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Yang Gao
- Jilin Jianwei Natural Biotechnology Co., Baishan 134600, China
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Baishan 134600, China
| | - Zhao Ting
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
70
|
Monroy-Cárdenas M, Almarza C, Valenzuela-Hormazábal P, Ramírez D, Urra FA, Martínez-Cifuentes M, Araya-Maturana R. Identification of Antioxidant Methyl Derivatives of Ortho-Carbonyl Hydroquinones That Reduce Caco-2 Cell Energetic Metabolism and Alpha-Glucosidase Activity. Int J Mol Sci 2024; 25:8334. [PMID: 39125904 PMCID: PMC11313435 DOI: 10.3390/ijms25158334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
α-glucosidase, a pharmacological target for type 2 diabetes mellitus (T2DM), is present in the intestinal brush border membrane and catalyzes the hydrolysis of sugar linkages during carbohydrate digestion. Since α-glucosidase inhibitors (AGIs) modulate intestinal metabolism, they may influence oxidative stress and glycolysis inhibition, potentially addressing intestinal dysfunction associated with T2DM. Herein, we report on a study of an ortho-carbonyl substituted hydroquinone series, whose members differ only in the number and position of methyl groups on a common scaffold, on radical-scavenging activities (ORAC assay) and correlate them with some parameters obtained by density functional theory (DFT) analysis. These compounds' effect on enzymatic activity, their molecular modeling on α-glucosidase, and their impact on the mitochondrial respiration and glycolysis of the intestinal Caco-2 cell line were evaluated. Three groups of compounds, according their effects on the Caco-2 cells metabolism, were characterized: group A (compounds 2, 3, 5, 8, 9, and 10) reduces the glycolysis, group B (compounds 1 and 6) reduces the basal mitochondrial oxygen consumption rate (OCR) and increases the extracellular acidification rate (ECAR), suggesting that it induces a metabolic remodeling toward glycolysis, and group C (compounds 4 and 7) increases the glycolysis lacking effect on OCR. Compounds 5 and 10 were more potent as α-glucosidase inhibitors (AGIs) than acarbose, a well-known AGI with clinical use. Moreover, compound 5 was an OCR/ECAR inhibitor, and compound 10 was a dual agent, increasing the proton leak-driven OCR and inhibiting the maximal electron transport flux. Additionally, menadione-induced ROS production was prevented by compound 5 in Caco-2 cells. These results reveal that slight structural variations in a hydroquinone scaffold led to diverse antioxidant capability, α-glucosidase inhibition, and the regulation of mitochondrial bioenergetics in Caco-2 cells, which may be useful in the design of new drugs for T2DM and metabolic syndrome.
Collapse
Affiliation(s)
- Matías Monroy-Cárdenas
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
| | - Cristopher Almarza
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Paulina Valenzuela-Hormazábal
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (P.V.-H.); (D.R.)
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (P.V.-H.); (D.R.)
| | - Félix A. Urra
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Maximiliano Martínez-Cifuentes
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| | - Ramiro Araya-Maturana
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
71
|
Kaur M, Shitanaka T, Surendra KC, Khanal SK. Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications-a critical review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39078214 DOI: 10.1080/10408398.2024.2384643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong, Korea
| |
Collapse
|
72
|
Medeiros I, Gomes AFT, Oliveira e Silva EG, Bezerra IWL, da Silva Maia JK, Piuvezam G, Morais AHDA. Proteins and Peptides Studied In Silico and In Vivo for the Treatment of Diabetes Mellitus: A Systematic Review. Nutrients 2024; 16:2395. [PMID: 39125276 PMCID: PMC11314392 DOI: 10.3390/nu16152395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 08/12/2024] Open
Abstract
Bioinformatics has expedited the screening of new efficient therapeutic agents for diseases such as diabetes mellitus (DM). The objective of this systematic review (SR) was to understand naturally occurring proteins and peptides studied in silico and subsequently reevaluated in vivo for treating DM, guided by the question: which peptides or proteins have been studied in silico for the treatment of diabetes mellitus? The RS protocol was registered in the International Prospective Register of Systematic Reviews database. Articles meeting the eligibility criteria were selected from the PubMed, ScienceDirect, Scopus, Web of Science, Virtual Health Library (VHL), and EMBASE databases. Five studies that investigated peptides or proteins analyzed in silico and in vivo were selected. Risk of bias assessment was conducted using the adapted Strengthening the Reporting of Empirical Simulation Studies (STRESS) tool. A diverse range of assessed proteins and/or peptides that had a natural origin were investigated in silico and corresponding in vivo reevaluation demonstrated reductions in glycemia and/or insulin, morphological enhancements in pancreatic β cells, and alterations in the gene expression of markers associated with DM. The in silico studies outlined offer crucial insights into therapeutic strategies for DM, along with promising leads for screening novel therapeutic agents in future trials.
Collapse
Affiliation(s)
- Isaiane Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Ana Francisca Teixeira Gomes
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil; (A.F.T.G.); (E.G.O.e.S.)
| | - Emilly Guedes Oliveira e Silva
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil; (A.F.T.G.); (E.G.O.e.S.)
| | - Ingrid Wilza Leal Bezerra
- Nutrition Department, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Juliana Kelly da Silva Maia
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil; (A.F.T.G.); (E.G.O.e.S.)
- Nutrition Department, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Grasiela Piuvezam
- Public Health Department, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
- Health Sciences Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil; (A.F.T.G.); (E.G.O.e.S.)
- Nutrition Department, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| |
Collapse
|
73
|
Ma XL, Ge D, Hu XJ. Evaluation of teplizumab's efficacy and safety in treatment of type 1 diabetes mellitus: A systematic review and meta-analysis. World J Diabetes 2024; 15:1615-1626. [PMID: 39099823 PMCID: PMC11292331 DOI: 10.4239/wjd.v15.i7.1615] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Islets of Langerhans beta cells diminish in autoimmune type 1 diabetes mellitus (T1DM). Teplizumab, a humanized anti-CD3 monoclonal antibody, may help T1DM. Its long-term implications on clinical T1DM development, safety, and efficacy are unknown. AIM To assess the effectiveness and safety of teplizumab as a therapeutic intervention for individuals with T1DM. METHODS A systematic search was conducted using four electronic databases (PubMed, Embase, Scopus, and Cochrane Library) to select publications published in peer-reviewed journals written in English. The odds ratio (OR) and risk ratio (RR) were calculated, along with their 95%CI. We assessed heterogeneity using Cochrane Q and I 2 statistics and the appropriate P value. RESULTS There were 8 randomized controlled trials (RCTs) in the current meta-analysis with a total of 1908 T1DM patients from diverse age cohorts, with 1361 patients receiving Teplizumab and 547 patients receiving a placebo. Teplizumab was found to have a substantial link with a decrease in insulin consumption, with an OR of 4.13 (95%CI: 1.72 to 9.90). Teplizumab is associated with an improved C-peptide response (OR 2.49; 95%CI: 1.62 to 3.81) and a significant change in Glycated haemoglobin A1c (HbA1c) levels in people with type 1 diabetes [OR 1.75 (95%CI: 1.03 to 2.98)], and it has a RR of 0.71 (95%CI: 0.53 to 0.95). CONCLUSION In type 1 diabetics, teplizumab decreased insulin consumption, improved C-peptide response, and significantly changed HbA1c levels with negligible side effects. Teplizumab appears to improve glycaemic control and diabetes management with good safety and efficacy.
Collapse
Affiliation(s)
- Xiao-Lan Ma
- Department of Endocrinology and Metabolism, The Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Dan Ge
- Department of Endocrinology and Metabolism, The Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Xue-Jian Hu
- Department of Endocrinology and Metabolism, The Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| |
Collapse
|
74
|
Verma J, Dahiya S. Nanomaterials for diabetes: diagnosis, detection and delivery. NANOTECHNOLOGY 2024; 35:392001. [PMID: 38990067 DOI: 10.1088/1361-6528/ad5db5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
537 million people worldwide suffer from diabetes mellitus, a problem of glucose management that is related to a number of major health risks, including cardiovascular diseases. There is a need for new, efficient formulations of diabetic medications to address this condition and its related consequences because existing treatments have a number of drawbacks and limits. This encouraged the development of treatment plans to get around some of these restrictions, like low therapeutic drug bioavailability or patients' disobedience to existing therapies. Approaches based on nanotechnology have a lot of promise to enhance the treatment of diabetic patients. In order to manage blood glucose, this review article highlights recent developments and explores the potential applications of different materials (polymeric, ceramic, dendrimers, etc.) as nanocarriers for the delivery of insulin and other antidiabetic medications. Using an injectable and acid-degradable polymeric network produced by the electrostatic interaction of oppositely charged dextran nanoparticles loaded with insulin and glucose-specific enzymes, we reviewed a glucose-mediated release approach for the self-regulated delivery of insulin, in which, after a degradable nano-network was subcutaneously injected into type 1 diabetic mice,in vivoexperiments confirmed that these formulations improved glucose management. In addition, a discussion of silica-based nanocarriers, their potential for treating diabetes and controlling blood glucose levels, and an explanation of the role of dendrimers in diabetes treatment have been covered. This is done by utilizing the properties of silica nanoparticles, such as their tuneable particle and pore size, surface chemistry, and biocompatibility. The article summarized the significance of nanomaterials and their uses in the diagnosis and treatment of diabetes overall, illuminating the field's potential and outlining its prospects for the future.
Collapse
Affiliation(s)
- Jaya Verma
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, People's Republic of China
| | - Shakti Dahiya
- Department of Surgery, Divison of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, United States of America
| |
Collapse
|
75
|
Ranade SD, Alegaon SG, Khatib NA, Gharge S, Kavalapure RS. Quinoline-based Schiff bases as possible antidiabetic agents: ligand-based pharmacophore modeling, 3D QSAR, docking, and molecular dynamics simulations study. RSC Med Chem 2024:d4md00344f. [PMID: 39149562 PMCID: PMC11322893 DOI: 10.1039/d4md00344f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
α-Glucosidase enzyme inhibition is a legitimate approach to combat type 2 diabetes mellitus as it manages to control postprandial hyperglycemia. In this pursuit, a literature search identified quinoline-based molecules as potential α-glucosidase inhibitors. Thus our intended approach is to identify pharmacophoric features responsible for the α-glucosidase inhibition. This was achieved by performing, ligand-based pharmacophore modeling, 3D QSAR model development, pharmacophore-based screening of a rationally designed quinoline-based benzohydrazide Schiff base library, identifying, synthesizing and characterizing molecules (6a-6j) by IR, (1H and 13C) NMR, and mass studies. Further, these molecules were evaluated for α-glucosidase and α-amylase inhibitory potential. Compound 6c was found to inhibit α-glucosidase enzyme with an IC50 value of 12.95 ± 2.35 μM. Similarly, compound 6b was found to have an IC50 value of 19.37 ± 0.96 μM as compared to acarbose (IC50: 32.63 ± 1.07 μM); the inhibitory kinetics of compounds 6b and 6c revealed a competitive type of inhibition; the inhibitory effect can be attributed to its mapped pharmacophoric feature and model validation with a survival score of 5.0697 and vector score of 0.9552. The QSAR model showed a strong correlation with an R 2 value of 0.96. All the compounds (6a-6j) showed no toxicity in L929 cell lines by the MTT assay method. Further, the binding orientation and stability of the molecules were assessed using molecular docking studies and MD trajectory analysis. The energy profile of the molecules with protein as a complex and molecules alone was evaluated using MM/GBSA and DFT calculations, respectively; finally, the pharmacokinetic profile was computed using ADMET analysis.
Collapse
Affiliation(s)
- Shriram D Ranade
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher education and Research Belagavi - 590010 Karnataka India
| | - Shankar G Alegaon
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher education and Research Belagavi - 590010 Karnataka India
| | - Nayeem A Khatib
- Department of Pharmacology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher education and Research Belagavi - 590010 Karnataka India
| | - Shankar Gharge
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher education and Research Belagavi - 590010 Karnataka India
| | - Rohini S Kavalapure
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher education and Research Belagavi - 590010 Karnataka India
| |
Collapse
|
76
|
Kairy PD, Binder S, Solzbacher F, Laurentius LB, Reiche CF. Probing glucose-sensitive hydrogel resonators with a portable medical ultrasound imaging system. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039037 DOI: 10.1109/embc53108.2024.10782116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Diabetes, a prevalent chronic disease, necessitates effective blood glucose monitoring to manage and mitigate its serious complications. Recent studies have introduced a novel approach for implantable continuous glucose monitoring (CGM) utilizing glucose-sensitive smart hydrogel-based resonator sensing elements with ultrasound (US) readout. By using mechanically compliant and potentially highly biocompatible smart hydrogel materials as well as medical ultrasound, this approach provides an effective and minimally invasive CGM solution. While previous results demonstrated proof-of-principle in both in vitro and in vivo experiments, they still used standard and less mobile medical ultrasound equipment, and thus limits the ease-of-use of the approach. In this study, the transition from this full-size and less mobile module to a portable benchtop medical US equipment for exciting and reading out the hydrogel resonators is explored. The results demonstrate the ability of the portable US module to detect the small changes in Mean Gray Value (MGV) in ultrasound images that correspond to the altered state of the smart hydrogel structures in varying glucose environments while maintaining good signal quality. This development represents a step towards a more mobile smart hydrogel resonator-based CGM system that aims to enhance diabetes management and improve patient outcomes.
Collapse
|
77
|
Han Y, Spicer J, Huang Y, Bunt C, Liu M, Wen J. Advancements in oral insulin: A century of research and the emergence of targeted nanoparticle strategies. EUR J LIPID SCI TECH 2024; 126. [DOI: 10.1002/ejlt.202300271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 01/03/2025]
Abstract
AbstractWith the growing prevalence of diabetes, there is an urgent demand for a user‐friendly treatment option that minimizes side effects related to the use of subcutaneous injections. Scientists have dedicated over a century to developing an oral dosage form of insulin that can be administrated orally. The oral route of administration is the most desirable route for regularly dosed drugs in terms of safety and patient compliance. However, oral delivery of insulin remains a formidable challenge due to its intrinsically limited ability to cross the intestinal epithelium membrane and susceptibility to enzymatic degradation. This article reviews oral insulin research over the past decade, with a particular focus on surface modifications of nanoparticles (NPs). Various strategies involving controlling surface charges, utilizing protective proteins, and targeting specific receptors with ligands have been explored. Notably, surface modifications of the NPs for targeting specific intestinal receptors have shown promise in enhancing insulin oral absorption and bioavailability. Advanced technologies such as oral microneedles and gene therapy have also been developed, but their safety requires further assessment. Despite encouraging preclinical results across numerous strategies, the current clinical evidence is less optimistic. In summary, the present findings highlight the substantial journey that still lies ahead before achieving successful oral delivery of insulin.Practical Applications: This review provides a summary of recent progress in oral insulin delivery, particularly highlighting surface‐modified functional nanoparticles serving as an effective drug delivery system, which offers valuable information to the researchers. Due to the limited effectiveness of oral protein drugs caused by biological barriers, innovative technologies and drug delivery systems have been developed to overcome these obstacles and achieve therapeutic goals. This review concluded that surface modifications to nanoparticles can improve insulin stability and permeability, thereby enhancing oral bioavailability. It could assist researchers in developing more effective and patient‐friendly oral drug delivery systems.
Collapse
Affiliation(s)
- Yue Han
- School of Pharmacy Faculty of Medical and Health Sciences The University of Auckland Auckland New Zealand
| | - Julie Spicer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland Auckland New Zealand
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery, West China School of Pharmacy, Sichuan University Chengdu China
| | - Craig Bunt
- The Department of Food Science University of Otago Dunedin New Zealand
| | - Mengyang Liu
- School of Pharmacy Faculty of Medical and Health Sciences The University of Auckland Auckland New Zealand
| | - Jingyuan Wen
- School of Pharmacy Faculty of Medical and Health Sciences The University of Auckland Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland Auckland New Zealand
| |
Collapse
|
78
|
Khalil MR, Demircioglu F, François CV, Möller S, Andreasen E. Chorionicity and gestational diabetes mellitus in twin pregnancies in relation to placental weight. Diabetes Metab Syndr 2024; 18:103093. [PMID: 39088884 DOI: 10.1016/j.dsx.2024.103093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is glucose intolerance first detected during pregnancy. Twin pregnancies have a higher risk of GDM, likely due to increased placental mass and elevated placental lactogen levels. OBJECTIVE The aims of this study were 1) to assess the impact of chorionicity on the development of GDM in twin pregnancies and 2) to assess a possible association between placenta weight and the development of GDM. METHODS We conducted a prospective cohort study of all women with twin pregnancies (N = 819) at the department of Obstetrics and Gynecology, Lillebaelt University Hospital, Kolding, Denmark, between January 1, 2007 and April 30, 2019. Information on chronicity was determined at the first visit with ultrasonic imaging, during weeks' gestation 11-13. Oral glucose-tolerance test was performed to diagnose gestational diabetes mellitus. RESULTS Among 819 twins, 17.8 % were monochorionic twins and 82.2 % were dichorionic twins. There were no statistically significant difference of GDM prevalence between monochorionic twins group 7.4 % and dichorionic twins group 9.8 % (P = 0.42). Placenta's weight in dichorionic twins was larger compared with monochorionic twins. No association was found between the weight of placenta and the prevalence of GDM (P = 0.21), even after adjustment for body mass index, gestational age, and fertility treatment (P = 0.87). CONCLUSIONS Our study could not find an association between chorionicity, placental weight, and GDM. It is, therefore, possible that twin pregnancies, regardless of chorionicity and placental weight, have the same risk for GDM.
Collapse
Affiliation(s)
- Mohammed Rohi Khalil
- Department of Obstetrics and Gynecology, Lillebaelt University Hospital, Kolding, Denmark.
| | - Fatma Demircioglu
- Department of Obstetrics and Gynecology, Lillebaelt University Hospital, Kolding, Denmark
| | | | - Sören Möller
- Department of Clinical Research, Research Unit of OPEN - Odense University Hospital, Denmark
| | - Erling Andreasen
- Department of Obstetrics and Gynecology, Lillebaelt University Hospital, Kolding, Denmark
| |
Collapse
|
79
|
Bian YC, Meng J, Hu T, Ma S, Huang CR, Zhang FY, Wu QH, Zhang H, Chen XY, Miao LY. Biotransformation and disposition characteristics of HSK7653, a novel long-acting dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes. Diabetes Obes Metab 2024; 26:2860-2868. [PMID: 38646838 DOI: 10.1111/dom.15605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/23/2024]
Abstract
AIM To investigate the metabolism and disposition characteristics of HSK7653 in healthy male Chinese participants. METHODS A single oral dose of 80 μCi (25 mg) [14C]HSK7653 capsules was administered to six healthy participants, and blood, plasma, urine and faeces were collected. Quantitative and qualitative analysis was conducted to investigate the pharmacokinetics, blood-to-plasma ratio, mass balance and metabolism of HSK7653. RESULTS The drug was well absorbed and reached a maximum concentration at 1.25 h. The drug-related components (HSK7653 and its metabolites) were eliminated slowly, with a half-life (t1/2) of 111 h. Unchanged HSK7653 contributed to more than 97% of the total radioactivity in all plasma samples. The blood-to-plasma ratio (0.573-0.845) indicated that HSK7653 did not tend to distribute into blood cells. At 504 h postdose, up to 95.9% of the dose was excreted, including 79.8% in urine and 16.1% in faeces. Most of the radioactivity (75.5% dose) in excreta was unchanged HSK7653. In addition, nine metabolites were detected in urine and faeces. The most abundant metabolite was M6-2, a dioxidation product of HSK7653, which accounted for 4.73% and 2.63% of the dose in urine and faeces, respectively. The main metabolic pathways of HSK7653 in vivo included oxidation, pyrrole ring opening and sulphonamide hydrolysation. CONCLUSION HSK7653 was well absorbed, slightly metabolized and slowly excreted in humans. The high plasma exposure and long t1/2 of HSK7653 may contribute to its long-lasting efficacy as a long-acting dipeptidyl peptidase-4 inhibitor.
Collapse
Affiliation(s)
- Yi-Cong Bian
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Jian Meng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tao Hu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Sheng Ma
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Chen-Rong Huang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Feng-Yi Zhang
- Haisco Pharmaceutical Group Company Ltd., Chengdu, China
| | - Qing-He Wu
- Haisco Pharmaceutical Group Company Ltd., Chengdu, China
| | - Hua Zhang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Xiao-Yan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li-Yan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
80
|
Acosta G AJ, Chitneni E, Manzanares Vidals CJ, Modumudi S, Hammad S, Verma A, Rajesh RY, Khaliq A, Adeyemi O, Majeed F, Gujar RV. A Comprehensive Review of Emerging Therapies for Type 2 Diabetes and Their Cardiovascular Effects. Cureus 2024; 16:e65707. [PMID: 39211720 PMCID: PMC11358602 DOI: 10.7759/cureus.65707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The discovery of inhibitors for sodium-glucose cotransporter 2 (SGLT2) and glucagon-like peptide-1 receptor agonists (GLP-1 RA) has significantly improved type 2 diabetes management. Large-scale clinical studies have shown that both SGLT2 inhibitors and GLP-1 RA enhance cardiovascular health. Benefits include reduced cardiovascular disease risk, lower mortality, fewer heart failure hospitalizations (SGLT2 inhibitors), and stroke prevention (GLP-1 RA). Additionally, these drugs slow chronic kidney disease progression. This comprehensive treatment targets vascular events. Despite differences, both drug classes are crucial. GLP-1 RA mainly reduce stroke risk, while SGLT2 inhibitors alleviate heart failure. Our findings, based on a literature review, will address the renal and cardiac effects of SGLT2 inhibitors and GLP-1 RA in both diabetics and non-diabetics, highlighting their combined benefits for heart conditions.
Collapse
Affiliation(s)
- Arnaldo J Acosta G
- Internal Medicine, Hospital Universitario Dr. Alfredo Van Grieken, Coro, VEN
| | - Eesha Chitneni
- Internal Medicine, MediCiti Institute of Medical Sciences, Hyderabad, IND
| | | | - Sravani Modumudi
- Internal Medicine, Kamineni Academy of Medical Sciences and Research Center, Hyderabad, IND
| | - Sobia Hammad
- Medicine, Jinnah Medical and Dental College, Karachi, PAK
| | - Ashee Verma
- Internal Medicine, Ruxmaniben Deepchand Gardi Medical College, Kota, IND
| | - Rahul Y Rajesh
- Internal Medicine, Tbilisi State Medical University, Tbilisi, GEO
| | - Aimen Khaliq
- Medicine, Liaquat National Hospital and Medical College, Karachi, PAK
| | | | - Farhat Majeed
- General Medicine, Quaid-e-Azam Medical College, Bahawalpur, PAK
| | - Rucha V Gujar
- Internal Medicine, Sir H. N. Reliance Foundation Hospital and Research Centre, Mumbai, IND
| |
Collapse
|
81
|
Joshua Ashaolu T, Joshua Olatunji O, Can Karaca A, Lee CC, Mahdi Jafari S. Anti-obesity and anti-diabetic bioactive peptides: A comprehensive review of their sources, properties, and techno-functional challenges. Food Res Int 2024; 187:114427. [PMID: 38763677 DOI: 10.1016/j.foodres.2024.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
The scourge of obesity arising from obesogens and poor dieting still ravages our planet as half of the global population may be overweight and obese by 2035. This metabolic disorder is intertwined with type 2 diabetes (T2D), both of which warrant alternative therapeutic options other than clinically approved drugs like orlistat with their tendency of abuse and side effects. In this review, we comprehensively describe the global obesity problem and its connection to T2D. Obesity, overconsumption of fats, the mechanism of fat digestion, obesogenic gut microbiota, inhibition of fat digestion, and natural anti-obesity compounds are discussed. Similar discussions are made for diabetes with regard to glucose regulation, the diabetic gut microbiota, and insulinotropic compounds. The sources and production of anti-obesity bioactive peptides (AOBPs) and anti-diabetic bioactive peptides (ADBPs) are also described while explaining their structure-function relationships, gastrointestinal behaviors, and action mechanisms. Finally, the techno-functional applications of AOBPs and ADBPs are highlighted.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam.
| | | | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chi-Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
82
|
Okyere J, Ayebeng C, Sakyi B, Dickson KS. Place of residence and blood sugar testing practices among men: insights from the 2021 Madagascar demographic and health survey. BMC Public Health 2024; 24:1690. [PMID: 38918758 PMCID: PMC11197228 DOI: 10.1186/s12889-024-19248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/24/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND In 2021, Madagascar had approximately 13,919 people living with diabetes, with 66.1% of cases being undiagnosed. The implication is that this population are at high risk of developing diabetes complications which will affect their quality of life. However, promoting the uptake of screening practices such as the blood glucose test among the asymptomatic population would offer a chance to reduce the prevalence of undiagnosed diabetes in the country. This study examined the association between place of residence and blood sugar testing practices among men in Madagascar. METHODS Secondary data from the men recode file of the 2021 Madagascar Demographic and Health Survey (MDHS) was used. A sample of 9,035 were used for the analysis. Descriptive and multivariate analyses were performed in STATA version 14. The results are presented in adjusted odds ratio (AOR) with the corresponding 95% confidence interval. RESULTS Only 5.83% reported to have ever had their blood glucose/sugar tested by a health professional. Residing in rural areas was associated in lower likelihood of undergoing a test to check one's blood sugar level [AOR = 0.23; 95%CI = 0.19-0.28] compared to those in urban areas. This association remained consistent even after adjusting for the effects of covariates [AOR = 0.67; 95%CI = 0.52-0.86]. CONCLUSION We conclude that place of residence plays a significant role in influencing men's decision to test their blood glucose level. It is, therefore, imperative for the Madagascar Public Health Department to liaise with the government to bridge the rural-urban disparities in terms of accessibility to blood glucose testing services. Practically, this can be achieved by instituting community-based health services centers in the rural areas of Madagascar to mitigate the rural-urban disparities. Also, health education campaigns to raise men's awareness about the need to test their blood glucose level must necessarily target older men, those without formal education, those without health insurance, and men who have been diagnosed with hypertension.
Collapse
Affiliation(s)
- Joshua Okyere
- Department of Population and Health, University of Cape Coast, Cape Coast, Ghana.
- School of Nursing & Midwifery, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Castro Ayebeng
- Department of Population and Health, University of Cape Coast, Cape Coast, Ghana
| | - Barbara Sakyi
- Department of Population and Health, University of Cape Coast, Cape Coast, Ghana
| | | |
Collapse
|
83
|
Wang Y, Fang Y, Aberson CL, Charchar FJ, Ceriello A. Postprandial Plasma Glucose between 4 and 7.9 h May Be a Potential Diagnostic Marker for Diabetes. Biomedicines 2024; 12:1313. [PMID: 38927521 PMCID: PMC11201079 DOI: 10.3390/biomedicines12061313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Postprandial glucose levels between 4 and 7.9 h (PPG4-7.9h) correlate with mortality from various diseases, including hypertension, diabetes, cardiovascular disease, and cancer. This study aimed to assess if predicted PPG4-7.9h could diagnose diabetes. Two groups of participants were involved: Group 1 (4420 participants) had actual PPG4-7.9h, while Group 2 (8422 participants) lacked this measure but had all the diabetes diagnostic measures. Group 1 underwent multiple linear regression to predict PPG4-7.9h using 30 predictors, achieving accuracy within 11.1 mg/dL in 80% of the participants. Group 2 had PPG4-7.9h predicted using this model. A receiver operating characteristic curve analysis showed that predicted PPG4-7.9h could diagnose diabetes with an accuracy of 87.3% in Group 2, with a sensitivity of 75.1% and specificity of 84.1% at the optimal cutoff of 102.5 mg/dL. A simulation on 10,000 random samples from Group 2 revealed that 175 participants may be needed to investigate PPG4-7.9h as a diabetes diagnostic marker with a power of at least 80%. In conclusion, predicted PPG4-7.9h appears to be a promising diagnostic indicator for diabetes. Future studies seeking to ascertain its definitive diagnostic value might require a minimum sample size of 175 participants.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Yan Fang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | | | - Fadi J. Charchar
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Antonio Ceriello
- RCCS MultiMedica, Via Gaudenzio Fantoli, 16/15, 20138 Milan, Italy;
| |
Collapse
|
84
|
Li H, Li W, Li D, Yuan L, Xu Y, Su P, Wu L, Zhang Z. Based on systematic druggable genome-wide Mendelian randomization identifies therapeutic targets for diabetes. Front Endocrinol (Lausanne) 2024; 15:1366290. [PMID: 38915894 PMCID: PMC11194396 DOI: 10.3389/fendo.2024.1366290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose Diabetes and its complications cause a heavy burden of disease worldwide. In recent years, Mendelian randomization (MR) has been widely used to discover the pathogenesis and epidemiology of diseases, as well as to discover new therapeutic targets. Therefore, based on systematic "druggable" genomics, we aim to identify new therapeutic targets for diabetes and analyze its pathophysiological mechanisms to promote its new therapeutic strategies. Material and method We used double sample MR to integrate the identified druggable genomics to evaluate the causal effect of quantitative trait loci (eQTLs) expressed by druggable genes in blood on type 1 and 2 diabetes (T1DM and T2DM). Repeat the study using different data sources on diabetes and its complications to verify the identified genes. Not only that, we also use Bayesian co-localization analysis to evaluate the posterior probabilities of different causal variations, shared causal variations, and co-localization probabilities to examine the possibility of genetic confounding. Finally, using diabetes markers with available genome-wide association studies data, we evaluated the causal relationship between established diabetes markers to explore possible mechanisms. Result Overall, a total of 4,477 unique druggable genes have been gathered. After filtering using methods such as Bonferroni significance (P<1.90e-05), the MR Steiger directionality test, Bayesian co-localization analysis, and validation with different datasets, Finally, 7 potential druggable genes that may affect the results of T1DM and 7 potential druggable genes that may affect the results of T2DM were identified. Reverse MR suggests that C4B may play a bidirectional role in the pathogenesis of T1DM, and none of the other 13 target genes have a reverse causal relationship. And the 7 target genes in T2DM may each affect the biomarkers of T2DM to mediate the pathogenesis of T2DM. Conclusion This study provides genetic evidence supporting the potential therapeutic benefits of targeting seven druggable genes, namely MAP3K13, KCNJ11, REG4, KIF11, CCNE2, PEAK1, and NRBP1, for T2DM treatment. Similarly, targeting seven druggable genes, namely ERBB3, C4B, CD69, PTPN22, IL27, ATP2A1, and LT-β, has The potential therapeutic benefits of T1DM treatment. This will provide new ideas for the treatment of diabetes and also help to determine the priority of drug development for diabetes.
Collapse
Affiliation(s)
- Hu Li
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| | - Wei Li
- Urology Department, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dongyang Li
- Internal Medicine-Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Lijuan Yuan
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| | - Yucheng Xu
- Department of Critical Care Medicine, Jinan Central Hospital, Jinan, China
| | - Pengtao Su
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| | - Liqiang Wu
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| | - Zhiqiang Zhang
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
85
|
Nag S, Mitra O, Maturi B, Kaur SP, Saini A, Nama M, Roy S, Samanta S, Chacko L, Dutta R, Sayana SB, Subramaniyan V, Bhatti JS, Kandimalla R. Autophagy and mitophagy as potential therapeutic targets in diabetic heart condition: Harnessing the power of nanotheranostics. Asian J Pharm Sci 2024; 19:100927. [PMID: 38948399 PMCID: PMC11214300 DOI: 10.1016/j.ajps.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 07/02/2024] Open
Abstract
Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition (DHC), which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyopathies. Despite significant progress in reducing mortality rates from cardiovascular diseases (CVDs), heart failure remains a major cause of increased morbidity among diabetic patients. These cellular processes are essential for maintaining cellular balance and removing damaged or dysfunctional components, and their involvement in the development of diabetic heart disease makes them attractive targets for diagnosis and treatment. While a variety of conventional diagnostic and therapeutic strategies are available, DHC continues to present a significant challenge. Point-of-care diagnostics, supported by nanobiosensing techniques, offer a promising alternative for these complex scenarios. Although conventional medications have been widely used in DHC patients, they raise several concerns regarding various physiological aspects. Modern medicine places great emphasis on the application of nanotechnology to target autophagy and mitophagy in DHC, offering a promising approach to deliver drugs beyond the limitations of traditional therapies. This article aims to explore the potential connections between autophagy, mitophagy and DHC, while also discussing the promise of nanotechnology-based theranostic interventions that specifically target these molecular pathways.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Oishi Mitra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Bhanu Maturi
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simran Preet Kaur
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Ankita Saini
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Muskan Nama
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Soumik Roy
- Department of Biotechnology, Indian Institute of Technology, Hyderabad (IIT-H), Sangareddy, Telangana 502284, India
| | - Souvik Samanta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Rohan Dutta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Suresh Babu Sayana
- Department of Pharmacology, Government Medical College, Suryapet, Telangana, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| |
Collapse
|
86
|
Tanty DK, Sahu PR, Mohapatra R, Sahu SK. Antidiabetic potency and molecular insights of natural products bearing indole moiety: A systematic bioinformatics investigation targeting AKT1. Comput Biol Chem 2024; 110:108059. [PMID: 38608439 DOI: 10.1016/j.compbiolchem.2024.108059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Diabetic mellitus (DM) is a chronic disorder, and type 2 DM (T2DM) is the most prevalent among all categories (nearly 90%) across the globe every year. With the availability of potential drugs, the prevalence rate has remained uncontrollable, while natural resources showed a promising potency, and exploring such potential candidates at the preclinical stage is essential. An extensive literature search selected 89 marine and plant-derived indole derivatives with anti-inflammatory, antioxidant, lipid-lowering, etc., activities. However, as we know, drugs have not been able to convert from 'lead' to 'mainstream' due to inadequate drug-ability profiles, as our systematic investigation proved and selected herdmanine_A (HERD_A) and penerpene_D (PENE_D) as the most potential antidiabetic candidates from the library of indole derivatives. Based on our previous network pharmacology study, we selected three new target enzymes: Acetyl-CoA carboxylase 2 (ACACB; PDB ID: 3JRX), cyclin-dependent kinase 4 (CDK4; PDB ID: 3G33), and alpha serine/threonine-protein kinase 1 (AKT1; PDB ID: 3O96) to assess the antidiabetic potency of selected indole derivatives through binding energy or docking score. To conduct molecular docking studies with these enzymes, we used the PyRx-AutoDock platform. Furthermore, molecular dynamic simulation at 100 ns, physicochemical analysis, pharmacokinetics, toxicity assessment, and drug-likeness evaluation suggested that HERD_A and penerpene PENE_D were the most potent inhibitors against AKT1 compared to koenimbine (most potential based on the recorded IC50 value) and murrayakonine_A (most potential based on the docking score). In summary, HERD_A and/or PENE_D have the potential to be used as alternative therapeutic agent for the treatment of diabetes after some pharmacological investigation.
Collapse
Affiliation(s)
- Dhananjay K Tanty
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Prachi R Sahu
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Ranjit Mohapatra
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Susanta K Sahu
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India.
| |
Collapse
|
87
|
Korkmaz Y, Dik B. The comparison of the antidiabetic effects of exenatide, empagliflozin, quercetin, and combination of the drugs in type 2 diabetic rats. Fundam Clin Pharmacol 2024; 38:511-522. [PMID: 38149676 DOI: 10.1111/fcp.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Type 2 diabetes, a metabolic disease that involves extended treatment, is rapidly increasing in humans and animals worldwide. OBJECTIVES This study aimed to compare monotherapy and combined therapy of exenatide, empagliflozin, and quercetin in 67 Wistar Albino male rats. METHODS The animals were divided into the following seven groups: healthy control, diabetes control, diabetes + sham, diabetes + exenatide (10 μg/kg), diabetes + empagliflozin (50 mg/kg), diabetes + quercetin (50 mg/kg), and diabetes + combination treatment. The treatments were continued for 8 weeks. RESULTS At the end of the experiment, glucose and HbA1c levels decreased with all monotherapy treatments and the combination treatments, while insulin levels increased with exenatide and combined treatments. Adiponectin levels increased with empagliflozin, quercetin, and combined treatments, while leptin levels decreased only with combined treatments. All monotherapies caused an increase in total antioxidant levels. Exenatide and quercetin treatments reduced low-density lipoprotein (LDL) levels; therewithal, exenatide and combined treatments increased high-density lipoprotein (HDL) levels. Triglyceride levels decreased in all treatment groups. The homeostatic model assessment for insulin resistance (HOMA-IR) level decreased with the combined treatment; on the contrary, the homeostatic model assessment for β-cell activity (HOMA-β) level increased with empagliflozin, exenatide, and combined treatments. CONCLUSION In conclusion, the antidiabetic effects of exenatide were more pronounced than empagliflozin and quercetin, however, the combined treatment had better antidiabetic and antihyperlipidemic effects than monotherapies. Quercetin could be a supportive or food supplement antidiabetic agent. The exenatide treatment can be recommended for monotherapy in type 2 patients, and the combination of empagliflozin, exenatide, and quercetin may be effective in diabetic patients who need combined therapy.
Collapse
Affiliation(s)
- Yasemin Korkmaz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Burak Dik
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
88
|
Li Y, Lou N, Liu X, Zhuang X, Chen S. Exploring new mechanisms of Imeglimin in diabetes treatment: Amelioration of mitochondrial dysfunction. Biomed Pharmacother 2024; 175:116755. [PMID: 38772155 DOI: 10.1016/j.biopha.2024.116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
With the increasing prevalence of type 2 diabetes mellitus (T2DM), it has become critical to identify effective treatment strategies. In recent years, the novel oral hypoglycaemic drug Imeglimin has attracted much attention in the field of diabetes treatment. The mechanisms of its therapeutic action are complex and are not yet fully understood by current research. Current evidence suggests that pancreatic β-cells, liver, and skeletal muscle are the main organs in which Imeglimin lowers blood glucose levels and that it acts mainly by targeting mitochondrial function, thereby inhibiting hepatic gluconeogenesis, enhancing insulin sensitivity, promoting pancreatic β-cell function, and regulating energy metabolism. There is growing evidence that the drug also has a potentially volatile role in the treatment of diabetic complications, including metabolic cardiomyopathy, diabetic vasculopathy, and diabetic neuroinflammation. According to available clinical studies, its efficacy and safety profile are more evident than other hypoglycaemic agents, and it has synergistic effects when combined with other antidiabetic drugs, and also has potential in the treatment of T2DM-related complications. This review aims to shed light on the latest research progress in the treatment of T2DM with Imeglimin, thereby providing clinicians and researchers with the latest insights into Imeglimin as a viable option for the treatment of T2DM.
Collapse
Affiliation(s)
- Yilin Li
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Nenngjun Lou
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xiaojing Liu
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xianghua Zhuang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China.
| | - Shihong Chen
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China.
| |
Collapse
|
89
|
Bennici G, Almahasheer H, Alghrably M, Valensin D, Kola A, Kokotidou C, Lachowicz J, Jaremko M. Mitigating diabetes associated with reactive oxygen species (ROS) and protein aggregation through pharmacological interventions. RSC Adv 2024; 14:17448-17460. [PMID: 38813124 PMCID: PMC11135279 DOI: 10.1039/d4ra02349h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Diabetes mellitus, a complex metabolic disorder, presents a growing global health challenge. In 2021, there were 529 million diabetics worldwide. At the super-regional level, Oceania, the Middle East, and North Africa had the highest age-standardized rates. The majority of cases of diabetes in 2021 (>90.0%) were type 2 diabetes, which is largely indicative of the prevalence of diabetes in general, particularly in older adults (K. L. Ong, et al., Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021, Lancet, 2023, 402(10397), 203-234). Nowadays, slowing the progression of diabetic complications is the only effective way to manage diabetes with the available therapeutic options. However, novel biomarkers and treatments are urgently needed to control cytokine secretion, advanced glycation end products (AGEs) production, vascular inflammatory effects, and cellular death. Emerging research has highlighted the intricate interplay between reactive oxygen species (ROS) and protein aggregation in the pathogenesis of diabetes. In this scenario, the main aim of this paper is to provide a comprehensive review of the current understanding of the molecular mechanisms underlying ROS-induced cellular damage and protein aggregation, specifically focusing on their contribution to diabetes development. The role of ROS as key mediators of oxidative stress in diabetes is discussed, emphasizing their impact on cellular components and signaling. Additionally, the involvement of protein aggregation in impairing cellular function and insulin signaling is explored. The synergistic effects of ROS and protein aggregation in promoting β-cell dysfunction and insulin resistance are examined, shedding light on potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Giulia Bennici
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Hanan Almahasheer
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU) Dammam 31441-1982 Saudi Arabia
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena Via Aldo Moro 2 53100 Siena Italy
| | - Arian Kola
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena Via Aldo Moro 2 53100 Siena Italy
| | - Chrysoula Kokotidou
- Department of Materials Science and Technology, University of Crete 70013 Heraklion Crete Greece
- Institute of Electronic Structure and Laser (IESL) FORTH 70013 Heraklion Crete Greece
| | - Joanna Lachowicz
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University Mikulicza-Radeckiego 7 Wroclaw PL 50-368 Poland
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
90
|
Almayda N, Masruri M, Safitri A. Effectiveness of Using Gum Arabic for Co-Microencapsulation of Ruellia tuberosa L. and Tithonia diversifolia Extracts as Encapsulating Agent and Release Studies. SCIENTIFICA 2024; 2024:9097238. [PMID: 38827017 PMCID: PMC11142852 DOI: 10.1155/2024/9097238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
This study used a combination of leaves extracts from Ruellia tuberosa L. and Tithonia diversifolia plants encapsulated using gum Arabic. The selection of leaves in medicinal plants because they are rich in bioactive compounds that provide health benefits. The encapsulation technique was microencapsulation through freeze-drying, since the nanoencapsulation for the plant extracts is unlikely to be conducted due to their large particle sizes. The resulting microcapsules were then tested their biological activities in vitro. Several conditions affect microcapsules' production, including pH, gum Arabic concentration, and stirring time were assessed. The optimum conditions were chosen based on the highest encapsulation efficiency. The results showed that the optimum microcapsules preparation was achived at pH 5, gum Arabic concentration of 4% (w/v), and stirring time of 60 min with an encapsulation efficiency of 84.29%. The in vitro assays include inhibition of alpha-amylase and antioxidant activities, resulted in the respective IC50 values of 54.74 μg/mL and 152.74 μg/mL. Releases of bioactive compounds from the microcapsules were investigated under pH 2.2 and pH 7.4 from 30 to 120 min. Results indicated a release of 43.10% at pH 2.2 and 42.26% at pH 7.4 during 120 min, demonstrating the controlled release behavior of the encapsulated bioactive compounds; nonetheless, their release behavior was not pH-dependent. This study confirms that microencapsulation has an important role in the development of plant extracts with maintained biological functions as well as maintaining their stability.
Collapse
Affiliation(s)
- Nabila Almayda
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
| | - Masruri Masruri
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
| | - Anna Safitri
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
- Research Center for Smart Molecules of Natural Genetic Resources (SMONAGENES), Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
| |
Collapse
|
91
|
Iqbal A, Hafeez Kamran S, Siddique F, Ishtiaq S, Hameed M, Manzoor M. Modulatory effects of rutin and vitamin A on hyperglycemia induced glycation, oxidative stress and inflammation in high-fat-fructose diet animal model. PLoS One 2024; 19:e0303060. [PMID: 38723008 PMCID: PMC11081234 DOI: 10.1371/journal.pone.0303060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
In the current study we investigated the impact of combination of rutin and vitamin A on glycated products, the glyoxalase system, oxidative markers, and inflammation in animals fed a high-fat high-fructose (HFFD) diet. Thirty rats were randomly divided into six groups (n = 5). The treatments, metformin (120 mg/kg), rutin (100 mg/kg), vitamin A (43 IU/kg), and a combination of rutin (100 mg/kg) and vitamin A (43 IU/kg) were given to relevant groups of rats along with high-fructose high-fat diet for 42 days. HbA1c, D-lactate, Glyoxylase-1, Hexokinase 2, malondialdehyde (MDA), glutathione peroxidase (GPx), catalase (CAT), nuclear transcription factor-B (NF-κB), interleukin-6 (IL-6), interleukin-8 (IL-8) and histological examinations were performed after 42 days. The docking simulations were conducted using Auto Dock package. The combined effects of rutin and vitamin A in treated rats significantly (p < 0.001) reduced HbA1c, hexokinase 2, and D-lactate levels while preventing cellular damage. The combination dramatically (p < 0.001) decreased MDA, CAT, and GPx in treated rats and decreased the expression of inflammatory cytokines such as IL-6 andIL-8, as well as the transcription factor NF-κB. The molecular docking investigations revealed that rutin had a strong affinity for several important biomolecules, including as NF-κB, Catalase, MDA, IL-6, hexokinase 2, and GPx. The results propose beneficial impact of rutin and vitamin A as a convincing treatment strategy to treat AGE-related disorders, such as diabetes, autism, alzheimer's, atherosclerosis.
Collapse
Affiliation(s)
- Aqsa Iqbal
- Faculty of Pharmaceutical and Allied Health Sciences, Department of Pharmacology, Institute of Pharmacy, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Sairah Hafeez Kamran
- Faculty of Pharmaceutical and Allied Health Sciences, Department of Pharmacology, Institute of Pharmacy, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Farhan Siddique
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Saiqa Ishtiaq
- Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Punjab, Pakistan
| | - Misbah Hameed
- Faculty of Pharmaceutical and Allied Health Sciences, Department of Pharmaceutics, Institute of Pharmacy, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Mobina Manzoor
- Faculty of Pharmaceutical and Allied Health Sciences, Department of Pharmaceutics, Institute of Pharmacy, Lahore College for Women University, Lahore, Punjab, Pakistan
| |
Collapse
|
92
|
Shanmuganathan R, Devanesan S, Oza G, Sharma A. Assessment of antimicrobial, antidiabetic, and anti-inflammatory properties of acetone extract of Aerva lanata (L.) by in-vitro approach and bioactive compounds characterization. ENVIRONMENTAL RESEARCH 2024; 248:118348. [PMID: 38295976 DOI: 10.1016/j.envres.2024.118348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
The antimicrobial, antidiabetic, and anti-inflammatory activities efficiency of Aerva lanata plant extracts (aqueous (Aqu-E), acetone (Ace-E), and ethanol (Eth-E)) were investigated in this study. Furthermore, the active molecules exist in the crude extract were characterized by UV-Visible spectrophotometer, Fourier transform infrared (FTIR), High-performance liquid chromatography (HPLC), and Gas Chromatography-Mass Spectrometry (GC-MS) analyses. The preliminary phytochemical study revealed that the Ace-E restrain more phytochemicals like alkaloids, saponins, anthraquinone, tannins, phenolics, flavonoids, glycosides, terpenoids, amino acid, steroids, protein, coumarin, as well as quinine than Aqu-E and Eth-E. Accordingly to this Ace-E showed considerable antimicrobial activity as the follows: for bacteria S. aureus > E. coli > K. pneumoniae > P. aeruginosa > B. subtilis and for fungi T. viride > A.flavus > C. albicans > A.niger at 30 mg ml concentration. Similarly, Ace-E showed considerable antidiabetic (α-amylase: 71.7 % and α-glucosidase: 70.1 %) and moderate anti-inflammatory (59 % and 49.8 %) activities. The spectral and chromatogram studies confirmed that the Ace-E have pharmaceutically valuable bioactive molecules such as (Nbutyl)-octadecane, propynoic acid, neophytadiene, and 5,14-di (N-butyl)-octadecane. These findings suggest that Ace-E from A. lanata can be used to purify additional bioactive substances and conduct individual compound-based biomedical application research.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam.
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico Querétaro s/n, Sanfandila. Pedro Escobedo, Querétaro 76703, Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico.
| |
Collapse
|
93
|
Tamuli B, Sharma S, Patkar M, Biswas S. Key players of immunosuppression in epithelial malignancies: Tumor-infiltrating myeloid cells and γδ T cells. Cancer Rep (Hoboken) 2024; 7:e2066. [PMID: 38703051 PMCID: PMC11069128 DOI: 10.1002/cnr2.2066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.
Collapse
Affiliation(s)
- Baishali Tamuli
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Sakshi Sharma
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Meena Patkar
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Subir Biswas
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
- Homi Bhabha National InstituteMumbaiIndia
| |
Collapse
|
94
|
Gupta S, Sharma N, Arora S, Verma S. Diabetes: a review of its pathophysiology, and advanced methods of mitigation. Curr Med Res Opin 2024; 40:773-780. [PMID: 38512073 DOI: 10.1080/03007995.2024.2333440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Diabetes mellitus (DM) is a long-lasting metabolic non-communicable disease often characterized by an increase in the level of glucose in the blood or hyperglycemia. Approximately, 415 million people between the ages of 20 and 79 years had DM in 2015 and this figure will rise by 200 million by 2040. In a study conducted by CARRS, it's been found that in Delhi the prevalence of diabetes is around 27% and for prediabetic cases, it is more than 46%. The disease DM can be both short-term and long-term and is often associated with one or more diseases like cardiovascular disease, liver disorder, or kidney malfunction. Early identification of diabetes may help avoid catastrophic repercussions because untreated DM can result in serious complications. Diabetes' primary symptoms are persistently high blood glucose levels, frequent urination, increased thirst, and increased hunger. Therefore, DM is classified into four major categories, namely, Type 1, Type 2, Gestational diabetes, and secondary diabetes. There are various oral and injectable formulations available in the market like insulin, biguanides, sulphonylureas, etc. for the treatment of DM. Recent attention can be given to the various nano approaches undertaken for the treatment, diagnosis, and management of diabetes mellitus. Various nanoparticles like Gold Nanoparticles, carbon nanomaterials, and metallic nanoparticles are some of the approaches mentioned in this review. Besides nanotechnology, artificial intelligence (AI) has also found its application in diabetes care. AI can be used for screening the disease, helping in decision-making, predictive population-level risk stratification, and patient self-management tools. Early detection and diagnosis of diabetes also help the patient avoid expensive treatments later in their life with the help of IoT (internet of medical things) and machine learning models. These tools will help healthcare physicians to predict the disease early. Therefore, the Nano drug delivery system along with AI tools holds a very bright future in diabetes care.
Collapse
Affiliation(s)
- Sarika Gupta
- Centre for Pharmaceutics, Industrial Pharmacy and Drugs Regulatory Affairs, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Nitin Sharma
- Centre for Pharmaceutics, Industrial Pharmacy and Drugs Regulatory Affairs, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Sandeep Arora
- Centre for Pharmaceutics, Industrial Pharmacy and Drugs Regulatory Affairs, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Saurabh Verma
- Centre for Pharmaceutics, Industrial Pharmacy and Drugs Regulatory Affairs, Amity Institute of Pharmacy, Amity University, Noida, India
| |
Collapse
|
95
|
Adhikary K, Sarkar R, Maity S, Banerjee I, Chatterjee P, Bhattacharya K, Ahuja D, Sinha NK, Maiti R. The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review. J Basic Clin Physiol Pharmacol 2024; 35:153-168. [PMID: 38748886 DOI: 10.1515/jbcpp-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/01/2024] [Indexed: 07/05/2024]
Abstract
Type 2 diabetes mellitus is a long-lasting endocrine disorder characterized by persistent hyperglycaemia, which is often triggered by an entire or relative inadequacy of insulin production or insulin resistance. As a result of resistance to insulin (IR) and an overall lack of insulin in the body, type 2 diabetes mellitus (T2DM) is a metabolic illness that is characterized by hyperglycaemia. Notably, the occurrence of vascular complications of diabetes and the advancement of IR in T2DM are accompanied by dysbiosis of the gut microbiota. Due to the difficulties in managing the disease and the dangers of multiple accompanying complications, diabetes is a chronic, progressive immune-mediated condition that plays a significant clinical and health burden on patients. The frequency and incidence of diabetes among young people have been rising worldwide. The relationship between the gut microbiota composition and the physio-pathological characteristics of T2DM proposes a novel way to monitor the condition and enhance the effectiveness of therapies. Our knowledge of the microbiota of the gut and how it affects health and illness has changed over the last 20 years. Species of the genus Eubacterium, which make up a significant portion of the core animal gut microbiome, are some of the recently discovered 'generation' of possibly helpful bacteria. In this article, we have focused on pathogenesis and therapeutic approaches towards T2DM, with a special reference to gut bacteria from ancient times to the present day.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Riya Sarkar
- Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India
| | - Sriparna Maity
- Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India
| | - Ipsita Banerjee
- Department of Nutrition, Paramedical College Durgapur, Durgapur, West Bengal, India
| | - Prity Chatterjee
- Department of Biotechnology, Paramedical College Durgapur, Durgapur, West Bengal, India
| | - Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Nirmalya Kumar Sinha
- Department of Nutrition and Department of NSS, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore, West Bengal, India
| | - Rajkumar Maiti
- Department of Physiology, 326624 Bankura Christian College , Bankura, West Bengal, India
| |
Collapse
|
96
|
Gao J, Zhou X, Gao H, Xu G, Xie C, Xie H. Investigation of the hypoglycemic mechanism of the ShenQi compound formula through metabonomics and 16S rRNA sequencing. Front Pharmacol 2024; 15:1349244. [PMID: 38708085 PMCID: PMC11066276 DOI: 10.3389/fphar.2024.1349244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/19/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction: Herbal formulations are renowned for their complex biological activities, acting on multiple targets and pathways, as evidenced by in vitro studies. However, the hypoglycemic effect and underlying mechanisms of Shenqi Compound (SQ), a traditional Chinese herbal formula, remain elusive. This study aimed to elucidate the hypoglycemic effects of SQ and explore its mechanisms of action, focusing on intestinal flora and metabolomics. Methods: A Type 2 diabetes mellitus (T2DM) rat model was established through a high-fat diet, followed by variable glucose and insulin injections to mimic the fluctuating glycemic conditions seen in diabetes. Results: An eight-week regimen of SQ significantly mitigated hyperglycemia, inflammation, and insulin resistance in these rats. Notably, SQ beneficially modulated the gut microbiota by increasing populations of beneficial bacteria, such as Lachnospiraceae_NK4A136_group and Akkermansia, while reducing and inhibiting harmful strains such as Ruminococcus and Phascolarctobacterium. Metabolomics analyses revealed that SQ intervention corrected disturbances in Testosterone enanthate and Glycerophospholipid metabolism. Discussion: Our findings highlight the hypoglycemic potential of SQ and its mechanisms via modulation of the gut microbiota and metabolic pathways, offering a theoretical foundation for the use of herbal medicine in diabetes management.
Collapse
Affiliation(s)
- Juan Gao
- Chengdu University of Traditional Chinese Medicine School of Clinical Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiujuan Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guiping Xu
- Chengdu University of Traditional Chinese Medicine School of Clinical Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
97
|
Padilla-Mayne S, Ovalle-Magallanes B, Figueroa M, Linares E, Bye R, Rivero-Cruz I, González-Andrade M, Aguayo-Ortiz R, Mata R. Chemical Analysis and Antidiabetic Potential of a Decoction from Stevia serrata Roots. JOURNAL OF NATURAL PRODUCTS 2024; 87:501-513. [PMID: 37738100 DOI: 10.1021/acs.jnatprod.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
A decoction of the roots (31.6-316 mg/kg) from Stevia serrata Cav. (Asteraceae) as well as the main component (5-150 mg/kg) showed hypoglycemic and antihyperglycemic effects in mice. The fractionation of the active extract led to the isolation of dammaradiene acetate (1), stevisalioside A (2), and three new chemical entities characterized by spectroscopic methods and named stevisaliosides B-D (3-5). Glycoside 2 (5 and 50 mg/kg) decreased blood glucose levels and the postprandial peak during oral glucose and insulin tolerance tests in STZ-hyperglycemic mice. Compounds 1-5 were tested also against PTP1B1-400 and showed IC50 values of 1180.9 ± 0.33, 526.8 ± 0.02, 532.1 ± 0.03, 928.2 ± 0.39, and 31.8 ± 1.09 μM, respectively. Compound 5 showed an IC50 value comparable to that of ursolic acid (IC50 = 30.7 ± 0.00 μM). Docking studies revealed that 2-5 and their aglycones bind to PTP1B1-400 in a pocket formed by the C-terminal region. The volatilome of S. serrata was characterized by a high content of (E)-longipinene, spathulenol, guaiadiene, seychellene, and aromandendrene. Finally, a UHPLC-UV method was developed and validated to quantify the content of 2 in the decoction of the plant.
Collapse
Affiliation(s)
- Sofía Padilla-Mayne
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | | | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Edelmira Linares
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Robert Bye
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Isabel Rivero-Cruz
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Martín González-Andrade
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Rodrigo Aguayo-Ortiz
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Rachel Mata
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
98
|
Ahmad A, Sabbour H. Effectiveness and safety of the combination of sodium-glucose transport protein 2 inhibitors and glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of observational studies. Cardiovasc Diabetol 2024; 23:99. [PMID: 38500154 PMCID: PMC10949729 DOI: 10.1186/s12933-024-02192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Randomized controlled trials and real-world studies suggest that combination therapy with sodium-glucose transport protein 2 inhibitors (SGLT2is) and glucagon-like peptide-1 receptor agonists (GLP-1RAs) is associated with improvement in fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), systolic blood pressure (SBP), body mass index (BMI), and total cholesterol levels. However, a systematic review of available real-world evidence may facilitate clinical decision-making in the real-world scenario. This meta-analysis assessed the safety and effectiveness of combinations of SGLT2is + GLP-1RAs with a focus on their cardioprotective effects along with glucose-lowering ability in patients with type 2 diabetes mellitus (T2DM) in a real-world setting. METHODS Electronic searches were performed in the PubMed/MEDLINE, PROQuest, Scopus, CINAHL, and Google Scholar databases. Qualitative analyses and meta-analyses were performed using the Joanna Briggs Institute SUMARI software package and Review Manager v5.4, respectively. RESULTS The initial database search yielded 1445 articles; of these, 13 were included in this study. The analyses indicated that SGLT2is + GLP-1RAs combinations were associated with significantly lower all-cause mortality when compared with individual therapies (odds ratio [95% confidence interval [CI] 0.49 [0.41, 0.60]; p < 0.00001). Significant reductions in BMI (- 1.71 [- 2.74, - 0.67]; p = 0.001), SBP (- 6.35 [- 10.17, - 2.53]; p = 0.001), HbA1c levels (- 1.48 [- 1.75, - 1.21]; p < 0.00001), and FPG (- 2.27 [- 2.78, - 1.76]; p < 0.00001) were associated with the simultaneous administration of the combination. Changes in total cholesterol levels and differences between simultaneous and sequential combination therapies for this outcome were not significant. CONCLUSION This systematic review and meta-analysis based on real-world data suggests that the combination of SGLT2is + GLP-1RAs is associated with lower all-cause mortality and favorable improvements in cardiovascular, renal, and glycemic measurements. The findings drive a call-to-action to incorporate this combination early and simultaneously in managing T2DM patients and achieve potential cardiovascular benefits and renal protection.
Collapse
Affiliation(s)
- Aftab Ahmad
- Department of Endocrinology, Imperial College London Diabetes Centre, Abu Dhabi, United Arab Emirates.
- Department of Endocrinology, Khalifa Medical University, Abu Dhabi, United Arab Emirates.
| | - Hani Sabbour
- Department of Cardiology, Mediclinic Hospital, Abu Dhabi, United Arab Emirates
- Department of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Cardiology, Imperial College London Diabetes Centre, Abu Dhabi, United Arab Emirates
| |
Collapse
|
99
|
Hu T, Zhang W, Han F, Zhao R, Liu H, An Z. Machine learning reveals serum myristic acid, palmitic acid and heptanoylcarnitine as biomarkers of coronary artery disease risk in patients with type 2 diabetes mellitus. Clin Chim Acta 2024; 556:117852. [PMID: 38438006 DOI: 10.1016/j.cca.2024.117852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Coronary heart disease (CHD) is the most important complication of type 2 diabetes mellitus (T2DM) and the leading cause of death. Identifying the risk of CHD in T2DM patients is important for early clinical intervention. METHODS A total of 213 participants, including 81 healthy controls (HCs), 69 T2DM patients and 63 T2DM patients complicated with CHD were recruited in this study. Serum metabolomics were conducted by using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Demographic information and clinical laboratory test results were also collected. RESULTS Metabolic phenotypes were significantly altered among HC, T2DM and T2DM-CHD. Acylcarnitines were the most disturbed metabolites between T2DM patients and HCs. Lower levels of bile acids and higher levels of fatty acids in serum were closely associated with CHD risk in T2DM patients. Artificial neural network model was constructed for the discrimination of T2DM and T2DM complicated with CHD based on myristic acid, palmitic acid and heptanoylcarnitine, with accuracy larger than 0.95 in both training set and testing set. CONCLUSION Altogether, these findings suggest that myristic acid, palmitic acid and heptanoylcarnitine have a good prospect for the warning of CHD complications in T2DM patients, and are superior to traditional lipid, blood glucose and blood pressure indicators.
Collapse
Affiliation(s)
- Ting Hu
- Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing 100020, PR China.
| | - Wen Zhang
- Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing 100020, PR China
| | - Feifei Han
- Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing 100020, PR China
| | - Rui Zhao
- Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing 100020, PR China
| | - Hongchuan Liu
- Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing 100020, PR China
| | - Zhuoling An
- Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing 100020, PR China.
| |
Collapse
|
100
|
Fabian MCP, Astorga RMN, Atis AAG, Pilapil LAE, Hernandez CC. Anti-diabetic and anti-inflammatory bioactive hits from Coriaria intermedia Matsum. stem and Dracontomelon dao (Blanco) Merr. & Rolfe bark through bioassay-guided fractionation and liquid chromatography-tandem mass spectrometry. Front Pharmacol 2024; 15:1349725. [PMID: 38523640 PMCID: PMC10957545 DOI: 10.3389/fphar.2024.1349725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Women have been found to be at a higher risk of morbidity and mortality from type 2 diabetes mellitus (T2DM) and asthma. α-Glucosidase inhibitors have been used to treat T2DM, and arachidonic acid 15-lipoxygenase (ALOX15) inhibitors have been suggested to be used as treatments for asthma and T2DM. Compounds that inhibit both enzymes may be studied as potential treatments for people with both T2DM and asthma. This study aimed to determine potential anti-diabetic and anti-inflammatory bioactive hits from Coriaria intermedia Matsum. stem and Dracontomelon dao (Blanco) Merr. & Rolfe bark. A bioassay-guided fractionation framework was used to generate bioactive fractions from C. intermedia stem and D. dao bark. Subsequently, dereplication through ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and database searching was performed to putatively identify the components of one bioactive fraction from each plant. Seven compounds were putatively identified from the C. intermedia stem active fraction, and six of these compounds were putatively identified from this plant for the first time. Nine compounds were putatively identified from the D. dao bark active fraction, and seven of these compounds were putatively identified from this plant for the first time. One putative compound from the C. intermedia stem active fraction (corilagin) has been previously reported to have inhibitory activity against both α-glucosidase and 15-lipoxygenase-1. It is suggested that further studies on the potential of corilagin as an anti-diabetic and anti-inflammatory treatment should be pursued based on its several beneficial pharmacological activities and its low reported toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Christine Chichioco Hernandez
- Bioorganic and Natural Products Laboratory, Institute of Chemistry, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|