51
|
Wang J, Fu H, Wang B, Yu JG, Liu X, Liu Y, Xu C, Zhang Y. Carbazochrome attenuates acute lung injury in septic rats by inhibition of Parkin-mediated mitochondrial autophagy. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
52
|
Ozadali-Sari K, Ceylan S, Yucel ES, Sabuncuoglu S, Unsal-Tan O. Design, Synthesis and Cytotoxic Evaluation of N‐acylhydrazone‐Incorporated Isoxazolo[4,5‐d]pyridazin‐4(5H)‐one Derivatives. Chem Biodivers 2022; 19:e202200389. [DOI: 10.1002/cbdv.202200389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Keriman Ozadali-Sari
- Hacettepe Universitesi Eczacilik Fakultesi Pharmaceutical chemistry Department of Pharmaceutical Chemistry, Hacettepe UniversityFaculty of Pharmacy, Ankara 06100 06100 Ankara TURKEY
| | - Serenay Ceylan
- Hacettepe Universitesi Eczacilik Fakultesi Pharmaceutical Chemistry 1Department of Pharmaceutical Chemistry, Hacettepe UniversityFaculty of PharmacyAnkara 06100, Turkey 06100 Ankara TURKEY
| | - Evnur Sinem Yucel
- Hacettepe Universitesi Eczacilik Fakultesi Pharmaceutical Chemistry Department of Pharmaceutical Chemistry, Hacettepe University,Faculty of Pharmacy 06100 Ankara TURKEY
| | - Suna Sabuncuoglu
- Hacettepe Universitesi Eczacilik Fakultesi Pharmaceutical Toxicology Department of Pharmaceutical Toxicology, Hacettepe University,Faculty of Pharmacy, Ankara 06100 06100 Ankara TURKEY
| | - Oya Unsal-Tan
- Hacettepe Universitesi Eczacilik Fakultesi Department of Pharmaceutical Chemistry, Hacettepe University, Faculty of Pharmacy, Ankara 06100 06100 Ankara TURKEY
| |
Collapse
|
53
|
Sundar S, Rengan R, Pennamuthiriyan A, Sémeril D. Arene Ru (II)‐catalyzed facile synthesis of
N
‐acylhydrazones via acceptorless dehydrogenative coupling strategy. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Saranya Sundar
- Centre for Organometallic Chemistry, School of Chemistry Bharathidasan University Tiruchirappalli Tamilnadu India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry Bharathidasan University Tiruchirappalli Tamilnadu India
| | - Anandaraj Pennamuthiriyan
- Centre for Organometallic Chemistry, School of Chemistry Bharathidasan University Tiruchirappalli Tamilnadu India
| | - David Sémeril
- Laboratoire de Chimie Inorganiqueet Catalyse Institut de Chimie, Universite de Strasbourg Strasbourg France
| |
Collapse
|
54
|
Barbosa G, Gelves LGV, Costa CMX, Franco LS, de Lima JAL, Aparecida-Silva C, Teixeira JD, Mermelstein CDS, Barreiro EJ, Lima LM. Discovery of Putative Dual Inhibitor of Tubulin and EGFR by Phenotypic Approach on LASSBio-1586 Homologs. Pharmaceuticals (Basel) 2022; 15:913. [PMID: 35893736 PMCID: PMC9394307 DOI: 10.3390/ph15080913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
Combretastatin A-4 (CA-4, 1) is an antimicrotubule agent used as a prototype for the design of several synthetic analogues with anti-tubulin activity, such as LASSBio-1586 (2). A series of branched and unbranched homologs of the lead-compound 2, and vinyl, ethinyl and benzyl analogues, were designed and synthesized. A comparison between the cytotoxic effect of these homologs and 2 on different human tumor cell lines was performed from a cell viability study using MTT with 48 h and 72 h incubations. In general, the compounds were less potent than CA-4, showing CC50 values ranging from 0.030 μM to 7.53 μM (MTT at 72 h) and 0.096 μM to 8.768 μM (MTT at 48 h). The antimitotic effect of the target compounds was demonstrated by cell cycle analysis through flow cytometry, and the cellular mechanism of cytotoxicity was determined by immunofluorescence. While the benzyl homolog 10 (LASSBio-2070) was shown to be a microtubule stabilizer, the lead-compound 2 (LASSBio-1586) and the methylated homolog 3 (LASSBio-1735) had microtubule destabilizing behavior. Molecular docking studies were performed on tubulin protein to investigate their binding mode on colchicine and taxane domain. Surprisingly, the benzyl homolog 10 was able to modulate EGFR phosphorylate activity in a phenotypic model. These data suggest LASSBio-2070 (10) as a putative dual inhibitor of tubulin and EGFR. Its binding mode with EGFR was determined by molecular docking and may be useful in lead-optimization initiatives.
Collapse
Affiliation(s)
- Gisele Barbosa
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luis Gabriel Valdivieso Gelves
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Caroline Marques Xavier Costa
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Lucas Silva Franco
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - João Alberto Lins de Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Cristiane Aparecida-Silva
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - John Douglas Teixeira
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.D.T.); (C.d.S.M.)
| | - Claudia dos Santos Mermelstein
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.D.T.); (C.d.S.M.)
| | - Eliezer J. Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Lidia Moreira Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
55
|
Oliveira FA, Pinto ACS, Duarte CL, Taranto AG, Lorenzato Junior E, Cordeiro CF, Carvalho DT, Varotti FP, Fonseca AL. Evaluation of antiplasmodial activity in silico and in vitro of N-acylhydrazone derivatives. BMC Chem 2022; 16:50. [PMID: 35810303 PMCID: PMC9271247 DOI: 10.1186/s13065-022-00843-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
N-acylhydrazones are considered privileged structures in medicinal chemistry, being part of antimicrobial compounds (for example). In this study we show the activity of N-acylhydrazone compounds, namely AH1, AH2, AH4, AH5 in in vitro tests against the chloroquine-resistant strain of Plasmodium falciparum (W2) and against WI26 VA-4 human cell lines. All compounds showed low cytotoxicity (LC50 > 100 µM). The AH5 compound was the most active against Plasmodium falciparum, with an IC50 value of 0.07 μM. AH4 and AH5 were selected among the tested compounds for molecular docking calculations to elucidate possible targets involved in their mechanism of action and the SwissADME analysis to predict their pharmacokinetic profile. The AH5 compound showed affinity for 12 targets with low selectivity, while the AH4 compound had greater affinity for only one target (3PHC). These compounds met Lipinski's standards in the ADME in silico tests, indicating good bioavailability results. These results demonstrate that these N-acylhydrazone compounds are good candidates for future preclinical studies against malaria.
Collapse
Affiliation(s)
- Fernanda A Oliveira
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil
| | - Ana Claudia S Pinto
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil.
| | - Caique L Duarte
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil
| | - Alex G Taranto
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil
| | - Eder Lorenzato Junior
- Laboratório de Pesquisa Em Química Farmacêutica, Universidade Federal de Alfenas, Campus Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Cleydson Finotti Cordeiro
- Laboratório de Pesquisa Em Química Farmacêutica, Universidade Federal de Alfenas, Campus Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Diogo T Carvalho
- Laboratório de Pesquisa Em Química Farmacêutica, Universidade Federal de Alfenas, Campus Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Fernando P Varotti
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil
| | - Amanda L Fonseca
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil.
| |
Collapse
|
56
|
Branković J, Milivojević N, Milovanović V, Simijonović D, Petrović ZD, Marković Z, Šeklić DS, Živanović MN, Vukić MD, Petrović VP. Evaluation of antioxidant and cytotoxic properties of phenolic N-acylhydrazones: structure-activity relationship. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211853. [PMID: 35706666 PMCID: PMC9174720 DOI: 10.1098/rsos.211853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/06/2022] [Indexed: 05/03/2023]
Abstract
Cancer is still a relentless public health issue. Particularly, colorectal cancer is the third most prevalent cancer in men and the second in women. Moreover, cancer development and growth are associated with various cell disorders, such as oxidative stress and inflammation. The quest for efficient therapeutics is a challenging task, especially when it comes to achieving both cytotoxicity and selectivity. Herein, five series of phenolic N-acylhydrazones were synthesized and evaluated for their antioxidant potency, as well as their influence on HCT-116 and MRC-5 cells viability. Among 40 examined analogues, 20 of them expressed antioxidant activity against the DPPH radical. Furthermore, density functional theory was employed to estimate the antioxidant potency of the selected analogues from the thermodynamical aspect, as well as the preferable free-radical scavenging pathway. Cytotoxicity assay exposed enhanced selectivity of a number of analogues toward cancer cells. The structure-activity analysis revealed the impact of the type and position of the functional groups on both cell viability and selectivity toward cancer cells.
Collapse
Affiliation(s)
- Jovica Branković
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Nevena Milivojević
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Vesna Milovanović
- University of Kragujevac, Faculty of Agronomy in Čačak, Ljubićska 30, Čačak, Serbia
| | - Dušica Simijonović
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Zorica D. Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Zoran Marković
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Dragana S. Šeklić
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Marko N. Živanović
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Milena D. Vukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Vladimir P. Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
57
|
Acridine Based N-Acylhydrazone Derivatives as Potential Anticancer Agents: Synthesis, Characterization and ctDNA/HSA Spectroscopic Binding Properties. Molecules 2022; 27:molecules27092883. [PMID: 35566236 PMCID: PMC9100673 DOI: 10.3390/molecules27092883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
A series of novel acridine N-acylhydrazone derivatives have been synthesized as potential topoisomerase I/II inhibitors, and their binding (calf thymus DNA—ctDNA and human serum albumin—HSA) and biological activities as potential anticancer agents on proliferation of A549 and CCD-18Co have been evaluated. The acridine-DNA complex 3b (-F) displayed the highest Kb value (Kb = 3.18 × 103 M−1). The HSA-derivatives interactions were studied by fluorescence quenching spectra. This method was used for the calculation of characteristic binding parameters. In the presence of warfarin, the binding constant values were found to decrease (KSV = 2.26 M−1, Kb = 2.54 M−1), suggesting that derivative 3a could bind to HSA at Sudlow site I. The effect of tested derivatives on metabolic activity of A549 cells evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT assay decreased as follows 3b(-F) > 3a(-H) > 3c(-Cl) > 3d(-Br). The derivatives 3c and 3d in vitro act as potential dual inhibitors of hTopo I and II with a partial effect on the metabolic activity of cancer cells A594. The acridine-benzohydrazides 3a and 3c reduced the clonogenic ability of A549 cells by 72% or 74%, respectively. The general results of the study suggest that the novel compounds show potential for future development as anticancer agents.
Collapse
|
58
|
Mayurachayakul P, Niamnont N, Chaiseeda K, Chantarasriwong O. Catalyst‐ and Solvent‐Free Synthesis of N‐Acylhydrazones via Solid‐State Melt Reaction. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Nakorn Niamnont
- King Mongkut's University of Technology Thonburi Chemistry 10140 THAILAND
| | | | - Oraphin Chantarasriwong
- King Mongkut's University of Technology Thonburi Chemistry 126 Pracha Uthit Rd.Bang Mod 10140 Thung Khru THAILAND
| |
Collapse
|
59
|
Rode JE, Lyczko K, Kosińska K, Matalińska J, Dyniewicz J, Misicka A, Dobrowolski JC, Lipiński PFJ. The solid state VCD of a novel N-acylhydrazone trifluoroacetate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120761. [PMID: 34954483 DOI: 10.1016/j.saa.2021.120761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
A novel N-acylhydrazone with pharmaceutical importance was subject of structural and IR/VCD investigations in the solid state. In the crystal structure, dimers of anion-cation pairs are stabilized by H-bonding and ionic interactions. Some less common interaction types, like C=N···C-NH3+ (σ-hole) interactions, hydrazone-aromatic interactions and dispersive contacts of the CF3 groups are also present in the crystal. Satisfactory reproduction of the solid state IR and VCD spectra required that quantum-chemical calculations be done on a tetramer (four cation-anion pairs) cut out from the crystal structure, exhibiting key intermolecular interactions. Ten DFT functionals were assessed as to the agreement between the calculated and experimental spectra. Various approaches to scaling of the calculated frequencies were applied. The best results were yielded with individual (optimized) frequency scaling factors (FSFs) and band half-widths at half maximum-(HWHM) for four separate spectral subregions. The best matching between the experimental and theoretical spectra (according to SimIR, SimVCD and SimVDF indices) was found for the B3PW91 functional, however, a few other functionals follow closely in the ranking. Based on the quantum chemical calculations, spectral assignments have been made.
Collapse
Affiliation(s)
- Joanna E Rode
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, PL 03-195 Warsaw, Poland
| | - Krzysztof Lyczko
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, PL 03-195 Warsaw, Poland
| | - Katarzyna Kosińska
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, PL 02-106 Warsaw, Poland
| | - Joanna Matalińska
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, PL 02-106 Warsaw, Poland
| | - Jolanta Dyniewicz
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, PL 02-106 Warsaw, Poland
| | - Aleksandra Misicka
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, PL 02-106 Warsaw, Poland
| | - Jan Cz Dobrowolski
- Department for Medicines Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska Street, PL 00-725 Warsaw, Poland
| | - Piotr F J Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, PL 02-106 Warsaw, Poland.
| |
Collapse
|
60
|
Cukierman DS, Rey NA. Tridentate N-Acylhydrazones as Moderate Ligands for the Potential Management of Cognitive Decline Associated With Metal-Enhanced Neuroaggregopathies. Front Neurol 2022; 13:828654. [PMID: 35250832 PMCID: PMC8888665 DOI: 10.3389/fneur.2022.828654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 01/07/2023] Open
Affiliation(s)
- Daphne S Cukierman
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nicolás A Rey
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
61
|
Liao A, Li L, Wang T, Lu A, Wang Z, Wang Q. Discovery of Phytoalexin Camalexin and Its Derivatives as Novel Antiviral and Antiphytopathogenic-Fungus Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2554-2563. [PMID: 35179026 DOI: 10.1021/acs.jafc.1c07805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In response to the invasion of plant viruses and pathogenic fungi, higher plants produce defensive allelochemicals. Finding candidate varieties of botanical pesticides based on allelochemicals is one of the important ways to create efficient and green pesticides. Here, a series of camalexin derivatives based on a phytoalexin camalexin scaffold were designed, synthesized, and assessed for their antiviral and fungicidal activities systematically. Most of these camalexin derivatives exhibited better antiviral activities against tobacco mosaic virus (TMV) than the control antiviral agent ribavirin. Under the same test conditions, the anti-TMV activities of compounds 3d, 5a, 5d, and 10f-10h were found to be equivalent to or better than that of ningnanmycin, an agricultural cytosine nucleoside antibiotic with excellent protective effect. The antiviral mechanism research showed that compound 5a could cause 20S CP disk fusion and disintegration, thus affecting the assembly of virus particles. The results of molecular docking indicate that there were obvious hydrogen bonds between compounds 3d, 5a, and 10f and TMV CP. The binding constants of compounds 5a and 10f to TMV CP were also calculated using fluorescence titration. These camalexin derivatives also presented broad spectrum fungicidal activities, especially for Rhizoctonia solani and Physalospora piricola. In this work, the design, synthesis, structure optimization, and mode of action of camalexin derivatives were carried out progressively. This work provides a reference for using defensive chemical compounds as novel pesticide lead compounds.
Collapse
Affiliation(s)
- Ancai Liao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lin Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Tienan Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
62
|
Joshi S, Agarwal S, Panjla A, Valiyaveettil S, Ganesh S, Verma S. Inhibiting erastin-induced ferroptotic cell death by purine-based chelators. Chembiochem 2022; 23:e202100654. [PMID: 35188704 DOI: 10.1002/cbic.202100654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/15/2022] [Indexed: 11/07/2022]
Abstract
Ferroptosis is a novel cell death event caused by increased lipid peroxidation leading to iron-dependent oxidative stress and associated with a wide variety of diseases. In recent years, ferroptosis inhibition has been emerging as a novel strategy to target the different pathologies. Here, we report the synthesis of two purine derivatives, 1 and 2, on iron chelation strategy and evaluate their potency to inhibit erastin induced ferroptosis. Both compounds showed efficient iron chelation in solution state as well as in the cellular environment. Crystal structure of purine derivative with iron demonstrated 2:1 (ligand to metal center) stoichiometry for iron and purine derivative complexation. The synthesized compounds also decrease the reactive oxygen species concentration in vitro cell culture. Compound 2 showed better potency towards the prevention of ferroptotic cell death as compared to commercially available iron chelator in erastin induced ferroptosis cell culture model. Such purine analogs are potential functional scaffolds for the development of a few target molecules for ferroptosis inhibition.
Collapse
Affiliation(s)
- Saurabh Joshi
- Indian Institute of Technology Kanpur, Chemistry, INDIA
| | - Saloni Agarwal
- Indian Institute of Technology Kanpur, Biological Sciences and Bioengineering, INDIA
| | - Apurva Panjla
- Indian Institute of Technology Kanpur, Chemistry, INDIA
| | - Suresh Valiyaveettil
- National University of Singapore, Department of Chemistry, 3 Science Drive 3, 117543, Singapore, SINGAPORE
| | - Subramaniam Ganesh
- Indian Institute of Technology Kanpur, Biological Sciences and Bioengineering, INDIA
| | - Sandeep Verma
- Indian Institute of Technology Kanpur, Chemistry, INDIA
| |
Collapse
|
63
|
Valverde TL, Sampiron EG, Montaholi DC, Baldin VP, Insaurralde DD, Alves-Olher VG, Siqueira VL, Caleffi-Ferracioli KR, Cardoso RF, Vandresen F, Scodro RB. 3,5-dinitrobenzoylhydrazone derivatives as a scaffold for antituberculosis drug development. Future Microbiol 2022; 17:267-280. [PMID: 35164529 DOI: 10.2217/fmb-2021-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The development of drugs is essential to eradicate tuberculosis. Materials & methods: Sixteen 3,5-dinitrobenzoylhydrazone (2-17) derivatives and their synthetic precursors 3,5-dinitrobenzoylhydrazide (1) and methyl ester (18) were screened for their anti-Mycobacterium tuberculosis (Mtb) potential. Results: Twelve compounds had minimum inhibitory concentration (MIC) ranging from 0.24 to 7.8 μg/ml against the Mtb strain. The activity was maintained in multidrug-resistant Mtb clinical isolates. Only compound (17) showed activity against nontuberculous mycobacteria. The compounds exhibited a limited spectrum of activity, with an MIC >500 μg/ml against Gram-positive and -negative bacteria. Compounds (2), (5) and (11) showed a synergistic effect with rifampicin. An excellent selectivity index value was found, with values reaching 583.33. Conclusion: 3,5-dinitrobenzoylhydrazone derivatives could be considered as a scaffold for the development of antituberculosis drugs.
Collapse
Affiliation(s)
- Tamires L Valverde
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Eloísa G Sampiron
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Débora C Montaholi
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Vanessa P Baldin
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Diego Dr Insaurralde
- Department of Chemistry, Federal Technological University of Paraná, Londrina, Paraná, 86036-370, Brazil
| | - Vanessa G Alves-Olher
- Department of Chemistry, Federal Institute of Paraná, Paranavaí, Paraná, 87703-536, Brazil
| | - Vera Ld Siqueira
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Katiany R Caleffi-Ferracioli
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Rosilene F Cardoso
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, 87020-900, Brazil.,Postgraduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Fábio Vandresen
- Department of Chemistry, Federal Technological University of Paraná, Londrina, Paraná, 86036-370, Brazil
| | - Regiane Bl Scodro
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
64
|
Zhang H, Min S, Zhang L, Li L. Design, synthesis and protein-binding character of an acylhydrazone anticancer candidate. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
65
|
Barbier T, Barbry A, Magand J, Badiou C, Davy F, Baudouin A, Queneau Y, Dumitrescu O, Lina G, Soulère L. Synthesis and Biological Evaluation of Benzo[b]thiophene Acylhydrazones as Antimicrobial Agents against Multidrug-Resistant Staphylococcus aureus. Biomolecules 2022; 12:biom12010131. [PMID: 35053281 PMCID: PMC8773820 DOI: 10.3390/biom12010131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The benzo[b]thiophene nucleus and the acylhydrazone functional group were combined to prepare three new series of compounds for screening against Staphylococcus aureus. The reaction of substituted benzo[b]thiophene-2-carboxylic hydrazide and various aromatic or heteroaromatic aldehydes led to a collection of 26 final products with extensive structural diversification on the aromatic ring and on position 6 of the benzo[b]thiophene nucleus. The screening lead to the identification of eight hits, including (E)-6-chloro-N’-(pyridin-2-ylmethylene)benzo[b]thiophene-2-carbohydrazide (II.b), a non-cytotoxic derivative showing a minimal inhibitory concentration of 4 µg/mL on three S. aureus strains, among which were a reference classical strain and two clinically isolated strains resistant to methicillin and daptomycin, respectively.
Collapse
Affiliation(s)
- Thibaut Barbier
- Univ Lyon, INSA Lyon, UCBL, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, CNRS, Université Lyon 1, CPE-Lyon, Bâtiment Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne, France; (T.B.); (J.M.); (Y.Q.)
| | - Alexia Barbry
- Hospices Civils de Lyon, Hôpital de la Croix Rousse-Centre de Biologie Nord, Institut des Agents Infectieux, Laboratoire de Bactériologie, Grande Rue de la Croix Rousse, 69004 Lyon, France; (A.B.); (O.D.); (G.L.)
- Team STAPATH, CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France; (C.B.); (F.D.)
| | - Jérémy Magand
- Univ Lyon, INSA Lyon, UCBL, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, CNRS, Université Lyon 1, CPE-Lyon, Bâtiment Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne, France; (T.B.); (J.M.); (Y.Q.)
| | - Cédric Badiou
- Team STAPATH, CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France; (C.B.); (F.D.)
| | - Floriane Davy
- Team STAPATH, CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France; (C.B.); (F.D.)
| | - Anne Baudouin
- Centre Commun de RMN, CNRS, Université Lyon 1, CPE-Lyon, Bâtiment Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne, France;
| | - Yves Queneau
- Univ Lyon, INSA Lyon, UCBL, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, CNRS, Université Lyon 1, CPE-Lyon, Bâtiment Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne, France; (T.B.); (J.M.); (Y.Q.)
| | - Oana Dumitrescu
- Hospices Civils de Lyon, Hôpital de la Croix Rousse-Centre de Biologie Nord, Institut des Agents Infectieux, Laboratoire de Bactériologie, Grande Rue de la Croix Rousse, 69004 Lyon, France; (A.B.); (O.D.); (G.L.)
- Team STAPATH, CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France; (C.B.); (F.D.)
| | - Gérard Lina
- Hospices Civils de Lyon, Hôpital de la Croix Rousse-Centre de Biologie Nord, Institut des Agents Infectieux, Laboratoire de Bactériologie, Grande Rue de la Croix Rousse, 69004 Lyon, France; (A.B.); (O.D.); (G.L.)
- Team STAPATH, CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France; (C.B.); (F.D.)
| | - Laurent Soulère
- Univ Lyon, INSA Lyon, UCBL, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, CNRS, Université Lyon 1, CPE-Lyon, Bâtiment Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne, France; (T.B.); (J.M.); (Y.Q.)
- Correspondence:
| |
Collapse
|
66
|
Świątek P, Glomb T, Dobosz A, Gębarowski T, Wojtkowiak K, Jezierska A, Panek JJ, Świątek M, Strzelecka M. Biological Evaluation and Molecular Docking Studies of Novel 1,3,4-Oxadiazole Derivatives of 4,6-Dimethyl-2-sulfanylpyridine-3-carboxamide. Int J Mol Sci 2022; 23:ijms23010549. [PMID: 35008977 PMCID: PMC8745710 DOI: 10.3390/ijms23010549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
To date, chronic inflammation is involved in most main human pathologies such as cancer, and autoimmune, cardiovascular or neurodegenerative disorders. Studies suggest that different prostanoids, especially prostaglandin E2, and their own synthase (cyclooxygenase enzyme-COX) can promote tumor growth by activating signaling pathways which control cell proliferation, migration, apoptosis, and angiogenesis. Non-steroidal anti-inflammatory drugs (NSAIDs) are used, alongside corticosteroids, to treat inflammatory symptoms particularly in all chronic diseases. However, their toxicity from COX inhibition and the suppression of physiologically important prostaglandins limits their use. Therefore, in continuation of our efforts in the development of potent, safe, non-toxic chemopreventive compounds, we report herein the design, synthesis, biological evaluation of new series of Schiff base-type hybrid compounds containing differently substituted N-acyl hydrazone moieties, 1,3,4-oxadiazole ring, and 4,6-dimethylpyridine core. The anti-COX-1/COX-2, antioxidant and anticancer activities were studied. Schiff base 13, containing 2-bromobenzylidene residue inhibited the activity of both isoenzymes, COX-1 and COX-2 at a lower concentration than standard drugs, and its COX-2/COX-1 selectivity ratio was similar to meloxicam. Furthermore, the results of cytotoxicity assay indicated that all of the tested compounds exhibited potent anti-cancer activity against A549, MCF-7, LoVo, and LoVo/Dx cell lines, compared with piroxicam and meloxicam. Moreover, our experimental study was supported by density functional theory (DFT) and molecular docking to describe the binding mode of new structures to cyclooxygenase.
Collapse
Affiliation(s)
- Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence: (P.Ś.); (T.G.); Tel.: +48-717840391 (P.Ś. & T.G.)
| | - Teresa Glomb
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence: (P.Ś.); (T.G.); Tel.: +48-717840391 (P.Ś. & T.G.)
| | - Agnieszka Dobosz
- Department of Medical Science Foundation, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland;
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.W.); (A.J.); (J.J.P.)
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.W.); (A.J.); (J.J.P.)
| | - Jarosław J. Panek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.W.); (A.J.); (J.J.P.)
| | - Małgorzata Świątek
- Hospital Pharmacy, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland;
| | - Małgorzata Strzelecka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
67
|
Synthesis, crystal structure, spectroscopic characterization, α-glucosidase inhibition and computational studies of (E)-5-methyl-N′-(pyridin-2-ylmethylene)-1H-pyrazole-3-carbohydrazide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
68
|
Pedreira JGB, Silva RR, Noël FG, Barreiro EJ. Effect of S-Se Bioisosteric Exchange on Affinity and Intrinsic Efficacy of Novel N-acylhydrazone Derivatives at the Adenosine A 2A Receptor. Molecules 2021; 26:7364. [PMID: 34885946 PMCID: PMC8659164 DOI: 10.3390/molecules26237364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
In this work, we evaluated the conformational effect promoted by the isosteric exchange of sulfur by selenium in the heteroaromatic ring of new N-acylhydrazone (NAH) derivatives (3-8, 13, 14), analogues of the cardioactive compounds LASSBio-294 (1) and LASSBio-785 (2). NMR spectra analysis demonstrated a chemical shift variation of the iminic Csp2 of NAH S/Se-isosters, suggesting a stronger intramolecular chalcogen interaction for Se-derivatives. To investigate the pharmacological profile of these compounds at the adenosine A2A receptor (A2AR), we performed a previously validated functional binding assay. As expected for bioisosteres, the isosteric-S/Se replacement affected neither the affinity nor the intrinsic efficacy of our NAH derivatives (1-8). However, the N-methylated compounds (2, 6-8) presented a weak partial agonist profile at A2AR, contrary to the non-methylated counterparts (1, 3-5), which appeared as weak inverse agonists. Additionally, retroisosterism between aromatic rings of NAH on S/Se-isosters mimicked the effect of the N-methylation on intrinsic efficacy at A2AR, while meta-substitution in the phenyl ring of the acyl moiety did not. This study showed that the conformational effect of NAH-N-methylation and aromatic rings retroisosterism changed the intrinsic efficacy on A2AR, indicating the S/Se-chalcogen effect to drive the conformational behavior of this series of NAH.
Collapse
Affiliation(s)
- Júlia Galvez Bulhões Pedreira
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil;
- Graduate Program of Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Rafaela Ribeiro Silva
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil; (R.R.S.); (F.G.N.)
| | - François G. Noël
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil; (R.R.S.); (F.G.N.)
- Nacional Institute of Science & Technology in Drugs and Medicines (INCT-INOFAR), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil
| | - Eliezer J. Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil;
- Graduate Program of Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
- Nacional Institute of Science & Technology in Drugs and Medicines (INCT-INOFAR), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil
| |
Collapse
|
69
|
Medeiros MAMB, Gama e Silva M, de Menezes Barbosa J, Martins de Lavor É, Ribeiro TF, Macedo CAF, de Souza Duarte-Filho LAM, Feitosa TA, de Jesus Silva J, Fokoue HH, Araújo CRM, de Assis Gonsalves A, Augusto de Araújo Ribeiro L, Almeida JRGDS. Antinociceptive and anti-inflammatory effects of hydrazone derivatives and their possible mechanism of action in mice. PLoS One 2021; 16:e0258094. [PMID: 34818331 PMCID: PMC8612535 DOI: 10.1371/journal.pone.0258094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/20/2021] [Indexed: 01/12/2023] Open
Abstract
Pain and inflammation are unpleasant experiences that usually occur as a result of tissue damage. Despite the number of existing analgesic drugs, side effects limit their use, stimulating the search for new therapeutic agents. In this sense, five hydrazone derivatives (H1, H2, H3, H4, and H5), with general structure R1R2C = NNR3R4, were synthesized with molecular modification strategies. In this paper, we describe the ability of hydrazone derivatives to attenuate nociceptive behavior and the inflammatory response in mice. Antinociceptive activity was evaluated through acetic acid-induced writhing and formalin-induced nociception tests. In both experimental models, the hydrazone with the greatest potency (H5) significantly (p < 0.05) reduced nociceptive behavior. Additionally, methods of acute and chronic inflammation induced by different chemicals (carrageenan and histamine) were performed to evaluate the anti-inflammatory effect of H5. Moreover, molecular docking analysis revealed that H5 can block the COX-2 enzyme, reducing arachidonic acid metabolism and consequently decreasing the production of prostaglandins, which are important inflammatory mediators. H5 also changes locomotor activity. In summary, H5 exhibited relevant antinociceptive and anti-inflammatory potential and acted on several targets, making it a candidate for a new multi-target oral anti-inflammatory drug.
Collapse
Affiliation(s)
- Maria Alice Miranda Bezerra Medeiros
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
- Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brasil
| | - Mariana Gama e Silva
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
- Pós-Graduação em Biotecnologia—Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| | - Jackson de Menezes Barbosa
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
- Pós-Graduação em Biotecnologia—Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| | - Érica Martins de Lavor
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
- Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brasil
| | - Tiago Feitosa Ribeiro
- Pós-Graduação em Biotecnologia—Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| | | | | | - Thiala Alves Feitosa
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
- Pós Graduação em Biociências, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
| | - Jussara de Jesus Silva
- Colegiado de Farmácia, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
| | - Harold Hilarion Fokoue
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Arlan de Assis Gonsalves
- Colegiado de Farmácia, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
| | - Luciano Augusto de Araújo Ribeiro
- Pós Graduação em Biociências, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
- Colegiado de Farmácia, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
| | - Jackson Roberto Guedes da Silva Almeida
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
- Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brasil
| |
Collapse
|
70
|
Meenatchi V, Siva S, Cheng L. Synthesis, crystal growth, spectroscopic characterization, Hirshfeld surface analysis and DFT investigations of novel nonlinear optically active 4-benzoylpyridine-derived hydrazone. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
71
|
Rodrigues DA, Roe A, Griffith D, Chonghaile TN. Advances in the Design and Development of PROTAC-mediated HDAC degradation. Curr Top Med Chem 2021; 22:408-424. [PMID: 34649488 DOI: 10.2174/1568026621666211015092047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Due to developments in modern chemistry, previously undruggable targets are becoming druggable thanks to selective degradation using the ubiquitin-proteasomal degradation system. PROteolysis TArgeting Chimeras (PROTACs) are heterobifunctional molecules designed specifically to degrade target proteins (protein of interest, POI). They are of significant interest to industry and academia as they are highly specific and can target previously undruggable target proteins from transcription factors to enzymes. More than 15 degraders are expected to be evaluated in clinical trials by the end of 2021. Herein, we describe recent advances in the design and development of PROTAC-mediated degradation of histone deacetylases (HDACs). PROTAC-mediated degradation of HDACs can offer some significant advantages over direct inhibition, such as the use of substoichiometric doses and the potential to disrupt enzyme-independent HDAC function. Herein, we discuss the potential implications of the degradation of HDACs with HDAC knockout studies and the selection of HDAC inhibitors and E3 ligase ligands for the design of the PROTACs. The potential utility of HDAC PROTACs in various disease pathologies from cancer to inflammation to neurodegeneration is driving the interest in this field.
Collapse
Affiliation(s)
- Daniel Alencar Rodrigues
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin. Ireland
| | - Andrew Roe
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin. Ireland
| | - Darren Griffith
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin. Ireland
| | - Tríona Ní Chonghaile
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin. Ireland
| |
Collapse
|
72
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
73
|
Şenkardeş S, Erdoğan Ö, Çevik Ö, Küçükgüzel ŞG. Synthesis and biological evaluation of novel aryloxyacetic acid hydrazide derivatives as anticancer agents. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1945105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sevil Şenkardeş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Başıbüyük, İstanbul, Turkey
| | - Ömer Erdoğan
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Efeler, Aydın, Turkey
| | - Özge Çevik
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Efeler, Aydın, Turkey
| | - Ş. Güniz Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Başıbüyük, İstanbul, Turkey
| |
Collapse
|
74
|
Tian Z, Liao A, Kang J, Gao Y, Lu A, Wang Z, Wang Q. Toad Alkaloid for Pesticide Discovery: Dehydrobufotenine Derivatives as Novel Agents against Plant Virus and Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9754-9763. [PMID: 34415761 DOI: 10.1021/acs.jafc.1c03714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant viruses and fungi are a serious threat to food security and natural ecosystems. The efficient and environment-friendly control methods are urgently needed to help safeguard such resources. Here, we achieved the efficient synthesis of toad alkaloid dehydrobufotenine in eight steps with an overall yield of 8% from 5-methoxyindole. A series of dehydrobufotenine derivatives were designed, synthesized, and evaluated for their antiviral and fungicidal activities systematically. It was found for the first time that these compounds have good anti-plant virus activities and anti-plant pathogen activities. The antiviral activities of 21 compounds were similar to or better than those of ribavirin. Compounds 12 and 17 displayed better antiviral activities than ningnanmycin which is perhaps the most effective anti-plant virus agent. The antiviral mechanism research study of 12 revealed that it could make 20S CP disk fusion and aggregation. Further molecular docking results showed that there are hydrogen bonds between compounds 12, 17, and tobacco mosaic virus CP. The docking results are consistent with the antiviral activity. These compounds also displayed broad-spectrum fungicidal activities against 14 kinds of fungi, especially for Sclerotinia sclerotiorum. In this work, the synthesis, structure optimization, structure-activity relationship studies, and mode of action research of dehydrobufotenine alkaloids were carried out. It provides a reference for the development of the anti-plant virus agent and anti-plant pathogen agent from toad alkaloids.
Collapse
Affiliation(s)
- Zhaoyong Tian
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ancai Liao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jin Kang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yongyue Gao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Aidang Lu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
75
|
Munir R, Javid N, Zia-ur-Rehman M, Zaheer M, Huma R, Roohi A, Athar MM. Synthesis of Novel N-Acylhydrazones and Their C-N/N-N Bond Conformational Characterization by NMR Spectroscopy. Molecules 2021; 26:molecules26164908. [PMID: 34443493 PMCID: PMC8399016 DOI: 10.3390/molecules26164908] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
In this article, a synthesis of N’-(benzylidene)-2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetohydrazides and their structural interpretation by NMR experiments is described in an attempt to explain the duplication of some peaks in their 1H- and 13C-NMR spectra. Twenty new 6-methyl-1H-pyrazolo[3,4-b]quinoline substituted N-acylhydrazones 6(a–t) were synthesized from 2-chloro-6-methylquinoline-3-carbaldehyde (1) in four steps. 2-Chloro-6-methylquinoline-3-carbaldehyde (1) afforded 6-methyl-1H-pyrazolo[3,4-b]quinoline (2), which upon N-alkylation yielded 2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetate (3). The hydrazinolysis of 3 followed by the condensation of resulting 2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetohydrazide (4) with aromatic aldehydes gave N-acylhydrazones 6(a–t). Structures of the synthesized compounds were established by readily available techniques such as FT-IR, NMR and mass spectral studies. The stereochemical behavior of 6(a–t) was studied in dimethyl sulfoxide-d6 solvent by means of 1H NMR and 13C NMR techniques at room temperature. NMR spectra revealed the presence of N’-(benzylidene)-2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetohydrazides as a mixture of two conformers, i.e., E(C=N)(N-N) synperiplanar and E(C=N)(N-N)antiperiplanar at room temperature in DMSO-d6. The ratio of both conformers was also calculated and E(C=N) (N-N) syn-periplanar conformer was established to be in higher percentage in equilibrium with the E(C=N) (N-N)anti-periplanar form.
Collapse
Affiliation(s)
- Rubina Munir
- Institute of Chemistry, University of the Punjab, Lahore 54590, Pakistan;
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (R.H.); (A.R.)
- Correspondence: or (R.M.); (M.Z.R.)
| | - Noman Javid
- Department of Chemistry (C-Block), Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan;
| | - Muhammad Zia-ur-Rehman
- Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan;
- Correspondence: or (R.M.); (M.Z.R.)
| | - Muhammad Zaheer
- Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan;
| | - Rahila Huma
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (R.H.); (A.R.)
| | - Ayesha Roohi
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (R.H.); (A.R.)
| | | |
Collapse
|
76
|
Lima LM, da Silva TF, da Silva Monteiro CE, Aparecida-Silva C, Bispo Júnior W, de Queiroz AC, Alexandre-Moreira MS, Zapata-Sudo G, Barreiro EJ. Design and Synthesis In Silico Drug-like Prediction and Pharmacological Evaluation of Cyclopolymethylenic Homologous of LASSBio-1514. Molecules 2021; 26:4828. [PMID: 34443416 PMCID: PMC8399892 DOI: 10.3390/molecules26164828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/03/2022] Open
Abstract
Acylhydrazones are still an important framework to the design of new bioactive compounds. As treatment of chronic pain represents a clinical challenge, we decided to modify the structure of LASSBio-1514 (1), previously described as anti-inflammatory and analgesic prototype. Applying the homologation as a strategy for molecular modification, we designed a series of cyclopentyl- (2a-e), cyclobutyl- (3a-e), and cyclopropylacylhydrazones (4a-e) that were synthetized and evaluated in murine models of inflammation and pain. A comparison of their in silico physicochemical and drug-like profile was conducted, as well as their anti-inflammatory and analgesic effect. Compounds 4a (LASSBio-1755) and 4e (LASSBio-1757) displayed excellent in silico drug-like profiles and were identified as new analgesic lead-candidates in acute and chronic model of pain, through oral administration.
Collapse
Affiliation(s)
- Lidia Moreira Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil; (T.F.d.S.); (C.A.-S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.E.d.S.M.); (G.Z.-S.)
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
| | - Tiago Fernandes da Silva
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil; (T.F.d.S.); (C.A.-S.)
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
| | - Carlos Eduardo da Silva Monteiro
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.E.d.S.M.); (G.Z.-S.)
- Laboratório de Farmacologia Cardiovascular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, RJ, Brazil
| | - Cristiane Aparecida-Silva
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil; (T.F.d.S.); (C.A.-S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.E.d.S.M.); (G.Z.-S.)
| | - Walfrido Bispo Júnior
- LaFI—Laboratório de Farmacologia e Imunidade, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió 57072-900, AL, Brazil; (W.B.J.); (A.C.d.Q.); (M.S.A.-M.)
| | - Aline Cavalcanti de Queiroz
- LaFI—Laboratório de Farmacologia e Imunidade, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió 57072-900, AL, Brazil; (W.B.J.); (A.C.d.Q.); (M.S.A.-M.)
| | - Magna Suzana Alexandre-Moreira
- LaFI—Laboratório de Farmacologia e Imunidade, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió 57072-900, AL, Brazil; (W.B.J.); (A.C.d.Q.); (M.S.A.-M.)
| | - Gisele Zapata-Sudo
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.E.d.S.M.); (G.Z.-S.)
- Laboratório de Farmacologia Cardiovascular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, RJ, Brazil
| | - Eliezer J. Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil; (T.F.d.S.); (C.A.-S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.E.d.S.M.); (G.Z.-S.)
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
77
|
|
78
|
Park J, Ahn S, Lee Y, Koh D, Lim Y. 1 H and 13 C NMR spectral assignment of 29 N'-(3-([1,1'-biphenyl]-4-yl)-1-phenyl-1H-pyrazol-4-yl)acylhydrazones. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:648-662. [PMID: 33140870 DOI: 10.1002/mrc.5113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Jihyun Park
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, South Korea
| | - Seunghyun Ahn
- Department of Applied Chemistry, Dongduk Women's University, Seoul, South Korea
| | - Youngshim Lee
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, South Korea
| | - Dongsoo Koh
- Department of Applied Chemistry, Dongduk Women's University, Seoul, South Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, South Korea
| |
Collapse
|
79
|
dos Santos PVP, Ribeiro CM, Pavan FR, Corbi PP, Bergamini FR, Carvalho MA, D'Oliveria KA, Cuin A. Promising Ag(I) complexes with N-acylhydrazones from aromatic aldehydes and isoniazid against multidrug resistance in tuberculosis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
80
|
New nitric oxide-releasing indomethacin derivatives with 1,3-thiazolidine-4-one scaffold: Design, synthesis, in silico and in vitro studies. Biomed Pharmacother 2021; 139:111678. [PMID: 33964802 DOI: 10.1016/j.biopha.2021.111678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
In this study we present design and synthesis of nineteen new nitric oxide-releasing indomethacin derivatives with 1,3-thiazolidine-4-one scaffold (NO-IND-TZDs) (6a-s), as a new safer and efficient multi-targets strategy for inflammatory diseases. The chemical structure of all synthesized derivatives (intermediaries and finals) was proved by NMR and mass spectroscopic analysis. In order to study the selectivity of NO-IND-TZDs for COX isoenzymes (COX-1 and COX-2) a molecular docking study was performed using AutoDock 4.2.6 software. Based on docking results, COX-2 inhibitors were designed and 6o appears as the most selective derivative which showed an improved selective index compared with indomethacin (IND) and diclofenac (DCF), used as reference drugs. The biological evaluation of 6a-s, using in vitro assays has included the anti-inflammatory and antioxidant effects as well as the nitric oxide (NO) release. Referring to the anti-inflammatory effects, the most active compound was 6i, which was more active than IND and aspirin (ASP) in term of denaturation effect, on bovine serum albumin (BSA), as indirect assay to predict the anti-inflammatory effect. An appreciable anti-inflammatory effect, in reference with IND and ASP, was also showed by 6k, 6c, 6q, 6o, 6j, 6d. The antioxidant assay revealed the compound 6n as the most active, being 100 times more active than IND. The compound 6n showed also the most increase capacity to release NO, which means is safer in terms of gastro-intestinal side effects. The ADME-Tox study revealed also that the NO-IND-TZDs are generally proper for oral administration, having optimal physico-chemical and ADME properties. We can conclude that the compounds 6i and 6n are promising agents and could be included in further investigations to study in more detail their pharmaco-toxicological profile.
Collapse
|
81
|
do Nascimento MSS, Câmara VRF, da Costa JS, Barbosa JMC, Lins ASM, Salomão K, de Castro SL, Carvalho SA, da Silva EF, Fraga CAM. Identification of Novel Functionalized Carbohydrazonamides Designed as Chagas Disease Drug Candidates. Med Chem 2021; 16:774-783. [PMID: 31244442 DOI: 10.2174/1573406415666190627103013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although several research efforts have been made worldwide to discover novel drug candidates for the treatment of Chagas disease, the nitroimidazole drug benznidazol remains the only therapeutic alternative in the control of this disease. However, this drug presents reduced efficacy in the chronic form of the disease and limited safety after long periods of administration, making it necessary to search for new, more potent and safe prototypes. OBJECTIVE We described herein the synthesis and the trypanocidalaction of new functionalized carbohydrazonamides (2-10) against trypomastigote forms of Trypanosoma cruzi. METHODS These compounds were designed through the application of molecular hybridization concept between two potent anti-T. cruzi prototypes, the nitroimidazole derivative megazol (1) and the cinnamyl N-acylhydrazone derivative (14) which have been shown to be twice as potent in vitro as benznidazole. RESULTS The most active compounds were the (Z)-N'-((E)-3-(4-nitrophenyl)-acryloyl)-1-methyl-5- nitro-1H-imidazol-2-carbohydrazonamide (6) (IC50=9.50 μM) and the (Z)-N'-((E)-3-(4- hydroxyphe-nyl)-acryloyl)-1-methyl-5-nitro-1H-imidazol-2-carbohydrazonamide (8) (IC50=12.85 μM), which were almost equipotent to benznidazole (IC50=10.26 μM) used as standard drug. The removal of the amine group attached to the imine subunit in the corresponding N-acylhydrazone derivatives (11-13) resulted in less potent or inactive compounds. The para-hydroxyphenyl derivative (8) presented also a good selectivity index (SI = 32.94) when tested against mammalian cells from Swiss mice. CONCLUSION The promising trypanocidal profile of new carbohydrazonamide derivatives (6) and (8) was characterized. These compounds have proved to be a good starting point for the design of more effective trypanocidal drug candidates.
Collapse
Affiliation(s)
- Mayara S S do Nascimento
- Instituto de Tecnologia em Fármacos e Farmanguinhos, Fundação Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ,
Brazil,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vitória R F Câmara
- Instituto de Tecnologia em Fármacos e Farmanguinhos, Fundação Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ,
Brazil,Unigranrio – Universidade do Grande Rio, Rua Prof. José de Souza Herdy, 1160, 25 de Agosto, Duque de Caxias, CEP 25071-202 – Rio de Janeiro – RJ, Brazil
| | - Juliana S da Costa
- Instituto de Tecnologia em Fármacos e Farmanguinhos, Fundação Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ,
Brazil,Unigranrio – Universidade do Grande Rio, Rua Prof. José de Souza Herdy, 1160, 25 de Agosto, Duque de Caxias, CEP 25071-202 – Rio de Janeiro – RJ, Brazil
| | - Juliana M C Barbosa
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900, Rio de Janeiro, RJ,
Brazil
| | - Alessandra S M Lins
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900, Rio de Janeiro, RJ,
Brazil
| | - Kelly Salomão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900, Rio de Janeiro, RJ,
Brazil
| | - Solange L de Castro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900, Rio de Janeiro, RJ,
Brazil
| | - Samir A Carvalho
- Instituto de Tecnologia em Fármacos e Farmanguinhos, Fundação Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ,
Brazil
| | - Edson F da Silva
- Instituto de Tecnologia em Fármacos e Farmanguinhos, Fundação Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ,
Brazil,Unigranrio – Universidade do Grande Rio, Rua Prof. José de Souza Herdy, 1160, 25 de Agosto, Duque de Caxias, CEP 25071-202 – Rio de Janeiro – RJ, Brazil
| | - Carlos A M Fraga
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil,Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
82
|
Meenatchi V, Meenakshisundaram SP, Cheng L. Synthesis, crystal growth, characterization and DFT investigation of a nonlinear optically active cuminaldehyde derivative hydrazone. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2021; 77:249-259. [PMID: 33843733 DOI: 10.1107/s2052520621001517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Single crystals of (E)-N'-(4-isopropylbenzylidene)isonicotinohydrazide monohydrate (IBIHM) were grown from ethanol by the slow evaporation from solution growth technique at room temperature. The structure was elucidated by single-crystal X-ray diffraction analysis and crystallized in the orthorhombic system with noncentrosymmetric space group P212121. Optical studies reveal that the absorption was minimum in the visible region and the band-gap energy was estimated using the Kubelka-Munk algorithm. The functional groups were identified by Fourier transform infrared spectral analysis. A scanning electron microscopy study revealed the surface morphology of the grown crystal. Investigation of the intermolecular interactions, crystal packing using Hirshfeld surface analysis and single-crystal X-ray diffraction confirm that the close contacts were associated with molecular interactions. Fingerprint plots of Hirshfeld surfaces are used to locate and analyze the percentage of hydrogen-bonding interactions. The second-harmonic generation efficiency of the grown specimen was superior to that of the reference material, potassium dihydrogen phosphate. The grown crystals were further characterized by mass spectrometry and elemental analysis. Theoretical studies using density functional theory (DFT) greatly substantiated the experimental observations. Large first-order molecular hyperpolarizability (β) of about ∼70× was observed for IBIHM. The efficiency of IBIHM in terms of nonlinear optical response was verified and the molecule displayed greater chemical stability and reactivity.
Collapse
Affiliation(s)
- Venkatasamy Meenatchi
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - S P Meenakshisundaram
- Department of Chemistry, Annamalai University, Annamalainagar, Tamil Nadu 608 002, India
| | - Liang Cheng
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| |
Collapse
|
83
|
Toro PM, Peralta F, Oyarzo J, Wilkinson SR, Zavala M, Arancibia R, Moncada-Basualto M, Brito I, Cisterna J, Klahn AH, López C. Evaluation of trypanocidal properties of ferrocenyl and cyrhetrenyl N-acylhydrazones with pendant 5-nitrofuryl group. J Inorg Biochem 2021; 219:111428. [PMID: 33774450 DOI: 10.1016/j.jinorgbio.2021.111428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 12/21/2022]
Abstract
Four N-acylhydrazones of general formulae [R1-C(O)-NH-N=C(R2)(5-nitrofuryl)] with (R1 = ferrocenyl or cyrhetrenyl and R2 = H or Me) are synthesized and characterized in solution and in the solid-state. Comparative studies of their stability in solution under different experimental conditions and their electrochemical properties are reported. NMR studies reveal that the four compounds are stable in DMSO‑d6 and complementary UV-Vis studies confirm that they also exhibit high stability in mixtures DMSO:H2O at 37 °C. Electrochemical studies show that the half-wave potential of the nitro group of the N-acylhydrazones is smaller than that of the standard drug nifurtimox and the reduction process follows a self-protonation mechanism. In vitro studies on the antiparasitic activities of the four complexes and the nifurtimox against Trypanosoma cruzi and Trypanosoma brucei reveal that: i) the N-acylhydrazones have a potent inhibitory growth activity against both parasites [EC50 in the low micromolar (in T. cruzi) or even in the nanomolar (in T. brucei) range] and ii) cyrhetrenyl derivatives are more effective than their ferrocenyl analogs. Parallel studies on the L6 rat skeletal myoblast cell line have also been conducted, and the selectivity indexes determined. Three of the four N-acylhydrazones showed higher selectivity towards T. brucei than the standard drug nifurtimox. Additional studies suggest that the organometallic compounds are bioactivated by type I nitroreductase enzymes.
Collapse
Affiliation(s)
- Patricia M Toro
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Quillota 980, Viña del Mar, Chile.
| | - Francisco Peralta
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Juan Oyarzo
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Shane R Wilkinson
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mónica Zavala
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Rodrigo Arancibia
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Mauricio Moncada-Basualto
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda. Universidad de Antofagasta 02800, Campus Coloso, Antofagasta, Chile
| | - Jonathan Cisterna
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda. Universidad de Antofagasta 02800, Campus Coloso, Antofagasta, Chile
| | - A Hugo Klahn
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Concepción López
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franqués 1-11, E-08028 Barcelona, Spain.
| |
Collapse
|
84
|
Mildness in preparative conditions directly affects the otherwise straightforward syntheses outcome of Schiff-base isoniazid derivatives: Aroylhydrazones and their solvolysis-related dihydrazones. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
85
|
Li Y, Qian C, Li Y, Yang Y, Lin D, Liu X, Chen C. Syntheses, crystal structures of two Fe(III) Schiff base complexes with chelating o-vanillin aroylhydrazone and exploration of their bio-relevant activities. J Inorg Biochem 2021; 218:111405. [PMID: 33689963 DOI: 10.1016/j.jinorgbio.2021.111405] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 11/28/2022]
Abstract
Two novel Fe(III) complexes, Fe(HL1)2Cl·1.25H2O (1) and Fe(HL2)2·Et3NH·H2O (2) (H2L1 = o-vanillin benzoylhydrazone, H3L2 = o-vanillin salicylhydrazone) are prepared. X-ray single crystal diffraction confirms that the hydrazone ligands can be chelated to iron centre resulting in a six-coordinate octahedral configuration. Both complexes show major intercalation effect to the herring sperm deoxyribonucleic acid (HS-DNA) with high binding constants of 2.01 × 104 M-1 and 2.24 × 104 M-1, respectively. Molecular docking studies reveal both complexes can intercalate at the gap of DC5-DG2 and DG6-DC1 base pairs of DNA hexamer (1Z3F). The interaction of the complex 1 with plasmid pBR322 DNA induces distinguishable alterations of the DNA morphology. Further, the structure of plasmid pBR322 DNA treated with complex 1 in the presence of ascorbic acid has been damaged probably due to the reactive oxygen species (ROS) generation. What's more, both complexes show high affinity with bovine serum albumin (BSA), the binding constants measured by fluorescence techniques are 5.75 × 106 M-1 and 4.39 × 107 M-1, respectively. Molecular docking demonstrates that the complexes prefer the binding pocket of site III (subdomain IIB) of BSA (PDB ID: 4F5S). Similarly, dynamic light scattering (DLS) reveals that the complexes not only bind to BSA but also induce bigger size aggregates as the concentration increases.
Collapse
Affiliation(s)
- Yueqin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| | - Changhao Qian
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yong Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Dong Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xiaohui Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chen Chen
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
86
|
da S M Forezi L, Lima CGS, Amaral AAP, Ferreira PG, de Souza MCBV, Cunha AC, de C da Silva F, Ferreira VF. Bioactive 1,2,3-Triazoles: An Account on their Synthesis, Structural Diversity and Biological Applications. CHEM REC 2021; 21:2782-2807. [PMID: 33570242 DOI: 10.1002/tcr.202000185] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
The triazole heterocycle is a privileged scaffold in medicinal chemistry, since its structure is present in a large number of biologically active molecules, including several drugs currently in the market. Due to their vast applications, a wide variety of methods are described for their preparation, such as the 1,3-dipolar cycloaddition and processes involving diazo compounds and diazo transfer reactions. Considering the significant number of contributions from our research group to this chemistry in recent decades, in this account we discuss both the development of new methods for the synthesis of 1,2,3-triazoles and the preparation of new triazole-functionalized biologically active molecules using classical approaches.
Collapse
Affiliation(s)
- Luana da S M Forezi
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Carolina G S Lima
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Adriane A P Amaral
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Patricia G Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, R. Dr. Mario Vianna, 523 - Santa Rosa, 24241-000, Niterói, RJ, Brazil
| | - Maria Cecília B V de Souza
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Anna C Cunha
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Fernando de C da Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, R. Dr. Mario Vianna, 523 - Santa Rosa, 24241-000, Niterói, RJ, Brazil
| |
Collapse
|
87
|
Silva DKC, Teixeira JS, Moreira DRM, da Silva TF, Barreiro EJDL, de Freitas HF, Pita SSDR, Teles ALB, Guimarães ET, Soares MBP. In Vitro, In Vivo and In Silico Effectiveness of LASSBio-1386, an N-Acyl Hydrazone Derivative Phosphodiesterase-4 Inhibitor, Against Leishmania amazonensis. Front Pharmacol 2021; 11:590544. [PMID: 33390966 PMCID: PMC7772393 DOI: 10.3389/fphar.2020.590544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis are group of neglected diseases with worldwide distribution that affect about 12 million people. The current treatment is limited and may cause severe adverse effects, and thus, the search for new drugs more effective and less toxic is relevant. We have previously investigated the immunomodulatory effects of LASSBio-1386, an N-acylhydrazone derivative. Here we investigated the in vitro and in vivo activity of LASSBio-1386 against L. amazonensis. LASSBio-1386 inhibited the proliferation of promastigotes of L. amazonensis (EC50 = 2.4 ± 0.48 µM), while presenting low cytotoxicity to macrophages (CC50 = 74.1 ± 2.9 µM). In vitro incubation with LASSBio-1386 reduced the percentage of Leishmania-infected macrophages and the number of intracellular parasites (EC50 = 9.42 ± 0.64 µM). Also, in vivo treatment of BALB/c mice infected with L. amazonensis resulted in a decrease of lesion size, parasitic load and caused histopathological alterations, when compared to vehicle-treated control. Moreover, LASSBio-1386 caused ultrastructural changes, arrested cell cycle in G0/G1 phase and did not alter the membrane mitochondrial potential of L. amazonensis. Aiming to its possible molecular interactions, we performed docking and molecular dynamics studies on Leishmania phosphodiesterase B1 (PDB code: 2R8Q) and LASSBio-1386. The computational analyses suggest that LASSBio-1386 acts against Leishmania through the modulation of leishmanial PDE activity. In conclusion, our results indicate that LASSBio-1386 is a promising candidate for the development of new leishmaniasis treatment.
Collapse
Affiliation(s)
- Dahara Keyse Carvalho Silva
- Departamento de Ciências da Vida, Núcleo de Estudo e Pesquisa em Histopatologia, Universidade Estadual da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Jessicada Silva Teixeira
- Departamento de Ciências da Vida, Núcleo de Estudo e Pesquisa em Histopatologia, Universidade Estadual da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Diogo Rodrigo Magalhães Moreira
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Tiago Fernandes da Silva
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Eliezer Jesus de Lacerda Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Humberto Fonseca de Freitas
- Laboratório de Bioinformática e Modelagem Molecular (LaBiMM), Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil
| | - Samuel Silva da Rocha Pita
- Laboratório de Bioinformática e Modelagem Molecular (LaBiMM), Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil
| | - André Lacerda Braga Teles
- Departamento de Ciências da Vida, Laboratório de Modelagem Molecular Medicinal e Toxicológica, Universidade Estadual da Bahia (UNEB), Salvador, Brazil
| | - Elisalva Teixeira Guimarães
- Departamento de Ciências da Vida, Núcleo de Estudo e Pesquisa em Histopatologia, Universidade Estadual da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Milena Botelho Pereira Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Instituto Senai de Inovação em Sistemas Avançados em Saúde, Senai/Cimatec, Salvador, Brazil
| |
Collapse
|
88
|
Franco LS, Maia RC, Barreiro EJ. Identification of LASSBio-1945 as an inhibitor of SARS-CoV-2 main protease (M PRO) through in silico screening supported by molecular docking and a fragment-based pharmacophore model. RSC Med Chem 2021; 12:110-119. [PMID: 34046603 PMCID: PMC8130624 DOI: 10.1039/d0md00282h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/11/2020] [Indexed: 12/19/2022] Open
Abstract
In December 2019, an infectious disease was detected in Wuhan, China, caused by a new pathogenic coronavirus, named SARS-CoV-2. It spread very rapidly, and on March 11th of 2020, the outbreak was declared a pandemic by the World Health Organization. Currently, effective treatment options remain limited. SARS-CoV-2 enzyme main protease (MPRO) plays a pivotal role in the viral life cycle, making it a putative drug target. In order to identify suitable hits to develop inhibitors with adequate antiviral properties, we explored the LASSBio Chemical Library employing multiple strategies of virtual screening. A fragment-based pharmacophore model enabled the identification of key interactions involved in the molecular recognition at the catalytic site of MPRO, namely, with amino acid residues His41, His163 and Glu166. Docking-based virtual screening was performed, leading to the identification of LASSBio-1945 (9), a new hit of MPRO, presenting an IC50 = 15.97 μM. This compound, an 1,3-benzodioxolyl sulfonamide, represents an interesting starting point for subsequent hit-to-lead optimization steps and, to the best of our knowledge, a new distinct chemotype for MPRO inhibition.
Collapse
Affiliation(s)
- Lucas S Franco
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Avenida Carlos Chagas Filho, 373, Ilha do Fundão 21941-912 Rio de Janeiro RJ Brazil
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®, http://www.lassbio.icb.ufrj.br), Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| | - Rodolfo C Maia
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®, http://www.lassbio.icb.ufrj.br), Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| | - Eliezer J Barreiro
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Avenida Carlos Chagas Filho, 373, Ilha do Fundão 21941-912 Rio de Janeiro RJ Brazil
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®, http://www.lassbio.icb.ufrj.br), Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| |
Collapse
|
89
|
Duhan M, Sindhu J, Kumar P, Devi M, Singh R, Kumar R, Lal S, Kumar A, Kumar S, Hussain K. Quantitative structure activity relationship studies of novel hydrazone derivatives as α-amylase inhibitors with index of ideality of correlation. J Biomol Struct Dyn 2020; 40:4933-4953. [PMID: 33357037 DOI: 10.1080/07391102.2020.1863861] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present manuscript describes the synthesis, α-amylase inhibition, in silico studies and in-depth quantitative structure-activity relationship (QSAR) of a library of aroyl hydrazones based on benzothiazole skeleton. All the compounds of the developed library are characterized by various spectral techniques. α-Amylase inhibitory potential of all compounds has been explored, where compound 7n exhibits remarkable α-amylase inhibition of 87.5% at 50 µg/mL. Robust QSAR models are made by using the balance of correlation method in CORAL software. The chemical structures at different concentration with optimal descriptors are represented by SMILES. A data set of 66 SMILES of 22 hydrazones at three distinct concentrations are prepared. The significance of the index of ideality of correlation (IIC) with applicability domain (AD) is also studied at depth. A QSAR model with best Rvalidation2 = 0.8587 for split 1 is considered as a leading model. The outliers and promoters of increase and decrease of endpoint are also extracted. The binding modes of the most active compound, that is, 7n in the active site of Aspergillus oryzae α-amylase (PDB ID: 7TAA) are also explored by in silico molecular docking studies. Compound 7n displays high resemblance in binding mode and pose with the standard drug acarbose. Molecular dynamics simulations performed on protein-ligand complex for 100 ns, the protein gets stabilised after 20 ns and remained below 2 Å for the remaining simulation. Moreover, the deviation observed in RMSF during simulation for each amino acid residue with respect to Cα carbon atom is insignificant.
Collapse
Affiliation(s)
- Meenakshi Duhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambeshwar University of Science and Technology, Hisar, India
| | - Sudhir Kumar
- Department of MBB&B, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - Khalid Hussain
- Department of Applied Sciences and Humanities, Mewat Engineering College, Nuh, India
| |
Collapse
|
90
|
Moreira Pereira T, Eugen Kümmerle A. Hydrazone-Based Small-Molecule Chemosensors. Comput Biol Chem 2020. [DOI: 10.5772/intechopen.92144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hydrazone functional group is widely applied in several fields. The versatility and large use of this chemotype are attributed to its easy and straightforward synthesis and unique structural characteristics which is useful for different chemical and biological purposes. Recently hydrazone scaffold has been widely adopted in the design of small-molecule fluorescent and colorimetric chemosensors for detecting metals and anions because of its corresponding non-covalent interactions. This chapter provides an overview of hydrazone-based fluorescent and colorimetric chemosensors for anions and metals of biological interest, with their representative rational designs in the last 15 years. We hope this chapter inspires the development of novel and powerful fluorescent and colorimetric chemosensors for a broad range of applications.
Collapse
|
91
|
Karrouchi K, Fettach S, Jotani MM, Sagaama A, Radi S, Ghabbour HA, Mabkhot YN, Himmi B, El Abbes Faouzi M, Issaoui N. Synthesis, crystal structure, hirshfeld surface analysis, DFT calculations, anti-diabetic activity and molecular docking studies of (E)-N’-(5-bromo-2-hydroxybenzylidene) isonicotinohydrazide. J Mol Struct 2020; 1221:128800. [DOI: 10.1016/j.molstruc.2020.128800] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
92
|
Mokou M, Lygirou V, Angelioudaki I, Paschalidis N, Stroggilos R, Frantzi M, Latosinska A, Bamias A, Hoffmann MJ, Mischak H, Vlahou A. A Novel Pipeline for Drug Repurposing for Bladder Cancer Based on Patients' Omics Signatures. Cancers (Basel) 2020; 12:E3519. [PMID: 33255925 PMCID: PMC7759896 DOI: 10.3390/cancers12123519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Multi-omics signatures of patients with bladder cancer (BC) can guide the identification of known de-risked therapeutic compounds through drug repurposing, an approach not extensively explored yet. In this study, we target drug repurposing in the context of BC, driven by tissue omics signatures. To identify compounds that can reverse aggressive high-risk Non-Muscle Invasive BC (NMIBC) to less aggressive low-risk molecular subtypes, the next generation Connectivity Map (CMap) was employed using as input previously published proteomics and transcriptomics respective signatures. Among the identified compounds, the ATP-competitive inhibitor of mTOR, WYE-354, showed a consistently very high score for reversing the aggressive BC molecular signatures. WYE-354 impact was assessed in a panel of eight multi-origin BC cell lines and included impaired colony growth and proliferation rate without any impact on apoptosis. Overall, with this study we introduce a promising pipeline for the repurposing of drugs for BC treatment, based on patients' omics signatures.
Collapse
Affiliation(s)
- Marika Mokou
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.M.); (V.L.); (I.A.); (R.S.)
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (M.F.); (A.L.); (H.M.)
| | - Vasiliki Lygirou
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.M.); (V.L.); (I.A.); (R.S.)
| | - Ioanna Angelioudaki
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.M.); (V.L.); (I.A.); (R.S.)
| | - Nikolaos Paschalidis
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Rafael Stroggilos
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.M.); (V.L.); (I.A.); (R.S.)
| | - Maria Frantzi
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (M.F.); (A.L.); (H.M.)
| | | | - Aristotelis Bamias
- Haematology-Oncology Unit, Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Michèle J. Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (M.F.); (A.L.); (H.M.)
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.M.); (V.L.); (I.A.); (R.S.)
| |
Collapse
|
93
|
Synthesis and biological evaluation in vitro and in silico of N-propionyl-N'-benzeneacylhydrazone derivatives as cruzain inhibitors of Trypanosoma cruzi. Mol Divers 2020; 26:39-50. [PMID: 33216257 DOI: 10.1007/s11030-020-10156-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/04/2020] [Indexed: 01/15/2023]
Abstract
An N-acylhydrazone scaffold has been used to develop new drugs with diverse biological activities, including trypanocidal activity against different strains of Trypanosoma cruzi. However, their mechanism of action is not clear, although in T. cruzi it has been suggested that the enzyme cruzain is involved. The aim in this work was to obtain new N-propionyl-N'-benzeneacylhydrazone derivatives as potential anti-T. cruzi agents and elucidate their potential mechanism of action by a molecular docking analysis and effects on the expression of the cruzain gene. Compounds 9 and 12 were the most active agents against epimastigotes and compound 5 showed better activity than benznidazole in T. cruzi blood trypomastigotes. Additionally, compounds 9 and 12 significantly increase the expression of the cruzain gene. In summary, the in silico and in vitro data presented herein suggest that compound 9 is a cruzain inhibitor.
Collapse
|
94
|
Stevens M, Howe C, Ray AM, Washburn A, Chitre S, Sivinski J, Park Y, Hoang QQ, Chapman E, Johnson SM. Analogs of nitrofuran antibiotics are potent GroEL/ES inhibitor pro-drugs. Bioorg Med Chem 2020; 28:115710. [PMID: 33007545 PMCID: PMC7914298 DOI: 10.1016/j.bmc.2020.115710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/14/2023]
Abstract
In two previous studies, we identified compound 1 as a moderate GroEL/ES inhibitor with weak to moderate antibacterial activity against Gram-positive and Gram-negative bacteria including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, and SM101 Escherichia coli (which has a compromised lipopolysaccharide biosynthetic pathway making bacteria more permeable to drugs). Extending from those studies, we developed two series of analogs with key substructures resembling those of known antibacterials, nitroxoline (hydroxyquinoline moiety) and nifuroxazide/nitrofurantoin (bis-cyclic-N-acylhydrazone scaffolds). Through biochemical and cell-based assays, we identified potent GroEL/ES inhibitors that selectively blocked E. faecium, S. aureus, and E. coli proliferation with low cytotoxicity to human colon and intestine cells in vitro. Initially, only the hydroxyquinoline-bearing analogs were found to be potent inhibitors in our GroEL/ES-mediated substrate refolding assays; however, subsequent testing in the presence of an E. coli nitroreductase (NfsB) in situ indicated that metabolites of the nitrofuran-bearing analogs were potent GroEL/ES inhibitor pro-drugs. Consequently, this study has identified a new target of nitrofuran-containing drugs, and is the first reported instance of such a unique class of GroEL/ES chaperonin inhibitors. The intriguing results presented herein provide impetus for expanded studies to validate inhibitor mechanisms and optimize this antibacterial class using the respective GroEL/ES chaperonin systems and nitroreductases from E. coli and the ESKAPE bacteria.
Collapse
Affiliation(s)
- Mckayla Stevens
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Chris Howe
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Anne-Marie Ray
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Alex Washburn
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Siddhi Chitre
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Jared Sivinski
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Yangshin Park
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Quyen Q Hoang
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Steven M Johnson
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States.
| |
Collapse
|
95
|
Sović I, Lukin S, Meštrović E, Halasz I, Porcheddu A, Delogu F, Ricci PC, Caron F, Perilli T, Dogan A, Colacino E. Mechanochemical Preparation of Active Pharmaceutical Ingredients Monitored by In Situ Raman Spectroscopy. ACS OMEGA 2020; 5:28663-28672. [PMID: 33195919 PMCID: PMC7658942 DOI: 10.1021/acsomega.0c03756] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/13/2020] [Indexed: 05/14/2023]
Abstract
The mechanochemical preparation of silver sulfadiazine and dantrolene, two marketed active pharmaceutical ingredients, was investigated by in situ Raman spectroscopy. For the first time, the mechanochemical transformations involving highly fluorescent compounds could be studied in situ with a high-resolution Raman system combined with a unique suitable Raman probe. Moreover, the kinetic features of the mechanochemical process were examined by a mathematical model allowing to describe the chemical changes under mechanical stress. This approach is promising both to broaden the scope of Raman in situ investigations that would otherwise be impossible and for process optimization at any scale.
Collapse
Affiliation(s)
- Irena Sović
- Ruđer
Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Stipe Lukin
- Ruđer
Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Ernest Meštrović
- Xellia
Pharmaceuticals, Slavonska
avenija 24/6, Zagreb 10000, Croatia
| | - Ivan Halasz
- Ruđer
Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Andrea Porcheddu
- Department
of Chemical and Geological Sciences, University
of Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, Monserrato, Cagliari 09042, Italy
| | - Francesco Delogu
- Department of Mechanical,
Chemical
and Materials Engineering, University of
Cagliari, via Marengo
2, Cagliari 09123, Italy
| | - Pier Carlo Ricci
- Department
of Physics, University of Cagliari, Cittadella
Universitaria, SS 554 bivio per Sestu, Monserrato, Cagliari 09042, Italy
| | - Fabien Caron
- Endress+Hauser
Process Analysis Support, Saint-Priest 69800, France
| | - Thomas Perilli
- Endress+Hauser
Process Analysis Support, Saint-Priest 69800, France
| | - Anita Dogan
- Endress+Hauser
d.o.o., Zagreb 10020, Croatia
| | | |
Collapse
|
96
|
Mittersteiner M, Andrade VP, Bonacorso HG, Martins MAP, Zanatta N. The Wonderful World of β‐Enamino Diketones Chemistry. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mateus Mittersteiner
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Valquiria P. Andrade
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Helio G. Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| |
Collapse
|
97
|
Shareef MA, Devi GP, Rani Routhu S, Kumar CG, Kamal A, Babu BN. New imidazo[2,1- b]thiazole-based aryl hydrazones: unravelling their synthesis and antiproliferative and apoptosis-inducing potential. RSC Med Chem 2020; 11:1178-1184. [PMID: 33479622 PMCID: PMC7651857 DOI: 10.1039/d0md00188k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
Herein, we have designed and synthesized new imidazo[2,1-b]thiazole-based aryl hydrazones (9a-w) and evaluated their anti-proliferative potential against a panel of human cancer cell lines. Among the synthesized compounds, 9i and 9m elicited promising cytotoxicity against the breast cancer cell line MDA-MB-231 with IC50 values of 1.65 and 1.12 μM, respectively. Cell cycle analysis revealed that 9i and 9m significantly arrest MDA-MB-231 cells in the G0/G1 phase. In addition, detailed biological studies such as annexin V-FITC/propidium iodide, DCFH-DA, JC-1 and DAPI staining assays revealed that 9i and 9m triggered apoptosis in MDA-MB-213 cells. Overall, the current work demonstrated the cytotoxicity and apoptosis-inducing potential of 9i and 9m in breast cancer cells and suggested that they could be explored as promising antiproliferative leads in the future.
Collapse
Affiliation(s)
- Mohd Adil Shareef
- Department of Fluoro-Agrochemicals , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad , India .
- Academy of Scientific and Innovative Research , Ghaziabad 201 002 , India
| | - Ganthala Parimala Devi
- Department of Fluoro-Agrochemicals , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad , India .
- Academy of Scientific and Innovative Research , Ghaziabad 201 002 , India
| | - Sunitha Rani Routhu
- Organic Synthesis and Process Chemistry Division , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad 500007 , India
| | - C Ganesh Kumar
- Organic Synthesis and Process Chemistry Division , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad 500007 , India
| | - Ahmed Kamal
- Academy of Scientific and Innovative Research , Ghaziabad 201 002 , India
- School of Pharmaceutical Education and Research (SPER) , Jamia Hamdard , New Delhi 110062 , India
| | - Bathini Nagendra Babu
- Department of Fluoro-Agrochemicals , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad , India .
- Academy of Scientific and Innovative Research , Ghaziabad 201 002 , India
| |
Collapse
|
98
|
Ye J, Fu S, Zhou S, Li M, Li K, Sun W, Zhai Y. Advances in hydrogels based on dynamic covalent bonding and prospects for its biomedical application. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
99
|
Cunha MR, Bhardwaj R, Carrel AL, Lindinger S, Romanin C, Parise-Filho R, Hediger MA, Reymond JL. Natural product inspired optimization of a selective TRPV6 calcium channel inhibitor. RSC Med Chem 2020; 11:1032-1040. [PMID: 33479695 PMCID: PMC7513592 DOI: 10.1039/d0md00145g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential vanilloid 6 (TRPV6) is a calcium channel implicated in multifactorial diseases and overexpressed in numerous cancers. We recently reported the phenyl-cyclohexyl-piperazine cis-22a as the first submicromolar TRPV6 inhibitor. This inhibitor showed a seven-fold selectivity against the closely related calcium channel TRPV5 and no activity on store-operated calcium channels (SOC), but very significant off-target effects and low microsomal stability. Here, we surveyed analogues incorporating structural features of the natural product capsaicin and identified 3OG, a new oxygenated analog with similar potency against TRPV6 (IC50 = 0.082 ± 0.004 μM) and ion channel selectivity, but with high microsomal stability and very low off-target effects. This natural product-inspired inhibitor does not exhibit any non-specific toxicity effects on various cell lines and is proposed as a new tool compound to test pharmacological inhibition of TRPV6 mediated calcium flux in disease models.
Collapse
Affiliation(s)
- Micael Rodrigues Cunha
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
- Department of Pharmacy , University of São Paulo , Prof. Lineu Prestes Avenue 580 , 05508-000 São Paulo , Brazil .
| | - Rajesh Bhardwaj
- Department of Nephrology and Hypertension , University Hospital Bern , Inselspital , 3010 Bern , Switzerland .
| | - Aline Lucie Carrel
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| | - Sonja Lindinger
- Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Christoph Romanin
- Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Roberto Parise-Filho
- Department of Pharmacy , University of São Paulo , Prof. Lineu Prestes Avenue 580 , 05508-000 São Paulo , Brazil .
| | - Matthias A Hediger
- Department of Nephrology and Hypertension , University Hospital Bern , Inselspital , 3010 Bern , Switzerland .
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| |
Collapse
|
100
|
Cordeiro N, Freitas RHCN, Fraga CAM, Fernandes PD. Therapeutic Effects of Anti-Inflammatory N-Acylhydrazones in the Resolution of Experimental Colitis. J Pharmacol Exp Ther 2020; 374:420-427. [PMID: 32546529 DOI: 10.1124/jpet.120.000074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/04/2020] [Indexed: 01/15/2023] Open
Abstract
Inflammatory bowel diseases are caused by inflammation of the gastrointestinal tract, which may or may not have a specific cause or pathogen. They affect millions of people around the world and there are still few effective treatments. The aim of this work is to investigate the anti-inflammatory effect of the IKK-β inhibitor LASSBio-1524 and its three analogs, LASSBio-1760, LASSBio-1763, and LASSBio-1764, on mediator production and expression of inflammatory enzymes using experimental animal models of intestinal inflammatory diseases. Colitis was performed using two different models, which mimic Crohn disease (induced by dinitrobenzene acid) and ulcerative colitis (induced by sodium dextran sulfate) in mice. In both models, a therapeutic protocol with a daily dose of 1, 3, or 30 μmol/kg was performed. LASSBio-1524 and its three analogs reduced the secretion of tumor necrosis factor-α, IL-1β, IL-6, IL-12, and IFN-γ and increased secretion of IL-10, protecting gastrointestinal homeostasis. All compounds reduced macro- and microscopic colonic damage caused by experimental colitis and p38 mitogen-activated protein kinase expression in the colon, as well as leukocytosis and anemia resulting from the disease. Our data may suggest LASSBio-1524 and its analogs (LASSBio-1760, LASSBio-1763, and LASSBio-1764) as promising candidates for new prototypes designed to treat inflammatory bowel diseases. SIGNIFICANCE STATEMENT: Three new N-acylhydrazones were synthetized as analogs of LASSBio-1524. All new substances were evaluated in dextran sulfate- and dinitrobenzene acid-induced colitis, with LASSBio-1760, LASSBio-1762, and LASSBio-1763 presenting a significant effect in both models of colitis without toxic effects. The new substances could be considered as a new prototype for the development of new anti-inflammatory treatments of colitis.
Collapse
Affiliation(s)
- Natália Cordeiro
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brasil (N.d.M.C., P.D.F.); Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Farmacologia e Química Medicinal, Rio de Janeiro, Brasil (N.d.M.C., P.D.F., C.A.M.F.); and Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Rio de Janeiro, Brasil (R.H.C.N.F., C.A.M.F.)
| | - Rosana Helena Coimbra Nogueira Freitas
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brasil (N.d.M.C., P.D.F.); Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Farmacologia e Química Medicinal, Rio de Janeiro, Brasil (N.d.M.C., P.D.F., C.A.M.F.); and Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Rio de Janeiro, Brasil (R.H.C.N.F., C.A.M.F.)
| | - Carlos Alberto Manssour Fraga
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brasil (N.d.M.C., P.D.F.); Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Farmacologia e Química Medicinal, Rio de Janeiro, Brasil (N.d.M.C., P.D.F., C.A.M.F.); and Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Rio de Janeiro, Brasil (R.H.C.N.F., C.A.M.F.)
| | - Patricia Dias Fernandes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brasil (N.d.M.C., P.D.F.); Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Farmacologia e Química Medicinal, Rio de Janeiro, Brasil (N.d.M.C., P.D.F., C.A.M.F.); and Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Rio de Janeiro, Brasil (R.H.C.N.F., C.A.M.F.)
| |
Collapse
|