51
|
Domcke S, Hill AJ, Daza RM, Cao J, O'Day DR, Pliner HA, Aldinger KA, Pokholok D, Zhang F, Milbank JH, Zager MA, Glass IA, Steemers FJ, Doherty D, Trapnell C, Cusanovich DA, Shendure J. A human cell atlas of fetal chromatin accessibility. Science 2020; 370:eaba7612. [PMID: 33184180 PMCID: PMC7785298 DOI: 10.1126/science.aba7612] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
The chromatin landscape underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of chromatin accessibility and gene expression in fetal tissues. For chromatin accessibility, we devised a three-level combinatorial indexing assay and applied it to 53 samples representing 15 organs, profiling ~800,000 single cells. We leveraged cell types defined by gene expression to annotate these data and cataloged hundreds of thousands of candidate regulatory elements that exhibit cell type-specific chromatin accessibility. We investigated the properties of lineage-specific transcription factors (such as POU2F1 in neurons), organ-specific specializations of broadly distributed cell types (such as blood and endothelial), and cell type-specific enrichments of complex trait heritability. These data represent a rich resource for the exploration of in vivo human gene regulation in diverse tissues and cell types.
Collapse
Affiliation(s)
- Silvia Domcke
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew J Hill
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Junyue Cao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Diana R O'Day
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Hannah A Pliner
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Kimberly A Aldinger
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Jennifer H Milbank
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael A Zager
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Center for Data Visualization, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Darren A Cusanovich
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
52
|
Hassall MM, McClements ME, Barnard AR, Patrício MI, Aslam SA, Maclaren RE. Analysis of Early Cone Dysfunction in an In Vivo Model of Rod-Cone Dystrophy. Int J Mol Sci 2020; 21:ijms21176055. [PMID: 32842706 PMCID: PMC7503557 DOI: 10.3390/ijms21176055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 08/20/2020] [Indexed: 01/12/2023] Open
Abstract
Retinitis pigmentosa (RP) is a generic term for a group of genetic diseases characterized by loss of rod and cone photoreceptor cells. Although the genetic causes of RP frequently only affect the rod photoreceptor cells, cone photoreceptors become stressed in the absence of rods and undergo a secondary degeneration. Changes in the gene expression profile of cone photoreceptor cells are likely to occur prior to observable physiological changes. To this end, we sought to achieve greater understanding of the changes in cone photoreceptor cells early in the degeneration process of the Rho−/− mouse model. To account for gene expression changes attributed to loss of cone photoreceptor cells, we normalized PCR in the remaining number of cones to a cone cell reporter (OPN1-GFP). Gene expression profiles of key components involved in the cone phototransduction cascade were correlated with tests of retinal cone function prior to cell loss. A significant downregulation of the photoreceptor transcription factor Crx was observed, which preceded a significant downregulation in cone opsin transcripts that coincided with declining cone function. Our data add to the growing understanding of molecular changes that occur prior to cone dysfunction in a model of rod-cone dystrophy. It is of interest that gene supplementation of CRX by adeno-associated viral vector delivery prior to cone cell loss did not prevent cone photoreceptor degeneration in this mouse model.
Collapse
Affiliation(s)
- Mark M. Hassall
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (A.R.B.); (M.I.P.); (S.A.A.); (R.E.M.)
- Correspondence: ; Tel.: +61-426-732-991
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (A.R.B.); (M.I.P.); (S.A.A.); (R.E.M.)
| | - Alun R. Barnard
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (A.R.B.); (M.I.P.); (S.A.A.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Maria I. Patrício
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (A.R.B.); (M.I.P.); (S.A.A.); (R.E.M.)
| | - Sher A. Aslam
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (A.R.B.); (M.I.P.); (S.A.A.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. Maclaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (A.R.B.); (M.I.P.); (S.A.A.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
53
|
Zhang CJ, Xiang L, Chen XJ, Wang XY, Wu KC, Zhang BW, Chen DF, Jin GH, Zhang H, Chen YC, Liu WQ, Li ML, Ma Y, Jin ZB. Ablation of Mature miR-183 Leads to Retinal Dysfunction in Mice. Invest Ophthalmol Vis Sci 2020; 61:12. [PMID: 32176259 PMCID: PMC7401733 DOI: 10.1167/iovs.61.3.12] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose The microRNA cluster miR-183C, which includes miR-183 and two other genes, is critical for multiple sensory systems. In mouse retina, removal of this cluster results in photoreceptor defects in polarization, phototransduction, and outer segment elongation. However, the individual roles of the three components of this cluster are not clearly known. We studied the separate role of mouse miR-183 in in vivo. Methods miR-183 knockout mice were generated using the CRISPR/Cas9 genome-editing system. Electroretinography were carried out to investigate the changes of retinal structures and function. miR-183 was overexpressed by subretinal adeno-associated virus (AAV) injection in vivo. Rnf217, a target of miR-183 was overexpressed by cell transfection of the photoreceptor-derived cell line 661W in vitro. RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to compare the gene expression changes in AAV-injected mice and transfected cells. Results The miR-183 knockout mice showed progressively attenuated electroretinogram responses. Over- or under-expression of Rnf217, a direct target of miR-183, misregulated expression of cilia-related BBSome genes. Rnf217 overexpression also led to compromised electroretinography responses in WT mice, indicating that it may contribute to functional abnormalities in miR-183 knockout mice. Conclusions miR-183 is essential for mouse retinal function mediated directly and indirectly through Rnf217 and cilia-related genes. Our findings provide valuable insights into the explanation and analysis of the regulatory role of the individual miR-183 in miR-183C.
Collapse
|
54
|
Pang Y, He L, Song Y, Song X, Lv J, Cheng Y, Yang X. Identification and Integrated Analysis of MicroRNA and mRNA Expression Profiles During Agonistic Behavior in Chinese Mitten Crab ( Eriocheir sinensis) Using a Deep Sequencing Approach. Front Genet 2020; 11:321. [PMID: 32391050 PMCID: PMC7191074 DOI: 10.3389/fgene.2020.00321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
As a commercially important species, the Chinese mitten crab (Eriocheir sinensis) has been cultured for a long time in China. Agonistic behavior often causes limb disability and requires much energy, which is harmful to the growth and survival of crabs. In this paper, we divided crabs into a control group (control, no treatment) and an experimental group (fight, agonistic behavior after 1 h) and then collected the thoracic ganglia (TG) to extract RNA. Subsequently, we first used a deep sequencing approach to examine the transcripts of microRNAs (miRNAs) and messenger RNAs (mRNAs) in E. sinensis displaying agonistic behavior. According to the results, we found 29 significant differentially expressed miRNAs (DEMs) and 116 significant differentially expressed unigenes (DEGs). The DEMs esi-miR-199a-5p, esi-let-7d, esi-miR-200a, and esi-miR-200b might participate in the regulation of agonistic behavior by mediating neuroregulation and energy metabolism. Focusing on the transcripts of the mRNAs, the renin–angiotensin system (RAS) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway might be involved in the regulation of agonistic behavior through glucose metabolism as this pathway was significantly enriched with DEGs. Besides, an integrated analysis of the miRNA and mRNA profiles revealed that the retinoid X receptor (RXR) was also involved in visual signal transduction, which was important for agonistic behavior. In addition, four vital agonistic behavior-related metabolic pathways, including the cAMP signaling, MAPK, protein digestion and absorption, and fatty acid metabolism pathways, were significantly enriched with the predicted target unigenes. In conclusion, the findings of this study might provide important insight enhancing our understanding of the underlying molecular mechanisms of agonistic behavior in E. sinensis.
Collapse
Affiliation(s)
- Yangyang Pang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Long He
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yameng Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaozhe Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiahuan Lv
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaozhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
55
|
Winkler PA, Occelli LM, Petersen-Jones SM. Large Animal Models of Inherited Retinal Degenerations: A Review. Cells 2020; 9:cells9040882. [PMID: 32260251 PMCID: PMC7226744 DOI: 10.3390/cells9040882] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Studies utilizing large animal models of inherited retinal degeneration (IRD) have proven important in not only the development of translational therapeutic approaches, but also in improving our understanding of disease mechanisms. The dog is the predominant species utilized because spontaneous IRD is common in the canine pet population. Cats are also a source of spontaneous IRDs. Other large animal models with spontaneous IRDs include sheep, horses and non-human primates (NHP). The pig has also proven valuable due to the ease in which transgenic animals can be generated and work is ongoing to produce engineered models of other large animal species including NHP. These large animal models offer important advantages over the widely used laboratory rodent models. The globe size and dimensions more closely parallel those of humans and, most importantly, they have a retinal region of high cone density and denser photoreceptor packing for high acuity vision. Laboratory rodents lack such a retinal region and, as macular disease is a critical cause for vision loss in humans, having a comparable retinal region in model species is particularly important. This review will discuss several large animal models which have been used to study disease mechanisms relevant for the equivalent human IRD.
Collapse
|
56
|
Campla CK, Mast H, Dong L, Lei J, Halford S, Sekaran S, Swaroop A. Targeted deletion of an NRL- and CRX-regulated alternative promoter specifically silences FERM and PDZ domain containing 1 (Frmpd1) in rod photoreceptors. Hum Mol Genet 2020; 28:804-817. [PMID: 30445545 DOI: 10.1093/hmg/ddy388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Regulation of cell type-specific gene expression is critical for generating neuronal diversity. Transcriptome analyses have unraveled extensive heterogeneity of transcribed sequences in retinal photoreceptors because of alternate splicing and/or promoter usage. Here we show that Frmpd1 (FERM and PDZ domain containing 1) is transcribed from an alternative promoter specifically in the retina. Electroporation of Frmpd1 promoter region, -505 to +382 bp, activated reporter gene expression in mouse retina in vivo. A proximal promoter sequence (-8 to +33 bp) of Frmpd1 binds to neural retina leucine zipper (NRL) and cone-rod homeobox protein (CRX), two rod-specific differentiation factors, and is necessary for activating reporter gene expression in vitro and in vivo. Clustered regularly interspaced short palindromic repeats/Cas9-mediated deletion of the genomic region, including NRL and CRX binding sites, in vivo completely eliminated Frmpd1 expression in rods and dramatically reduced expression in rod bipolar cells, thereby overcoming embryonic lethality caused by germline Frmpd1 deletion. Our studies demonstrate that a cell type-specific regulatory control region is a credible target for creating loss-of-function alleles of widely expressed genes.
Collapse
Affiliation(s)
- Christie K Campla
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Hannah Mast
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jingqi Lei
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Sumathi Sekaran
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
57
|
Perez-Cervantes C, Smith LA, Nadadur RD, Hughes AEO, Wang S, Corbo JC, Cepko C, Lonfat N, Moskowitz IP. Enhancer transcription identifies cis-regulatory elements for photoreceptor cell types. Development 2020; 147:dev184432. [PMID: 31915147 PMCID: PMC7033740 DOI: 10.1242/dev.184432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022]
Abstract
Identification of cell type-specific cis-regulatory elements (CREs) is crucial for understanding development and disease, although identification of functional regulatory elements remains challenging. We hypothesized that context-specific CREs could be identified by context-specific non-coding RNA (ncRNA) profiling, based on the observation that active CREs produce ncRNAs. We applied ncRNA profiling to identify rod and cone photoreceptor CREs from wild-type and mutant mouse retinas, defined by presence or absence, respectively, of the rod-specific transcription factor (TF) NrlNrl-dependent ncRNA expression strongly correlated with epigenetic profiles of rod and cone photoreceptors, identified thousands of candidate rod- and cone-specific CREs, and identified motifs for rod- and cone-specific TFs. Colocalization of NRL and the retinal TF CRX correlated with rod-specific ncRNA expression, whereas CRX alone favored cone-specific ncRNA expression, providing quantitative evidence that heterotypic TF interactions distinguish cell type-specific CRE activity. We validated the activity of novel Nrl-dependent ncRNA-defined CREs in developing cones. This work supports differential ncRNA profiling as a platform for the identification of cell type-specific CREs and the discovery of molecular mechanisms underlying TF-dependent CRE activity.
Collapse
Affiliation(s)
- Carlos Perez-Cervantes
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Linsin A Smith
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Andrew E O Hughes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sui Wang
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Constance Cepko
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nicolas Lonfat
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
58
|
Buono L, Martinez-Morales JR. Retina Development in Vertebrates: Systems Biology Approaches to Understanding Genetic Programs: On the Contribution of Next-Generation Sequencing Methods to the Characterization of the Regulatory Networks Controlling Vertebrate Eye Development. Bioessays 2020; 42:e1900187. [PMID: 31997389 DOI: 10.1002/bies.201900187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/16/2020] [Indexed: 12/18/2022]
Abstract
The ontogeny of the vertebrate retina has been a topic of interest to developmental biologists and human geneticists for many decades. Understanding the unfolding of the genetic program that transforms a field of progenitors cells into a functionally complex and multi-layered sensory organ is a formidable challenge. Although classical genetic studies succeeded in identifying the key regulators of retina specification, understanding the architecture of their gene network and predicting their behavior are still a distant hope. The emergence of next-generation sequencing platforms revolutionized the field unlocking the access to genome-wide datasets. Emerging techniques such as RNA-seq, ChIP-seq, ATAC-seq, or single cell RNA-seq are used to characterize eye developmental programs. These studies provide valuable information on the transcriptional and cis-regulatory profiles of precursors and differentiated cells, outlining the trajectories that connect each intermediate state. Here, recent systems biology efforts are reviewed to understand the genetic programs shaping the vertebrate retina.
Collapse
Affiliation(s)
- Lorena Buono
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA) , Seville, 41013 , Spain
| | | |
Collapse
|
59
|
Esquerdo-Barragán M, Brooks MJ, Toulis V, Swaroop A, Marfany G. Expression of deubiquitinating enzyme genes in the developing mammal retina. Mol Vis 2019; 25:800-813. [PMID: 31819342 PMCID: PMC6887694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/29/2019] [Indexed: 11/18/2022] Open
Abstract
Purpose Genes involved in the development and differentiation of the mammalian retina are also associated with inherited retinal dystrophies (IRDs) and age-related macular degeneration. Transcriptional regulation of retinal cell differentiation has been addressed by genetic and transcriptomic studies. Much less is known about the posttranslational regulation of key regulatory proteins, although mutations in some genes involved in ubiquitination and proteostasis-E3 ligases and deubiquitinating enzymes (DUBs)-cause IRDs. This study intends to provide new data on DUB gene expression during different developmental stages of mouse and human fetal retinas. Methods We performed a comprehensive transcriptomic analysis of all the annotated human and mouse DUBs (87) in the developing mouse retina at several embryonic and postnatal time points compared with the transcriptome of the fetal human retina. An integrated comparison of data from transcriptomics, reported chromatin immunoprecipitation sequencing (ChIP-seq) of CRX and NRL transcription factors, and the phenotypic retinal alterations in different animal models is presented. Results Several DUB genes are differentially expressed during the development of the mouse and human retinas in relation to proliferation or differentiation stages. Some DUB genes appear to be distinctly expressed during the differentiation stages of rod and cone photoreceptor cells, and their expression is altered in mouse knockout models of relevant photoreceptor transcription factors. We complemented this RNA-sequencing (RNA-seq) analysis with other reported expression and phenotypic data to underscore the involvement of DUBs in cell fate decision and photoreceptor differentiation. Conclusions The present results highlight a short list of potential DUB candidates for retinal disorders, which require further study.
Collapse
Affiliation(s)
- Mariona Esquerdo-Barragán
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, Barcelona 08028, Spain,Institut de Biomedicina (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
| | - Matthew J. Brooks
- Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Vasileios Toulis
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, Barcelona 08028, Spain,Institut de Biomedicina (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain,CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain
| | - Anand Swaroop
- Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Gemma Marfany
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, Barcelona 08028, Spain,Institut de Biomedicina (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain,CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
60
|
Murphy DP, Hughes AEO, Lawrence KA, Myers CA, Corbo JC. Cis-regulatory basis of sister cell type divergence in the vertebrate retina. eLife 2019; 8:e48216. [PMID: 31633482 PMCID: PMC6802965 DOI: 10.7554/elife.48216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/19/2019] [Indexed: 12/27/2022] Open
Abstract
Multicellular organisms evolved via repeated functional divergence of transcriptionally related sister cell types, but the mechanisms underlying sister cell type divergence are not well understood. Here, we study a canonical pair of sister cell types, retinal photoreceptors and bipolar cells, to identify the key cis-regulatory features that distinguish them. By comparing open chromatin maps and transcriptomic profiles, we found that while photoreceptor and bipolar cells have divergent transcriptomes, they share remarkably similar cis-regulatory grammars, marked by enrichment of K50 homeodomain binding sites. However, cell class-specific enhancers are distinguished by enrichment of E-box motifs in bipolar cells, and Q50 homeodomain motifs in photoreceptors. We show that converting K50 motifs to Q50 motifs represses reporter expression in bipolar cells, while photoreceptor expression is maintained. These findings suggest that partitioning of Q50 motifs within cell type-specific cis-regulatory elements was a critical step in the evolutionary divergence of the bipolar transcriptome from that of photoreceptors.
Collapse
Affiliation(s)
- Daniel P Murphy
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Andrew EO Hughes
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Karen A Lawrence
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Connie A Myers
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Joseph C Corbo
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| |
Collapse
|
61
|
Huang Z, Titus T, Postlethwait JH, Meng F. Eye Degeneration and Loss of otx5b Expression in the Cavefish Sinocyclocheilus tileihornes. J Mol Evol 2019; 87:199-208. [PMID: 31332479 PMCID: PMC6711879 DOI: 10.1007/s00239-019-09901-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/13/2019] [Indexed: 12/17/2022]
Abstract
Cave animals possess remarkable phenotypes associated with existence in their dark environments. The Chinese cavefish Sinocyclocheilus tileihornes shows substantial eye degeneration, a trait shared by most cave species. The extent to which independent evolution of troglomorphic traits uses convergent molecular genetic mechanisms is as yet unknown. We performed transcriptome-wide gene expression profiling in S. tileihornes eyes and compared results with those from the closely related surface species S. angustiporus and an independently derived congeneric cavefish, S. anophthalmus. In total, 52.85 million 100 bp long paired-end clean reads were generated for S. tileihornes, and we identified differentially expressed genes between the three possible pairs of species. Functional analysis of genes differentially expressed between S. tileihornes and S. angustiporus revealed that phototransduction (KEGG id: dre04744) was the most significantly enriched pathway, indicating the obvious differences in response to captured photons between the cavefish S. tileihornes and the surface species S. angustiporus. Analysis of key genes regulating eye development showed complete absence of otx5b (orthodenticle homolog 5) expression in S. tileihornes eyes, probably related to degradation of rods, but normal expression of crx (cone-rod homeobox). The enriched pathways and Otx5 are involved in phototransduction, photoreceptor formation, and regulation of photoreceptor-related gene expression. Unlike the S. tileihornes reported here, S. anophthalmus has reduced crx and otx5 expression. These results show that different species of cavefish within the same genus that independently evolved troglodyte characteristics can have different genetic mechanisms of eye degeneration.
Collapse
Affiliation(s)
- Zushi Huang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tom Titus
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | | | - Fanwei Meng
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
62
|
Photoreceptor cell replacement in macular degeneration and retinitis pigmentosa: A pluripotent stem cell-based approach. Prog Retin Eye Res 2019; 71:1-25. [DOI: 10.1016/j.preteyeres.2019.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
63
|
Kaufman ML, Park KU, Goodson NB, Chew S, Bersie S, Jones KL, Lamba DA, Brzezinski JA. Transcriptional profiling of murine retinas undergoing semi-synchronous cone photoreceptor differentiation. Dev Biol 2019; 453:155-167. [PMID: 31163126 DOI: 10.1016/j.ydbio.2019.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Uncovering the gene regulatory networks that control cone photoreceptor formation has been hindered because cones only make up a few percent of the retina and form asynchronously during development. To overcome these limitations, we used a γ-secretase inhibitor, DAPT, to disrupt Notch signaling and force proliferating retinal progenitor cells to rapidly adopt neuronal identity. We treated mouse retinal explants at the peak of cone genesis with DAPT and examined tissues at several time-points by histology and bulk RNA-sequencing. We found that this treatment caused supernumerary cone formation in an overwhelmingly synchronized fashion. This analysis revealed several categorical patterns of gene expression changes over time relative to DMSO treated control explants. These were placed in the temporal context of the activation of Otx2, a transcription factor that is expressed at the onset of photoreceptor development and that is required for both rod and cone formation. One group of interest had genes, such as Mybl1, Ascl1, Neurog2, and Olig2, that became upregulated by DAPT treatment before Otx2. Two other groups showed upregulated gene expression shortly after Otx2, either transiently or permanently. This included genes such as Mybl1, Meis2, and Podxl. Our data provide a developmental timeline of the gene expression events that underlie the initial steps of cone genesis and maturation. Applying this strategy to human retinal organoid cultures was also sufficient to induce a massive increase in cone genesis. Taken together, our results provide a temporal framework that can be used to elucidate the gene regulatory logic controlling cone photoreceptor development.
Collapse
Affiliation(s)
- Michael L Kaufman
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ko Uoon Park
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Noah B Goodson
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shereen Chew
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Stephanie Bersie
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deepak A Lamba
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Joseph A Brzezinski
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
64
|
Assawachananont J, Kim SY, Kaya KD, Fariss R, Roger JE, Swaroop A. Cone-rod homeobox CRX controls presynaptic active zone formation in photoreceptors of mammalian retina. Hum Mol Genet 2019; 27:3555-3567. [PMID: 30084954 DOI: 10.1093/hmg/ddy272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022] Open
Abstract
In the mammalian retina, rod and cone photoreceptors transmit the visual information to bipolar neurons through highly specialized ribbon synapses. We have limited understanding of regulatory pathways that guide morphogenesis and organization of photoreceptor presynaptic architecture in the developing retina. While neural retina leucine zipper (NRL) transcription factor determines rod cell fate and function, cone-rod homeobox (CRX) controls the expression of both rod- and cone-specific genes and is critical for terminal differentiation of photoreceptors. A comprehensive immunohistochemical evaluation of Crx-/- (null), CrxRip/+ and CrxRip/Rip (models of dominant congenital blindness) mouse retinas revealed abnormal photoreceptor synapses, with atypical ribbon shape, number and length. Integrated analysis of retinal transcriptomes of Crx-mutants with CRX- and NRL-ChIP-Seq data identified a subset of differentially expressed CRX target genes that encode presynaptic proteins associated with the cytomatrix active zone (CAZ) and synaptic vesicles. Immunohistochemistry of Crx-mutant retina validated aberrant expression of REEP6, PSD95, MPP4, UNC119, UNC13, RGS7 and RGS11, with some reduction in Ribeye and no significant change in immunostaining of RIMS1, RIMS2, Bassoon and Pikachurin. Our studies demonstrate that CRX controls the establishment of CAZ and anchoring of ribbons, but not the formation of ribbon itself, in photoreceptor presynaptic terminals.
Collapse
Affiliation(s)
- Juthaporn Assawachananont
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Soo-Young Kim
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Koray D Kaya
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Fariss
- Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jerome E Roger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Centre d'Etude et de Recherches Thérapeutiques en Ophthalmologie, Retina France, Orsay, France.,Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
65
|
An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos. Nat Commun 2019; 10:364. [PMID: 30664750 PMCID: PMC6341076 DOI: 10.1038/s41467-018-08244-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
Human pre-implantation embryonic development involves extensive changes in chromatin structure and transcriptional activity. Here, we report on LiCAT-seq, a technique that enables simultaneous profiling of chromatin accessibility and gene expression with ultra-low input of cells, and map the chromatin accessibility and transcriptome landscapes for human pre-implantation embryos. We observed global difference in chromatin accessibility between sperm and all stages of embryos, finding that the accessible regions in sperm tend to occur in gene-poor genomic regions. Integrative analyses between the two datasets reveals strong association between the establishment of accessible chromatin and embryonic genome activation (EGA), and uncovers transcription factors and endogenous retrovirus (ERVs) specific to EGA. In particular, a large proportion of the early activated genes and ERVs are bound by DUX4 and become accessible as early as the 2- to 4-cell stages. Our results thus offer mechanistic insights into the molecular events inherent to human pre-implantation development.
Collapse
|
66
|
Gaspar P, Almudi I, Nunes MDS, McGregor AP. Human eye conditions: insights from the fly eye. Hum Genet 2018; 138:973-991. [PMID: 30386938 DOI: 10.1007/s00439-018-1948-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022]
Abstract
The fruit fly Drosophila melanogaster has served as an excellent model to study and understand the genetics of many human diseases from cancer to neurodegeneration. Studying the regulation of growth, determination and differentiation of the compound eyes of this fly, in particular, have provided key insights into a wide range of diseases. Here we review the regulation of the development of fly eyes in light of shared aspects with human eye development. We also show how understanding conserved regulatory pathways in eye development together with the application of tools for genetic screening and functional analyses makes Drosophila a powerful model to diagnose and characterize the genetics underlying many human eye conditions, such as aniridia and retinitis pigmentosa. This further emphasizes the importance and vast potential of basic research to underpin applied research including identifying and treating the genetic basis of human diseases.
Collapse
Affiliation(s)
- Pedro Gaspar
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Isabel Almudi
- Centro Andaluz de Biología del Desarrollo, CSIC/ Universidad Pablo de Olavide, Carretera de Utrera Km1, 41013, Sevilla, Spain
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
67
|
Novel clinical findings in autosomal recessive NR2E3-related retinal dystrophy. Graefes Arch Clin Exp Ophthalmol 2018; 257:9-22. [PMID: 30324420 DOI: 10.1007/s00417-018-4161-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To evaluate the clinical phenotype of autosomal recessive NR2E3-related retinal dystrophy. METHODS We retrospectively studied 11 patients carrying out at least 2 NR2E3 mutations; they had undergone comprehensive ophthalmological examination, fundus photography, optical coherence tomography, electrophysiological testing, and visual field at the Regional Reference Center for Hereditary Retinal Degenerations of the Eye Clinic in Florence. RESULTS Five females and six males with a diagnosis of NR2E3-related retinal dystrophy were included in the study. All patients complained of nyctalopia. Visual acuity ranged from 0.00 logMAR to hand motion. Two patients presented bull's eye maculopathy, and one of these was characterized by a triple hyper-autofluorescent ring at the fundus autofluorescence examination. Three patients showed small yellowish dots and spots at the mid-periphery. One patient was characterized by widespread subretinal drusenoid deposits (SDD) at the posterior pole. Four patients showed vitreous abnormalities. Optical coherence tomography (OCT) examinations detected variable degrees of abnormal retinal lamination and schitic changes. Seven patients were compound heterozygous and four were homozygous for mutations in NR2E3. CONCLUSIONS Our study confirmed high variable phenotype in autosomal recessive NR2E3-related retinal dystrophy. Bull's eye maculopathy, subretinal drusenoid deposits, and foveal hypoplasia represent novel clinical findings in NR2E3-related retinal dystrophy. Macular involvement was detectable in all the patients, and the abnormal foveal avascular zone (FAZ) supports the role of NR2E3 in retinal development.
Collapse
|
68
|
Sun C, Mitchell DM, Stenkamp DL. Isolation of photoreceptors from mature, developing, and regenerated zebrafish retinas, and of microglia/macrophages from regenerating zebrafish retinas. Exp Eye Res 2018; 177:130-144. [PMID: 30096325 DOI: 10.1016/j.exer.2018.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022]
Abstract
This paper describes experimental procedures for the dissociation of retinal cells of the zebrafish (Danio rerio) for subsequent fluorescence-activated cell sorting (FACS) and gene expression studies. Methods for dissociation of zebrafish retinas followed by FACS and RNA isolation were optimized. This methodology was applied to isolate pure sorted samples of rods, long wavelength-sensitive (LWS) cones, medium wavelength-sensitive (MWS; RH2-2) cones, short wavelength-sensitive (SWS2) cones, and UV-sensitive (SWS1) cones from retinas obtained at selective life-history stages of the zebrafish, and for some of these photoreceptors, following retinal regeneration. We also successfully separated lws1-expressing and lws2-expressing LWS cones from fish of a transgenic line in which lws1 is reported with green fluorescence protein (GFP) and lws2 is reported with red fluorescence protein (RFP). Microglia/macrophages were successfully sorted from regenerating retinas (7 days after a cytotoxic lesion) of a transgenic line in which these immune cells express GFP. Electropherograms verified downstream isolation of high-quality RNA from sorted samples. Examples of post-sorting analysis, as well as results of qRT-PCR studies, validated the purity of sorted populations. For example, qRT-PCR samples derived from isolated Rh2-2 cones contained detectable rh2-2 (opn1mw2) opsin transcripts, but lws opsin transcripts (lws1/opn1lw1, lws2/opn1lw2) were not detected, suggesting that the procedure likely separated double cone pairs. Through this method, pure, sorted cell samples can provide RNA that is reliable for downstream gene expression analyses, such as qRT-PCR and RNA-seq, which may reveal molecular signatures of photoreceptors and microglia for comparative transcriptomics studies.
Collapse
Affiliation(s)
- Chi Sun
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
69
|
Popova VV, Orlova AV, Kurshakova MM, Nikolenko JV, Nabirochkina EN, Georgieva SG, Kopytova DV. The role of SAGA coactivator complex in snRNA transcription. Cell Cycle 2018; 17:1859-1870. [PMID: 29995556 DOI: 10.1080/15384101.2018.1489175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The general snRNA gene transcription apparatus has been extensively studied. However, the role of coactivators in this process is far from being clearly understood. Here, we have demonstrated that the Drosophila SAGA complex interacts with the PBP complex, the key component of the snRNA gene transcription apparatus, and is present at the promoter regions of the snRNA genes transcribed by both the RNA polymerase II and RNA polymerase III (U6 snRNA). We show that SAGA interacts with the Brf1 transcription factor, which is a part of the RNA polymerase III transcription apparatus and is present at promoters of a number of Pol III-transcribed genes. Mutations inactivating several SAGA subunit genes resulted in reduced snRNA levels in adult flies, indicating that SAGA is indeed the transcriptional coactivator for the snRNA genes. The transcription of the Pol II and Pol III-transcribed U genes was reduced by mutations in all tested SAGA complex subunits. Therefore, the transcription of the Pol II and Pol III-transcribed U genes was reduced by the mutations in the deubiquitinase module, as well as in the acetyltransferase module of the SAGA, indicating that the whole complex is essential for their transcription. Therefore, the SAGA complex activates snRNA genes suggesting its wide involvement in the regulation of gene transcription, and consequently, in the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- V V Popova
- a Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - A V Orlova
- a Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - M M Kurshakova
- a Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - J V Nikolenko
- a Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - E N Nabirochkina
- a Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - S G Georgieva
- a Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - D V Kopytova
- a Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
70
|
Johnsen EO, Frøen RC, Olstad OK, Nicolaissen B, Petrovski G, Moe MC, Noer A. Proliferative Cells Isolated from the Adult Human Peripheral Retina only Transiently Upregulate Key Retinal Markers upon Induced Differentiation. Curr Eye Res 2017; 43:340-349. [PMID: 29161152 DOI: 10.1080/02713683.2017.1403630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Purpose/Aim: The adult human retina has limited regenerative potential, and severe injury will result in permanent damage. Lower vertebrates handle retinal injury by activating neural stem cells (NSCs) in the ciliary marginal zone (CMZ). Müller glia-like cells expressing markers of NSCs are also present in the peripheral retina (PR) of the adult human eye, leading to the hypothesis that a CMZ-like zone might exists also in humans. In order to shed further light on this hypothesis we investigated the in vitro differentiation potential of proliferative cells isolated from the adult human PR towards a retinal phenotype. MATERIALS AND METHODS Proliferative cells were isolated from the peripheral retina of human eyes (n = 6) within 24 to 48 hours post mortem and further expanded for 2 or 3 passages before being differentiated for 1-3 weeks. Gene expression was analyzed by microarray and qRT-PCR analysis, while protein expression was identified by immunocytochemistry. RESULTS A high density of cells co-staining with markers for progenitor cells and Müller glia was found in situ in the PR. Cells isolated from this region and cultured adherently showed fibrillary processes and were positive for the immature marker Nestin and the glial marker GFAP, while a few co-expressed PAX6. After 7 days of differentiation, there was a transient upregulation of early and mature photoreceptor markers, including NRL, CRX, RHO and RCVRN, as well as the Müller cell and retinal pigmented epithelium (RPE) marker CRALBP, and the early RPE marker MITF. However, the expression of all these markers dropped from Day 14 and onwards. CONCLUSIONS Upon exposure of proliferating cells from the adult human PR to differentiating conditions in culture, there is a widespread change in morphology and gene expression, including the upregulation of key retinal markers. However, this upregulation is only transient and decreases after 14 days of differentiation.
Collapse
Affiliation(s)
- Erik O Johnsen
- a Center for Eye Research, Department of Ophthalmology , Oslo University Hospital and University of Oslo , Oslo , Norway.,b Norwegian Center for Stem Cell Research , Oslo University Hospital and University of Oslo , Oslo , Norway
| | - Rebecca C Frøen
- a Center for Eye Research, Department of Ophthalmology , Oslo University Hospital and University of Oslo , Oslo , Norway.,b Norwegian Center for Stem Cell Research , Oslo University Hospital and University of Oslo , Oslo , Norway
| | | | - Bjørn Nicolaissen
- a Center for Eye Research, Department of Ophthalmology , Oslo University Hospital and University of Oslo , Oslo , Norway.,b Norwegian Center for Stem Cell Research , Oslo University Hospital and University of Oslo , Oslo , Norway
| | - Goran Petrovski
- a Center for Eye Research, Department of Ophthalmology , Oslo University Hospital and University of Oslo , Oslo , Norway.,b Norwegian Center for Stem Cell Research , Oslo University Hospital and University of Oslo , Oslo , Norway.,d Department of Ophthalmology, Faculty of Medicine , University of Szeged and Stem Cells and Eye Research LaboratorySzeged, Hungary.,e Department of Biochemistry and Molecular Biology , University of Debrecen , Debrecen , Hungary
| | - Morten C Moe
- a Center for Eye Research, Department of Ophthalmology , Oslo University Hospital and University of Oslo , Oslo , Norway.,b Norwegian Center for Stem Cell Research , Oslo University Hospital and University of Oslo , Oslo , Norway
| | - Agate Noer
- a Center for Eye Research, Department of Ophthalmology , Oslo University Hospital and University of Oslo , Oslo , Norway.,b Norwegian Center for Stem Cell Research , Oslo University Hospital and University of Oslo , Oslo , Norway
| |
Collapse
|
71
|
Mechanisms of Photoreceptor Patterning in Vertebrates and Invertebrates. Trends Genet 2017; 32:638-659. [PMID: 27615122 DOI: 10.1016/j.tig.2016.07.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 11/22/2022]
Abstract
Across the animal kingdom, visual systems have evolved to be uniquely suited to the environments and behavioral patterns of different species. Visual acuity and color perception depend on the distribution of photoreceptor (PR) subtypes within the retina. Retinal mosaics can be organized into three broad categories: stochastic/regionalized, regionalized, and ordered. We describe here the retinal mosaics of flies, zebrafish, chickens, mice, and humans, and the gene regulatory networks controlling proper PR specification in each. By drawing parallels in eye development between these divergent species, we identify a set of conserved organizing principles and transcriptional networks that govern PR subtype differentiation.
Collapse
|
72
|
Musser JM, Arendt D. Loss and gain of cone types in vertebrate ciliary photoreceptor evolution. Dev Biol 2017; 431:26-35. [DOI: 10.1016/j.ydbio.2017.08.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 01/09/2023]
|
73
|
Ruzycki PA, Linne CD, Hennig AK, Chen S. Crx-L253X Mutation Produces Dominant Photoreceptor Defects in TVRM65 Mice. Invest Ophthalmol Vis Sci 2017; 58:4644-4653. [PMID: 28903150 PMCID: PMC5597032 DOI: 10.1167/iovs.17-22075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purpose The cone-rod homeobox (CRX) transcription factor is essential for photoreceptor gene expression, differentiation, and survival. Human CRX mutations can cause dominant retinopathies of varying onset and phenotype severity. In animal models, dominant frameshift Crx mutations introduce a premature termination codon (PTC), producing inactive truncated proteins that interfere with normal CRX function. Previously, a mutant mouse, TVRM65, was reported to carry a recessive late PTC mutation, Crx-L253X. More detailed phenotype analysis of the pathogenicity of Crx-L253X sheds new light on the variability of CRX-linked diseases. Methods Homozygous (L253X/X); heterozygous (L253X/+); Crx−/− and control C57BL/6J (WT) mice were analyzed at various ages for changes in retinal function (ERG), morphology (histology) and photoreceptor gene expression (qRT-PCR). Results At 1 month, L253X/X mice lack visual function, show greater reductions in retinal thickness, and distinct gene expression changes relative to Crx−/−, suggesting that the phenotype of L253X/X is more severe than Crx−/−. L253X/+ mice have reduced rod/cone function, but normal retinal morphology at all ages tested. qRT-PCR assays described a complex phenotype in which both developing and mature photoreceptors are unable to maintain proper gene expression. L253X mRNA/protein is overexpressed relative to normal Crx, suggesting a pathogenic mechanism similar to early PTC mutations. However, the overexpression is less pronounced, correlating with a relatively mild dominant phenotype. Conclusions The L253X mouse provides a valuable model for CRX-associated retinopathy. The pathogenicity of CRX frameshift mutations depends on the position of the PTC, which in turn determines the degree of mutant mRNA/protein overproduction.
Collapse
Affiliation(s)
- Philip A Ruzycki
- Molecular Genetics and Genomics Graduate Program, Division of Biology & Biomedical Sciences, Washington University, St. Louis, Missouri, United States.,Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri, United States
| | - Courtney D Linne
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri, United States
| | - Anne K Hennig
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri, United States
| | - Shiming Chen
- Molecular Genetics and Genomics Graduate Program, Division of Biology & Biomedical Sciences, Washington University, St. Louis, Missouri, United States.,Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri, United States.,Department of Developmental Biology, Washington University, St. Louis, Missouri, United States
| |
Collapse
|
74
|
Zelinger L, Karakülah G, Chaitankar V, Kim JW, Yang HJ, Brooks MJ, Swaroop A. Regulation of Noncoding Transcriptome in Developing Photoreceptors by Rod Differentiation Factor NRL. Invest Ophthalmol Vis Sci 2017; 58:4422-4435. [PMID: 28863214 PMCID: PMC5584472 DOI: 10.1167/iovs.17-21805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
Purpose Transcriptome analysis by next generation sequencing allows qualitative and quantitative profiling of expression patterns associated with development and disease. However, most transcribed sequences do not encode proteins, and little is known about the functional relevance of noncoding (nc) transcriptome in neuronal subtypes. The goal of this study was to perform a comprehensive analysis of long noncoding (lncRNAs) and antisense (asRNAs) RNAs expressed in mouse retinal photoreceptors. Methods Transcriptomic profiles were generated at six developmental time points from flow-sorted Nrlp-GFP (rods) and Nrlp-GFP;Nrl-/- (S-cone like) mouse photoreceptors. Bioinformatic analysis was performed to identify novel noncoding transcripts and assess their regulation by rod differentiation factor neural retina leucine zipper (NRL). In situ hybridization (ISH) was used for validation and cellular localization. Results NcRNA profiles demonstrated dynamic yet specific expression signature and coexpression clusters during rod development. In addition to currently annotated 586 lncRNAs and 454 asRNAs, we identified 1037 lncRNAs and 243 asRNAs by de novo assembly. Of these, 119 lncRNAs showed altered expression in the absence of NRL and included NRL binding sites in their promoter/enhancer regions. ISH studies validated the expression of 24 lncRNAs (including 12 previously unannotated) and 4 asRNAs in photoreceptors. Coexpression analysis demonstrated 63 functional modules and 209 significant antisense-gene correlations, allowing us to predict possible role of these lncRNAs in rods. Conclusions Our studies reveal coregulation of coding and noncoding transcripts in rod photoreceptors by NRL and establish the framework for deciphering the function of ncRNAs during retinal development.
Collapse
Affiliation(s)
- Lina Zelinger
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Gökhan Karakülah
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jung-Woong Kim
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun-Jin Yang
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Matthew J. Brooks
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
75
|
Occelli LM, Tran NM, Narfström K, Chen S, Petersen-Jones SM. CrxRdy Cat: A Large Animal Model for CRX-Associated Leber Congenital Amaurosis. Invest Ophthalmol Vis Sci 2017; 57:3780-92. [PMID: 27427859 PMCID: PMC4960999 DOI: 10.1167/iovs.16-19444] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Purpose Mutations in the retinal transcription factor cone-rod homeobox (CRX) gene result in severe dominant retinopathies. A large animal model, the Rdy cat, carrying a spontaneous frameshift mutation in Crx, was reported previously. The present study aimed to further understand pathogenesis in this model by thoroughly characterizing the Rdy retina. Methods Structural and functional changes were found in a comparison between the retinas of CrxRdy/+ kittens and those of wild-type littermates and were determined at various ages by fundus examination, electroretinography (ERG), optical coherence tomography, and histologic analyses. RNA and protein expression changes of Crx and key target genes were analyzed using quantitative reverse-transcribed PCR, Western blot analysis, and immunohistochemistry. Transcription activity of the mutant Crx was measured by a dual-luciferase transactivation assay. Results CrxRdy/+ kittens had no recordable cone ERGs. Rod responses were delayed in development and markedly reduced at young ages and lost by 20 weeks. Photoreceptor outer segment development was incomplete and was followed by progressive outer retinal thinning starting in the cone-rich area centralis. Expression of cone and rod Crx target genes was significantly down-regulated. The mutant Crx allele was overexpressed, leading to high levels of the mutant protein lacking transactivation activity. Conclusions The CrxRdy mutation exerts a dominant negative effect on wild-type Crx by overexpressing mutant protein. These findings, consistent with those of studies in a mouse model, support a conserved pathogenic mechanism for CRX frameshift mutations. The similarities between the feline eye and the human eye with the presence of a central region of high cone density makes the CrxRdy/+ cat a valuable model for preclinical testing of therapies for dominant CRX diseases.
Collapse
Affiliation(s)
- Laurence M Occelli
- Small Animal Clinical Sciences Michigan State University, East Lansing, Michigan, United States
| | - Nicholas M Tran
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Kristina Narfström
- Department of Veterinary Medicine and Surgery, University of Missouri-Columbia, Columbia, Missouri, United States
| | - Shiming Chen
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Simon M Petersen-Jones
- Small Animal Clinical Sciences Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
76
|
Moisseiev E, Smit-McBride Z, Oltjen S, Zhang P, Zawadzki RJ, Motta M, Murphy CJ, Cary W, Annett G, Nolta JA, Park SS. Intravitreal Administration of Human Bone Marrow CD34+ Stem Cells in a Murine Model of Retinal Degeneration. Invest Ophthalmol Vis Sci 2017; 57:4125-35. [PMID: 27537262 PMCID: PMC6733500 DOI: 10.1167/iovs.16-19252] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose Intravitreal murine lineage-negative bone marrow (BM) hematopoietic cells slow down retinal degeneration. Because human BM CD34+ hematopoietic cells are not precisely comparable to murine cells, this study examined the effect of intravitreal human BM CD34+ cells on the degenerating retina using a murine model. Methods C3H/HeJrd1/rd1 mice, immunosuppressed systemically with tacrolimus and rapamycin, were injected intravitreally with PBS (n = 16) or CD34+ cells (n = 16) isolated from human BM using a magnetic cell sorter and labeled with enhanced green fluorescent protein (EGFP). After 1 and 4 weeks, the injected eyes were imaged with scanning laser ophthalmoscopy (SLO)/optical coherence tomography (OCT) and tested with electroretinography (ERG). Eyes were harvested after euthanasia for immunohistochemical and microarray analysis of the retina. Results In vivo SLO fundus imaging visualized EGFP-labeled cells within the eyes following intravitreal injection. Simultaneous OCT analysis localized the EGFP-labeled cells on the retinal surface resulting in a saw-toothed appearance. Immunohistochemical analysis of the retina identified EGFP-labeled cells on the retinal surface and adjacent to ganglion cells. Electroretinography testing showed a flat signal both at 1 and 4 weeks following injection in all eyes. Microarray analysis of the retina following cell injection showed altered expression of more than 300 mouse genes, predominantly those regulating photoreceptor function and maintenance and apoptosis. Conclusions Intravitreal human BM CD34+ cells rapidly home to the degenerating retinal surface. Although a functional benefit of this cell therapy was not seen on ERG in this rapidly progressive retinal degeneration model, molecular changes in the retina associated with CD34+ cell therapy suggest potential trophic regenerative effects that warrant further exploration.
Collapse
Affiliation(s)
- Elad Moisseiev
- Department of Ophthalmology & Vision Science University of California Davis Eye Center, Sacramento, California, United States 2Department of Ophthalmology, Tel Aviv Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zeljka Smit-McBride
- Vitreoretinal Research Laboratory, University of California Davis Department of Ophthalmology, University of California, Davis, California, United States
| | - Sharon Oltjen
- Vitreoretinal Research Laboratory, University of California Davis Department of Ophthalmology, University of California, Davis, California, United States
| | - Pengfei Zhang
- University of California Davis Research Investments in the Sciences and Engineering (RISE) Eye-Pod Laboratory, Department of Cell Biology and Human Anatomy, University of California, Davis, California, United States
| | - Robert J Zawadzki
- Department of Ophthalmology & Vision Science University of California Davis Eye Center, Sacramento, California, United States 4University of California Davis Research Investments in the Sciences and Engineering (RISE) Eye-Pod Laboratory, Department of Cel
| | - Monica Motta
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, United States
| | - Christopher J Murphy
- Department of Ophthalmology & Vision Science University of California Davis Eye Center, Sacramento, California, United States 5Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, Un
| | - Whitney Cary
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States
| | - Geralyn Annett
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States
| | - Jan A Nolta
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States
| | - Susanna S Park
- Department of Ophthalmology & Vision Science University of California Davis Eye Center, Sacramento, California, United States
| |
Collapse
|
77
|
Li Y, Hao H, Swerdel MR, Cho HY, Lee KB, Hart RP, Lyu YL, Cai L. Top2b is involved in the formation of outer segment and synapse during late-stage photoreceptor differentiation by controlling key genes of photoreceptor transcriptional regulatory network. J Neurosci Res 2017; 95:1951-1964. [PMID: 28370415 DOI: 10.1002/jnr.24037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 01/17/2023]
Abstract
Topoisomerase II beta (Top2b) is an enzyme that alters the topologic states of DNA during transcription. Top2b deletion in early retinal progenitor cells causes severe defects in neural differentiation and affects cell survival in all retinal cell types. However, it is unclear whether the observed severe phenotypes are the result of cell-autonomous/primary defects or non-cell-autonomous/secondary defects caused by alterations of other retinal cells. Using photoreceptor cells as a model, we first characterized the phenotypes in Top2b conditional knockout. Top2b deletion leads to malformation of photoreceptor outer segments (OSs) and synapses accompanied by dramatic cell loss at late-stage photoreceptor differentiation. Then, we performed mosaic analysis with shRNA-mediated Top2b knockdown in neonatal retina using in vivo electroportation to target rod photoreceptors in neonatal retina. Top2b knockdown causes defective OS without causing a dramatic cell loss, suggesting a Top2b cell-autonomous function. Furthermore, RNA-seq analysis reveals that Top2b controls the expression of key genes in the photoreceptor gene-regulatory network (e.g., Crx, Nr2e3, Opn1sw, Vsx2) and retinopathy-related genes (e.g., Abca4, Bbs7, Pde6b). Together, our data establish a combinatorial cell-autonomous and non-cell-autonomous role for Top2b in the late stage of photoreceptor differentiation and maturation. © 2017 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ying Li
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Hailing Hao
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Mavis R Swerdel
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Hyeon-Yeol Cho
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Yi Lisa Lyu
- Office of Research Commercialization, Rutgers University, Piscataway, New Jersey
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
78
|
Temporal profiling of photoreceptor lineage gene expression during murine retinal development. Gene Expr Patterns 2017; 23-24:32-44. [PMID: 28288836 DOI: 10.1016/j.gep.2017.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/03/2017] [Accepted: 03/07/2017] [Indexed: 02/08/2023]
Abstract
Rod and cone photoreceptors are photosensitive cells in the retina that convert light to electrical signals that are transmitted to visual processing centres in the brain. During development, cones and rods are generated from a common pool of multipotent retinal progenitor cells (RPCs) that also give rise to other retinal cell types. Cones and rods differentiate in two distinct waves, peaking in mid-embryogenesis and the early postnatal period, respectively. As RPCs transition from making cones to generating rods, there are changes in the expression profiles of genes involved in photoreceptor cell fate specification and differentiation. To better understand the temporal transition from cone to rod genesis, we assessed the timing of onset and offset of expression of a panel of 11 transcription factors and 7 non-transcription factors known to function in photoreceptor development, examining their expression between embryonic day (E) 12.5 and postnatal day (P) 60. Transcription factor expression in the photoreceptor layer was observed as early as E12.5, beginning with Crx, Otx2, Rorb, Neurod1 and Prdm1 expression, followed at E15.5 with the expression of Thrb, Neurog1, Sall3 and Rxrg expression, and at P0 by Nrl and Nr2e3 expression. Of the non-transcription factors, peanut agglutinin lectin staining and cone arrestin protein were observed as early as E15.5 in the developing outer nuclear layer, while transcripts for the cone opsins Opn1mw and Opn1sw and Recoverin protein were detected in photoreceptors by P0. In contrast, Opn1mw and Opn1sw protein were not observed in cones until P7, when rod-specific Gnat1 transcripts and rhodopsin protein were also detected. We have thus identified four transitory stages during murine retina photoreceptor differentiation marked by the period of onset of expression of new photoreceptor lineage genes. By characterizing these stages, we have clarified the dynamic nature of gene expression during the period when photoreceptor identities are progressively acquired during development.
Collapse
|
79
|
Masuda T, Wan J, Yerrabelli A, Berlinicke C, Kallman A, Qian J, Zack DJ. Off Target, but Sequence-Specific, shRNA-Associated Trans-Activation of Promoter Reporters in Transient Transfection Assays. PLoS One 2016; 11:e0167867. [PMID: 27977714 PMCID: PMC5158200 DOI: 10.1371/journal.pone.0167867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022] Open
Abstract
Transient transfection promoter reporter assays are commonly used in the study of transcriptional regulation, and can be used to define and characterize both cis-acting regulatory sequences and trans-acting factors. In the process of using a variety of reporter assays designed to study regulation of the rhodopsin (rho) promoter, we discovered that rhodopsin promoter-driven reporter expression could be activated by certain species of shRNA in a gene-target-independent but shRNA sequence-specific manner, suggesting involvement of a specific shRNA associated pathway. Interestingly, the shRNA-mediated increase of rhodopsin promoter activity was synergistically enhanced by the rhodopsin transcriptional regulators CRX and NRL. Additionally, the effect was cell line-dependent, suggesting that this pathway requires the expression of cell-type specific factors. Since microRNA (miRNA) and interferon response-mediated processes have been implicated in RNAi off-target phenomena, we performed miRNA and gene expression profiling on cells transfected with shRNAs that do target a specific gene but have varied effects on rho reporter expression in order to identify transcripts whose expression levels are associated with shRNA induced rhodopsin promoter reporter activity. We identified a total of 50 miRNA species, and by microarray analysis, 320 protein-coding genes, some of which were predicted targets of the identified differentially expressed miRNAs, whose expression was altered in the presence of shRNAs that stimulated rhodopsin-promoter activity in a non-gene-targeting manner. Consistent with earlier studies on shRNA off-target effects, a number of interferon response genes were among those identified to be upregulated. Taken together, our results confirm the importance of considering off-target effects when interpreting data from RNAi experiments and extend prior results by focusing on the importance of including multiple and carefully designed controls in the design and analysis of the effects of shRNA on transient transfection-based transcriptional assays.
Collapse
Affiliation(s)
- Tomohiro Masuda
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jun Wan
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Anitha Yerrabelli
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Cindy Berlinicke
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alyssa Kallman
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institut de la Vision, University Pierre and Marie Curie, Paris, France
- * E-mail:
| |
Collapse
|
80
|
Davari M, Soheili ZS, Samiei S, Sharifi Z, Pirmardan ER. Overexpression of miR-183/-96/-182 triggers neuronal cell fate in Human Retinal Pigment Epithelial (hRPE) cells in culture. Biochem Biophys Res Commun 2016; 483:745-751. [PMID: 27965090 DOI: 10.1016/j.bbrc.2016.12.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
Abstract
miR-183 cluster, composed of miR-183/-96/-182 genes, is highly expressed in the adult retina, particularly in photoreceptors. It involves in development, maturation and normal function of neuroretina. Ectopic overexpression of miR-183/-96/-182 genes was performed to assess reprogramming of hRPE cells. They were amplified from genomic DNA and cloned independently or in tandem configuration into pAAV.MCS vector. hRPE cells were then transfected with the recombinant constructs. Real-Time PCR was performed to measure the expression levels of miR-183/-96/-182 and that of several retina-specific neuronal genes such as OTX2, NRL, PDC and DCT. The transfected cells also were immunocytochemically examined for retina-specific neuronal markers, including Rhodopsin, red opsin, CRX, Thy1, CD73, recoverin and PKCα, to determine the cellular fate of the transfected hRPE cells. Data showed that upon miR-183/-96/-182 overexpression in hRPE cultures, the expression of neuronal genes including OTX2, NRL, PDC and DCT was also upregulated. Moreover, miR-183 cluster-treated hRPE cells were immunoreactive for neuronal markers such as Rhodopsin, red opsin, CRX and Thy1. Both transcriptional and translational upregulation of neuronal genes in miR-183 cluster-treated hRPE cells suggests that in vitro overexpression of miR-183 cluster could trigger reprogramming of hRPE cells to retinal neuron fate.
Collapse
Affiliation(s)
- Maliheh Davari
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Shahram Samiei
- Blood Transfusion Research Center High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Department of Molecular Genetic, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
81
|
Gao M, Zhang S, Liu C, Qin Y, Archacki S, Jin L, Wang Y, Liu F, Chen J, Liu Y, Wang J, Huang M, Liao S, Tang Z, Guo AY, Jiang F, Liu M. Whole exome sequencing identifies a novel NRL mutation in a Chinese family with autosomal dominant retinitis pigmentosa. Mol Vis 2016; 22:234-42. [PMID: 27081294 PMCID: PMC4812529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 03/16/2016] [Indexed: 10/26/2022] Open
Abstract
PURPOSE To investigate the genetic basis and its relationship to the clinical manifestations in a four generation Chinese family with autosomal dominant retinitis pigmentosa. METHODS Ophthalmologic examinations including fundus photography, fundus autofluorescence imaging, fundus fluorescein angiography, optical coherence tomography, and a best-corrected visual acuity test were performed to define the clinical features of the patients. We extracted the genomic DNA from peripheral blood samples. The proband's genomic DNA was submitted to the whole exome sequencing. RESULTS Whole exome sequencing and the subsequent data analysis detected six candidate mutations in the proband of this pedigree. The novel c.146 C>T mutation in NRL was found to be the only mutation that co-segregated with the disease in this pedigree. This mutation resulted in a substitution of proline by a leucine at position 49 of NRL protein (p.P49L). Most importantly, the proline residue at position 49 of NRL is highly conserved from zebrafish to humans. The c.146 C>T mutation was not observed in 200 control individuals. What's more, we performed the luciferase activity assay to prove that this mutation we detected alters the NRL protein function. CONCLUSIONS The c.146 C>T mutation in NRL gene causes autosomal dominant retinitis pigmentosa for this family. Our finding not only expands the mutation spectrum of NRL, but also demonstrates that whole-exome sequencing is a powerful strategy to detect causative genes and mutations in RP patients. This technique may provide a precise diagnosis for rare heterogeneous monogenic disorders such as RP.
Collapse
Affiliation(s)
- Meng Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Su Zhang
- Nursing School of HuBei Polytechnic Institute; Xiaogan Central Hospital, Xiaogan, Hubei, PR China
| | - Chunjie Liu
- Department of Biomedical Engineering, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yayun Qin
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Stephen Archacki
- Center for cardiovascular Genetics, Department of Molecular Cardiology and Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Ling Jin
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yong Wang
- The First People’s Hospital of Tianmen, Hubei, PR China
| | - Fei Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jiaxiang Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jiuxiang Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Mi Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shengjie Liao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - An Yuan Guo
- Department of Biomedical Engineering, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fagang Jiang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
82
|
De Novo Assembly and Transcriptome Characterization of Canine Retina Using High-Throughput Sequencing. GENETICS RESEARCH INTERNATIONAL 2015; 2015:638679. [PMID: 26788372 PMCID: PMC4695645 DOI: 10.1155/2015/638679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 01/29/2023]
Abstract
We performed transcriptome sequencing of canine retinal tissue by 454 GS-FLX and Ion Torrent PGM platforms. RNA-Seq analysis by CLC Genomics Workbench mapped expression of 10,360 genes. Gene ontology analysis of retinal transcriptome revealed abundance of transcripts known to be involved in vision associated processes. The de novo assembly of the sequences using CAP3 generated 29,683 contigs with mean length of 560.9 and N50 of 619 bases. Further analysis of contigs predicted 3,827 full-length cDNAs and 29,481 (99%) open reading frames (ORFs). In addition, 3,782 contigs were assigned to 316 KEGG pathways which included melanogenesis, phototransduction, and retinol metabolism with 33, 15, and 11 contigs, respectively. Among the identified microsatellites, dinucleotide repeats were 68.84%, followed by trinucleotides, tetranucleotides, pentanucleotides, and hexanucleotides in proportions of 25.76, 9.40, 2.52, and 0.96%, respectively. This study will serve as a valuable resource for understanding the biology and function of canine retina.
Collapse
|
83
|
Graded gene expression changes determine phenotype severity in mouse models of CRX-associated retinopathies. Genome Biol 2015; 16:171. [PMID: 26324254 PMCID: PMC4556057 DOI: 10.1186/s13059-015-0732-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/28/2015] [Indexed: 01/28/2023] Open
Abstract
Background Mutations in the cone-rod-homeobox protein CRX are typically associated with dominant blinding retinopathies with variable age of onset and severity. Five well-characterized mouse models carrying different Crx mutations show a wide range of disease phenotypes. To determine if the phenotype variability correlates with distinct changes in CRX target gene expression, we perform RNA-seq analyses on three of these models and compare the results with published data. Results Despite dramatic phenotypic differences between the three models tested, graded expression changes in shared sets of genes are detected. Phenotype severity correlates with the down-regulation of genes encoding key rod and cone phototransduction proteins. Interestingly, in increasingly severe mouse models, the transcription of many rod-enriched genes decreases decrementally, whereas that of cone-enriched genes increases incrementally. Unlike down-regulated genes, which show a high degree of CRX binding and dynamic epigenetic profiles in normal retinas, the up-regulated cone-enriched genes do not correlate with direct activity of CRX, but instead likely reflect a change in rod cell-fate integrity. Furthermore, these analyses describe the impact of minor gene expression changes on the phenotype, as two mutants showed marginally distinguishable expression patterns but huge phenotypic differences, including distinct mechanisms of retinal degeneration. Conclusions Our results implicate a threshold effect of gene expression level on photoreceptor function and survival, highlight the importance of CRX in photoreceptor subtype development and maintenance, and provide a molecular basis for phenotype variability in CRX-associated retinopathies. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0732-z) contains supplementary material, which is available to authorized users.
Collapse
|
84
|
Kaewkhaw R, Kaya KD, Brooks M, Homma K, Zou J, Chaitankar V, Rao M, Swaroop A. Transcriptome Dynamics of Developing Photoreceptors in Three-Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks. Stem Cells 2015; 33:3504-18. [PMID: 26235913 PMCID: PMC4713319 DOI: 10.1002/stem.2122] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/28/2015] [Indexed: 12/12/2022]
Abstract
The derivation of three‐dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone‐rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp‐GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self‐organizing 3D retina‐like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S‐opsin and no rhodopsin or L/M‐opsin is present. The transcriptome profile, by RNA‐seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures. Stem Cells2015;33:3504–3518
Collapse
Affiliation(s)
- Rossukon Kaewkhaw
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.,Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Koray Dogan Kaya
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kohei Homma
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.,Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Jizhong Zou
- Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA.,iPSC Core, Center for Molecular Medicine, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahendra Rao
- Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA.,The New York Stem Cell Foundation Research Institute, New York, NY 10023
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
85
|
Stenkamp DL. Development of the Vertebrate Eye and Retina. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:397-414. [PMID: 26310167 DOI: 10.1016/bs.pmbts.2015.06.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The mature, functional, and healthy eye is generated by the coordinated regulatory interaction of numerous and diverse developing tissues. The neural retina of the eye must undergo the neurogenesis of multiple retinal cell types in the correct ratios and spatial patterns. This chapter provides an overview of retinal development, and includes a summary of the process of eye organogenesis, a discussion of major principles of retinal neurogenesis, and describes some of the key molecular factors critical for retinal development. Defects in many of these factors underlie diseases of the eye, and an understanding of the process of retinal development will be critical for successful future applications of regenerative therapies for eye disease.
Collapse
Affiliation(s)
- Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.
| |
Collapse
|
86
|
Abstract
How broadly expressed transcription factors contribute to tissue-specific gene expression is not well understood. Andzelm, Cherry et al. (2015) demonstrate that myocyte enhancer factor 2D (MEF2D) binds and activates retina-specific regulatory regions by cooperative interaction with the tissue-specific transcription factor CRX.
Collapse
Affiliation(s)
- Tomohiro Masuda
- Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Cynthia A Berlinicke
- Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Donald J Zack
- Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
87
|
Yang HJ, Ratnapriya R, Cogliati T, Kim JW, Swaroop A. Vision from next generation sequencing: multi-dimensional genome-wide analysis for producing gene regulatory networks underlying retinal development, aging and disease. Prog Retin Eye Res 2015; 46:1-30. [PMID: 25668385 PMCID: PMC4402139 DOI: 10.1016/j.preteyeres.2015.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/18/2015] [Accepted: 01/21/2015] [Indexed: 01/10/2023]
Abstract
Genomics and genetics have invaded all aspects of biology and medicine, opening uncharted territory for scientific exploration. The definition of "gene" itself has become ambiguous, and the central dogma is continuously being revised and expanded. Computational biology and computational medicine are no longer intellectual domains of the chosen few. Next generation sequencing (NGS) technology, together with novel methods of pattern recognition and network analyses, has revolutionized the way we think about fundamental biological mechanisms and cellular pathways. In this review, we discuss NGS-based genome-wide approaches that can provide deeper insights into retinal development, aging and disease pathogenesis. We first focus on gene regulatory networks (GRNs) that govern the differentiation of retinal photoreceptors and modulate adaptive response during aging. Then, we discuss NGS technology in the context of retinal disease and develop a vision for therapies based on network biology. We should emphasize that basic strategies for network construction and analyses can be transported to any tissue or cell type. We believe that specific and uniform guidelines are required for generation of genome, transcriptome and epigenome data to facilitate comparative analysis and integration of multi-dimensional data sets, and for constructing networks underlying complex biological processes. As cellular homeostasis and organismal survival are dependent on gene-gene and gene-environment interactions, we believe that network-based biology will provide the foundation for deciphering disease mechanisms and discovering novel drug targets for retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun-Jin Yang
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Rinki Ratnapriya
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Tiziana Cogliati
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Jung-Woong Kim
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA.
| |
Collapse
|
88
|
Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res 2015; 46:31-66. [PMID: 25660226 DOI: 10.1016/j.preteyeres.2015.01.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
Abstract
Loss of photoreceptors due to retinal degeneration is a major cause of blindness in the developed world. While no effective treatment is currently available, cell replacement therapy, using pluripotent stem cell-derived photoreceptor precursor cells, may be a feasible future treatment. Recent reports have demonstrated rescue of visual function following the transplantation of immature photoreceptors and we have seen major advances in our ability to generate transplantation-competent donor cells from stem cell sources. Moreover, we are beginning to realise the possibilities of using endogenous populations of cells from within the retina itself to mediate retinal repair. Here, we present a review of our current understanding of endogenous repair mechanisms together with recent progress in the use of both ocular and pluripotent stem cells for the treatment of photoreceptor loss. We consider how our understanding of retinal development has underpinned many of the recent major advances in translation and moved us closer to the goal of restoring vision by cellular means.
Collapse
Affiliation(s)
- Sujatha A Jayakody
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Anai Gonzalez-Cordero
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Robin R Ali
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Rachael A Pearson
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK.
| |
Collapse
|
89
|
Can the ‘neuron theory’ be complemented by a universal mechanism for generic neuronal differentiation. Cell Tissue Res 2014; 359:343-84. [DOI: 10.1007/s00441-014-2049-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
|
90
|
Intrinsically different retinal progenitor cells produce specific types of progeny. Nat Rev Neurosci 2014; 15:615-27. [DOI: 10.1038/nrn3767] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
91
|
Zagozewski JL, Zhang Q, Pinto VI, Wigle JT, Eisenstat DD. The role of homeobox genes in retinal development and disease. Dev Biol 2014; 393:195-208. [PMID: 25035933 DOI: 10.1016/j.ydbio.2014.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 11/18/2022]
Abstract
Homeobox genes are an evolutionarily conserved class of transcription factors that are critical for development of many organ systems, including the brain and eye. During retinogenesis, homeodomain-containing transcription factors, which are encoded by homeobox genes, play essential roles in the regionalization and patterning of the optic neuroepithelium, specification of retinal progenitors and differentiation of all seven of the retinal cell classes that derive from a common progenitor. Homeodomain transcription factors control retinal cell fate by regulating the expression of target genes required for retinal progenitor cell fate decisions and for terminal differentiation of specific retinal cell types. The essential role of homeobox genes during retinal development is demonstrated by the number of human eye diseases, including colobomas and anophthalmia, which are attributed to homeobox gene mutations. In the following review, we highlight the role of homeodomain transcription factors during retinogenesis and regulation of their gene targets. Understanding the complexities of vertebrate retina development will enhance our ability to drive differentiation of specific retinal cell types towards novel cell-based replacement therapies for retinal degenerative diseases.
Collapse
Affiliation(s)
- Jamie L Zagozewski
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Qi Zhang
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada R3E 0J9
| | - Vanessa I Pinto
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9
| | - Jeffrey T Wigle
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9; Institute of Cardiovascular Sciences, St. Boniface Hospital Research Institute, Winnipeg, MB, Canada R2H 2A6
| | - David D Eisenstat
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada T6G 1C9.
| |
Collapse
|
92
|
Occelli LM, Petersen-Jones SM. Altered fundus appearance resulting from autofluorescence imaging with the confocal scanning laser ophthalmoscope (cSLO) in cats. Vet Ophthalmol 2014; 17:385-8. [PMID: 24995729 DOI: 10.1111/vop.12192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE This paper is to report that imaging the tapetal fundus of cats with the 488 nm laser of the Spectralis(®) HRA+OCT (Heidelberg Engineering Inc., Heidelberg, Germany) can result in a pale appearance of the imaged area. ANIMALS STUDIED AND PROCEDURES Wild-type and Rdy kittens (CRX mutant heterozygotes-CRX(Rdy+/-) ) (8-20 weeks of age) and adult cats (1-4 years of age) were imaged by confocal scanning laser ophthalmoscope (cSLO) and spectral domain optical coherence tomography (SD-OCT) using the Spectralis(®) HRA+OCT. Color fundus photography (RetCam II(®) , Clarity Medical Systems, Inc., Pleasanton, CA) was performed after imaging using the Spectralis(®) HRA+OCT. RESULTS Following retinal cSLO imaging using the 488 nm laser (autofluorescence imaging) in both wild-type kittens and adult cats, the imaged region appeared paler than the adjacent retina that had not been imaged. This change was probably due to retinal bleaching and was fully reversible. Imaging CRX(Rdy+/-) kittens or adults, which had very reduced levels of visual pigments, did not induce the altered fundus appearance. CONCLUSIONS Those using autofluorescence imaging by cSLO should be aware that it can induce a characteristic pale appearance of the tapetal fundus in the imaged area of normal cats.
Collapse
Affiliation(s)
- Laurence M Occelli
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, D-208, East Lansing, MI, 48824, USA
| | | |
Collapse
|
93
|
Hoon M, Okawa H, Della Santina L, Wong ROL. Functional architecture of the retina: development and disease. Prog Retin Eye Res 2014; 42:44-84. [PMID: 24984227 DOI: 10.1016/j.preteyeres.2014.06.003] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/08/2014] [Accepted: 06/22/2014] [Indexed: 12/22/2022]
Abstract
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina.
Collapse
Affiliation(s)
- Mrinalini Hoon
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Luca Della Santina
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
94
|
Tran NM, Chen S. Mechanisms of blindness: animal models provide insight into distinct CRX-associated retinopathies. Dev Dyn 2014; 243:1153-66. [PMID: 24888636 DOI: 10.1002/dvdy.24151] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/24/2014] [Accepted: 05/10/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The homeodomain transcription factor CRX is a crucial regulator of mammalian photoreceptor gene expression. Mutations in the human CRX gene are associated with dominant inherited retinopathies Retinitis Pigmentosa (RP), Cone-Rod Dystrophy (CoRD), and Leber Congenital Amaurosis (LCA), of varying severity. In vitro and in vivo assessment of mutant CRX proteins have revealed pathogenic mechanisms for several mutations, but no comprehensive mutation-disease correlation has yet been reported. RESULTS Here we describe four different classes of disease-causing CRX mutations, characterized by mutation type, pathogenetic mechanism, and the molecular activity of the mutant protein: (1) hypomorphic missense mutations with reduced DNA binding, (2) antimorphic missense mutations with variable DNA binding, (3) antimorphic frameshift/nonsense mutations with intact DNA binding, and (4) antimorphic frameshift mutations with reduced DNA binding. Mammalian models representing three of these classes have been characterized. CONCLUSIONS Models carrying Class I mutations display a mild dominant retinal phenotype and recessive LCA, while models carrying Class III and IV mutations display characteristically distinct dominant LCA phenotypes. These animal models also reveal unexpected pathogenic mechanisms underlying CRX-associated retinopathies. The complexity of genotype-phenotype correlation for CRX-associated diseases highlights the value of developing comprehensive "true-to-disease" animal models for understanding pathologic mechanisms and testing novel therapeutic approaches.
Collapse
Affiliation(s)
- Nicholas M Tran
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri
| | | |
Collapse
|
95
|
Bates KE, Molnar J, Robinow S. The unfulfilled gene and nervous system development in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:217-23. [PMID: 24953188 DOI: 10.1016/j.bbagrm.2014.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/07/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022]
Abstract
The unfulfilled gene of Drosophila encodes a member of the NR2E subfamily of nuclear receptors. Like related members of the NR2E subfamily, UNFULFILLED is anticipated to function as a dimer, binding to DNA response elements and regulating the expression of target genes. The UNFULFILLED protein may be regulated by ligand-binding and may also be post-transcriptionally modified by sumoylation and phosphorylation. unfulfilled mutants display a range of aberrant phenotypes, problems with eclosion and post-eclosion behaviors, compromised fertility, arrhythmicity, and a lack of all adult mushroom body lobes. The locus of the fertility problem has not been determined. The behavioral arrhythmicity is due to the unfulfilled-dependent disruption of gene expression in a set of pacemaker neurons. The eclosion and the mushroom body lobe phenotypes of unfulfilled mutants are the result of developmental problems associated with failures in axon pathfinding or re-extension. Interest in genes that act downstream of unfulfilled has resulted in the identification of a growing number of unfulfilled interacting loci, providing the first glimpse into the composition of unfulfilled-dependent gene networks. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Karen E Bates
- Department of Biology, University of Hawaii, Honolulu, HI 96822, USA
| | - Janos Molnar
- Department of Biology, University of Hawaii, Honolulu, HI 96822, USA
| | - Steven Robinow
- Department of Biology, University of Hawaii, Honolulu, HI 96822, USA.
| |
Collapse
|
96
|
Homeobox genes and melatonin synthesis: regulatory roles of the cone-rod homeobox transcription factor in the rodent pineal gland. BIOMED RESEARCH INTERNATIONAL 2014; 2014:946075. [PMID: 24877149 PMCID: PMC4022116 DOI: 10.1155/2014/946075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/07/2014] [Indexed: 01/20/2023]
Abstract
Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a cAMP-based induction of Aanat transcription. However, additional transcriptional control mechanisms exist. Homeobox genes, which are generally known to encode transcription factors controlling developmental processes, are also expressed in the mature rodent pineal gland. Among these, the cone-rod homeobox (CRX) transcription factor is believed to control pineal-specific Aanat expression. Based on recent advances in our understanding of Crx in the rodent pineal gland, we here suggest that homeobox genes play a role in adult pineal physiology both by ensuring pineal-specific Aanat expression and by facilitating cAMP response element-based circadian melatonin production.
Collapse
|
97
|
Hao H, Veleri S, Sun B, Kim DS, Keeley PW, Kim JW, Yang HJ, Yadav SP, Manjunath SH, Sood R, Liu P, Reese BE, Swaroop A. Regulation of a novel isoform of Receptor Expression Enhancing Protein REEP6 in rod photoreceptors by bZIP transcription factor NRL. Hum Mol Genet 2014; 23:4260-71. [PMID: 24691551 DOI: 10.1093/hmg/ddu143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Maf-family leucine zipper transcription factor NRL is essential for rod photoreceptor development and functional maintenance in the mammalian retina. Mutations in NRL are associated with human retinopathies, and loss of Nrl in mice leads to a cone-only retina with the complete absence of rods. Among the highly down-regulated genes in the Nrl(-/-) retina, we identified receptor expression enhancing protein 6 (Reep6), which encodes a member of a family of proteins involved in shaping of membrane tubules and transport of G-protein coupled receptors. Here, we demonstrate the expression of a novel Reep6 isoform (termed Reep6.1) in the retina by exon-specific Taqman assay and rapid analysis of complementary deoxyribonucleic acid (cDNA) ends (5'-RACE). The REEP6.1 protein includes 27 additional amino acids encoded by exon 5 and is specifically expressed in rod photoreceptors of developing and mature retina. Chromatin immunoprecipitation assay identified NRL binding within the Reep6 intron 1. Reporter assays in cultured cells and transfections in retinal explants mapped an intronic enhancer sequence that mediated NRL-directed Reep6.1 expression. We also demonstrate that knockdown of Reep6 in mouse and zebrafish resulted in death of retinal cells. Our studies implicate REEP6.1 as a key functional target of NRL-centered transcriptional regulatory network in rod photoreceptors.
Collapse
Affiliation(s)
- Hong Hao
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shobi Veleri
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bo Sun
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas S Kim
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA, USA
| | - Patrick W Keeley
- Neuroscience Research Institute Department of Molecular, Cellular and Developmental Biology and
| | - Jung-Woong Kim
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyun-Jin Yang
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharda P Yadav
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Souparnika H Manjunath
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raman Sood
- Oncogenesis and Development Section and Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul Liu
- Oncogenesis and Development Section and Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin E Reese
- Neuroscience Research Institute Department of Psychological and Brain Sciences, University of California at Santa Barbara, CA, USA
| | - Anand Swaroop
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
98
|
Samuel A, Housset M, Fant B, Lamonerie T. Otx2 ChIP-seq reveals unique and redundant functions in the mature mouse retina. PLoS One 2014; 9:e89110. [PMID: 24558479 PMCID: PMC3928427 DOI: 10.1371/journal.pone.0089110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/17/2014] [Indexed: 11/18/2022] Open
Abstract
During mouse retinal development and into adulthood, the transcription factor Otx2 is expressed in pigment epithelium, photoreceptors and bipolar cells. In the mature retina, Otx2 ablation causes photoreceptor degeneration through a non-cell-autonomous mechanism involving Otx2 function in the supporting RPE. Surprisingly, photoreceptor survival does not require Otx2 expression in the neural retina, where the related Crx homeobox gene, a major regulator of photoreceptor development, is also expressed. To get a deeper view of mouse Otx2 activities in the neural retina, we performed chromatin-immunoprecipitation followed by massively parallel sequencing (ChIP-seq) on Otx2. Using two independent ChIP-seq assays, we identified consistent sets of Otx2-bound cis-regulatory elements. Comparison with our previous RPE-specific Otx2 ChIP-seq data shows that Otx2 occupies different functional domains of the genome in RPE cells and in neural retina cells and regulates mostly different sets of genes. To assess the potential redundancy of Otx2 and Crx, we compared our data with Crx ChIP-seq data. While Crx genome occupancy markedly differs from Otx2 genome occupancy in the RPE, it largely overlaps that of Otx2 in the neural retina. Thus, in accordance with its essential role in the RPE and its non-essential role in the neural retina, Otx2 regulates different gene sets in the RPE and the neural retina, and shares an important part of its repertoire with Crx in the neural retina. Overall, this study provides a better understanding of gene-regulatory networks controlling photoreceptor homeostasis and disease.
Collapse
Affiliation(s)
- Alexander Samuel
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, CNRS UMR7277, Inserm U1091, Nice, France
| | - Michael Housset
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, CNRS UMR7277, Inserm U1091, Nice, France
| | - Bruno Fant
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, CNRS UMR7277, Inserm U1091, Nice, France
| | - Thomas Lamonerie
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, CNRS UMR7277, Inserm U1091, Nice, France
- * E-mail:
| |
Collapse
|
99
|
Klimova L, Kozmik Z. Stage-dependent requirement of neuroretinal Pax6 for lens and retina development. Development 2014; 141:1292-302. [PMID: 24523460 DOI: 10.1242/dev.098822] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The physical contact of optic vesicle with head surface ectoderm is an initial event triggering eye morphogenesis. This interaction leads to lens specification followed by coordinated invagination of the lens placode and optic vesicle, resulting in formation of the lens, retina and retinal pigmented epithelium. Although the role of Pax6 in early lens development has been well documented, its role in optic vesicle neuroepithelium and early retinal progenitors is poorly understood. Here we show that conditional inactivation of Pax6 at distinct time points of mouse neuroretina development has a different impact on early eye morphogenesis. When Pax6 is eliminated in the retina at E10.5 using an mRx-Cre transgene, after a sufficient contact between the optic vesicle and surface ectoderm has occurred, the lens develops normally but the pool of retinal progenitor cells gradually fails to expand. Furthermore, a normal differentiation program is not initiated, leading to almost complete disappearance of the retina after birth. By contrast, when Pax6 was inactivated at the onset of contact between the optic vesicle and surface ectoderm in Pax6(Sey/flox) embryos, expression of lens-specific genes was not initiated and neither the lens nor the retina formed. Our data show that Pax6 in the optic vesicle is important not only for proper retina development, but also for lens formation in a non-cell-autonomous manner.
Collapse
Affiliation(s)
- Lucie Klimova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 14420 Prague 4, Czech Republic
| | | |
Collapse
|
100
|
Reks SE, McIlvain V, Zhuo X, Knox BE. Cooperative activation of Xenopus rhodopsin transcription by paired-like transcription factors. BMC Mol Biol 2014; 15:4. [PMID: 24499263 PMCID: PMC3937059 DOI: 10.1186/1471-2199-15-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 02/01/2014] [Indexed: 12/02/2022] Open
Abstract
Background In vertebrates, rod photoreceptor-specific gene expression is regulated by the large Maf and Pax-like transcription factors, Nrl/LNrl and Crx/Otx5. The ubiquitous occurrence of their target DNA binding sites throughout rod-specific gene promoters suggests that multiple transcription factor interactions within the promoter are functionally important. Cooperative action by these transcription factors activates rod-specific genes such as rhodopsin. However, a quantitative mechanistic explanation of transcriptional rate determinants is lacking. Results We investigated the contributions of various paired-like transcription factors and their cognate cis-elements to rhodopsin gene activation using cultured cells to quantify activity. The Xenopus rhodopsin promoter (XOP) has a bipartite structure, with ~200 bp proximal to the start site (RPP) coordinating cooperative activation by Nrl/LNrl-Crx/Otx5 and the adjacent 5300 bp upstream sequence increasing the overall expression level. The synergistic activation by Nrl/LNrl-Crx/Otx5 also occurred when XOP was stably integrated into the genome. We determined that Crx/Otx5 synergistically activated transcription independently and additively through the two Pax-like cis-elements, BAT1 and Ret4, but not through Ret1. Other Pax-like family members, Rax1 and Rax2, do not synergistically activate XOP transcription with Nrl/LNrl and/or Crx/Otx5; rather they act as co-activators via the Ret1 cis-element. Conclusions We have provided a quantitative model of cooperative transcriptional activation of the rhodopsin promoter through interaction of Crx/Otx5 with Nrl/LNrl at two paired-like cis-elements proximal to the NRE and TATA binding site. Further, we have shown that Rax genes act in cooperation with Crx/Otx5 with Nrl/LNrl as co-activators of rhodopsin transcription.
Collapse
Affiliation(s)
| | | | | | - Barry E Knox
- Departments of Neuroscience & Physiology, Ophthalmology and Biochemistry & Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|