51
|
Zheng Y, Li S, Li C, Shao Y, Chen A. Polysaccharides from Spores of Cordyceps cicadae Protect against Cyclophosphamide-Induced Immunosuppression and Oxidative Stress in Mice. Foods 2022; 11:foods11040515. [PMID: 35205991 PMCID: PMC8871426 DOI: 10.3390/foods11040515] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
This study investigated the purification, preliminary structure and in vivo immunomodulatory activities of polysaccharides from the spores of Cordyceps cicadae (CCSP). The crude CCSP was purified by diethylaminoethyl (DEAE)-cellulose and Sephadex G-100 chromatography, affording CCSP-1, CCSP-2 and CCSP-3 with molecular weights of 1.79 × 106, 5.74 × 104 and 7.93 × 103 Da, respectively. CCSP-2 consisted of mannose and glucose, while CCSP-1 and CCSP-3 are composed of three and four monosaccharides with different molar ratios, respectively. CCSP-2 exhibited its ameliorative effects in cyclophosphamide-induced immunosuppressed mice through significantly increasing spleen and thymus indices, enhancing macrophage phagocytic activity, stimulating splenocyte proliferation, improving natural killer (NK) cytotoxicity, improving bone marrow suppression, regulating the secretion of cytokines and immunoglobulins, and modulating antioxidant enzyme system. These results indicate that CCSP-2 might be exploited as a promising natural immunomodulator.
Collapse
|
52
|
Liu J, Zhang X, Zhang J, Yan M, Li D, Zhou S, Feng J, Liu Y. Research on Extraction, Structure Characterization and Immunostimulatory Activity of Cell Wall Polysaccharides from Sparassis latifolia. Polymers (Basel) 2022; 14:549. [PMID: 35160537 PMCID: PMC8840611 DOI: 10.3390/polym14030549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
The cell wall polysaccharides were extracted from Sparassis latifolia fruit bodies by acid-alkali and superfine-grinding assisted methods, and the chemical characterization and in vitro immunity activities of these polysaccharide fractions were studied and compared. Results showed that superfine-grinding assisted extraction exhibited the highest yield of polysaccharides (SP, 20.80%) and low β-glucan content (19.35%) compared with alkaline extracts. The results revealed that the 20% ethanol precipitated fraction (20E) from SP was mainly composed of β-(1→3)-glucan and α-(1→4)-glucan. With the increase of ethanol precipitation, the fractions (30E, 40E, 50E) were identified as α-(1→4)-glucan with different molecular weights and conformations. Cell wall polysaccharides extracted through NaOH (NSP) and KOH (KSP) extraction had similar yields with 8.90% and 8.83%, respectively. Structural analysis indicated that the purified fraction from KSP (KSP-30E) was a β-(1→3)-glucan backbone branched with β-(1→6)-Glcp, while the purified fraction from NSP (NSP-30E) mainly contained β-(1→3)-glucan with a small number of α-linked-Glcp. The two fractions both exhibited rigid chain conformation in aqueous solutions. All polysaccharide fractions exerted the activity of activating Dectin-1 receptor in vitro, and the KSP-30E mainly identified as β-(1→3)-glucan with the terminal group via 1→6-linkage attached at every third residue exhibited a stronger enhancing effect than other fractions. Results suggested that KOH extraction could be efficient for the preparation of bioactive β-(1→3, 1→6)-glucan as a food ingredient.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South) Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (J.L.); (X.Z.); (J.Z.); (M.Y.); (D.L.); (S.Z.); (J.F.)
- College of Food Science & Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Xuemeng Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South) Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (J.L.); (X.Z.); (J.Z.); (M.Y.); (D.L.); (S.Z.); (J.F.)
- College of Food Science & Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South) Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (J.L.); (X.Z.); (J.Z.); (M.Y.); (D.L.); (S.Z.); (J.F.)
| | - Mengqiu Yan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South) Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (J.L.); (X.Z.); (J.Z.); (M.Y.); (D.L.); (S.Z.); (J.F.)
| | - Deshun Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South) Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (J.L.); (X.Z.); (J.Z.); (M.Y.); (D.L.); (S.Z.); (J.F.)
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South) Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (J.L.); (X.Z.); (J.Z.); (M.Y.); (D.L.); (S.Z.); (J.F.)
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South) Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (J.L.); (X.Z.); (J.Z.); (M.Y.); (D.L.); (S.Z.); (J.F.)
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South) Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (J.L.); (X.Z.); (J.Z.); (M.Y.); (D.L.); (S.Z.); (J.F.)
| |
Collapse
|
53
|
Yu Y, Wen Q, Song A, Liu Y, Wang F, Jiang B. Isolation and immune activity of a new acidic Cordyceps militaris exopolysaccharide. Int J Biol Macromol 2022; 194:706-714. [PMID: 34813790 DOI: 10.1016/j.ijbiomac.2021.11.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 01/09/2023]
Abstract
A new type of acidic exopolysaccharide (AESP-II) was extracted and separated from the fermentation broth of Cordyceps militaris (C. militaris), which was further purified to elucidate its structural characteristics and immunological activity. AESP-II was confirmed to be an acidic pyranose with a molecular weight of 61.52 kDa, which consisted of mannose, glucuronic acid, rhamnose, galactose acid, N-acetyl-galactosamine, glucose, galactose and arabinose with a molar ratio of 1.07: 5.38: 1: 3.14: 2.23: 15: 6.09: and 4.04. Animal experiment results verified that AESP-II can significantly promote the proliferation of spleen T and B lymphocytes in mice with immune injury caused by cyclophosphamide (CTX). In particular, the promotion of B lymphocytes presented a dose-effect relationship. In addition, the levels of the cytokines IL-2, IL-4, and IFN-γ, which are mainly secreted by T lymphocytes, and immunoglobulin IgG, IgM and IgA, which are mainly secreted by B lymphocytes, were increased after AESP-II treatment. The above results suggest that fluid immunity is involved in the immunomodulatory function of AESP-II. Simultaneously, AESP-II was detected significantly to promote the phosphorylation expression of p38 kinase (p38), extracellular regulated protein kinases (ERK) and c-Jun N-terminal kinase (JNK) by Western blot, further suggesting that the activation of the MAPK signaling pathway mediates the immunoregulatory function of AESP-II.
Collapse
Affiliation(s)
- Yue Yu
- Graduate School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Qiang Wen
- National Institutes for Food and Drug Control, Beijing 102629, PR China
| | - Ao Song
- Changchun Customs Technology Center, Changchun 130033, PR China
| | - Yang Liu
- Changchun Customs Technology Center, Changchun 130033, PR China
| | - Fei Wang
- School of Life Science, Liaocheng University, Liaocheng 252059, PR China.
| | - Bin Jiang
- Graduate School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
54
|
Jia X, Ma B, Xue F, Xing Y, Wu P, Li T, Shi F, Xu CP. Structure Characterization and Anti-inflammatory Activity of Polysaccharides from Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Agaricomycetes) by Microwave-assisted Freeze-thaw Extraction. Int J Med Mushrooms 2022; 24:49-61. [DOI: 10.1615/intjmedmushrooms.2022045268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
55
|
Hong T, Yin JY, Nie SP, Xie MY. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chem X 2021; 12:100168. [PMID: 34877528 PMCID: PMC8633561 DOI: 10.1016/j.fochx.2021.100168] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022] Open
Abstract
Functional properties of polysaccharides depend on their structural features. IR spectroscopy is widely used in polysaccharide structural analysis. Classical applications of IR spectroscopy in polysaccharide are reviewed. IR integrating techniques can considerably expand its application scope.
Polysaccharides are important biomacromolecules with numerous beneficial functions and a wide range of industrial applications. Functions and properties of polysaccharides are closely related to their structural features. Infrared (IR) spectroscopy is a well-established technique which has been widely applied in polysaccharide structural analysis. In this paper, the principle of IR and interpretation of polysaccharide IR spectrum are briefly introduced. Classical applications of IR spectroscopy in polysaccharide structural elucidation are reviewed from qualitative and quantitative aspects. Some advanced IR techniques including integrating with mass spectrometry (MS), microscopy and computational chemistry are introduced and their applications are emphasized. These emerging techniques can considerably expand application scope of IR, thus exert a more important effect on carbohydrate characterization. Overall, this review seeks to provide a comprehensive insight to applications of IR spectroscopy in polysaccharide structural analysis and highlights the importance of advanced IR-integrating techniques.
Collapse
Affiliation(s)
- Tao Hong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
56
|
Zhao S, Rong C, Gao Y, Wu L, Luo X, Song S, Liu Y, Wong JH, Wang H, Yi L, Ng T. Antidepressant-like effect of Ganoderma lucidum spore polysaccharide-peptide mediated by upregulation of prefrontal cortex brain-derived neurotrophic factor. Appl Microbiol Biotechnol 2021; 105:8675-8688. [PMID: 34716786 DOI: 10.1007/s00253-021-11634-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
A 28-kDa polysaccharide-peptide (PGL) with antidepressant-like activities was isolated from spores of the mushroom Ganoderma lucidum. It was unadsorbed on DEAE-cellulose. Its internal amino acid sequences manifested pronounced similarity with proteins from the mushrooms Lentinula edodes and Agaricus bisporus. The monosaccharides present in 28-kDa PGL comprised predominantly of glucose (over 90%) and much fewer galactose, mannose residues, and other residues. PGL manifested antidepressant-like activities as follows. It enhanced viability and DNA content in corticosterone-injured PC12 cells(a cell line derived from a pheochromocytoma of the rat adrenal medulla with an embryonic origin from the neural crest containing a mixture of neuroblastic cells and eosinophilic cells) and reduced LDH release. A single acute PGL treatment shortened the duration of immobility of mice in both tail suspension and forced swimming tests. PGL treatment enhanced sucrose preference and shortened the duration of immobility in mice exposed to chronic unpredictable mild stress (CUMS). Chronic PGL treatment reversed the decline in mouse brain serotonin and norepinephrine levels but did not affect dopamine levels. PGL decreased serum corticosterone levels and increased BDNF mRNA and protein levels and increased synapsin I and PSD95 levels in the prefrontal cortex. This effect was completely blocked by pretreatment with the BDNF antagonist K252a, indicating that PGL increased synaptic proteins in a BDNF-dependent manner.Key points• An antidepressive polysaccharide-peptide PGL was isolated from G. lucidum spores.• PGL protected PC12 nerve cells from the toxicity of corticosterone.• PGL upregulated BDNF expression and influenced key factors in the prefrontal cortex.
Collapse
Affiliation(s)
- Shuang Zhao
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yi Gao
- Beijing Xicheng District Health Care Center for Mothers and Children, Beijing, 100053, China
| | - Linfeng Wu
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoheng Luo
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuang Song
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yu Liu
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, New Territories, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, 100193, China.
| | - Litao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Fujian Province, 361021, Xiamen, China.
| | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, New Territories, China.
| |
Collapse
|
57
|
Hu X, Xu F, Li J, Li J, Mo C, Zhao M, Wang L. Ultrasonic-assisted extraction of polysaccharides from coix seeds: Optimization, purification, and in vitro digestibility. Food Chem 2021; 374:131636. [PMID: 34875432 DOI: 10.1016/j.foodchem.2021.131636] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022]
Abstract
To optimize the extraction of polysaccharides from coix seeds (CSP), an auxiliary method of ultrasound was developed by response surface methodology (RSM). The maximum extraction yield (8.340%) was obtained under 480 W power, 16 min ultrasound extraction (UE) time and 21.00 mL/g water to raw material ratio. Compared to hot water extraction (HE), UE-treated CSP led to a higher extraction efficiency and decreased average CSP molecular weight. FT-IR indicated that CSP extracted by UE and HE were neutral polysaccharides, and linkages between sugar units were mainly in the α-conformation. Furthermore, NMR spectra indicated that UE-treated CSP was a neutral polysaccharide with (1 → 6)-linked α-d-glucopyranose in the main chain. Two polysaccharide components (CSP-A and CSP-B) were purified by anion exchange chromatography, therein, CSP-A was more resistant to the digestion in stomach and intestine. These results suggest that CSP-A has the potential to be a functional agent utilized by gut microbes.
Collapse
Affiliation(s)
- Xintian Hu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, People's Republic of China
| | - Feiran Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Jinglei Li
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Jun Li
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, People's Republic of China
| | - Cheng Mo
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, People's Republic of China
| | - Meng Zhao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, People's Republic of China
| | - Lifeng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, People's Republic of China.
| |
Collapse
|
58
|
Verhoeven J, Keller D, Verbruggen S, Abboud KY, Venema K. A blend of 3 mushrooms dose-dependently increases butyrate production by the gut microbiota. Benef Microbes 2021; 12:601-612. [PMID: 34590532 DOI: 10.3920/bm2021.0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gut microbiota has been indicated to play a crucial role in health and disease. Apart from changes in composition between healthy individuals and those with a disease or disorder, it has become clear that also microbial activity is important for health. For instance, butyrate has been proven to be beneficial for health, because, amongst others, it is a substrate for the colonocytes, and modulates the host's immune system and metabolism. Here, we studied the effect of a blend of three mushrooms (Ganoderma lucidum GL AM P-38, Grifola frondosa GF AM P36 and Pleurotus ostreatus PO AM-GP37)) on gut microbiota composition and activity in a validated, dynamic, computer-controlled in vitro model of the colon (TIM-2). Predigested mushroom blend at three doses (0.5, 1.0 and 1.5 g/day of ingested mushroom blend) was fed to a pooled microbiota of healthy adults for 72 h, and samples were taken every day for microbiota composition (sequencing of amplicons of the V3-V4 region of the 16S rRNA gene) and activity (short-chain fatty acid (SCFA) production). The butyrate producing genera Lachnospiraceae UCG-004, Lachnoclostridium, Ruminococcaceae UCG-002 and Ruminococcaceae NK4A214-group are all dose-dependently increased when the mushroom blend was fed. Entirely in line with the increase of these butyrate-producers, the cumulative amount of butyrate also dose-dependently increased, to roughly twice the amount compared to the control (medium without mushroom blend) on the high-dose mushroom blend. Butyrate proportionally made up 53.1% of the total SCFA upon feeding the high-dose mushroom blend, compared to 27% on the control medium. In conclusion, the (polysaccharides in the) mushroom blend led to substantial increase in butyrate by the gut microbiota. These results warrant future mechanistic research on the mushroom blend, as butyrate is considered to be one of the microbial metabolites that contributes to health, by increasing barrier function and modulating inflammation.
Collapse
Affiliation(s)
- J Verhoeven
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| | - D Keller
- Keller Consulting Group, 2417 Beachwood Blvd., Beachwood, OH 44122, USA
| | - S Verbruggen
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| | - K Youssef Abboud
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| |
Collapse
|
59
|
Yu S, Wang J, Li Y, Wang X, Ren F, Wang X. Structural Studies of Water-Insoluble β-Glucan from Oat Bran and Its Effect on Improving Lipid Metabolism in Mice Fed High-Fat Diet. Nutrients 2021; 13:nu13093254. [PMID: 34579130 PMCID: PMC8467107 DOI: 10.3390/nu13093254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/04/2023] Open
Abstract
Water-insoluble β-glucan has been reported to have beneficial effects on human health. However, no studies have thoroughly characterized the structure and function of water-insoluble β-glucan in oat bran. Thus, the structure and effect of water-insoluble β-glucan on weight gain and lipid metabolism in high-fat diet (HFD)-fed mice were analyzed. First, water-insoluble β-glucan was isolated and purified from oat bran. Compared with water-soluble β-glucan, water-insoluble β-glucan had higher DP3:DP4 molar ratio (2.12 and 1.67, respectively) and molecular weight (123,800 and 119,200 g/mol, respectively). Notably, water-insoluble β-glucan exhibited more fibrous sheet-like structure and greater swelling power than water-soluble β-glucan. Animal experiments have shown that oral administration of water-insoluble β-glucan tended to lower the final body weight of obese mice after 10 weeks treatment. In addition, water-insoluble β-glucan administration significantly improved the serum lipid profile (triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol levels) and epididymal adipocytes size. What is more, water-insoluble β-glucan reduced the accumulation and accelerated the decomposition of lipid in liver. In conclusion, water-insoluble β-glucan (oat bran) could alleviate obesity in HFD-fed mice by improving blood lipid level and accelerating the decomposition of lipid.
Collapse
Affiliation(s)
- Shoujuan Yu
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Y.); (J.W.)
| | - Jun Wang
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Y.); (J.W.)
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (Y.L.); (F.R.)
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA;
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (Y.L.); (F.R.)
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Y.); (J.W.)
- Correspondence: ; Tel.: +86-010-62738589
| |
Collapse
|
60
|
Wu X, Huang J, Wang J, Xu Y, Yang X, Sun M, Shi J. Multi-Pharmaceutical Activities of Chinese Herbal Polysaccharides in the Treatment of Pulmonary Fibrosis: Concept and Future Prospects. Front Pharmacol 2021; 12:707491. [PMID: 34489700 PMCID: PMC8418122 DOI: 10.3389/fphar.2021.707491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary fibrosis is a fatal chronic progressive respiratory disease, characterized by continuous scarring of the lung parenchyma, leading to respiratory failure and death. The incidence of PF has increased over time. There are drugs, yet, there are some limitations. Hence, it is of importance to find new therapies and new drugs to replace the treatment of pulmonary fibrosis. In recent years, there have been a great number of research reports on the treatment of traditional Chinese medicine polysaccharides in various system fields. Among them, the treatment of PF has also gained extensive attention. This review summarized the source of polysaccharides, the drug activity of traditional Chinese medicine, and the protective effects on targets of Pulmonary fibrosis. We hope it can inspire researchers to design and develop polysaccharides, serving as a reference for potential clinical therapeutic drugs.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chegdu Sport University, Chengdu, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yihua Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chegdu Sport University, Chengdu, China
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
61
|
Ahmad R, Riaz M, Khan A, Aljamea A, Algheryafi M, Sewaket D, Alqathama A. Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytother Res 2021; 35:6030-6062. [PMID: 34411377 DOI: 10.1002/ptr.7215] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Reishi owes an exceptional value in nutritional, cosmeceutical, and medical treatments; however, none of the studies has provided its future-driven critical assessment. This study documents an up-to-date review (2015-2020, wherever applicable) and provide valuable insights (preclinical and clinical evidence-based) with comprehensive and critical assessments. Various databases 'Google scholar', 'Web of Science', 'ScienceDirect', 'PubMed', 'Springer Link', books, theses, and library resources were used. The taxonomic chaos of G. lucidum and its related species was discussed in detail with solution-oriented emphasis. Reishi contains polysaccharides (α/β-D-glucans), alkaloids, triterpenoids (ganoderic acids, ganoderenic acids, ganoderol, ganoderiol, lucidenic acids), sterols/ergosterol, proteins (LZ-8, LZ-9), nucleosides (adenosine, inosine, uridine), and nucleotides (guanine, adenine). Some active drugs are explored at an optimum level to make them potential drug candidates. The pharmacological potential was observed in diabetes, inflammation, epilepsy, neurodegeneration, cancer, anxiety, sedation, cardiac diseases, depression, hepatic diseases, and immune disorders; however, most of the studies are preclinical with a number of drawbacks. In particular, quality clinical data are intensely needed to support pharmacological activities for human use. The presence of numerous micro-, macro, and trace elements imparts an essential nutritional and cosmeceutical value to Reishi, and various marketed products are available already, but the clinical studies regarding safety and efficacy, interactions with foods/drinks, chronic use, teratogenicity, mutagenicity, and genotoxicity are missing for Reishi. Reishi possesses many valuable pharmacological activities, and the number of patents and clinical trials is increasing for Reishi. Yet, a gap in research exists for Reishi, which is discussed in detail in the forthcoming sections.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir, Bhutto University, Sheringal Dir (U), Pakistan
| | - Aslam Khan
- Basic Sciences Department, College of Science and Health Professions, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ahmed Aljamea
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad Algheryafi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Deya Sewaket
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Pharmacy College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
62
|
Liu Y, Wang Y, Zhou S, Yan M, Tang Q, Zhang J. Structure and chain conformation of bioactive β-D-glucan purified from water extracts of Ganoderma lucidum unbroken spores. Int J Biol Macromol 2021; 180:484-493. [PMID: 33689774 DOI: 10.1016/j.ijbiomac.2021.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/25/2023]
Abstract
Two polysaccharide fractions (GLSB50 and GLSB70) with total sugar content of 82.07 wt% and 53.79 wt%, respectively, were obtained from the water extracts of unbroken Ganoderma lucidum spores by sequential ethanol precipitation treatment. Compared with GLSB70, GLSB50 exhibited better activity on stimulation of humoral immune responses in immunosuppressed mice. A novel β-D-glucan (GLSB50A-III-1) with weight average molecular weight (Mw) of 1.93 × 105 g/mol was purified from GLSB50 through chromatography separation. The exponent α value of Mark-Houwink-Sakurada equation was calculated to be 0.13, indicating that GLSB50A-III-1 presented globular spheres conformation in aqueous solution. Structural analysis showed that GLSB50A-III-1 mainly consisted of (1 → 3), (1 → 4), (1 → 6)-linked β-d-glucose residues in the backbone, with two single β-D-Glcp attached at O-6 of β-(1 → 3) and β-(1 → 4)-linked residues separately as side chains. The repeat unit of GLSB50A-III-1 was deduced as follows.
Collapse
Affiliation(s)
- Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China
| | - Yatao Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China.
| | - Mengqiu Yan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China
| | - Qingjiu Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China.
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China.
| |
Collapse
|
63
|
Guo C, Guo D, Fang L, Sang T, Wu J, Guo C, Wang Y, Wang Y, Chen C, Chen J, Chen R, Wang X. Ganoderma lucidum polysaccharide modulates gut microbiota and immune cell function to inhibit inflammation and tumorigenesis in colon. Carbohydr Polym 2021; 267:118231. [PMID: 34119183 DOI: 10.1016/j.carbpol.2021.118231] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
This study investigated the effects of water-soluble polysaccharide extracted from the sporoderm-removed spores of Ganoderma lucidum (GLP) against AOM/DSS-induced inflammation, tumorigenesis, and gut microbiota modification, which has never been reported before. Our data revealed that GLP (200 and 300 mg/kg) decreased AOM/DSS-induced colitis and tumorigenesis, manifested by significantly reduced disease activity index score, and total number and size of tumors. Furthermore, GLP ameliorated AOM/DSS-induced microbiota dysbiosis, increased short-chain fatty acid production, and alleviated endotoxemia by inhibiting TLR4/MyD88/NF-κB signaling. Besides, GLP profoundly improved gut barrier function as evidenced by increased numbers of goblet cells, MUC2 secretion, and tight junction protein expressions. GLP treatment inhibited macrophage infiltration and downregulated IL-1β, iNOS, and COX-2 expressions. Additionally, GLP inhibited lipopolysaccharides (LPS)-induced inflammation markers and MAPK (JNK and ERK) activation in macrophage RAW264.7, intestinal HT-29, and NCM460 cells. In conclusion, these results indicate that GLP is a promising prebiotic for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Cuiling Guo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Dandan Guo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Liu Fang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Tingting Sang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jianjun Wu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Chengjie Guo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yujie Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Ying Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Chaojie Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiajun Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Rong Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Xingya Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
64
|
de Almeida WS, da Silva DA. Does polysaccharide quaternization improve biological activity? Int J Biol Macromol 2021; 182:1419-1436. [PMID: 33965482 DOI: 10.1016/j.ijbiomac.2021.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022]
Abstract
The natural polysaccharides, due to their structural diversity, commonly present very distinct solubility and physical chemical properties and additionally have intrinsic biological activities that, gene-rally, reveal themselves in a light way. The chemical modification of the molecular structure can improve these parameters. In this review, original articles that approached the quaternization of polysaccharides for purposes of biological application were selected, without limitation of year of publication, in the databases Scopus, Web of Science and PubMed. The results obtained from the bibliographic survey indicate that the increase in positive charges caused by quaternization improves the interaction between modified polysaccharides and structures that have negative charges on their surface, such as the cell wall of microorganisms and some cells in the human body, such as the DNA. This greater interaction is reflected as an increase in the biological activity of all polysaccharides broached in this study. Another important data obtained was the fact that the chemical changes did not affect or irrelevantly affect the toxicity of almost all of the polysaccharides that were quaternized. Therefore, polysaccharide quaternization is a safe and effective way to obtain improvements in the biological behavior of these macromolecules.
Collapse
Affiliation(s)
- Wanessa Sales de Almeida
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, 64049-550 Teresina, PI, Brazil.
| | - Durcilene Alves da Silva
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, 64049-550 Teresina, PI, Brazil; Núcleo de Pesquisa em Biotecnologia e Biodiversidade, Universidade Federal do Delta do Parnaíba, Brazil.
| |
Collapse
|
65
|
Ma G, Du H, Hu Q, Yang W, Pei F, Xiao H. Health benefits of edible mushroom polysaccharides and associated gut microbiota regulation. Crit Rev Food Sci Nutr 2021; 62:6646-6663. [PMID: 33792430 DOI: 10.1080/10408398.2021.1903385] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Edible mushrooms have been an important part of the human diet for thousands of years, and over 100 varieties have been cultivated for their potential human health benefits. In recent years, edible mushroom polysaccharides (EMPs) have been studied for their activities against obesity, inflammatory bowel disease (IBD), and cancer. Particularly, accumulating evidence on the exact causality between these health risks and specific gut microbiota species has been revealed and characterized, and most of the beneficial health effects of EMPs have been associated with its reversal impacts on gut microbiota dysbiosis. This demonstrates the key role of EMPs in decreasing health risks through gut microbiota modulation effects. This review article compiles and summarizes the latest studies that focus on the health benefits and underlying functional mechanisms of gut microbiota regulation via EMPs. We conclude that EMPs can be considered a dietary source for the improvement and prevention of several health risks, and this review provides the theoretical basis and technical guidance for the development of novel functional foods with the utilization of edible mushrooms.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Wenjian Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
66
|
Li H, Xiao Y, Han L, Jia Y, Luo S, Zhang D, Zhang L, Wu P, Xiao C, Kan W, Du J, Bao H. Ganoderma lucidum polysaccharides ameliorated depression-like behaviors in the chronic social defeat stress depression model via modulation of Dectin-1 and the innate immune system. Brain Res Bull 2021; 171:16-24. [PMID: 33705858 DOI: 10.1016/j.brainresbull.2021.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) is a prevalent, chronic, and recurrent disease. At least one-third of patients have treatment-resistant depression; therefore, there is an urgent need for novel drug development. Cumulative studies have suggested an inflammatory mechanism for the pathophysiology of MDD. Ganoderma lucidum polysaccharides (GLP) is an anti-inflammatory and immunomodulatory agent. Here, we found that an injection of GLP led to a rapid and robust antidepressant effect after 60 min in the tail suspension test. This antidepressant effect remained after 5 days of treatment with GLP in the forced swim test. Unlike psychostimulants, GLP did not show a hyperactive effect in the open field test. After 60 min or 5 days of treatment, GLP exhibited an antidepressant effect in a chronic social defeat stress (CSDS) depression animal model. Moreover, after 5 days of treatment, GLP attenuated the expression of the proinflammatory cytokines IL-1β and TNF-α, enhanced the expression of the anti-inflammatory cytokine IL-10 and the neurotrophic factor BDNF, and inhibited the activation of microglia and proliferation of astrocytes in the hippocampus of CSDS mice. In addition, after 5 days of treatment, GLP significantly enhanced GluA1 S845 phosphorylation as well as GluA1 and GluA2 expression levels in the hippocampus of CSDS mice. To determine whether the antidepressant effect was mediated by Dectin-1, we found that GLP treatment enhanced Dectin-1 expression in the hippocampus in CSDS mice, and the Dectin-1-specific inhibitor laminarin almost completely blocked the antidepressant effect of GLP. This study identified GLP, an agonist of Dectin-1, as a novel and rapid antidepressant with clinical potential and multiple beneficial mechanisms, particularly in regulating the neuroimmune system and, subsequently, AMPA receptor function.
Collapse
Affiliation(s)
- Haoran Li
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China
| | - Yuhuan Xiao
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China
| | - Li Han
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China
| | - Yue Jia
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China
| | - Shaolei Luo
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China
| | - Dandan Zhang
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China
| | - Ling Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, PR China
| | - Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, 650201, PR China
| | - Chunjie Xiao
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China
| | - Weijing Kan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, PR China
| | - Jing Du
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China; The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, PR China.
| | - Hongkun Bao
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China.
| |
Collapse
|
67
|
Ganoderma lucidum Spore Polysaccharide Inhibits the Growth of Hepatocellular Carcinoma Cells by Altering Macrophage Polarity and Induction of Apoptosis. J Immunol Res 2021; 2021:6696606. [PMID: 33748291 PMCID: PMC7954632 DOI: 10.1155/2021/6696606] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Ganoderma lucidum has certain components with known pharmacological effects, including strengthening immunity and anti-inflammatory activity. G. lucidum seeds inherit all its biological characteristics. G. lucidum spore polysaccharide (GLSP) is the main active ingredient to enhance these effects. However, its specific biological mechanisms are not exact. Our research is aimed at revealing the specific biological mechanism of GLSP to enhance immunity and inhibit the growth of H22 hepatocellular carcinoma cells. Methods We extracted primary macrophages (Mø) from BALB/c mice and treated them with GLSP (800 μg/mL, 400 μg/mL, and 200 μg/mL) to observe its effects on macrophage polarization and cytokine secretion. We used GLSP and GLSP-intervened macrophage supernatant to treat H22 tumor cells and observed their effects using MTT and flow cytometry. Moreover, real-time fluorescent quantitative PCR and western blotting were used to observe the effect of GLSP-intervened macrophage supernatant on the PI3K/AKT and mitochondrial apoptosis pathways. Results In this study, GLSP promoted the polarization of primary macrophages to M1 type and the upregulation of some cytokines such as TNF-α, IL-1β, IL-6, and TGF-β1. The MTT assay revealed that GLSP+Mø at 400 μg/mL and 800 μg/mL significantly inhibited H22 cell proliferation in a dose-dependent manner. Flow cytometry analysis revealed that GLSP+Mø induced apoptosis and cell cycle arrest at the G2/M phase, associated with the expression of critical genes and proteins (PI3K, p-AKT, BCL-2, BAX, and caspase-9) that regulate the PI3K/AKT pathway and apoptosis. GLSP reshapes the tumor microenvironment by activating macrophages, promotes the polarization of primary macrophages to M1 type, and promotes the secretion of various inflammatory factors and cytokines. Conclusion Therefore, as a natural nutrient, GLSP is a potential agent in hepatocellular carcinoma cell treatment and induction of apoptosis.
Collapse
|
68
|
Sang T, Guo C, Guo D, Wu J, Wang Y, Wang Y, Chen J, Chen C, Wu K, Na K, Li K, Fang L, Guo C, Wang X. Suppression of obesity and inflammation by polysaccharide from sporoderm-broken spore of Ganoderma lucidum via gut microbiota regulation. Carbohydr Polym 2021; 256:117594. [DOI: 10.1016/j.carbpol.2020.117594] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
|
69
|
Wang YX, Zhang T, Xin Y, Huang XJ, Yin JY, Nie SP. Comprehensive evaluation of alkali-extracted polysaccharides from Agrocybe cylindracea: Comparison on structural characterization. Carbohydr Polym 2021; 255:117502. [DOI: 10.1016/j.carbpol.2020.117502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
|
70
|
Structural Identification and Coagulation Effect of Flammulina velutipes Polysaccharides. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041736] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two polysaccharides were isolated successfully from Flammulina velutipes and identified as CHFVP-1 (24.44 kDa) and CHFVP-2 (1497 kDa). Based on the results of Fourier transform-infrared spectroscopy (FT-IR), gas chromatography (GC), gas chromatography–mass spectrometry (GC–MS), and nuclear magnetic resonance (NMR) spectroscopy regarding the structure of CHFVP-1 and CHFVP-2, CHFVP-1 was constructed with the backbone of→6)-α-D-Galp-(1→ and the branch of Galp by an →3,6)-α-D-Manp-(1→attached with T-β-D-Glcp or t-α-L-Fucp side chains. Meanwhile, the CHFVP-2 was a glucan with the construction of →6)-β-D-Glcp-(1→ and T-β-D-Glcp. Moreover, the coagulant activity in vitro of CHFVP-1 and CHFVP-2 was evaluated, and the results showed that CHFVP-1 exerts procoagulant activity by shortening the activated partial thromboplastin time (APTT) and thrombin time (TT), while CHFVP-2 did not reveal a definite coagulant activity. The finding would benefit the further application of F. velutipes in the field of medicine.
Collapse
|
71
|
Chen Y, Wang T, Zhang X, Zhang F, Linhardt RJ. Structural and immunological studies on the polysaccharide from spores of a medicinal entomogenous fungus Paecilomyces cicadae. Carbohydr Polym 2021; 254:117462. [DOI: 10.1016/j.carbpol.2020.117462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
|
72
|
Synergistic immunomodulatory effect of complex polysaccharides from seven herbs and their major active fractions. Int J Biol Macromol 2020; 165:530-541. [DOI: 10.1016/j.ijbiomac.2020.09.199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/26/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
|
73
|
Isolation and structure elucidation of polysaccharides from fruiting bodies of mushroom Coriolus versicolor and evaluation of their immunomodulatory effects. Int J Biol Macromol 2020; 166:1387-1395. [PMID: 33161080 DOI: 10.1016/j.ijbiomac.2020.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/18/2023]
Abstract
Coriolus versicolor is an edible medicinal mushroom in China. Two polysaccharides, named as CVPn and CVPa were separated from the dried fruiting bodies of Coriolus versicolor by water extraction and ethanol precipitation. Their chemical structures were well elucidated with overall consideration of monosaccharide composition, methylation analysis and 1D/2D-NMR spectra data. The bioactivities on RAW 264.7 macrophages cells were evaluated, and further structure-bioactivity relationships were concluded. With molecular weight of 29.7 kDa for CVPn and 50.8 kDa for CVPa, the two isolated polysaccharides were both composed of (l → 4)-β-/(1 → 3)-β-d-glucopyranosyl group as backbone with branches attached at O-6 site. Comparing to CVPn, CVPa with relative high molecular weight and less branches showed significant induction of NO production, obvious augmentation of iNOS and TNF-α mRNA expression level, and phagocytosis on RAW 264.7 cells. These results clarified that CVP polysaccharides with less branches and high molecular weight possessed enhanced immunomodulatory ability, and this finding could be a reference for the utilization of Coriolus versicolor.
Collapse
|
74
|
Gong P, Wang S, Liu M, Chen F, Yang W, Chang X, Liu N, Zhao Y, Wang J, Chen X. Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: A mini-review. Carbohydr Res 2020; 494:108037. [DOI: 10.1016/j.carres.2020.108037] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023]
|
75
|
Liu Z, Cai C, Du J, Liu B, Cui L, Fan X, Wu Q, Fang J, Xie L. TCMIO: A Comprehensive Database of Traditional Chinese Medicine on Immuno-Oncology. Front Pharmacol 2020; 11:439. [PMID: 32351388 PMCID: PMC7174671 DOI: 10.3389/fphar.2020.00439] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/20/2020] [Indexed: 01/13/2023] Open
Abstract
Advances in immuno-oncology (IO) are making immunotherapy a powerful tool for cancer treatment. With the discovery of an increasing number of IO targets, many herbs or ingredients from traditional Chinese medicine (TCM) have shown immunomodulatory function and antitumor effects via targeting the immune system. However, knowledge of underlying mechanisms is limited due to the complexity of TCM, which has multiple ingredients acting on multiple targets. To address this issue, we present TCMIO, a comprehensive database of Traditional Chinese Medicine on Immuno-Oncology, which can be used to explore the molecular mechanisms of TCM in modulating the cancer immune microenvironment. Over 120,000 small molecules against 400 IO targets were extracted from public databases and the literature. These ligands were further mapped to the chemical ingredients of TCM to identify herbs that interact with the IO targets. Furthermore, we applied a network inference-based approach to identify the potential IO targets of natural products in TCM. All of these data, along with cheminformatics and bioinformatics tools, were integrated into the publicly accessible database. Chemical structure mining tools are provided to explore the chemical ingredients and ligands against IO targets. Herb–ingredient–target networks can be generated online, and pathway enrichment analysis for TCM or prescription is available. This database is functional for chemical ingredient structure mining and network analysis for TCM. We believe that this database provides a comprehensive resource for further research on the exploration of the mechanisms of TCM in cancer immunity and TCM-inspired identification of novel drug leads for cancer immunotherapy. TCMIO can be publicly accessed at http://tcmio.xielab.net.
Collapse
Affiliation(s)
- Zhihong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chuipu Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiewen Du
- Division of Algorithm, Beijing Jingpai Technology Co., Ltd., Beijing, China
| | - Bingdong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lu Cui
- Research and Development Center, Guangdong Institute of Traditional Chinese Medicine, Guangzhou, China
| | - Xiude Fan
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Qihui Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
76
|
Zhao Y, Yan B, Wang Z, Li M, Zhao W. Natural Polysaccharides with Immunomodulatory Activities. Mini Rev Med Chem 2020; 20:96-106. [DOI: 10.2174/1389557519666190913151632] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/18/2018] [Accepted: 05/25/2019] [Indexed: 11/22/2022]
Abstract
Natural polysaccharide is a kind of natural macromolecular which can be extracted from
plants, fungi, algae, animals, and bacteria. The monosaccharide compositions and glucosidic bonds of
polysaccharides from different origins vary substantially. Natural polysaccharides have been shown to
possess complex, important and multifaceted biological activities including antitumor, anticoagulant,
antioxidative, antiviral, immunomodulatory, antihyperlipidemic and antihepatotoxic activities. Their
properties are mainly due to their structural characteristics. It is necessary to develop polysaccharide
immunomodulators with potential for preventive or therapeutic action. The present paper summarizes
the structural features, immunostimulatory activity and the immunomodulatory mechanisms of natural
polysaccharides. In particular, it also provides an overview of representative natural polysaccharide
immunomodulators.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| | - Bocheng Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| | - Zhaoyu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| | - Mingjing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| |
Collapse
|
77
|
Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. Int J Biol Macromol 2020; 150:765-774. [PMID: 32035956 DOI: 10.1016/j.ijbiomac.2020.02.035] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 02/08/2023]
Abstract
Ganoderma lucidum, commonly known as "Lingzhi" in Chinese, are well-known medicinal mushrooms. Lingzhi has been used in traditional Chinese herbal medicines for more than two thousand years. G. lucidum polysaccharides (GLPs) are present at high levels in G. lucidum cells and GLPs have molecular weights ranging from thousands to millions. GLPs have been widely studied for their various biological activities, such as antioxidant, antitumor, anti-inflammatory, antiviral, anti-diabetes, and immunomodulatory activities. The methods for GLPs extraction and characterization are mature, but the comprehensive research on the relationship between GLPs structure (i.e., molecular weight, tertiary structure, branching, substituents, and monosaccharide composition) and function is still quite limited. The aim of this review is to update and summarize the mechanisms of the various bioactive polysaccharides extracted from G. lucidum. The information presented on these bio-mechanisms should be valuable in the research and development of GLPs-derived therapeutics.
Collapse
|
78
|
Cui F, Jiang L, Qian L, Sun W, Tao T, Zan X, Yang Y, Wu D, Zhao X. A macromolecular α-glucan from fruiting bodies of Volvariella volvacea activating RAW264. 7 macrophages through MAPKs pathway. Carbohydr Polym 2020; 230:115674. [DOI: 10.1016/j.carbpol.2019.115674] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023]
|
79
|
Difficulties in research of Chinese medicine polysaccharides. Chin J Nat Med 2019; 17:883-886. [DOI: 10.1016/s1875-5364(19)30107-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Indexed: 11/17/2022]
|
80
|
Wang J, Chen S, Nie S, Cui SW, Wang Q, Phillips AO, Phillips GO, Xie M. Structural Characterization and Chain Conformation of Water-Soluble β-Glucan from Wild Cordyceps sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12520-12527. [PMID: 31634426 DOI: 10.1021/acs.jafc.9b05340] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Water-soluble β-d-glucan was obtained from wild Cordyceps sinensis by alkali solution and ethanol precipitation. The structure characteristics were determined using high-performance anion-exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD), methylation combined with gas chromatography-mass spectrometry, and one-/two-dimensional nuclear magnetic resonance spectroscopy. Results showed that β-d-glucan had a structure of every seven (1→3)-β-d-Glcp backbone residues with two (1→6)-β-d-Glcp branches. Additionally, conformation properties in different solvents were investigated by static light scattering, dynamic light scattering, and HPSEC with multiple detectors. It was found that β-d-glucan in 0.5 M NaOH had a narrow unimodal distribution of hydrodynamic radius displaying a spherical coil conformation, whereas it formed severe aggregation in dimethyl sulfoxide. In 0.1 M NaNO3, β-d-glucan mainly existed as a rod-like conformation corresponding to a helical structure together with small aggregates (10%). This work added more information to the understanding of C. sinensis polysaccharides.
Collapse
Affiliation(s)
- Junqiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Shuping Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Qi Wang
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Aled O Phillips
- School of Medicine , University of Cardiff , Cardiff , Wales CF10 3AT , United Kingdom
| | - Glyn O Phillips
- Phillips Hydrocolloids Research Centre , Glyndwr University , Wrexham , Wales LL11 2AW , United Kingdom
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| |
Collapse
|
81
|
Su F, Song Q, Zhang C, Xu X, Li M, Yao D, Wu L, Qu X, Guan H, Yu G, Yang J, Zhao C. A β-1,3/1,6-glucan from Durvillaea Antarctica inhibits tumor progression in vivo as an immune stimulator. Carbohydr Polym 2019; 222:114993. [PMID: 31320068 DOI: 10.1016/j.carbpol.2019.114993] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022]
Abstract
β-glucans trigger the proinflammatory responses of innate immune cells to enhance the host defense. A variety of β-glucans were identified as strong immune stimulator and exerted antitumor activities. Our previous work indicates that a β-1,3/1,6-glucan (BG136) derived from marina alga Durvillaea antarctica promotes the proinflammatory responses in macrophage cell line RAW264.7. In the present study, we further explored its antitumor effects in vivo as an immune stimulator. The data shows that BG136 alone decreases the tumor burdens in DLD1 xenograft and AOM-DSS induced tumor models. BG136 also augments the antitumor effects of PD-1 antibody in B16 syngeneic tumor model. BG136 increases macrophage phagocytosis, enhances cytokine/chemokine secretion and modulates the systemic and intratumoral immune cell composition. Collectively, these data suggest that BG136 might act as an immune stimulator to exert antitumor effects in vivo.
Collapse
Affiliation(s)
- Fan Su
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266071, China
| | - Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266071, China; Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, 23 East Hong Kong Road, Qingdao, Shandong, 266100, China
| | - Chuanliang Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266071, China; Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, 23 East Hong Kong Road, Qingdao, Shandong, 266100, China
| | - Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266071, China
| | - Mengyuan Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266071, China
| | - Dan Yao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266071, China; Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, 23 East Hong Kong Road, Qingdao, Shandong, 266100, China
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266071, China; Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, 23 East Hong Kong Road, Qingdao, Shandong, 266100, China
| | - Xianjun Qu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, 23 East Hong Kong Road, Qingdao, Shandong, 266100, China
| | - Huashi Guan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266071, China
| | - Guangli Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266071, China.
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266071, China; Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, 23 East Hong Kong Road, Qingdao, Shandong, 266100, China.
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266071, China; Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, 23 East Hong Kong Road, Qingdao, Shandong, 266100, China.
| |
Collapse
|
82
|
Mingyi Y, Belwal T, Devkota HP, Li L, Luo Z. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
83
|
Duan GL, Yu XB. Isolation, purification, characterization, and antioxidant activity of low-molecular-weight polysaccharides from Sparassis latifolia. Int J Biol Macromol 2019; 137:1112-1120. [DOI: 10.1016/j.ijbiomac.2019.06.177] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 11/28/2022]
|
84
|
Meng M, Guo M, Feng C, Wang R, Cheng D, Wang C. Water-soluble polysaccharides from Grifola Frondosa fruiting bodies protect against immunosuppression in cyclophosphamide-induced mice via JAK2/STAT3/SOCS signal transduction pathways. Food Funct 2019; 10:4998-5007. [PMID: 31355400 DOI: 10.1039/c8fo02062k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Grifola Frondosa, the king of mushrooms, is one of the most valued traditional medicines and has been used as a health food for a long time in China, Japan, and other Asian countries. The present study was designed to evaluate the immune-modulating effects of water-soluble polysaccharides from the Grifola Frondosa fruiting body (GFP) by using mouse peritoneal macrophage and cytoxan (CTX) induced immunosuppression models. Compared with CTX-induced immunosuppressive mice, the spleen and thymus indexes in mice with GFP orally administrated were significantly increased, body weight loss was alleviated, and the natural killer (NK) cytotoxicity and the proliferative activities of lymphocytes were elevated. Furthermore, levels of interleukin-2 (IL-2), interferon-6 (IL-6) and tumor necrosis factor-α (TNF-α) were notably reduced by CTX, while GFP abolished these effects. GFP also effectively increased total antioxidant capacity and superoxidase dismutase, catalase and glutathione peroxidase activities, and inhibited an increase in the malondialdehyde level. Histopathological analysis of spleens revealed the protective effect of GFP against CTX-induced immunosuppression. Western blotting results showed that GFP possessed immunomodulatory activity by up-regulating transcription factors (p-JAK2/JAK2, p-STAT3/STAT3 and SOCS3) in JAK2/STAT3/SOCS signaling pathways. This study suggested that GFP may provide an alternative strategy for lessening chemotherapy-induced immunosuppression.
Collapse
Affiliation(s)
- Meng Meng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | | | | | | | | | | |
Collapse
|
85
|
Bai J, Ren Y, Li Y, Fan M, Qian H, Wang L, Wu G, Zhang H, Qi X, Xu M, Rao Z. Physiological functionalities and mechanisms of β-glucans. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
86
|
Zeng P, Chen Y, Zhang L, Xing M. Ganoderma lucidum polysaccharide used for treating physical frailty in China. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:179-219. [PMID: 31030748 DOI: 10.1016/bs.pmbts.2019.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ganoderma lucidum is an edible medicinal mushroom known as "Lingzhi" in China and "Reishi or Manetake" in Japan. It is a highly prized vitality-enhancing herb for >2000 years. G. lucidum polysaccharide (GLPS) has been identified as one of the major bioactive components and developed into a drug named "Ji 731 Injection" in China since 1973. The large-scale production of the drug began in 1985 and approved by the Chinese FDA as "Polysacharidum of G. lucidum Karst Injection in 2000, which is applied intramuscularly. After more than 40 years of clinical use, its efficacy, safety, and long-term tolerability have been recognized by neurologists. It is one of a few non-hormonal drugs used for treating neurosis, polymyositis, dermatomyositis, atrophic myotonia and muscular dystrophy. It is also used for combination therapy, which reduces the amount of glucocorticoid required for myopathy patient who is in remission. In addition, it reduces adverse reactions and improves the quality of life for cancer patients during chemotherapy. We found 81 qualified chemical, biochemical, preclinical, and clinical studies of GLPS both in English and Chinese spanning from 1973 to 2017 by searching CNKI (China National Knowledge Infrastructure), Wan Fang, and PubMed databases. The molecular mechanisms underlying GLPS's antioxidant, anti-tumor, immune-modulatory, hypoglycemic, hypolipidemic, and other activities are discussed. Both preclinical and clinical studies are either deliberated or indexed in current article. We aimed to provide a molecular picture as well as a clinical basis to comprehend GLPS as one of few polysaccharide-based modern medicines with complicated chemical and pharmacological properties.
Collapse
Affiliation(s)
- Pengjiao Zeng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yulong Chen
- Department of Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Maoqing Xing
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
87
|
Yang D, Zhou Z, Zhang L. An overview of fungal glycan-based therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:135-163. [PMID: 31030746 DOI: 10.1016/bs.pmbts.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Edible medicinal mushrooms have been traditionally used for health promotion and longevity in China and other East Asian countries for centuries. Structural and pharmacological studies revealed that fungal glycans show multiple physiological and healthy promoting effects including immunomodulation, anti-tumor, anti-aging, anti-oxidation, hypoglycemic, hypolipidemic, anti-radiation, and other effects. Fungal glycans isolated from different kinds of medicinal mushrooms are partially purified and clinically tested. Without serious safety concerns of mostly glycans from edible mushrooms and/or the cultured mycelium, eight of them are approved by Chinese Food and Drug Administration (SFDA) and used clinically in China since 1980s. In this chapter, 185 independent studies involving in biochemical, pharmacological and clinical studies of fungal glycans during the past four decades (1977-2019) from PubMed, CNKI (China National Knowledge Infrastructure) and Wanfang databases are summarized. In future, understanding the fungal glycan-based drugs at molecular biological level would be needed to comprehend the clinical efficacy of glycan-based drugs.
Collapse
Affiliation(s)
- Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zijing Zhou
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
88
|
Li B, Zhang N, Feng Q, Li H, Wang D, Ma L, Liu S, Chen C, Wu W, Jiao L. The core structure characterization and of ginseng neutral polysaccharide with the immune-enhancing activity. Int J Biol Macromol 2019; 123:713-722. [DOI: 10.1016/j.ijbiomac.2018.11.140] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/16/2023]
|
89
|
Mao GH, Zhang ZH, Fei F, Ding YY, Zhang WJ, Chen H, Ali SS, Zhao T, Feng WW, Wu XY, Yang LQ. Effect of Grifola frondosa polysaccharide on anti-tumor activity in combination with 5-Fu in Heps-bearing mice. Int J Biol Macromol 2019; 121:930-935. [DOI: 10.1016/j.ijbiomac.2018.10.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 11/27/2022]
|
90
|
Zhang J, Liu Y, Tang Q, Zhou S, Feng J, Chen H. Polysaccharide of Ganoderma and Its Bioactivities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1181:107-134. [PMID: 31677141 DOI: 10.1007/978-981-13-9867-4_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ganoderma, named lingzhi in China, has been used for centuries as drug and nutraceutical to treat diseases. Based on our research and other literatures, the chapter summarizes the progress of preparation, structural features and properties, bioactivities of Ganoderma polysaccharides. The aim is to provide a comprehensive source of information for researchers and consumers of Ganoderma, so they can better understand Ganoderma polysaccharides and their biological activities. In addition, more clinical studies should be carried out to meet the criteria for new drug development, and more convincing scientific data should be provided. In addition, on the basis of a large number of studies on Ganoderma polysaccharides, we suggest that more clinical studies should be carried out so that Ganoderma can be better recognized and applied all over the world.
Collapse
Affiliation(s)
- Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qingjiu Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hongyu Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
91
|
Researches and Application of Ganoderma Spores Powder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1181:157-186. [PMID: 31677143 DOI: 10.1007/978-981-13-9867-4_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ganoderma lucidum spores (GLS) are the mature germ cells of Ganoderma lucidum. They have all the genetic substances and similar active components of Ganoderma lucidum. Similar to the fruiting body of Ganoderma lucidum, ganoderma spores powder has the effect of regulating immunity, antitumor, antioxidation, and protecting cells and so on. In recent decades, with the development of the technology of breaking the wall of Ganoderma lucidum spores and the technology of extracting and preparing, the researches and application of Ganoderma lucidum spores powder have made great progress.
Collapse
|
92
|
Liu Y, Su P, Xu J, Chen S, Zhang J, Zhou S, Wang Y, Tang Q, Wang Y. Structural characterization of a bioactive water-soluble heteropolysaccharide from Nostoc sphaeroids kütz. Carbohydr Polym 2018; 200:552-559. [DOI: 10.1016/j.carbpol.2018.08.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/21/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
|
93
|
Li Q, Chen G, Chen H, Zhang W, Ding Y, Yu P, Zhao T, Mao G, Feng W, Yang L, Wu X. Se-enriched G. frondosa polysaccharide protects against immunosuppression in cyclophosphamide-induced mice via MAPKs signal transduction pathway. Carbohydr Polym 2018; 196:445-456. [PMID: 29891317 DOI: 10.1016/j.carbpol.2018.05.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 01/31/2023]
Abstract
To assess the immunomodulatory and antioxidant activities of a Se-polysaccharide from Se-enriched G. frondosa (Se-GFP-22), immunosuppressed mice models were generated by cyclophosphamide (CTX) administration and then treated with Se-GFP-22. Results showed that Se-GFP-22 could increase thymus and spleen indices, phagocytic index, co-mitogenic (ConA- or LPS-stimulated) activities on splenocytes, DTH reaction, serum hemolysin formation and immunoglobulin (Ig G, Ig A and Ig M) levels in CTX-treated mice. Se-GFP-22 significantly enhanced the antioxidant activity in CTX-treated mice, as shown by the evaluation of GSH-Px, SOD and CAT activities, as well as MDA levels in serum, liver and kidney. Se-GFP-22 strongly stimulated inflammatory cytokines (IL-2 and IFN-γ) and NO productions by up-regulating mRNA expressions of IL-2, IFN-γ and iNOS. Se-GFP-22 possessed the immunomodulatory activity by up-regulating various transcription factors (JNK, ERK, and p38) in MAPKs signaling pathways. This study suggested that Se-GFP-22 may provide an alternative strategy in lessening chemotherapy-induced immunosuppression.
Collapse
Affiliation(s)
- Qian Li
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Longkun Rd. 99, Hainan 570100, China
| | - Hui Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Weijie Zhang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Yangyang Ding
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Ping Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Weiwei Feng
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
94
|
Structural analysis and antioxidant activities of neutral polysaccharide isolated from Epimedium koreanum Nakai. Carbohydr Polym 2018; 196:246-253. [DOI: 10.1016/j.carbpol.2018.05.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/23/2018] [Accepted: 05/12/2018] [Indexed: 01/02/2023]
|