51
|
Luo A, Fan Y, Tan X, Zhao J, Yang K, Wu S, Zhang J, Pu S, Wang G. Screening and characterization of an acid polysaccharide with antioxidant activity in vitro and in vivo from Dendrobium aurantiacum var. denneanum (Kerr). Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_580_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
52
|
De Araújo ERD, Guerra GCB, Andrade AWL, Fernandes JM, Da Silva VC, De Aragão Tavares E, De Araújo AA, de Araújo Júnior RF, Zucolotto SM. Gastric Ulcer Healing Property of Bryophyllum pinnatum Leaf Extract in Chronic Model In Vivo and Gastroprotective Activity of Its Major Flavonoid. Front Pharmacol 2021; 12:744192. [PMID: 34975468 PMCID: PMC8717929 DOI: 10.3389/fphar.2021.744192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Gastric ulcer is a common disease that develops complications such as hemorrhages and perforations when not properly treated. Extended use of drugs in the treatment of this pathology can provoke many adverse effects. Therefore, finding medicinal plants with gastroprotective and mucosal healing properties has gained increasing interest. Bryophyllum pinnatum (Crassulaceae), popularly known in Brazil as “saião” or “coirama,” has been used to treat inflammatory disorders. It is rich in flavonoids, and quercetin 3-O-α-L-arabinopyranosyl-(1→2)-O-α-L-rhamnopyranoside-Bp1 is its major compound. In this study, we aimed to investigate ulcer healing properties of B. pinnatum against an acetic acid–induced chronic ulcer model and the gastroprotective activity of Bp1 against gastric lesions induced by ethanol and indomethacin. Ultrafast liquid chromatography was used to quantify the main compounds (mg/g of the extract)—quercetin 3-O-α-L-arabinopyranosyl-(1→2)-O-α-L-rhamnopyranoside (33.12 ± 0.056), kaempferol 3-O-α-L-arabinopyranosyl-(1→2)-O-α-L-rhamnopyranoside (3.98 ± 0.049), and quercetin 3-O-α-L-rhamnopyranoside (4.26 ± 0.022) and showed good linearity, specificity, selectivity, precision, robustness, and accuracy. In vivo studies showed that treatment with the extract at 250 and 500 mg/kg stimulated the healing process in the gastric mucosa with significant ulceration index reduction, followed by improvement in the antioxidant defense system [increased glutathione (GSH) levels, decreased superoxide dismutase upregulation, and malondialdehyde (MDA) levels]. Moreover, the extract decreased interleukin-1β and tumor necrosis factor-a levels and myeloperoxidase (MPO) activity, increased interleukin 10 levels, showed a cytoprotective effect in histological analyzes and also downregulated the expression of cyclooxygenase-2 and NF-κB (p65). The pretreatment with Bp1 at a dose of 5 mg/kg reduced gastric lesions in the ethanol and indomethacin models, increased GSH, and decreased MDA levels. In addition, the pretreatment decreased MPO activity, interleukin-1β and tumor necrosis factor-α levels, while also showing a cytoprotective effect in histological analyzes. Our study suggests that treatment with B. pinnatum extract showed a higher inhibition percentage than pretreatment with the Bp1. This might in turn suggest that Bp1 has gastroprotective activity, but other compounds can act synergistically, potentiating its effect. We conclude that B. pinnatum leaf extract could be a new source of raw material rich in phenolic compounds to be applied in food or medicine.
Collapse
Affiliation(s)
| | | | - Anderson Wilbur Lopes Andrade
- Postgraduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Júlia Morais Fernandes
- Postgraduate Program in Pharmaceutical Science, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Valéria Costa Da Silva
- Postgraduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Emanuella De Aragão Tavares
- Postgraduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Raimundo Fernandes de Araújo Júnior
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Postgraduate Program in Functional and Structural Biology, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, Netherlands
- Percuros B.V, Leiden, Netherlands
| | - Silvana Maria Zucolotto
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Postgraduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal, Brazil
- Postgraduate Program in Pharmaceutical Science, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- *Correspondence: Silvana Maria Zucolotto,
| |
Collapse
|
53
|
Li M, Lv R, Xu X, Ge Q, Lin S. Tricholoma matsutake-Derived Peptides Show Gastroprotective Effects against Ethanol-Induced Acute Gastric Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14985-14994. [PMID: 34866395 DOI: 10.1021/acs.jafc.1c07050] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acute gastric injury caused by ethanol is a frequent disorder of the gastrointestinal tract. In this study, we investigated the potential gastroprotective effects of Tricholoma matsutake-derived peptides against ethanol-triggered acute gastric injury and the associated mechanisms. Peptides SDLKHFPF and SDIKHFPF significantly attenuated the ethanol-induced decrease in GES-1 cell survival (82.39 ± 1.93 and 80.10 ± 1.08% vs 56.58 ± 1.86%), inhibited GES-1 cell apoptosis, and alleviated the ethanol-induced gastric mucosal injury (64.76 ± 3.98 and 49.29 ± 3.25%), ulcer index (3.33 ± 0.47 and 4.67 ± 0.47 vs 6.67 ± 0.47), and histopathological changes in mice. Peptide treatment inhibited the phosphorylation and nuclear translocation of nuclear factor kappa B (NF-κB), the secretion of tumor necrosis factor-α, interleukin-6, and endothelin-1. In addition, T. matsutake peptide pretreatment increased growth factor secretion, upregulated B-cell lymphoma-2, downregulated Bcl-2-associated X (Bax), and cleaved cysteinyl aspartate specific proteinase 3, thereby promoting gastric cell survival. These findings strongly suggest that T. matsutake peptides attenuate ethanol-induced inflammatory responses and apoptosis by suppressing NF-κB signaling activation, thereby enhancing gastric epithelial barrier functions.
Collapse
Affiliation(s)
- Mengqi Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Renzhi Lv
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xiaomeng Xu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qi Ge
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
54
|
Sun Y, Ma N, Yi J, Zhou L, Cai S. Gastroprotective effect and mechanisms of Chinese sumac fruits ( Rhus chinensis Mill.) on ethanol-induced gastric ulcers in mice. Food Funct 2021; 12:12565-12579. [PMID: 34813638 DOI: 10.1039/d1fo02864b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This paper aimed to study the effect of the phenol-rich fraction from Chinese sumac fruits on ethanol-induced gastric ulcers in mice and to further elucidate the potential mechanisms. The results showed that the phenol-rich fraction of the fruits significantly decreased the ulcer index, restored the levels of prostaglandin E-2, heat shock protein 70, glutathione and superoxide dismutase, and reduced the malondialdehyde content. Further analyses revealed that the fraction significantly alleviated the gastric oxidative stress by upregulating the Nrf2 protein pathway to increase the HO-1 and NQO1 expression levels, suppressed the inflammation by reducing the expression levels of p-NF-κB and p-IκBα and inhibited the secretion of tumor necrosis factor-α, interleukin-1β, and interleukin-6. In addition, the fraction remarkably prevented gastric mucous cell apoptosis by upregulating Bcl-2 and downregulating Bax and cleaved caspase3. This experiment clarified for the first time that the phenol-rich fraction from Chinese sumac fruits can prevent ethanol-induced gastric ulcers in mice by inhibiting the oxidative stress, inflammatory response and cell apoptosis. The results obtained from the current work indicated that the phenol-rich fraction from Chinese sumac fruits could be applied as a kind of natural resource for producing new functional foods to prevent and/or improve gastric ulcers induced by ethanol.
Collapse
Affiliation(s)
- Yilin Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, People's Republic of China.
| | - Nan Ma
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, People's Republic of China.
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, People's Republic of China.
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, People's Republic of China.
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, People's Republic of China.
| |
Collapse
|
55
|
Xia YS, Sun YS, Liu C, Li ZM, Ren DD, Mu R, Zhang YT, Bo PP, Zhao LJ, Wang Z. Effect of Aqueous Enzymatic Extraction of Deer Oil on Its Components and Its Protective Effect on Gastric Mucosa Injury. Front Nutr 2021; 8:769463. [PMID: 34869537 PMCID: PMC8635026 DOI: 10.3389/fnut.2021.769463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023] Open
Abstract
In this study, deer suet fat was used as a raw material to study the effects of aqueous enzymatic extraction of deer oil on its components, followed by studies into the potential protective activity, and related molecular mechanisms of deer oil on ethanol-induced acute gastric mucosal injury in rats. The results show that aqueous enzymatic extraction of deer oil not only has a high extraction yield and has a small effect on the content of active ingredients. Deer oil can reduce total stomach injury. Without affecting the blood lipid level, it can reduce the oxidative stress, which is manifested by reducing the content of myeloperoxidase (MPO) and enhancing the activity level of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). It also enhances the expression of defense factors prostaglandin (E2), epidermal growth factor (EGF), and somatostatin (SS), it inhibits apoptosis evidenced by the enhanced of Bcl-2 and decreased expression of cleavage of caspase-3 and Bax. At the same time, it reduces inflammation, which is manifested by reducing the expression of IL-1β, interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) gastric tissue pro-inflammatory cytokines, and enhancing the expression of anti-inflammatory factors IL-4 and IL-10, and inhibiting the mitogen-activated protein kinase/nuclear factor kappa B (MAPK/NF-κB) signaling pathway in gastric tissue.
Collapse
Affiliation(s)
- Yun-Shi Xia
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yin-Shi Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chang Liu
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Zhi-Man Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Duo-Duo Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rui Mu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yan-Ting Zhang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pan-Pan Bo
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Li-Juan Zhao
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
56
|
Xue Z, Zhao L, Wang D, Chen X, Liu D, Liu X, Feng S. Structural characterization of a polysaccharide from Radix Hedysari and its protective effects against H 2O 2-induced injury in human gastric epithelium cells. Int J Biol Macromol 2021; 189:503-515. [PMID: 34437918 DOI: 10.1016/j.ijbiomac.2021.08.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
The gastroprotective effects of polysaccharides had become a hot topic in the field of functional polysaccharides research. Three polysaccharides, namely HPS-80-1, HPS-80-2, and HPS-80-3 were purified by DEAE-52 column chromatography. The thermodynamic characteristics, scanning electron microscopy, and Congo red experimental results of the above polysaccharides were greatly distinctive. Then a mature GES-1 oxidative stress cell model induced by H2O2 was established to screen out subsequent research subjects. It turned out that HPS-80-1 had a desirable protective effect, which was confirmed by analyses of cell cycle & apoptosis, and oxidative stress-related factors in the cell culture media, and so on. Furthermore, Structural features demonstrated that the backbone of HPS-80-1 appeared to mainly consist of →4)-α-D-Glcp-(1→, →4,6)-β-L-Glcp-(1→, and →6)-α-D-Galp-(1→, with branches at O-1, O-4, and O-6 position consisting of →2,4)-β-D-Rhap-(1→, →1)-α-D-Galp-(4→, and →3,4)-α-D-Manp-(1→. It was speculated that the excellent gastric mucosal protective activity of HPS-80-1 may be due to the high amount of glucose in the backbone. In addition, it was also related to the anti-inflammatory activity and antioxidant bases such as (1 → 4)-Glcp and (1 → 6)-Galp in the structure of HPS-80-1. These findings provide a scientific basis for further utilization of polysaccharides from Radix Hedysari.
Collapse
Affiliation(s)
- Zhiyuan Xue
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Lianggong Zhao
- The Second Hospital of Lanzhou University, Lanzhou 730030, PR China
| | - Donghan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xinyue Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Dan Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaohua Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Shilan Feng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
57
|
Yan X, Huang Z, Wu Y, Yu Z, Yang K, Chen Z, Wang W, Hu H, Wang Z. Sequential loading of inclusion complex/nanoparticles improves the gastric retention of Vladimiriae Radix essential oil to promote the protection of acute gastric mucosal injury. Int J Pharm 2021; 610:121234. [PMID: 34718092 DOI: 10.1016/j.ijpharm.2021.121234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/03/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022]
Abstract
The essential oil from Vladimiriae Radix (VEO) is a medicinal natural product with anti-ulcer activity. A novel gastroretentive drug delivery system was developed by preparing the hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complex incorporated into chitosan nanoparticles (V-CD/NPs), to improve the bioavailability of VEO and its protective effect on gastric mucosa. The optimum preparation process of V-CD/NPs was obtained by Plackett-Burman and Box-Behnken response surface methodology. The resulting V-CD/NPs gained a suitable positive potential and small particle size, and showed stability in simulated gastric fluid, whose morphology and in vitro drug release profiles had a pH-sensitivity. Besides, V-CD/NPs was proved to strongly bind with mucin, and in vivo imaging revealed that it could be retained in the stomach for more than 8 h. The results of drug concentration in gastric tissues showed that the sequential loading of inclusion complex/nanoparticles promoted the local absorption of VEO in gastric tissues, which was favorable to reach the effective therapeutic concentration in the lesioned mucosa area. In comparison to VEO and V-CD, the callback effect of V-CD/NPs on 1L-1β, 1L-6, TNF-α, NF-κB, MDA and SOD was comparable to cimetidine, and V-CD/NPs outperformed in gastric mucosal protection. Therefore, the gastroretentive drug delivery system developed in our study effectively enhanced the anti-ulcer activity of VEO, which could be a promising strategy for the prevention and treatment of the acute gastric mucosal injury.
Collapse
Affiliation(s)
- Xiaomin Yan
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Zecheng Huang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Yuyi Wu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ziwei Yu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ke Yang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ziqiang Chen
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Wenjun Wang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Huiling Hu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Sichuan, Chengdu 610106, China.
| |
Collapse
|
58
|
Yu R, Sun M, Meng Z, Zhao J, Qin T, Ren Z. Immunomodulatory effects of polysaccharides enzymatic hydrolysis from Hericium erinaceus on the MODE-K/DCs co-culture model. Int J Biol Macromol 2021; 187:272-280. [PMID: 34303739 DOI: 10.1016/j.ijbiomac.2021.07.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
The aim of this study was to explore the indirect immunomodulatory activities and its mechanism of enzymatic hydrolysis of Hericium erinaceus polysaccharides (EHEP) in the MODE-K/DCs co-culture model. According to the TEER value, transmission of phenol red and AKP activity of MODE-K cells, single model was established in order to evaluate the eligibility of MODE-K cells monolayer. Then the MODE-K/DCs co-culture model was set up and HEP and EHEP were added into the apical chamber, DCs were obtained for the expression of key surface markers, the ability of phagocytosis, the morphology, the secretion of cytokines and the production of target proteins. We found that after 21 d of culture, the MODE-K cells monolayer became intact and dense, which can be used for the MODE-K/DCs co-culture model. Under the treatment of HEP and EHEP, immature DCs become into mature DCs with the high expression of CD86 and MHCII, the low antigens up-taking, the typical morphology, the more content of IL-12 and TNF-α and the high level of TLR4, MyD88 and NF-κB proteins. However, compared with HEP, EHEP showed the better immunomodulatory activities. These findings indicated that EHEP could indirectly affect the immune function of DCs in the MODE-K/DCs co-culture model.
Collapse
Affiliation(s)
- Ruihong Yu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Mengke Sun
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhen Meng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jingchao Zhao
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Qin
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
59
|
Chen X, Zhao Y, Liu K, Li Z, Tan X, Wang Y, Gao N, Liu C, Fang X, Wang Y. Lycopene Aggravates Acute Gastric Injury Induced by Ethanol. Front Nutr 2021; 8:697879. [PMID: 34485361 PMCID: PMC8415829 DOI: 10.3389/fnut.2021.697879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Lycopene is an important natural red pigment with strong singlet oxygen and peroxide free radical quenching ability. Ethanol directly destroys the epithelial cells of gastric mucosa, causing oxidative damage and inflammation. To evaluate the effect of lycopene on the ethanol induced gastric injury, 112 adult male Kunming mice were randomly divided into normal control, lycopene control, gastric injury control, omeprazole (20 mg/kg) positive control, and lycopene experimental groups (at doses of 10, 50, 100, and 150 mg/kg body weight) in this study. The general and pathological evaluation, gastric secretion, as well as the levels of antioxidant and inflammatory factors were detected. In lycopene experimental groups, the amount of gastric juice were lower than that in the gastric injury control group; the levels of T-SOD, and the levels of MDA and inflammatory factors (MMP-9 and MCP-1) decreased. However, general and pathological evaluation of gastric tissues revealed that lycopene (especially at high doses) could aggravate acute gastric mucosal injury induced by ethanol. Therefore, lycopene (especially at high doses) aggravates acute gastric mucosal injury caused by ethanol, but this was not due to oxidative stress or inflammatory factors. In lycopene control group, the levels of MTL, T-SOD, and NO increased, but the levels of ALT and AST decreased, indicating that lycopene has a protective effect on the stomach and liver when ethanol wasn't taken. It reminds us that, when alcohol is consumed in large quantities, consumption of lycopene products should be carefully considered.
Collapse
Affiliation(s)
- Xin Chen
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Yuechao Zhao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Keying Liu
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Zexu Li
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Xingru Tan
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Yulong Wang
- College of Teacher Education, Qilu Normal University, Jinan, China
| | - Na Gao
- Amicogen (China) Biopharm Company, Jining, China
| | - Chenming Liu
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Xiaoqi Fang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yanlong Wang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| |
Collapse
|
60
|
Lv G, Song X, Zhang Z. Protective Effect of the Ethanol Extract from Hericium erinaceus Against Ethanol-Induced Gastric Ulcers. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/141560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
61
|
Yuan E, Liu L, Huang M, Chang B, Qi C, Gou N, Ren J. Effects of complex extracts of traditional Chinese herbs on gastric mucosal injury in rats and potential underlying mechanism. FOOD FRONTIERS 2021; 2:305-315. [DOI: 10.1002/fft2.73] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025] Open
Abstract
AbstractFive complex extracts (CEs) of seven Chinese herbs (Astragalus, Poria cocos, Alpinia officinarum Hance, Radix Puerariae, Ginseng, Licorice, Hericium erinaceus) were prepared by hot water extraction and evaluated for their effect on gastric ulcer in rats. In rats with acetic acid‐induced chronic gastric ulcer, gross and microscopic appearance showed that gastric mucosal injury index and lesion inhibition rate were improved after CEs gavage for 21 days. Pretreatment with CEs for 21 days in rats with acute gastric ulcer could also improve the gastric mucosal injury by ethanol. CE1, CE4, and CE5 showed more obvious effect in two models. The cell experiments results showed that CE1, CE4, and CE5 effectively inhibited Wnt signaling activity. Thus, they could protect gastric mucosa through inhibiting Wnt signaling pathway. These results indicated that CE1, CE4, and CE5 had significant protective effects on gastric mucosal injury by inhibiting Wnt signalling pathway and could be developed into safe functional products.
Collapse
Affiliation(s)
- Erdong Yuan
- School of Food Science and Technology South China University of Technology Wushan Road 381 Guangzhou Guangdong 510000 China
| | - Liangyun Liu
- School of Food Science and Technology South China University of Technology Wushan Road 381 Guangzhou Guangdong 510000 China
| | - Min Huang
- School of Food Science and Technology South China University of Technology Wushan Road 381 Guangzhou Guangdong 510000 China
| | - Bo Chang
- School of Food Science and Technology South China University of Technology Wushan Road 381 Guangzhou Guangdong 510000 China
| | - Chunli Qi
- School of Food Science and Technology South China University of Technology Wushan Road 381 Guangzhou Guangdong 510000 China
| | - Na Gou
- School of Food Science and Technology South China University of Technology Wushan Road 381 Guangzhou Guangdong 510000 China
| | - Jiaoyan Ren
- School of Food Science and Technology South China University of Technology Wushan Road 381 Guangzhou Guangdong 510000 China
| |
Collapse
|
62
|
Tu JQ, Liu HP, Wen YH, Chen P, Liu ZT. A novel polysaccharide from Hericium erinaceus: Preparation, structural characteristics, thermal stabilities, and antioxidant activities in vitro. J Food Biochem 2021; 45:e13871. [PMID: 34402085 DOI: 10.1111/jfbc.13871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
A novel polysaccharide fraction (HEP) from Hericium erinaceus was successively isolated and purified in the present study. We researched its structure and thermal stabilities, and further studied its antioxidant activities in vitro. The results showed that HEP was an acid heteropolysaccharide, with an average molecular weight of approximately 19.7 kDa by high-performance gel permeation chromatography. Ion chromatography indicated that HEP was mainly composed of fucose:galactose:glucose:mannose:gluconic acid (Fuc:Gal:Glu:Man:GlcA) in a molar ratio of 1:2.87:0.09:0.12:0.01. Additionally, Fourier-transformed infrared and NMR spectroscopy further demonstrated that HEP was a pyranose containing α-configuration, mainly consisting of α-1-4-Fuc and α-1-6-Gal as the main chain, with →3,6)-α-D-Man-(1→and→1,6)-Glc was branched, with α-D-GlcpA-(1 as T-terminal. The specific rotation of HEP was +55°; by the differential scanning calorimetry and the thermal stability measurement of thermogravimetric analysis for HEP showed that the pyrolysis process of HEP was mainly divided into two processes, and its melting point was 75.93℃. In vitro anti-oxidation experiments showed that HEP had a certain ability to scavenge DPPH, hydroxyl, superoxide anion, and ABTS radicals. It was found that HEP had a strong ability to scavenge DPPH-free radicals, and the highest scavenging rate could reach 91.72% ± 0.17%, which was basically equivalent to the scavenging ability of Vitamin C (Vc). Therefore, it was revealed that HEP might be used as a natural antioxidant component. PRACTICAL APPLICATIONS: A novel polysaccharide (HEP) had a potent activity possibly due to its monosaccharide composition, sugar residues, and physicochemical properties. This research proved the potential of HEP in anti-oxidation and provided the possibility of developing new natural anti-oxidation products.
Collapse
Affiliation(s)
- Jian-Qiu Tu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China
| | - Hui-Ping Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China
| | - Ya-Hui Wen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China
| | - Pei Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China
| | - Zi-Tian Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China
| |
Collapse
|
63
|
Luo J, Hu J, Zhang M, Zhang Y, Wu J, Cheng J, Qu H, Kong H, Zhao Y. Gastroprotective effects of Nelumbinis Rhizomatis Nodus-derived carbon dots on ethanol-induced gastric ulcers in rats. Nanomedicine (Lond) 2021; 16:1657-1671. [PMID: 34261362 DOI: 10.2217/nnm-2020-0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the gastroprotective effects of Nelumbinis Rhizomatis Nodus carbon dots (NRN-CDs) on ethanol-induced gastric ulcers in rats. Materials & methods: NRN-CDs synthesized and characterized by transmission electron microscopy, ultraviolet, fluorescence and Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction and zeta potential analyzer. Their gastroprotective effects toward ethanol-induced gastric ulcers were evaluated in male Sprague-Dawley rats. Results: NRN-CDs showed an average diameter of 2.33 ± 0.42 nm and a lattice spacing of 0.29 nm. Pretreatment with NRN-CDs significantly decreased the ulcer index and attenuated the severity of gastric mucosal damage, indicating that NRN-CDs exerted potent gastric protective effect. Moreover, the gastroprotection effect was related to the regulation of oxidative stress and inflammatory factors. Conclusion: NRN-CDs could be developed as a potential drug for the treatment of gastric ulcers.
Collapse
Affiliation(s)
- Juan Luo
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie Hu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meiling Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiashu Wu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinjun Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Chaoyang District, Beijing, 100029, China
| | - Hui Kong
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan Zhao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
64
|
Protective Effects of Anwulignan against HCl/Ethanol-Induced Acute Gastric Ulcer in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9998982. [PMID: 34335857 PMCID: PMC8298145 DOI: 10.1155/2021/9998982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023]
Abstract
Gastric ulcer is one of the most common gastrointestinal diseases. Anwulignan (AN) is a major active component of Schisandra sphenanthera Rehd. This study was designed to evaluate the protective effect of AN against the acute gastric ulcer induced by HCl/ethanol in mice. The mice were given HCl/ethanol by gavage to establish an acute gastric ulcer model. Then, the serum and gastric tissue samples were taken for biochemical analyses. The results showed that the pretreatment with AN could significantly reduce the gastric ulcer index (GUI) and increase the ulcer inhibition rate, indicating that AN can protect against gastric ulcers. AN showed its antioxidant roles by decreasing the content of reactive oxygen species (ROS), malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG) and increasing the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and anti-inflammatory roles by decreasing the content of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and myeloperoxidase (MPO) and increasing the content of interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-10 (IL-10), prostaglandin E2 (PGE2), and nitric oxide (NO) in both serum and gastric tissue. Furthermore, AN also activated the NRF2/ARE signaling pathway and inhibited the MAPK/NF-κB signaling pathway. AN improves the acute gastric ulcer induced by HCl/ethanol in mice, which may be mainly through its antioxidant capacity and anti-inflammatory effect.
Collapse
|
65
|
Wang K, Bai F, Zhou X, Wang J, Li Y, Xu H, Gao R, Wu H, Liu K, Zhao Y. Characterization of chondroitin sulfates isolated from large hybrid sturgeon cartilage and their gastroprotective activity against ethanol-induced gastric ulcers. Food Chem 2021; 363:130436. [PMID: 34186432 DOI: 10.1016/j.foodchem.2021.130436] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 01/10/2023]
Abstract
Sturgeon cartilage, which is rich in chondroitin sulfate (CS), is usually discarded during sturgeon utilization. In this paper, CS was isolated from large hybrid sturgeon skull and backbone and named SCS and BCS, respectively. Their structures were investigated via Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and high performance liquid chromatography (HPLC). The average molecular weights of SCS and BCS were ~ 30-44 kDa. Disaccharide analysis indicated that SCS and BCS had similar chemical structures and were composed of ΔUA-[1 → 3]-GalNAc (ΔDi0S, 14.71%, 16.04%), ΔUA-[1 → 3]-GalNAc-4 s (ΔDi4S, 32.01%, 37.78%) and ΔUA-[1 → 3]-GalNAc-6 s (ΔDi6S, 53.27%, 46.18%). The gastroprotective effect of SCS and BCS were studied using a rat model of ethanol-induced gastric ulcers. Both SCS and BCS had apparent gastroprotective activity and their ulcer inhibition rate reached ~ 35%-45%, which was similar to that of omeprazole (~41%). These results provide useful strategies for the high-value utilization of sturgeon cartilage.
Collapse
Affiliation(s)
- Kangyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Fan Bai
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Xiaodong Zhou
- Hisense (Shandong) Refrigerator Co., Ltd., 266100 Qingdao, China
| | - Jinlin Wang
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Yujin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - He Xu
- Jiangsu Baoyuan Biotechnology Co., Ltd., 222100 Lianyungang, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haohao Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Kang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
66
|
Roda E, Priori EC, Ratto D, De Luca F, Di Iorio C, Angelone P, Locatelli CA, Desiderio A, Goppa L, Savino E, Bottone MG, Rossi P. Neuroprotective Metabolites of Hericium erinaceus Promote Neuro-Healthy Aging. Int J Mol Sci 2021; 22:6379. [PMID: 34203691 PMCID: PMC8232141 DOI: 10.3390/ijms22126379] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Frailty is a geriatric syndrome associated with both locomotor and cognitive decline, typically linked to chronic systemic inflammation, i.e., inflammaging. In the current study, we investigated the effect of a two-month oral supplementation with standardized extracts of H. erinaceus, containing a known amount of Erinacine A, Hericenone C, Hericenone D, and L-ergothioneine, on locomotor frailty and cerebellum of aged mice. Locomotor performances were monitored comparing healthy aging and frail mice. Cerebellar volume and cytoarchitecture, together with inflammatory and oxidative stress pathways, were assessed focusing on senescent frail animals. H. erinaceus partially recovered the aged-related decline of locomotor performances. Histopathological analyses paralleled by immunocytochemical evaluation of specific molecules strengthened the neuroprotective role of H. erinaceus able to ameliorate cerebellar alterations, i.e., milder volume reduction, slighter molecular layer thickness decrease and minor percentage of shrunken Purkinje neurons, also diminishing inflammation and oxidative stress in frail mice while increasing a key longevity regulator and a neuroprotective molecule. Thus, our present findings demonstrated the efficacy of a non-pharmacological approach, based on the dietary supplementation using H. erinaceus extract, which represent a promising adjuvant therapy to be associated with conventional geriatric treatments.
Collapse
Affiliation(s)
- Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (E.R.); (C.A.L.)
| | - Erica Cecilia Priori
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Daniela Ratto
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Fabrizio De Luca
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Carmine Di Iorio
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Paola Angelone
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (E.R.); (C.A.L.)
| | - Anthea Desiderio
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy; (A.D.); (L.G.); (E.S.)
| | - Lorenzo Goppa
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy; (A.D.); (L.G.); (E.S.)
| | - Elena Savino
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy; (A.D.); (L.G.); (E.S.)
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| |
Collapse
|
67
|
Gastroprotective Effect of Ethanol Extracts from Bark of Magnolia officinalis on Ethanol-Induced Gastric Mucosal Damage in Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6688414. [PMID: 34159200 PMCID: PMC8187047 DOI: 10.1155/2021/6688414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
Background. Magnolia officinalis Rehd. and Wils. is widely used in Asian countries because of its multiple pharmacological effects. This study investigated the gastroprotective effect and mechanisms of the ethanol extracts from the bark of Magnolia officinalis (MOE) against ethanol-induced gastric mucosal damage in rats. Methods. MOE was prepared by reflux extraction with 70% ethanol, and its main compounds were analyzed by UPLC-Q-Exactive Orbitrap-MS. DPPH, ABTS, and FRAP methods were used to evaluate the antioxidant capacity of MOE in vitro. The gastroprotective effects of MOE were evaluated by the area of gastric injury, H&E (hematoxylin-eosin), and PAS (periodic acid-Schiff). The mechanism was explored by measuring the levels of cytokines and protein in the NF-κB signaling pathway. Results. 30 compounds were identified from MOE, mainly including lignans and alkaloids. MOE presented a high antioxidant activity in several oxidant in vitro systems. Gastric ulcer index and histological examination showed that MOE reduced ethanol-induced gastric mucosal injury in a dose-dependent manner. MOE pretreatment significantly restored the depleted activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) enzymes, reduced malondialdehyde (MDA), and prostaglandin E2 (PGE2) levels in the gastric tissue in rats. In addition, MOE also inhibited the activation of nuclear factor kappa B (NF-κB) pathway and decreased the production of proinflammatory cytokines. Conclusions. The gastroprotective effect of MOE was attributed to the inhibition of oxidative stress and the NF-κB inflammatory pathway. The results provided substantial evidence that MOE could be a promising phytomedicine for gastric ulcer prevention.
Collapse
|
68
|
Niego AG, Rapior S, Thongklang N, Raspé O, Jaidee W, Lumyong S, Hyde KD. Macrofungi as a Nutraceutical Source: Promising Bioactive Compounds and Market Value. J Fungi (Basel) 2021; 7:397. [PMID: 34069721 PMCID: PMC8161071 DOI: 10.3390/jof7050397] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Macrofungi production and economic value have been increasing globally. The demand for macrofungi has expanded rapidly owing to their popularity among consumers, pleasant taste, and unique flavors. The presence of high quality proteins, polysaccharides, unsaturated fatty acids, minerals, triterpene sterols, and secondary metabolites makes macrofungi an important commodity. Macrofungi are well known for their ability to protect from or cure various health problems, such as immunodeficiency, cancer, inflammation, hypertension, hyperlipidemia, hypercholesterolemia, and obesity. Many studies have demonstrated their medicinal properties, supported by both in vivo and in vitro experimental studies, as well as clinical trials. Numerous bioactive compounds isolated from mushrooms, such as polysaccharides, proteins, fats, phenolic compounds, and vitamins, possess strong bioactivities. Consequently, they can be considered as an important source of nutraceuticals. Numerous edible mushrooms have been studied for their bioactivities, but only a few species have made it to the market. Many species remain to be explored. The converging trends and popularity of eastern herbal medicines, natural/organic food product preference, gut-healthy products, and positive outlook towards sports nutrition are supporting the growth in the medicinal mushroom market. The consumption of medicinal mushrooms as functional food or dietary supplement is expected to markedly increase in the future. The global medicinal mushroom market size is projected to increase by USD 13.88 billion from 2018 to 2022. The global market values of promising bioactive compounds, such as lentinan and lovastatin, are also expected to rise. With such a market growth, mushroom nutraceuticals hold to be very promising in the years to come.
Collapse
Affiliation(s)
- Allen Grace Niego
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Iloilo Science and Technology University, La Paz, Iloilo 5000, Philippines
| | - Sylvie Rapior
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, CEFE, CNRS, University Montpellier, EPHE, IRD, CS 14491, 15 Avenue Charles Flahault, CEDEX 5, 34093 Montpellier, France;
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Olivier Raspé
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Wuttichai Jaidee
- Medicinal Plants Innovation Center, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| |
Collapse
|
69
|
Hou XX, Liu JY, Li ZY, Chang MC, Guo M, Feng CP, Shi JY. Fruiting body polysaccharides of Hericium erinaceus induce apoptosis in human colorectal cancer cells via ROS generation mediating caspase-9-dependent signaling pathways. Food Funct 2021; 11:6128-6138. [PMID: 32573644 DOI: 10.1039/d0fo00916d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The fruiting bodies of Hericium erinaceus (Bull.) Pers. are commonly used in China in the treatment of digestive system diseases. In this work, the polysaccharides from the fruiting bodies of Hericium erinaceus (HEFPs) were extracted, and their effects on human colorectal cancer cells (HCT-116 and DLD1) were investigated in vitro. Our results showed that HEFPs were mainly composed of arabinose, galactose, glucose, and mannose at a molar ratio of 8.99 : 11.15 : 1.2 : 1.97. They significantly inhibited the growth of these cells by inducing apoptosis by the modulation of Bax and Bcl-2 expression, which in turn induced the loss of mitochondrial membrane potential, leading to the activation of cleaved-caspase-9 and cleaved-caspase-3. These results suggested that HEFPs induced apoptosis via the caspase-9-depedent intrinsic mitochondrial pathway. Furthermore, HEFPs increased the level of reactive oxygen species (ROS) in HCT-116 and DLD1 cells. The addition of the antioxidant N-acetyl-l-cysteine reduced the ability of HEFPs to trigger the intrinsic mitochondrial pathway, indicating the role of ROS generation in the upstream pathway of HEFP-induced apoptosis. Therefore, the results described in this study could be of interest for further studies in finding functional foods or alternative therapeutic agents against colorectal cancer.
Collapse
Affiliation(s)
- Xiao-Xiao Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Jing-Yu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China. and Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, Shanxi, China and Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu 030801, Shanxi, China
| | - Zhuo-Yu Li
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, Shanxi, China and Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu 030801, Shanxi, China
| | - Ming-Chang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China. and Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu 030801, Shanxi, China
| | - Min Guo
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Cui-Ping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China. and Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu 030801, Shanxi, China
| | - Jiang-Ying Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, Shanxi, China
| |
Collapse
|
70
|
Tong S, Wang H, A LS, Bai TN, Gong JH, Jin WJ, Dai LL, Ba GN, Cho SB, Fu MH. Protective effect and mechanisms of action of Mongolian medicine Sulongga-4 on pyloric ligation-induced gastroduodenal ulcer in rats. World J Gastroenterol 2021; 27:1770-1784. [PMID: 33967556 PMCID: PMC8072194 DOI: 10.3748/wjg.v27.i16.1770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/29/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sulongga-4 (SL-4) is a herbal formula used in traditional Mongolian medical clinics for the treatment of peptic ulcers and gastroenteritis, even though its pharmacological mechanism has not been well characterized.
AIM To evaluate the protective effect and identify the mechanisms of action of SL-4 on gastroduodenal ulcer induced by pyloric ligation (PL) in rats.
METHODS PL was performed to induce gastric and duodenal ulcers in rats, which were then treated with oral SL-4 (1.3, 2.6, or 3.9 g/kg per day) for 15 d. PL-induced gastroduodenal ulceration. Therapeutic effects were characterized by pathological and histological evaluations and inflammatory indicators were analyzed by enzyme-linked immunosorbent assay. Microarray analyses were conducted to identify gene expression profiles of gastroduodenal tissue in PL rats with or without SL-4 treatment. The candidate target genes were selected and verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR).
RESULTS SL-4 decreased histopathological features in the PL-induced ulcerated rats. SL-4 significantly (P < 0.05) decreased expression of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, endotoxin, platelet-activating factor, and increased prostaglandin E2 and epidermal growth factor in ulcer tissue. Microarray analysis was used to identify a panel of candidate target genes for SL-4 acting on PL-induced ulceration. Genes included some complement and coagulation cascade and retinol metabolism pathways that are closely associated with inflammatory responses and gastric mucosal protective mechanisms. qRT-PCR showed that altered expression of the selected genes, such as CYP2b2, UGT2b1, A2m, and MASP1 was consistent with the microarray results.
CONCLUSION SL-4 exerts protective effects against PL-induced gastroduodenal ulcers via reducing inflammatory cytokines and elevating expression of gastric acid inhibitory factors. Downregulation of CYP2b2 and UGT2b1 genes in retinol metabolism and upregulation of A2m and MASP1 genes in the complement and coagulation cascades pathways are possibly involved in SL-4-mediated protection against gastroduodenal ulcer.
Collapse
Affiliation(s)
- Shan Tong
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
- Mongolian Medicine Surgery Department, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Huan Wang
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Li-Sha A
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
- Traditional Mongolian Medicine Research Institute, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ta-Na Bai
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ju-Hua Gong
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Wen-Jie Jin
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
- Traditional Mongolian Medicine Research Institute, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Li-Li Dai
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
- Traditional Mongolian Medicine Research Institute, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Gen-Na Ba
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Sung-Bo Cho
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ming-Hai Fu
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
- Traditional Mongolian Medicine Research Institute, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| |
Collapse
|
71
|
Wu WY, Chou PL, Yang JC, Chien CT. Silicon-containing water intake confers antioxidant effect, gastrointestinal protection, and gut microbiota modulation in the rodents. PLoS One 2021; 16:e0248508. [PMID: 33788857 PMCID: PMC8011764 DOI: 10.1371/journal.pone.0248508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/26/2021] [Indexed: 01/17/2023] Open
Abstract
We explored the effects of silicon-containing water (BT) intake on gastrointestinal function and gut microbiota. BT was obtained by pressuring tap water through silicon minerals (mullite, Al6Si2O13) column. BT decreased H2O2 chemiluminescence counts, indicating its antioxidant activity. Four weeks of BT drinking increased H2O2 scavenging activity and glutathione peroxidase activity of plasma. BT drinking did not affect the body weight but significantly reduced the weight of feces and gastrointestinal motility. BT drinking significantly suppressed pylorus ligation enhanced gastric juice secretion, gastric reactive oxygen species amount, erythrocyte extravasation, IL-1β production by infiltrating leukocyte, and lipid peroxidation within gastric mucosa. Data from 16S rRNA sequencing revealed BT drinking significantly increased beneficial flora including Ruminococcaceae UCG-005, Prevotellaceae NK3B31, Weissella paramesenteroides, Lactobacillus reuteri, and Lactobacillus murinus and decreased harmful flora including Mucispirillum, Rodentibacter, and Staphylococcus aureus. This study pioneerly provided scientific evidences for the potential effects of water-soluble forms of silicon intake on antioxidant activity, gastrointestinal function, and gut microbiota modulation.
Collapse
Affiliation(s)
- Wei-Yi Wu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Li Chou
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jyh-Chin Yang
- Department of Internal Medicine, Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (CTC); (JCY)
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
- * E-mail: (CTC); (JCY)
| |
Collapse
|
72
|
Ren Z, Luo Y, Meng Z, Zhang J, Yu R, Sun M, Xu T, Li J, Ma Y, Huang Y, Qin T. Multi-walled carbon nanotube polysaccharide modified Hericium erinaceus polysaccharide as an adjuvant to extend immune responses. Int J Biol Macromol 2021; 182:574-582. [PMID: 33798583 DOI: 10.1016/j.ijbiomac.2021.03.180] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/28/2021] [Indexed: 12/15/2022]
Abstract
In recent years, the utilization of CS-MWCNT as targeted drug carriers has attracted considerable attention. Hericium erinaceus polysaccharide (HEP) has been reported as an immunostimulant to improve immune responses. This study was focussed on developing CS-MWCNT encapsulating HEP (CS-MWCNT-HEP). Using in mice peritoneal macrophages, we found the immune response could be effectively regulated by CS-MWCNT-HEP, promoted the expression of the MHCII, CD86, F4/80 and gp38. Moreover, the mice immunized with CS-MWCNT-HEP nanoparticles significantly extended PCV2-specific IgG immune response and the levels of cytokines. The results demonstrated that CS-MWCNT-HEP may be a promising drug delivery system for immuno-enhancement.
Collapse
Affiliation(s)
- Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yang Luo
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhen Meng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Junwen Zhang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ruihong Yu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Mengke Sun
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ting Xu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jian Li
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yufang Ma
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yifan Huang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
73
|
Improved efficacy of Panax notoginseng saponin loaded into BSP/alginate microspheres for the treatment of alcoholic gastric ulcers. Int J Pharm 2021; 596:120218. [PMID: 33493598 DOI: 10.1016/j.ijpharm.2021.120218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023]
Abstract
Previously, we have reported the evaluations of alginate and Bletilla striata polysaccharide (BSP) in formulation of microsphere, which is a muco-adhesive carrier and can achieve a long duration of gastric retention. The combination of Panax notoginseng (Burk.) and B. striata is a traditional Chinese herbal formula that is used to treat gastric ulcers. BSP, an effective ingredient of B. striata, possesses both medicinal and excipient functions. Panax notoginseng saponin (PNS), which can easily dissolve in water, is the main effective ingredient in P. notoginseng (Burk.) for the treatment of gastric ulcers. However, microspheres containing PNS could directly cause drug leakage, ultimately reducing the encapsulation rate. In this study, PNS was fabricated into a hydrophobic dispersion with slow-release characteristics. Subsequently, PNS was packaged into BSP/alginate microspheres to improve the encapsulation rate. The prepared PNS-loaded microspheres were round, the release characteristics aligned with the Weibull equation, and the active ingredients were released by diffusion and erosion. The developed microspheres improved the effects of PNS and synergistically exerted the pharmaceutical effects of BSP on acute gastric ulcers.
Collapse
|
74
|
Qi Y, Ren W, Zhang H, Chen G, Huang W, Li X, He J, Zhao W. Optimization of Extraction and Purification of Polysaccharides from Veronicastrum axillare, and Evaluation of Their Biological Activities. Chem Biodivers 2021; 18:e2000864. [PMID: 33533083 DOI: 10.1002/cbdv.202000864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/01/2021] [Indexed: 12/24/2022]
Abstract
Veronicastrum axillare polysaccharides (VAP) were isolated by cellulase-assisted digestion. The optimum conditions (2 % cellulase, 47 °C for 2.5 h, then, 95 °C for 2.5 h, pH 4.1, solid/liquid ratio 1 : 7.6) were identified by a combination of single factor optimization and response surface DOE (design of experiment) methods, and achieved a yield of 4.7 %. Treatment with 1 % TCA for 10 min, then, 2 % DEAE-cellulose removed protein and colored impurities. Purified VAP retained most of the radical-scavenging activities and GES-1 cell protection capability in vitro, indicating VAP were the key active components of V. axillare. Some molecular features were identified by FT-IR and NMR analyses. The molecular weight was estimated from DOSY NMR experiments to be around 21 kDa. There were 6.3 % uronic acid residues in the VAP. The constituent sugars after TFA hydrolysis were identified by HPLC to include glucose, arabinose, rhamnose, galactose, and xylose in a molar ratio of 405 : 259 : 82 : 42 : 1.
Collapse
Affiliation(s)
- Yijia Qi
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Weiming Ren
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Haixia Zhang
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Gang Chen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5 A 1S6, Canada
| | - Weiyi Huang
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Xuexia Li
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Jie He
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Weichun Zhao
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| |
Collapse
|
75
|
Structural elucidation of a branch-on-branch β-glucan from Hericium erinaceus with A HPAEC-PAD-MS system. Carbohydr Polym 2021; 251:117080. [DOI: 10.1016/j.carbpol.2020.117080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022]
|
76
|
Song H, Hou X, Zeng M, Chen X, Chen X, Yang T, Xu F, Peng J, Peng Q, Cai X, Yu R. Traditional Chinese Medicine Li-Zhong-Tang accelerates the healing of indomethacin-induced gastric ulcers in rats by affecting TLR-2/MyD88 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112979. [PMID: 32442585 DOI: 10.1016/j.jep.2020.112979] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Li-Zhong-Tang (LZT) is a well-known Chinese herbal formulation first described in one of traditional Chinese medicine (TCM) scriptures, Treatise on Febrile Diseases. LZT has been commonly prescribed for the treatment of various gastrointestinal diseases for over 1800 years, and has demonstrated pronounced therapeutic effects on patients with gastric ulcers. AIM OF THE STUDY The present study aimed to scientifically evaluate protective effects of LZT on indomethacin (IND)-induced gastric injury in rats and to elucidate whether LZT exerts its gastro-protective effects via enhancing mucosal immunity by regulating TLR-2/MyD88 signaling pathway. MATERIAL AND METHODS Gastric ulcers were induced in male Sprague-Dawley (SD) rats with a single oral dose of 150 mg/kg IND. Ulcer index (UI) and curative index (CI) were evaluated. Histopathological examinations were performed and microscopic score (MS) was macroscopically calculated. The volume of gastric juice, free acidity, total acidity, and gastric pH was measured. The gastroprotective and inflammatory biomarkers including levels of nitric oxide (NO), tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2), and malondialdehyde (MDA) were determined. Expression levels of TLR-2 and MyD88 mRNA were assessed by qRT-PCR. The expression, distribution, and co-localization of TLR-2 and MyD88 protein were determined by Western blot, immunohistochemistry, and immunofluorescence, respectively. RESULTS Induction of gastric ulcers in rats resulted in very significantly increased UI and elevated volume and acidity of gastric juice, which were markedly attenuated by LZT treatment. Microscopic examinations of the IND-induced gastric ulcers revealed severe gastric hemorrhagic necrosis, submucosal edema, and destruction of epithelial cells, which were significantly attenuated in LZT-treated rats. Moreover, treatment with LZT remarkably increased gastric mucosal levels of PGE2 and NO, and lowered highly elevated levels of TNF-α and MDA in gastric ulcerative rats. Mechanistically, LZT inhibited mRNA and protein expression of TLR-2 and MyD88 and enhanced immune function in gastric mucosa. Immunohistochemical analyses and immunofluorescent detection further confirmed a markedly decreased co-localization of TLR-2 and MyD88 protein in the gastric mucosa of LZT-treated rats as compared to that of gastric ulcerative rats. CONCLUSIONS These findings indicate that LZT alleviates serious gastric mucosal ulcerations induced by IND. Protective effects of LZT on gastric ulcers are believed to be associated with the intensification of the anti-oxidative defense system, mitigation of proinflammatory cytokines, stimulation of the production of cytoprotective mediators, and improvement of the mucosal immunity through TLR-2/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Houpan Song
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Xueqin Hou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai' an, Shandong, 271016, China.
| | - Meiyan Zeng
- Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Xiaojuan Chen
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Xinyi Chen
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Tao Yang
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Fuping Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China.
| | - Jun Peng
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Qinghua Peng
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Xiong Cai
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Rong Yu
- Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
77
|
Yu L, Li R, Liu W, Zhou Y, Li Y, Qin Y, Chen Y, Xu Y. Protective Effects of Wheat Peptides against Ethanol-Induced Gastric Mucosal Lesions in Rats: Vasodilation and Anti-Inflammation. Nutrients 2020; 12:nu12082355. [PMID: 32784583 PMCID: PMC7469019 DOI: 10.3390/nu12082355] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Alcohol consumption increases the risk of gastritis and gastric ulcer. Nutritional alternatives are considered for relieving the progression of gastric mucosal lesions instead of conventional drugs that produce side effects. This study was designed to evaluate the gastroprotective effects and investigate the defensive mechanisms of wheat peptides against ethanol-induced acute gastric mucosal injury in rats. Sixty male Sprague-Dawley rats were divided into six groups and orally treated with wheat peptides (0.1, 0.2, 0.4 g/kgbw) and omeprazole (20 mg/kgbw) for 4 weeks, following absolute ethanol administration for 1 h. Pretreatment with wheat peptides obviously enhanced the vasodilation of gastric mucosal blood vessels via improving the gastric mucosal blood flow and elevating the defensive factors nitric oxide (NO) and prostaglandin E2 (PGE2), and lowering the level of vasoconstrictor factor endothelin (ET)-1. Wheat peptides exhibited anti-inflammatory reaction through decreasing inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, and increasing trefoil factor 1 (TFF1) levels. Moreover, wheat peptides significantly down-regulated the expression of phosphorylated nuclear factor kappa-B (p-NF-κB) p65 proteins in the NF-κB signaling pathway. Altogether, wheat peptides protect gastric mucosa from ethanol-induced lesions in rats via improving the gastric microcirculation and inhibiting inflammation mediated by the NF-κB signaling transduction pathway.
Collapse
Affiliation(s)
- Lanlan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Ruijun Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yuhan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-8280-2552
| |
Collapse
|
78
|
Alves Júnior EB, de Oliveira Formiga R, de Lima Serafim CA, Cristina Araruna ME, de Souza Pessoa ML, Vasconcelos RC, de Carvalho TG, de Jesus TG, Araújo AA, de Araujo Junior RF, Vieira GC, Sobral MV, Batista LM. Estragole prevents gastric ulcers via cytoprotective, antioxidant and immunoregulatory mechanisms in animal models. Biomed Pharmacother 2020; 130:110578. [PMID: 32750650 DOI: 10.1016/j.biopha.2020.110578] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/04/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Estragole is an aromatic organic compound belonging to the class of phenylpropanoids derived from cinnamic aldehydes and present in essential oils of plant species, such asRavensara anisata (madeira), Ocimum basilicum (manjericão/alfavaca) and Croton zehntneri (canelinha). Pharmacological studies report its anti-inflammatory, antioxidant and vasorelaxant activity. HYPOTHESIS/PURPOSE This study aimed to evaluate the acute non-clinical toxicity, gastroprotective activity and the related mechanisms of action. METHODS Acute toxicity was assessed according to OECD guide 423 in mice. Ethanol, stress, piroxicam and pylorus ligation-induced gastric ulcer models were used to investigate antiulcer properties. The related mechanisms of action were using the ethanol-gastric lesions protocol. RESULTS In the acute oral toxicity assay, doses of 300 or 2000 mg/kg of estragole administered orally in Swiss mice did not induce any behavioral changes. However, the dose of 2000 mg/kg showed a decrease in water and feed intake. Lethal dose 50 % (LD50) was set to be equal to or greater than 2500 mg/kg, according to OECD. In all evaluated protocols, estragole (31.25, 62.5, 125 and 250 mg/kg) significantly reduced the area of ulcerative lesion when compared to control groups. To investigate the mechanisms involved in the gastroprotective activity, the antisecretory or neutralizing of gastric secretion, cytoprotectant, antioxidant and immunoregulatory effects were evaluated. Results showed that treatment with estragole (250 mg/kg) reduced (p < 0.05) the volume of the gastric juice. Besides, sulfhydryl groups, nitric oxide, mucus and prostaglandins seems to be involved in the gastroprotective property. Treatment also increased (p < 0.001) levels of reduced glutathione (GSH), interleukin-10 (IL-10) and positive cells marked for glutathione peroxidase (GPx) and cyclooxygenase 2 (COX-2). It also reduced (p < 0.001) malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) (p < 0.05) levels. CONCLUSION Thus, it is possible to infer that estragole presents gastroprotective activity related to antisecretory, cytoprotective, antioxidant and immunomodulatory mechanisms.
Collapse
Affiliation(s)
- Edvaldo Balbino Alves Júnior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Rodrigo de Oliveira Formiga
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Catarina Alves de Lima Serafim
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Maria Elaine Cristina Araruna
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Michele Liz de Souza Pessoa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Roseane Carvalho Vasconcelos
- Department of Biophysics and Pharmacology, Biosciences Center Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Thais Gomes de Carvalho
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Tamires Gonçalves de Jesus
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Aurigena Antunes Araújo
- Department of Biophysics and Pharmacology, Biosciences Center Federal University of Rio Grande do Norte, Natal, Brazil.
| | | | - Giciane Carvalho Vieira
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil.
| |
Collapse
|
79
|
Guo Y, Du Y, Xie L, Pu Y, Yuan J, Wang Z, Zhang T, Wang B. Effects of Paeonol and Gastroretention Tablets of Paeonol on Experimental Gastric Ulcers and Intestinal Flora in Rats. Inflammation 2020; 43:2178-2190. [PMID: 32642910 DOI: 10.1007/s10753-020-01285-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Paeonol, a major ingredient isolated from Moutan Cort, has various pharmacological effects. Our previous studies have shown that paeonol can exert antioxidant and anti-inflammatory therapeutic effects on ethanol-induced experimental gastric ulcer (GU). Therefore, in this study, we designed two GU models in rats induced by pyloric ligation (PL) and acetic acid and evaluated the protective effects of paeonol and gastroretention tablets of paeonol (GRT-Ps; 24, 48, and 96 mg/kg) on GU in rats and the effect of paeonol (48 mg/kg) on the intestinal flora. In vivo experiments showed that paeonol or GRT-Ps remarkably reduced gastric mucosal damage in a dose-dependent manner in the different types of models and improved the superoxide dismutase (SOD) activity and the malondialdehyde (MDA) content. And in fact, the sustained-release effect of GRT-Ps is more conducive to the improvement of GU compared with the rapid clearance of free drugs. In the PL-induced model, gastric secretion parameters, that is, pH and total acid, showed significant differences compared with the model group. In addition, paeonol treatment can improve the richness and diversity of the intestinal flora and increase the amount of beneficial bacteria, such as Lactobacillus. Paeonol and its stable sustained-release tablet GRT-Ps can promote ulcer healing by inhibiting oxidative stress and regulating the intestinal flora. This study can provide basis for the clinical treatment of GU with paeonol. Graphical Abstract.
Collapse
Affiliation(s)
- Yilin Guo
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China
| | - Yaoyao Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China
| | - Lu Xie
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 185 Puan Road, Huangpu District, Shanghai, 200021, China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China
| | - Jianlong Yuan
- Fujian Medical Products Administration, 156 Dongpu Road, Fuzhou, 350013, China
| | - Zhicheng Wang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Xuhui District, Shanghai, 200040, China.
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China. .,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China. .,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Pudong New District, Shanghai, 201203, China.
| |
Collapse
|
80
|
A novel Hericium erinaceus polysaccharide: Structural characterization and prevention of H2O2-induced oxidative damage in GES-1 cells. Int J Biol Macromol 2020; 154:1460-1470. [DOI: 10.1016/j.ijbiomac.2019.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/21/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022]
|
81
|
Structural characterization of pectin-bismuth complexes and their aggregation in acidic conditions. Int J Biol Macromol 2020; 154:788-794. [DOI: 10.1016/j.ijbiomac.2020.03.143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022]
|
82
|
Feng X, Yan J, Li G, Liu J, Fan R, Li S, Zheng L, Zhang Y, Zhu J. Source of dopamine in gastric juice and luminal dopamine-induced duodenal bicarbonate secretion via apical dopamine D 2 receptors. Br J Pharmacol 2020; 177:3258-3272. [PMID: 32154577 PMCID: PMC7312307 DOI: 10.1111/bph.15047] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Dopamine protects the duodenal mucosa. Here we have investigated the source of dopamine in gastric juice and the mechanism underlying the effects of luminal dopamine on duodenal bicarbonate secretion (DBS) in rodents. EXPERIMENTAL APPROACH Immunofluorescence, UPLC-MS/MS, gastric incubation and perfusion were used to detect gastric-derived dopamine. Immunofluorescence and RT-PCR were used to examine the expression of dopamine receptors in the duodenal mucosa. Real-time pH titration and pHi measurement were performed to investigate DBS. KEY RESULTS H+ -K+ -ATPase was co-localized with tyrosine hydroxylase and dopamine transporters in gastric parietal cells. Dopamine was increased in in vivo gastric perfusate after intravenous infusion of histamine and in gastric mucosa incubated, in vitro, with bethanechol chloride or tyrosine. D2 receptors were the most abundant dopamine receptors in rat duodenum, mainly distributed on the apical membrane of epithelial cells. Luminal dopamine increased DBS in a concentration-dependent manner, an effect mimicked by a D2 receptor agonist quinpirole and inhibited by the D2 receptor antagonist L741,626, in vivo D2 receptor siRNA and in D2 receptor -/- mice. Dopamine and quinpirole raised the duodenal enterocyte pHi . Quinpirole-evoked DBS and PI3K/Akt activity were inhibited by calcium chelator BAPTA-AM or in D2 receptor-/- mice. CONCLUSION AND IMPLICATIONS Dopamine in the gastric juice is derived from parietal cells and is secreted along with gastric acid. On arrival in the duodenal lumen, dopamine increased DBS via an apical D2 receptor- and calcium-dependent pathway. Our data provide novel insights into the protective effects of dopamine on the duodenal mucosa.
Collapse
Affiliation(s)
- Xiao‐Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Jing‐Ting Yan
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Guang‐Wen Li
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Jing‐Hua Liu
- Grade 2017 Clinical Medicine, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Rui‐Fang Fan
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Shi‐Chao Li
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Li‐Fei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Jin‐Xia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| |
Collapse
|
83
|
Extraction, purification, and determination of the gastroprotective activity of glucomannan from Bletilla striata. Carbohydr Polym 2020; 246:116620. [PMID: 32747259 DOI: 10.1016/j.carbpol.2020.116620] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 12/24/2022]
Abstract
In this study, a water-soluble polysaccharide (BSP) was extracted and purified from pseudobulb of Bletilla striata. The preliminary structure and gastroprotective activity of BSP were analyzed. Results indicate that BSP is a glucomannan with a molar ratio of 7.45:2.55 (Man:Glc), and its molecular weight is approximately 1.7 × 105 Da. BSP displayed outstanding protective action against ethanol-induced GES-1 cell injury in vitro, as well as, excellent gastroprotective activity in vivo. Especially, a high-dose of BSP (100 mg/kg) could reduce the ulcer index of the gastric mucosa and increase the percentage of ulcer inhibition, which possibly caused by enhancing the antioxidant capacity and inhibiting the apoptotic pathway in gastric tissue. Interestingly, BSP exhibited a comparative gastroprotective activity to that of positive control (omeprazole). In summary, our results indicated that BSP could be considered as a potential supplement for the prevention of gastric injury.
Collapse
|
84
|
Hou C, Chen L, Yang L, Ji X. An insight into anti-inflammatory effects of natural polysaccharides. Int J Biol Macromol 2020; 153:248-255. [DOI: 10.1016/j.ijbiomac.2020.02.315] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/28/2022]
|
85
|
Chen W, Wu D, Jin Y, Li Q, Liu Y, Qiao X, Zhang J, Dong G, Li Z, Li T, Yang Y. Pre-protective effect of polysaccharides purified from Hericium erinaceus against ethanol-induced gastric mucosal injury in rats. Int J Biol Macromol 2020; 159:948-956. [PMID: 32450327 DOI: 10.1016/j.ijbiomac.2020.05.163] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
The β-glucan H6PC20 (Mw: 2390 kDa) and α-heteropolysaccharide HPB-3 (Mw: 15 kDa) were purified from the fruiting body of Hericium erinaceus according to the previous methods. Their gastroprotective activities and corresponding structure-activity relationship were studied in the ethanol-induced gastric ulcer model of rats. After intragastric administrated with H6PC20 and HPB-3 for 14 days, macroscopic and histological evaluation of gastric mucosa was improved significantly. The defense and repair factors (EGF, bFGF and PGE2) were increased, meanwhile, the inflammatory cytokines (IL-1β and TNF-α) and MDA were reduced. These results indicated that H6PC20 and HPB-3 presented gastroprotective activities with the mechanism of activating repair and defense system, decreasing the inflammatory response and alleviating the oxidative injury. Furthermore, the structure-activity relationship showed that the macromolecular β-glucan was better for repair and defense system, while the low weight molecular α-heteropolysaccharide focused on the anti-inflammatory effect. The polysaccharides purified from H. erinaceus can be developed as a potential gastroprotective ingredient for applications in pharmaceutical field.
Collapse
Affiliation(s)
- Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Yueling Jin
- Shanghai University of Medicine & Health Sciences, Shanghai, 200237, PR China
| | - Qiaozhen Li
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Xuxin Qiao
- Shanghai University of Medicine & Health Sciences, Shanghai, 200237, PR China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Guochao Dong
- Shanghai University of Medicine & Health Sciences, Shanghai, 200237, PR China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Tingting Li
- Shanghai University of Medicine & Health Sciences, Shanghai, 200237, PR China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| |
Collapse
|
86
|
Wang R, Zeng X, Liu B, Yi R, Zhou X, Mu J, Zhao X. Prophylactic effect of Lactobacillus plantarum KSFY06 on HCl/ethanol-induced gastric injury in mice. Food Funct 2020; 11:2679-2692. [PMID: 32162630 DOI: 10.1039/c9fo02474c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The present study was conducted to determine the prophylactic effect of Lactobacillus plantarum KSFY06 (LP-KSFY06) on HCl/ethanol-induced gastric injury in Kunming mice. The experimental mice were allocated into six groups: the normal group, HCl/ethanol treated group, HCl/ethanol + ranitidine treated group, HCl/ethanol + Lactobacillus delbrueckii subsp. Bulgaricus (LB) treated group, HCl/ethanol + low concentration of Lactobacillus plantans KSFY06 (LP-KSFY06-L) treated group, and HCl/ethanol + high concentration of Lactobacillus plantans KSFY06 (LP-KSFY06-H) treated group. The changes in daily body weight and food intake of the mice in the HCl/ethanol + LP-KSFY06-H treated group were the closest to those of the HCl/ethanol + ranitidine treated and normal groups. LP-KSFY06 significantly inhibited the formation of gastric mucosal lesions, reduced the area of gastric lesions, inhibited gastric-juice secretion, and increased pH compared with the HCl/ethanol treated group. After the treatment, the serum interleukin-6 (IL)-6, IL-12, tumor necrosis factor-α (TNF-α), and interferon-γ levels and the gastric-tissue IL-6 and IL-12 levels in the LP-KSFY06 (including LP-KSFY06-L and LP-KSFY06-H) group decreased compared with those in the HCl/ethanol treated group. The level of serum and gastric tissue malondialdehyde was lower and the nitric oxide, total superoxide dismutase, and glutathione activities in the LP-KSFY06 treated mice were higher than those in the HCl/ethanol treated mice. Quantitative polymerase chain reaction analysis and western blot analysis showed that LP-KSFY06 increased the mRNA and protein expression of the epidermal growth factor, epidermal growth factor receptor, vascular endothelial growth factor, inhibitor kappaB-α, neuronal nitric oxide synthase, and endothelial NOS and reduced the mRNA and protein expression of nuclear factor kappaB, inducible NOS, cyclooxygenase-2, TNF-α, and IL-1β in gastric tissues compared with the HCl/ethanol treated mice. These experimental results showed that a high concentration (1.0 × 109 CFU per kg B.W.) of LP-KSFY06 had a stronger effect on preventing gastric injury than a low concentration (1.0 × 108 CFU per kg B.W.) of LP-KSFY06. These results suggest that LP-KSFY06 has a potential probiotic effect in preventing gastric injury.
Collapse
Affiliation(s)
- Ranran Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Xiaofei Zeng
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, P.R. China
| | - Bihui Liu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| |
Collapse
|
87
|
Biopolymer Extracted from Anadenanthera colubrina (Red Angico Gum) Exerts Therapeutic Potential in Mice: Antidiarrheal Activity and Safety Assessment. Pharmaceuticals (Basel) 2020; 13:ph13010017. [PMID: 31963683 PMCID: PMC7168896 DOI: 10.3390/ph13010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Anadenanthera colubrina var. cebil (Griseb.) Altschul (Fabaceae family), commonly known as the red angico tree, is a medicinal plant found throughout Brazil’s semi-arid area. In this study, a chemical analysis was performed to investigate the antidiarrheal activity and safety profile of red angico gum (RAG), a biopolymer extracted from the trunk exudate of A. colubrina. Upon FT-IR spectroscopy, RAG showed bands in the regions of 1608 cm−1, 1368 cm−1, and 1029 cm−1, which relate to the vibration of O–H water molecules, deformation vibration of C-O bands, and vibration of the polysaccharide C-O band, respectively, all of which are relevant to glycosidic bonds. The peak molar mass of RAG was 1.89 × 105 g/mol, with the zeta potential indicating electronegativity. RAG demonstrated high yield and solubility with a low degree of impurity. Pre-treatment with RAG reduced the total diarrheal stool and enteropooling. RAG also enhanced Na+/K+-ATPase activity and reduced gastrointestinal transit, and thereby inhibited intestinal smooth muscle contractions. Enzyme-Linked Immunosorbent Assay (ELISA) demonstrated that RAG can interact with GM1 receptors and can also reduce E. coli-induced diarrhea in vivo. Moreover, RAG did not induce any signs of toxicity in mice. These results suggest that RAG is a possible candidate for the treatment of diarrheal diseases.
Collapse
|
88
|
Designing selenium polysaccharides-based nanoparticles to improve immune activity of Hericium erinaceus. Int J Biol Macromol 2019; 143:393-400. [PMID: 31830456 DOI: 10.1016/j.ijbiomac.2019.12.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/28/2019] [Accepted: 12/07/2019] [Indexed: 01/17/2023]
Abstract
In previous researches, the results showed that selenium Hericium erinaceus polysaccharide and Hericium erinaceus polysaccharide-loaded poly (lactic-co-glycolic acid) nanoparticles enhanced immune responses. In order to further enhance the immune adjuvant activity and phagocytosis of the nanoparticles, two way of combination (selenium-HEP loaded PLGA nanoparticles and selenium modified HEP-PLGA nanoparticles) were prepared to investigate the effects on macrophages in vitro. After treatment with the nanoparticles, the effects of phagocytosis, co-stimulatory molecules expression, nitric oxide (NO), and cytokines secretion were evaluated. The results showed that the particle size, PDI and zeta potential of the selenium-HEP loaded PLGA nanoparticles (Se-HEP-PLGA) and selenium modifified HEP-PLGA nanoparticles (HEP-PLGA-Se) were presented. Se-HEP-PLGA and HEP-PLGA-Se nanoparticles significantly stimulated phagocytic activity, CD40 and CD86 expression of macrophages. In addition, the levels of NO, TNF-α, IL-1β and IL-6 were enhanced in the peritoneal macrophages by stimulation with Se-HEP-PLGA and HEP-PLGA-Se nanoparticles. Among them, Se-HEP-PLGA showed the best effects on the expression of co-stimulatory molecules, secretions of NO and cytokines. These results indicated that Se-HEP-PLGA could enhance the activation of macrophages, and it could be potentially used as an HEP delivery system for the induction of strong immune responses.
Collapse
|
89
|
Lu S, Wu D, Sun G, Geng F, Shen Y, Tan J, Sun X, Luo Y. Gastroprotective effects of Kangfuxin against water-immersion and restraint stress-induced gastric ulcer in rats: roles of antioxidation, anti-inflammation, and pro-survival. PHARMACEUTICAL BIOLOGY 2019; 57:770-777. [PMID: 31696757 PMCID: PMC6844415 DOI: 10.1080/13880209.2019.1682620] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Context: Kangfuxin (KFX) is widely used for the treatment of gastric and duodenal ulcer; however, more research is needed to determine the protective mechanisms of KFX in ameliorating gastric ulcer.Objective: To investigate the efficacy and potential mechanism of Kangfuxin liquid (KFX) in water-immersion and restraint stress (WIRS)-induced gastric ulcer.Materials and methods: Seventy rats were randomly divided into seven groups (n = 10) as follows: the control group (normal saline, i.g.), the model group (normal saline, i.g.), the KFX groups (2.5, 5 and 10 mL/kg, i.g.), the omeprazole group (20 mg/kg, i.p.) and Sanjiuweitai Granules group (1850 mg/kg, i.g.). The WIRS model was applied to induce stress ulcers after 7 days of drug administration. Afterwards, rats were sacrificed at 10 h induced by WIRS.Results: Pre-treatment with KFX (5,10 mL/kg) could effectively reduce the area of gastric ulcers and improve the pathological changes of ulcerated tissue. Moreover, KFX (5,10 mL/kg) increased the prostaglandin E2 (52%) and cyclooxygenase-1 (30%) levels, and improved malondialdehyde (54%), superoxide dismutase (58%), catalase (39%), and nitric oxide (11%) and TNF-α (9%), IL-6 (11%), MMP-9 (54%) and MMP-2 (53%) of ulcer tissue. Furthermore, pre-treatment with KFX dramatically increased IGF-1, PTEN, and Akt protein expression.Conclusions: Our results suggest that KFX has protective effects on WIRS-induced gastric ulcer via inflammatory reactions, oxidative stress inhibition, and pro-survival action, which were the results of activating the IGF-1/PTEN/Akt signalling pathway. Our results provide evidence of KFX for treating gastric ulcer.
Collapse
Affiliation(s)
- Shan Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Daoshun Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Funeng Geng
- Sichuan Good Doctor Panxi Pharmaceutical Co., LTD., Xichang, China
| | - Yongmei Shen
- Sichuan Good Doctor Panxi Pharmaceutical Co., LTD., Xichang, China
| | - Jin Tan
- Sichuan Good Doctor Panxi Pharmaceutical Co., LTD., Xichang, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
- Xiaobo Sun Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yun Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
- CONTACT Yun Luo
| |
Collapse
|
90
|
Preparation, characterization and controlled-release property of CS crosslinked MWCNT based on Hericium erinaceus polysaccharides. Int J Biol Macromol 2019; 153:1310-1318. [PMID: 31758997 DOI: 10.1016/j.ijbiomac.2019.10.266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/01/2019] [Accepted: 10/28/2019] [Indexed: 01/17/2023]
Abstract
In present study, the optimal condition of prepared drug was determined by response surface methodology. In addition, their physicochemical properties, drug release and uptake ability of CS-MWCNT-HEP were studied, and the distribution of the drug in ICR mice and the sites of action were further evaluated. Under the optimal condition, the mean experimental loaded efficiency 68.55 ± 1.47% was corresponded well with the predicted value of 68.28%. The results of in vitro experiments proved that a release of the drug in a pH-dependent behavior. Flow cytometry and inverted microscope showed that the uptake of CS-MWCNT-HEP in Raw264.7 cells increased significantly as the time increased. In vivo experiment proved that the HEP and CS-MWCNT-HEP were mainly accumulated in the kidney, shown the characteristics of kidney metabolism. On the other hand, the extended retention of CS-MWCNT-HEP in the mice could enhance the immune function. CS-MWCNT-HEP has high loaded efficiency and pH-responsive drug released, which could significantly improved the body's immunity and enhance the body's ability to absorbed drugs. These findings proposed a well characterized novel CS-MWCNT-HEP formulation as drug delivery system, and its mechanism and application will be further investigated in our undergoing studies.
Collapse
|
91
|
Zhang C, Gao F, Gan S, He Y, Chen Z, Liu X, Fu C, Qu Y, Zhang J. Chemical characterization and gastroprotective effect of an isolated polysaccharide fraction from Bletilla striata against ethanol-induced acute gastric ulcer. Food Chem Toxicol 2019; 131:110539. [PMID: 31158404 DOI: 10.1016/j.fct.2019.05.047] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/04/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
|
92
|
Chen H, Nie Q, Xie M, Yao H, Zhang K, Yin J, Nie S. Protective effects of β-glucan isolated from highland barley on ethanol-induced gastric damage in rats and its benefits to mice gut conditions. Food Res Int 2019; 122:157-166. [DOI: 10.1016/j.foodres.2019.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/13/2022]
|
93
|
Chen ZG, Bishop KS, Tanambell H, Buchanan P, Quek SY. Assessment of In Vitro Bioactivities of Polysaccharides Isolated from Hericium Novae-Zealandiae. Antioxidants (Basel) 2019; 8:antiox8070211. [PMID: 31288400 PMCID: PMC6680813 DOI: 10.3390/antiox8070211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 01/28/2023] Open
Abstract
The objective of this study was to investigate the potential effect of the polysaccharides isolated from Hericium novae-zealandiae, a native New Zealand fungus, on the in vitro proliferation of prostate cancer cell lines, gene expression, acetylcholinesterase (AChE) activity, and oxidation. One water-soluble and two alkali-soluble polysaccharide fractions were isolated from H. novae-zealandiae. The proliferation of the prostate cancer cell lines DU145, LNCaP, and PC3 was evaluated following treatment with these polysaccharide fractions. It was found that the polysaccharides possess anti-proliferative activity on LNCaP and PC3 cells, with a 50% growth inhibition (IC50) value as low as 0.61 mg/mL in LNCaP. Subsequently, it was determined through via RT-qPCR assay that apoptosis was one of the possible mechanisms responsible for the anti-proliferative activity in LNCaP. This was supported by the up-regulation of CASP3, CASP8, and CASP9. An alternative, discovered in PC3, was revealed to be anti-inflammation, which was hinted at by the down-regulation of IL6 and up-regulation of IL24. The polysaccharides also exhibited antioxidant and weak AChE inhibitory activities. This is the first report on the potential health benefits of polysaccharides prepared from the New Zealand fungus, H. novae-zealandiae.
Collapse
Affiliation(s)
- Zhixia Grace Chen
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Karen Suzanne Bishop
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1010, New Zealand
- Discipline of Nutrition and Dietetics, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Hartono Tanambell
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Peter Buchanan
- Manaaki Whenua-Landcare Research, Auckland 1072, New Zealand
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand.
- Riddet Institute, New Zealand Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
94
|
Wang XY, Zhang DD, Yin JY, Nie SP, Xie MY. Recent developments in Hericium erinaceus polysaccharides: extraction, purification, structural characteristics and biological activities. Crit Rev Food Sci Nutr 2018; 59:S96-S115. [DOI: 10.1080/10408398.2018.1521370] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiao-Yin Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Duo-duo Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| |
Collapse
|