51
|
Zhu HQ, Tang XL, Zheng RC, Zheng YG. Recent advancements in enzyme engineering via site-specific incorporation of unnatural amino acids. World J Microbiol Biotechnol 2021; 37:213. [PMID: 34741210 DOI: 10.1007/s11274-021-03177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
With increased attention to excellent biocatalysts, evolving methods based on nature or unnatural amino acid (UAAs) mutagenesis have become an important part of enzyme engineering. The emergence of powerful method through expanding the genetic code allows to incorporate UAAs with unique chemical functionalities into proteins, endowing proteins with more structural and functional features. To date, over 200 diverse UAAs have been incorporated site-specifically into proteins via this methodology and many of them have been widely exploited in the field of enzyme engineering, making this genetic code expansion approach possible to be a promising tool for modulating the properties of enzymes. In this context, we focus on how this robust method to specifically incorporate UAAs into proteins and summarize their applications in enzyme engineering for tuning and expanding the functional properties of enzymes. Meanwhile, we aim to discuss how the benefits can be achieved by using the genetically encoded UAAs. We hope that this method will become an integral part of the field of enzyme engineering in the future.
Collapse
Affiliation(s)
- Hang-Qin Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
52
|
Kubyshkin V. Experimental lipophilicity scale for coded and noncoded amino acid residues. Org Biomol Chem 2021; 19:7031-7040. [PMID: 34333582 DOI: 10.1039/d1ob01213d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among other features, the polarity of amino acid residues is the key parameter for understanding their role in proteins. The wide occurrence of protein modifications in nature and the advent of genetic code engineering techniques created a need for an experimental polarity value integrating both coded (canonical) and noncoded (noncanonical) residues on one universal scale. To address this issue, this work reports on a polarity scale based on the experimental lipophilicity of methyl esters of N-acetylamino acids. The derivatization of amino acids was performed in two steps under mild conditions that allowed conversion of a wide array of amino acids into analytical derivatives. The partitioning/distribution between octan-1-ol and water/buffer was measured using the intensity of the NMR signal as a characteristic for the concentration. The reference set of twenty coded amino acids generated log P values spanning 5.1 units: from tryptophan being the most hydrophobic to aspartate being the most hydrophilic. Furthermore, lipophilicity was measured for a set of analogues of phenylalanine, tyrosine, tryptophan, methionine, proline, and lysine that are typical in nature and/or laboratory practice. The polarity scale reported here will aid the rationalization of amino acid replacements in proteins, and will guide further efforts in experimental genetic code engineering.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Chemistry Department, University of Manitoba, 144 Dysart road, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
53
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
54
|
Brauchi SE, Steinberg XP. Studying ion channel conformation dynamics by encoding coumarin as unnatural amino acid. Methods Enzymol 2021; 653:239-266. [PMID: 34099174 DOI: 10.1016/bs.mie.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monitoring the conformational changes of proteins is critical to understand their function. Ion channels are membrane-bound minute machines controlling the passage of ions across biological membranes. The precise labeling of ion channels with fluorescent probes allows studying their dynamics and facilitates their characterization by high-resolution optical techniques. Here we describe a protocol for the use of a small fluorescent reporter, incorporated by expansion of the genetic code in the host cell. An important advantage of using small probes is that they are less likely to perturb protein structure, function, and trafficking. In our hands, Tyr-coumarin proved to be useful to measure the conformational changes occurring in the narrow space of the permeation pathway in single capsaicin receptors. The method described here could be directly translated to the study of membrane receptors, non-electrogenic transporters, or membrane-bound enzymes.
Collapse
Affiliation(s)
- Sebastian E Brauchi
- Physiology Institute, Universidad Austral de Chile, Valdivia, Chile; Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
| | | |
Collapse
|
55
|
Wang Y, Chen X, Cai W, Tan L, Yu Y, Han B, Li Y, Xie Y, Su Y, Luo X, Liu T. Expanding the Structural Diversity of Protein Building Blocks with Noncanonical Amino Acids Biosynthesized from Aromatic Thiols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yong Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xiaoxu Chen
- State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Wenkang Cai
- State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Linzhi Tan
- State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Yutong Yu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Boyang Han
- State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Yuxuan Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Yuanzhe Xie
- State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Yeyu Su
- State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xiaozhou Luo
- Shenzhen Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| |
Collapse
|
56
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
57
|
Hao R, Ma K, Ru Y, Li D, Song G, Lu B, Liu H, Li Y, Zhang J, Wu C, Zhang G, Hu H, Luo J, Zheng H. Amber codon is genetically unstable in generation of premature termination codon (PTC)-harbouring Foot-and-mouth disease virus (FMDV) via genetic code expansion. RNA Biol 2021; 18:2330-2341. [PMID: 33849391 DOI: 10.1080/15476286.2021.1907055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The foot-and-mouth disease virus (FMDV) is the causative agent of FMD, a highly infectious and devastating viral disease of domestic and wild cloven-hoofed animals. FMD affects livestock and animal products' national and international trade, causing severe economic losses and social consequences. Currently, inactivated vaccines play a vital role in FMD control, but they have several limitations. The genetic code expansion technology provides powerful strategies for generating premature termination codon (PTC)-harbouring virus as a live but replication-incompetent viral vaccine. However, this technology has not been explored for the design and development of new FMD vaccines. In this study, we first expanded the genetic code of the FMDV genome via a transgenic cell line containing an orthogonal translation machinery. We demonstrated that the transgenic cells stably integrated the orthogonal pyltRNA/pylRS pair into the genome and enabled efficient, homogeneous incorporation of unnatural amino acids into target proteins in mammalian cells. Next, we constructed 129 single-PTC FMDV mutants and four dual-PTC FMDV mutants after considering the tolerance, location, and potential functions of those mutated sites. Amber stop codons individually substituted the selected amino acid codons in four viral proteins (3D, L, VP1, and VP4) of FMDV. We successfully rescued PTC-FMDV mutants, but the amber codon unexpectedly showed a highly degree of mutation rate during PTC-FMDV packaging and replication. Our findings highlight that the genetic code expansion technology for the generation of PTC-FMD vaccines needs to be further improved and that the genetic stability of amber codons during the packaging and replication of FMDV is a concern.
Collapse
Affiliation(s)
- Rongzeng Hao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kun Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Gaoyuan Song
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bingzhou Lu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huanan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yajun Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiaoyan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunping Wu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guicai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haitao Hu
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development and Institute for Human Infections and Immunity, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
58
|
Wang Y, Chen X, Cai W, Tan L, Yu Y, Han B, Li Y, Xie Y, Su Y, Luo X, Liu T. Expanding the Structural Diversity of Protein Building Blocks with Noncanonical Amino Acids Biosynthesized from Aromatic Thiols. Angew Chem Int Ed Engl 2021; 60:10040-10048. [PMID: 33570250 DOI: 10.1002/anie.202014540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 11/07/2022]
Abstract
Incorporation of structurally novel noncanonical amino acids (ncAAs) into proteins is valuable for both scientific and biomedical applications. To expand the structural diversity of available ncAAs and to reduce the burden of chemically synthesizing them, we have developed a general and simple biosynthetic method for genetically encoding novel ncAAs into recombinant proteins by feeding cells with economical commercially available or synthetically accessible aromatic thiols. We demonstrate that nearly 50 ncAAs with a diverse array of structures can be biosynthesized from these simple small-molecule precursors by hijacking the cysteine biosynthetic enzymes, and the resulting ncAAs can subsequently be incorporated into proteins via an expanded genetic code. Moreover, we demonstrate that bioorthogonal reactive groups such as aromatic azides and aromatic ketones can be incorporated into green fluorescent protein or a therapeutic antibody with high yields, allowing for subsequent chemical conjugation.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xiaoxu Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Wenkang Cai
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Linzhi Tan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yutong Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Boyang Han
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yuxuan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yuanzhe Xie
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yeyu Su
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xiaozhou Luo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
59
|
Grasso KT, Yeo MJR, Hillenbrand CM, Ficaretta ED, Italia JS, Huang RL, Chatterjee A. Structural Robustness Affects the Engineerability of Aminoacyl-tRNA Synthetases for Genetic Code Expansion. Biochemistry 2021; 60:489-493. [PMID: 33560840 DOI: 10.1021/acs.biochem.1c00056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to engineer the substrate specificity of natural aminoacyl-tRNA synthetase/tRNA pairs facilitates the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins. The Methanocaldococcus jannaschii-derived tyrosyl-tRNA synthetase (MjTyrRS)/tRNA pair has been engineered to incorporate numerous ncAAs into protein expressed in bacteria. However, it cannot be used in eukaryotic cells due to cross-reactivity with its host counterparts. The Escherichia coli-derived tyrosyl-tRNA synthetase (EcTyrRS)/tRNA pair offers a suitable alternative to this end, but a much smaller subset of ncAAs have been genetically encoded using this pair. Here we report that this discrepancy, at least partly, stems from the structural robustness of EcTyrRS being lower than that of MjTyrRS. We show that the thermostability of engineered TyrRS mutants is generally significantly lower than those of their wild-type counterparts. Derived from a thermophilic archaeon, MjTyrRS is a remarkably sturdy protein and tolerates extensive active site engineering without a catastrophic loss of stability at physiological temperature. In contrast, EcTyrRS exhibits significantly lower thermostability, rendering some of its engineered mutants insufficiently stable at physiological temperature. Our observations identify the structural robustness of an aaRS as an important factor that significantly influences how extensively it can be engineered. To overcome this limitation, we have further developed chimeras between EcTyrRS and its homologue from a thermophilic bacterium, which offer an optimal balance between thermostability and activity. We show that the chimeric bacterial TyrRSs show enhanced tolerance for destabilizing active site mutations, providing a potentially more engineerable platform for genetic code expansion.
Collapse
Affiliation(s)
- Katherine T Grasso
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Megan J R Yeo
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Christen M Hillenbrand
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Elise D Ficaretta
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - James S Italia
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Rachel L Huang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
60
|
Walsh SJ, Bargh JD, Dannheim FM, Hanby AR, Seki H, Counsell AJ, Ou X, Fowler E, Ashman N, Takada Y, Isidro-Llobet A, Parker JS, Carroll JS, Spring DR. Site-selective modification strategies in antibody-drug conjugates. Chem Soc Rev 2021; 50:1305-1353. [PMID: 33290462 DOI: 10.1039/d0cs00310g] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibody-drug conjugates (ADCs) harness the highly specific targeting capabilities of an antibody to deliver a cytotoxic payload to specific cell types. They have garnered widespread interest in drug discovery, particularly in oncology, as discrimination between healthy and malignant tissues or cells can be achieved. Nine ADCs have received approval from the US Food and Drug Administration and more than 80 others are currently undergoing clinical investigations for a range of solid tumours and haematological malignancies. Extensive research over the past decade has highlighted the critical nature of the linkage strategy adopted to attach the payload to the antibody. Whilst early generation ADCs were primarily synthesised as heterogeneous mixtures, these were found to have sub-optimal pharmacokinetics, stability, tolerability and/or efficacy. Efforts have now shifted towards generating homogeneous constructs with precise drug loading and predetermined, controlled sites of attachment. Homogeneous ADCs have repeatedly demonstrated superior overall pharmacological profiles compared to their heterogeneous counterparts. A wide range of methods have been developed in the pursuit of homogeneity, comprising chemical or enzymatic methods or a combination thereof to afford precise modification of specific amino acid or sugar residues. In this review, we discuss advances in chemical and enzymatic methods for site-specific antibody modification that result in the generation of homogeneous ADCs.
Collapse
Affiliation(s)
- Stephen J Walsh
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Liu Y, Davis RG, Thomas PM, Kelleher NL, Jewett MC. In vitro-Constructed Ribosomes Enable Multi-site Incorporation of Noncanonical Amino Acids into Proteins. Biochemistry 2021; 60:161-169. [PMID: 33426883 DOI: 10.1021/acs.biochem.0c00829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Efforts to expand the scope of ribosome-mediated polymerization to incorporate noncanonical amino acids (ncAAs) into peptides and proteins hold promise for creating new classes of enzymes, therapeutics, and materials. Recently, the integrated synthesis, assembly, and translation (iSAT) system was established to construct functional ribosomes in cell-free systems. However, the iSAT system has not been shown to be compatible with genetic code expansion. Here, to address this gap, we develop an iSAT platform capable of manufacturing pure proteins with site-specifically incorporated ncAAs. We first establish an iSAT platform based on extracts from genomically recoded Escherichia coli lacking release factor 1 (RF-1). This permits complete reassignment of the amber codon translation function. Next, we optimize orthogonal translation system components to demonstrate the benefits of genomic RF-1 deletion on incorporation of ncAAs into proteins. Using our optimized platform, we demonstrate high-level, multi-site incorporation of p-acetyl-phenylalanine (pAcF) and p-azido-phenylalanine into superfolder green fluorescent protein (sfGFP). Mass spectrometry analysis confirms the high accuracy of incorporation for pAcF at one, two, and five amber sites in sfGFP. The iSAT system updated for ncAA incorporation sets the stage for investigating ribosomal mutations to better understand the fundamental basis of protein synthesis, manufacturing proteins with new properties, and engineering ribosomes for novel polymerization chemistries.
Collapse
|
62
|
Ji Y, Ren C, Miao H, Pang Z, Xiao R, Yang X, Xuan W. Genetically encoding ε-N-benzoyllysine in proteins. Chem Commun (Camb) 2021; 57:1798-1801. [DOI: 10.1039/d0cc07954e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetically encoding BzK can facilitate the biological investigation of the recently discovered protein PTM lysine ε-N-benzoylation.
Collapse
Affiliation(s)
- Yanli Ji
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Conghui Ren
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Hui Miao
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Zhili Pang
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Ruotong Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Xiaochen Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Weimin Xuan
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
63
|
Iskandar SE, Haberman VA, Bowers AA. Expanding the Chemical Diversity of Genetically Encoded Libraries. ACS COMBINATORIAL SCIENCE 2020; 22:712-733. [PMID: 33167616 PMCID: PMC8284915 DOI: 10.1021/acscombsci.0c00179] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The power of ribosomes has increasingly been harnessed for the synthesis and selection of molecular libraries. Technologies, such as phage display, yeast display, and mRNA display, effectively couple genotype to phenotype for the molecular evolution of high affinity epitopes for many therapeutic targets. Genetic code expansion is central to the success of these technologies, allowing researchers to surpass the intrinsic capabilities of the ribosome and access new, genetically encoded materials for these selections. Here, we review techniques for the chemical expansion of genetically encoded libraries, their abilities and limits, and opportunities for further development. Importantly, we also discuss methods and metrics used to assess the efficiency of modification and library diversity with these new techniques.
Collapse
Affiliation(s)
- Sabrina E Iskandar
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Victoria A Haberman
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
64
|
Karbalaei-Heidari HR, Budisa N. Combating Antimicrobial Resistance With New-To-Nature Lanthipeptides Created by Genetic Code Expansion. Front Microbiol 2020; 11:590522. [PMID: 33250877 PMCID: PMC7674664 DOI: 10.3389/fmicb.2020.590522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023] Open
Abstract
Due to the rapid emergence of multi-resistant bacterial strains in recent decades, the commercially available effective antibiotics are becoming increasingly limited. On the other hand, widespread antimicrobial peptides (AMPs) such as the lantibiotic nisin has been used worldwide for more than 40 years without the appearance of significant bacterial resistance. Lantibiotics are ribosomally synthesized antimicrobials generated by posttranslational modifications. Their biotechnological production is of particular interest to redesign natural scaffolds improving their pharmaceutical properties, which has great potential for therapeutic use in human medicine and other areas. However, conventional protein engineering methods are limited to 20 canonical amino acids prescribed by the genetic code. Therefore, the expansion of the genetic code as the most advanced approach in Synthetic Biology allows the addition of new amino acid building blocks (non-canonical amino acids, ncAAs) during protein translation. We now have solid proof-of-principle evidence that bioexpression with these novel building blocks enabled lantibiotics with chemical properties transcending those produced by natural evolution. The unique scaffolds with novel structural and functional properties are the result of this bioengineering. Here we will critically examine and evaluate the use of the expanded genetic code and its alternatives in lantibiotics research over the last 7 years. We anticipate that Synthetic Biology, using engineered lantibiotics and even more complex scaffolds will be a promising tool to address an urgent problem of antibiotic resistance, especially in a class of multi-drug resistant microbes known as superbugs.
Collapse
Affiliation(s)
- Hamid Reza Karbalaei-Heidari
- Department of Biology, Faculty of Sciences, Shiraz University, Shiraz, Iran
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| |
Collapse
|
65
|
Cui Z, Johnston WA, Alexandrov K. Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides. Front Bioeng Biotechnol 2020; 8:1031. [PMID: 33117774 PMCID: PMC7550873 DOI: 10.3389/fbioe.2020.01031] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology holds promise to revolutionize the life sciences and biomedicine via expansion of macromolecular diversity outside the natural chemical space. Use of non-canonical amino acids (ncAAs) via codon reassignment has found diverse applications in protein structure and interaction analysis, introduction of post-translational modifications, production of constrained peptides, antibody-drug conjugates, and novel enzymes. However, simultaneously encoding multiple ncAAs in vivo requires complex engineering and is sometimes restricted by the cell's poor uptake of ncAAs. In contrast the open nature of cell-free protein synthesis systems offers much greater freedom for manipulation and repurposing of the biosynthetic machinery by controlling the level and identity of translational components and reagents, and allows simultaneous incorporation of multiple ncAAs with non-canonical side chains and even backbones (N-methyl, D-, β-amino acids, α-hydroxy acids etc.). This review focuses on the two most used Escherichia coli-based cell-free protein synthesis systems; cell extract- and PURE-based systems. The former is a biological mixture with >500 proteins, while the latter consists of 38 individually purified biomolecules. We delineate compositions of these two systems and discuss their respective advantages and applications. Also, we dissect the translational components required for ncAA incorporation and compile lists of ncAAs that can be incorporated into polypeptides via different acylation approaches. We highlight the recent progress in using unnatural nucleobase pairs to increase the repertoire of orthogonal codons, as well as using tRNA-specific ribozymes for in situ acylation. We summarize advances in engineering of translational machinery such as tRNAs, aminoacyl-tRNA synthetases, elongation factors, and ribosomes to achieve efficient incorporation of structurally challenging ncAAs. We note that, many engineered components of biosynthetic machinery are developed for the use in vivo but are equally applicable to the in vitro systems. These are included in the review to provide a comprehensive overview for ncAA incorporation and offer new insights for the future development in cell-free systems. Finally, we highlight the exciting progress in the genomic engineering, resulting in E. coli strains free of amber and some redundant sense codons. These strains can be used for preparation of cell extracts offering multiple reassignment options.
Collapse
Affiliation(s)
- Zhenling Cui
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wayne A Johnston
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kirill Alexandrov
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
66
|
Unremitting progresses for phosphoprotein synthesis. Curr Opin Chem Biol 2020; 58:96-111. [PMID: 32889414 DOI: 10.1016/j.cbpa.2020.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 02/03/2023]
Abstract
Phosphorylation, one of the important protein post-translational modifications, is involved in many essential cellular processes. Site-specifical and homogeneous phosphoproteins can be used as probes for elucidating the protein phosphorylation network and as potential therapeutics for interfering their involved biological events. However, the generation of phosphoproteins has been challenging owing to the limitation of chemical synthesis and protein expression systems. Despite the pioneering discoveries in phosphoprotein synthesis, over the past decade, great progresses in this field have also been made to promote the biofunctional exploration of protein phosphorylation largely. Therefore, in this review, we mainly summarize recent advances in phosphoprotein synthesis, which includes five sections: 1) synthesis of the nonhydrolyzable phosphorylated amino acid mimetic building blocks, 2) chemical total and semisynthesis strategy, 3) in-cell and in vitro genetic code expansion strategy, 4) the late-stage modification strategy, 5) nonoxygen phosphoprotein synthesis.
Collapse
|
67
|
Ding W, Zhao H, Chen Y, Zhang B, Yang Y, Zang J, Wu J, Lin S. Chimeric design of pyrrolysyl-tRNA synthetase/tRNA pairs and canonical synthetase/tRNA pairs for genetic code expansion. Nat Commun 2020; 11:3154. [PMID: 32572025 PMCID: PMC7308279 DOI: 10.1038/s41467-020-16898-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/28/2020] [Indexed: 01/24/2023] Open
Abstract
An orthogonal aminoacyl-tRNA synthetase/tRNA pair is a crucial prerequisite for site-specific incorporation of unnatural amino acids. Due to its high codon suppression efficiency and full orthogonality, the pyrrolysyl-tRNA synthetase/pyrrolysyl-tRNA pair is currently the ideal system for genetic code expansion in both eukaryotes and prokaryotes. There is a pressing need to discover or engineer other fully orthogonal translation systems. Here, through rational chimera design by transplanting the key orthogonal components from the pyrrolysine system, we create multiple chimeric tRNA synthetase/chimeric tRNA pairs, including chimera histidine, phenylalanine, and alanine systems. We further show that these engineered chimeric systems are orthogonal and highly efficient with comparable flexibility to the pyrrolysine system. Besides, the chimera phenylalanine system can incorporate a group of phenylalanine, tyrosine, and tryptophan analogues efficiently in both E. coli and mammalian cells. These aromatic amino acids analogous exhibit unique properties and characteristics, including fluorescence, post-translation modification. Orthogonal aminoacyl-tRNA synthetase/tRNA pairs are crucial for the incorporation of unnatural amino acids in a site-specific manner. Here the authors use rational chimera design to create multiple efficient pairs that function in bacterial and mammalian systems for genetic code expansion.
Collapse
Affiliation(s)
- Wenlong Ding
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Hongxia Zhao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yulin Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yang Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, China
| | - Jia Zang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Shixian Lin
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
68
|
Pfab M, Kielkowski P, Krafczyk R, Volkwein W, Sieber SA, Lassak J, Jung K. Synthetic post-translational modifications of elongation factor P using the ligase EpmA. FEBS J 2020; 288:663-677. [PMID: 32337775 DOI: 10.1111/febs.15346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/24/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
Abstract
Canonically, tRNA synthetases charge tRNA. However, the lysyl-tRNA synthetase paralog EpmA catalyzes the attachment of (R)-β-lysine to the ε-amino group of lysine 34 of the translation elongation factor P (EF-P) in Escherichia coli. This modification is essential for EF-P-mediated translational rescue of ribosomes stalled at consecutive prolines. In this study, we determined the kinetics of EpmA and its variant EpmA_A298G to catalyze the post-translational modification of K34 in EF-P with eight noncanonical substrates. In addition, acetylated EF-P was generated using an amber suppression system. The impact of these synthetically modified EF-P variants on in vitro translation of a polyproline-containing NanoLuc luciferase reporter was analyzed. Our results show that natural (R)-β-lysylation was more effective in rescuing stalled ribosomes than any other synthetic modification tested. Thus, our work not only provides new biochemical insights into the function of EF-P, but also opens a new route to post-translationally modify proteins using EpmA.
Collapse
Affiliation(s)
- Miriam Pfab
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Pavel Kielkowski
- Organic Chemistry II, Technical University of Munich, Garching, Germany
| | - Ralph Krafczyk
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Wolfram Volkwein
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Stephan A Sieber
- Organic Chemistry II, Technical University of Munich, Garching, Germany
| | - Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Kirsten Jung
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
69
|
Seki E, Yanagisawa T, Kuratani M, Sakamoto K, Yokoyama S. Fully Productive Cell-Free Genetic Code Expansion by Structure-Based Engineering of Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase. ACS Synth Biol 2020; 9:718-732. [PMID: 32182048 DOI: 10.1021/acssynbio.9b00288] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs from Methanosarcina mazei and Methanosarcina barkeri are widely used for site-specific incorporations of non-canonical amino acids into proteins (genetic code expansion). In this study, we achieved the full productivity of cell-free protein synthesis for difficult, bulky non-canonical amino acids, such as Nε-((((E)-cyclooct-2-en-1-yl)oxy)carbonyl)-l-lysine (TCO*Lys), by using Methanomethylophilus alvus PylRS. First, based on the crystal structure of M. alvus PylRS, the productivities for various non-canonical amino acids were greatly increased by rational engineering of the amino acid-binding pocket. The productivities were further enhanced by using a much higher concentration of PylRS over that of M. mazei PylRS, or by mutating the outer layer of the amino acid-binding pocket. Thus, we achieved full productivity even for TCO*Lys. The quantity and quality of the cell-free-produced antibody fragment containing TCO*Lys were drastically improved. These results demonstrate the importance of full productivity for the expanded genetic code.
Collapse
|
70
|
Wang T, Liang C, Xu H, An Y, Xiao S, Zheng M, Liu L, Nie L. Incorporation of nonstandard amino acids into proteins: principles and applications. World J Microbiol Biotechnol 2020; 36:60. [PMID: 32266578 DOI: 10.1007/s11274-020-02837-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/04/2020] [Indexed: 01/01/2023]
Abstract
The cellular ribosome shows a naturally evolved strong preference for the synthesis of proteins with standard amino acids. An in-depth understanding of the translation process enables scientists to go beyond this natural limitation and engineer translating systems capable of synthesizing proteins with artificially designed and synthesized non-standard amino acids (nsAA) featuring more bulky sidechains. The sidechains can be functional groups, with chosen biophysical or chemical activities, that enable the direct application of these proteins. Alternatively, the sidechains can be designed to contain highly reactive groups: enabling the ready formation of conjugates via a covalent bond between the sidechain and other chemicals or biomolecules. This co-translational incorporation of nsAAs into proteins allows for a vast number of possible applications. In this paper, we first systematically summarized the advances in the engineering of the translation system. Subsequently, we reviewed the extensive applications of these nsAA-containing proteins (after chemical modification) by discussing representative reports on how they can be utilized for different purposes. Finally, we discussed the direction of further studies which could be undertaken to improve the current technology utilized in incorporating nsAAs in order to use them to their full potential and improve accessibility across disciplines.
Collapse
Affiliation(s)
- Tianwen Wang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Chen Liang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Hongjv Xu
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Yafei An
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Sha Xiao
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Mengyuan Zheng
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Lu Liu
- College of International Education, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Lei Nie
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China.
| |
Collapse
|
71
|
Jiang HK, Lee MN, Tsou JC, Chang KW, Tseng HW, Chen KP, Li YK, Wang YS. Linker and N-Terminal Domain Engineering of Pyrrolysyl-tRNA Synthetase for Substrate Range Shifting and Activity Enhancement. Front Bioeng Biotechnol 2020; 8:235. [PMID: 32322577 PMCID: PMC7156790 DOI: 10.3389/fbioe.2020.00235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
The Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS)⋅tRNAPyl pair can be used to incorporate non-canonical amino acids (ncAAs) into proteins at installed amber stop codons. Although engineering of the PylRS active site generates diverse binding pockets, the substrate ranges are found similar in charging lysine and phenylalanine analogs. To expand the diversity of the ncAA side chains that can be incorporated via the PylRS⋅tRNAPyl pair, exploring remote interactions beyond the active site is an emerging approach in expanding the genetic code research. In this work, remote interactions between tRNAPyl, the tRNA binding domain of PylRS, and/or an introduced non-structured linker between the N- and C-terminus of PylRS were studied. The substrate range of the PylRS⋅tRNAPyl pair was visualized by producing sfGFP-UAG gene products, which also indicated amber suppression efficiencies and substrate specificity. The unstructured loop linking the N-terminal and C-terminal domains (CTDs) of PylRS has been suggested to regulate the interaction between PylRS and tRNAPyl. In exploring the detailed role of the loop region, different lengths of the linker were inserted into the junction between the N-terminal and the C-terminal domains of PylRS to unearth the impact on remote effects. Our findings suggest that the insertion of a moderate-length linker tunes the interface between PylRS and tRNAPyl and subsequently leads to improved suppression efficiencies. The suppression activity and the substrate specificity of PylRS were altered by introducing three mutations at or near the N-terminal domain of PylRS (N-PylRS). Using a N-PylRS⋅tRNAPyl pair, three ncAA substrates, two S-benzyl cysteine and a histidine analog, were incorporated into the protein site specifically.
Collapse
Affiliation(s)
- Han-Kai Jiang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Man-Nee Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jo-Chu Tsou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuan-Wen Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsueh-Wei Tseng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuang-Po Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
72
|
Copley SD. The physical basis and practical consequences of biological promiscuity. Phys Biol 2020; 17:10.1088/1478-3975/ab8697. [PMID: 32244231 PMCID: PMC9291633 DOI: 10.1088/1478-3975/ab8697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins interact with metabolites, nucleic acids, and other proteins to orchestrate the myriad catalytic, structural and regulatory functions that support life from the simplest microbes to the most complex multicellular organisms. These molecular interactions are often exquisitely specific, but never perfectly so. Adventitious "promiscuous" interactions are ubiquitous due to the thousands of macromolecules and small molecules crowded together in cells. Such interactions may perturb protein function at the molecular level, but as long as they do not compromise organismal fitness, they will not be removed by natural selection. Although promiscuous interactions are physiologically irrelevant, they are important because they can provide a vast reservoir of potential functions that can provide the starting point for evolution of new functions, both in nature and in the laboratory.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, UNITED STATES
| |
Collapse
|
73
|
Potts KA, Stieglitz JT, Lei M, Van Deventer JA. Reporter system architecture affects measurements of noncanonical amino acid incorporation efficiency and fidelity. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2020; 5:573-588. [PMID: 33791108 PMCID: PMC8009230 DOI: 10.1039/c9me00107g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ability to genetically encode noncanonical amino acids (ncAAs) within proteins supports a growing number of applications ranging from fundamental biological studies to enhancing the properties of biological therapeutics. Currently, our quantitative understanding of ncAA incorporation systems is confounded by the diverse set of characterization and analysis approaches used to quantify ncAA incorporation events. While several effective reporter systems support such measurements, it is not clear how quantitative results from different reporters relate to one another, or which details influence measurements most strongly. Here, we evaluate the quantitative performance of single-fluorescent protein reporters, dual-fluorescent protein reporters, and cell surface-displayed protein reporters of ncAA insertion in response to the TAG (amber) codon in yeast. While different reporters support varying levels of apparent readthrough efficiencies, flow cytometry-based evaluations with dual reporters yielded measurements exhibiting consistent quantitative trends and precision across all evaluated conditions. Further investigations of dual-fluorescent protein reporter architecture revealed that quantitative outputs are influenced by stop codon location and N- and C-terminal fluorescent protein identity. Both dual-fluorescent protein reporters and a "drop-in" version of yeast display support quantification of ncAA incorporation in several single-gene knockout strains, revealing strains that enhance ncAA incorporation efficiency without compromising fidelity. Our studies reveal critical details regarding reporter system performance in yeast and how to effectively deploy such reporters. These findings have substantial implications for how to engineer ncAA incorporation systems-and protein translation apparatuses-to better accommodate alternative genetic codes for expanding the chemical diversity of biosynthesized proteins.
Collapse
Affiliation(s)
- K A Potts
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - J T Stieglitz
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - M Lei
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - J A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
74
|
Ward FR, Watson ZL, Ad O, Schepartz A, Cate JHD. Defects in the Assembly of Ribosomes Selected for β-Amino Acid Incorporation. Biochemistry 2019; 58:4494-4504. [PMID: 31607123 PMCID: PMC8435211 DOI: 10.1021/acs.biochem.9b00746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ribosome engineering has emerged as a promising field in synthetic biology, particularly concerning the production of new sequence-defined polymers. Mutant ribosomes have been developed that improve the incorporation of several nonstandard monomers including d-amino acids, dipeptides, and β-amino acids into polypeptide chains. However, there remains little mechanistic understanding of how these ribosomes catalyze incorporation of these new substrates. Here, we probed the properties of a mutant ribosome-P7A7-evolved for better in vivo β-amino acid incorporation through in vitro biochemistry and cryo-electron microscopy. Although P7A7 is a functional ribosome in vivo, it is inactive in vitro, and assembles poorly into 70S ribosome complexes. Structural characterization revealed large regions of disorder in the peptidyltransferase center and nearby features, suggesting a defect in assembly. Comparison of RNA helix and ribosomal protein occupancy with other assembly intermediates revealed that P7A7 is stalled at a late stage in ribosome assembly, explaining its weak activity. These results highlight the importance of ensuring efficient ribosome assembly during ribosome engineering toward new catalytic abilities.
Collapse
Affiliation(s)
- Fred R. Ward
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA
| | - Zoe L. Watson
- Department of Chemistry, University of California-Berkeley, Berkeley, CA
| | - Omer Ad
- Department of Chemistry, Yale University, New Haven, CT
| | - Alanna Schepartz
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA
- Department of Chemistry, University of California-Berkeley, Berkeley, CA
- Department of Chemistry, Yale University, New Haven, CT
| | - Jamie H. D. Cate
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA
- Department of Chemistry, University of California-Berkeley, Berkeley, CA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
75
|
Lee J, Schwieter KE, Watkins AM, Kim DS, Yu H, Schwarz KJ, Lim J, Coronado J, Byrom M, Anslyn EV, Ellington AD, Moore JS, Jewett MC. Expanding the limits of the second genetic code with ribozymes. Nat Commun 2019; 10:5097. [PMID: 31704912 PMCID: PMC6841967 DOI: 10.1038/s41467-019-12916-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
The site-specific incorporation of noncanonical monomers into polypeptides through genetic code reprogramming permits synthesis of bio-based products that extend beyond natural limits. To better enable such efforts, flexizymes (transfer RNA (tRNA) synthetase-like ribozymes that recognize synthetic leaving groups) have been used to expand the scope of chemical substrates for ribosome-directed polymerization. The development of design rules for flexizyme-catalyzed acylation should allow scalable and rational expansion of genetic code reprogramming. Here we report the systematic synthesis of 37 substrates based on 4 chemically diverse scaffolds (phenylalanine, benzoic acid, heteroaromatic, and aliphatic monomers) with different electronic and steric factors. Of these substrates, 32 were acylated onto tRNA and incorporated into peptides by in vitro translation. Based on the design rules derived from this expanded alphabet, we successfully predicted the acylation of 6 additional monomers that could uniquely be incorporated into peptides and direct N-terminal incorporation of an aldehyde group for orthogonal bioconjugation reactions.
Collapse
Affiliation(s)
- Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA
| | - Kenneth E Schwieter
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Andrew M Watkins
- Departments of Biochemistry and Physics, Stanford University, Stanford, 94305, CA, USA
| | - Do Soon Kim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA
| | - Hao Yu
- Departments of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Kevin J Schwarz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Jongdoo Lim
- Department of Chemistry, University of Texas at Austin, Austin, 78712, TX, USA
| | - Jaime Coronado
- Department of Chemistry, University of Texas at Austin, Austin, 78712, TX, USA
| | - Michelle Byrom
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, 78712, TX, USA
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, 78712, TX, USA
| | - Andrew D Ellington
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, 78712, TX, USA
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA.
| |
Collapse
|
76
|
Kitagawa M, Balkunde R, Bui H, Jackson D. An Aminoacyl tRNA Synthetase, OKI1, Is Required for Proper Shoot Meristem Size in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:2597-2608. [PMID: 31393575 DOI: 10.1093/pcp/pcz153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
In plants, the stem cells that form the shoot system reside within the shoot apical meristem (SAM), which is regulated by feedback signaling between the WUSCHEL (WUS) homeobox protein and CLAVATA (CLV) peptides and receptors. WUS-CLV feedback signaling can be modulated by various endogenous or exogenous factors, such as chromatin state, hormone signaling, reactive oxygen species (ROS) signaling and nutrition, leading to a dynamic control of SAM size corresponding to meristem activity. Despite these insights, however, the knowledge of genes that control SAM size is still limited, and in particular, the regulation by ROS signaling is only beginning to be comprehended. In this study, we report a new function in maintenance of SAM size, encoded by the OKINA KUKI1 (OKI1) gene. OKI1 is expressed in the SAM and encodes a mitochondrial aspartyl tRNA synthetase (AspRS). oki1 mutants display enlarged SAMs with abnormal expression of WUS and CLV3 and overaccumulation of ROS in the meristem. Our findings support the importance of normal AspRS function in the maintenance of the WUS-CLV3 feedback loop and SAM size.
Collapse
Affiliation(s)
- Munenori Kitagawa
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
| | - Rachappa Balkunde
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO, USA
| | - Huyen Bui
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
- Center of Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
| |
Collapse
|
77
|
Israeli B, Vaserman L, Amiram M. Multi‐Site Incorporation of Nonstandard Amino Acids into Protein‐Based Biomaterials. Isr J Chem 2019. [DOI: 10.1002/ijch.201900043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bar Israeli
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| | - Livne Vaserman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| |
Collapse
|
78
|
Ad O, Hoffman KS, Cairns AG, Featherston AL, Miller SJ, Söll D, Schepartz A. Translation of Diverse Aramid- and 1,3-Dicarbonyl-peptides by Wild Type Ribosomes in Vitro. ACS CENTRAL SCIENCE 2019; 5:1289-1294. [PMID: 31403077 PMCID: PMC6661870 DOI: 10.1021/acscentsci.9b00460] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Indexed: 05/21/2023]
Abstract
Here, we report that wild type Escherichia coli ribosomes accept and elongate precharged initiator tRNAs acylated with multiple benzoic acids, including aramid precursors, as well as malonyl (1,3-dicarbonyl) substrates to generate a diverse set of aramid-peptide and polyketide-peptide hybrid molecules. This work expands the scope of ribozyme- and ribosome-catalyzed chemical transformations, provides a starting point for in vivo translation engineering efforts, and offers an alternative strategy for the biosynthesis of polyketide-peptide natural products.
Collapse
Affiliation(s)
- Omer Ad
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kyle S. Hoffman
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Andrew G. Cairns
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Aaron L. Featherston
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott J. Miller
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- E-mail:
| | - Dieter Söll
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- E-mail:
| | - Alanna Schepartz
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- E-mail:
| |
Collapse
|
79
|
Nödling AR, Spear LA, Williams TL, Luk LYP, Tsai YH. Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Essays Biochem 2019; 63:237-266. [PMID: 31092687 PMCID: PMC6610526 DOI: 10.1042/ebc20180042] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Genetic code expansion allows unnatural (non-canonical) amino acid incorporation into proteins of interest by repurposing the cellular translation machinery. The development of this technique has enabled site-specific incorporation of many structurally and chemically diverse amino acids, facilitating a plethora of applications, including protein imaging, engineering, mechanistic and structural investigations, and functional regulation. Particularly, genetic code expansion provides great tools to study mammalian proteins, of which dysregulations often have important implications in health. In recent years, a series of methods has been developed to modulate protein function through genetically incorporated unnatural amino acids. In this review, we will first discuss the basic concept of genetic code expansion and give an up-to-date list of amino acids that can be incorporated into proteins in mammalian cells. We then focus on the use of unnatural amino acids to activate, inhibit, or reversibly modulate protein function by translational, optical or chemical control. The features of each approach will also be highlighted.
Collapse
Affiliation(s)
| | - Luke A Spear
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Thomas L Williams
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
80
|
Smolskaya S, Andreev YA. Site-Specific Incorporation of Unnatural Amino Acids into Escherichia coli Recombinant Protein: Methodology Development and Recent Achievement. Biomolecules 2019; 9:biom9070255. [PMID: 31261745 PMCID: PMC6681230 DOI: 10.3390/biom9070255] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
More than two decades ago a general method to genetically encode noncanonical or unnatural amino acids (NAAs) with diverse physical, chemical, or biological properties in bacteria, yeast, animals and mammalian cells was developed. More than 200 NAAs have been incorporated into recombinant proteins by means of non-endogenous aminoacyl-tRNA synthetase (aa-RS)/tRNA pair, an orthogonal pair, that directs site-specific incorporation of NAA encoded by a unique codon. The most established method to genetically encode NAAs in Escherichia coli is based on the usage of the desired mutant of Methanocaldococcus janaschii tyrosyl-tRNA synthetase (MjTyrRS) and cognate suppressor tRNA. The amber codon, the least-used stop codon in E. coli, assigns NAA. Until very recently the genetic code expansion technology suffered from a low yield of targeted proteins due to both incompatibilities of orthogonal pair with host cell translational machinery and the competition of suppressor tRNA with release factor (RF) for binding to nonsense codons. Here we describe the latest progress made to enhance nonsense suppression in E. coli with the emphasis on the improved expression vectors encoding for an orthogonal aa-RA/tRNA pair, enhancement of aa-RS and suppressor tRNA efficiency, the evolution of orthogonal EF-Tu and attempts to reduce the effect of RF1.
Collapse
Affiliation(s)
- Sviatlana Smolskaya
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, 119991 Moscow, Russia.
| | - Yaroslav A Andreev
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, 119991 Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| |
Collapse
|
81
|
Baumann T, Hauf M, Richter F, Albers S, Möglich A, Ignatova Z, Budisa N. Computational Aminoacyl-tRNA Synthetase Library Design for Photocaged Tyrosine. Int J Mol Sci 2019; 20:ijms20092343. [PMID: 31083552 PMCID: PMC6539999 DOI: 10.3390/ijms20092343] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/20/2023] Open
Abstract
Engineering aminoacyl-tRNA synthetases (aaRSs) provides access to the ribosomal incorporation of noncanonical amino acids via genetic code expansion. Conventional targeted mutagenesis libraries with 5–7 positions randomized cover only marginal fractions of the vast sequence space formed by up to 30 active site residues. This frequently results in selection of weakly active enzymes. To overcome this limitation, we use computational enzyme design to generate a focused library of aaRS variants. For aaRS enzyme redesign, photocaged ortho-nitrobenzyl tyrosine (ONBY) was chosen as substrate due to commercial availability and its diverse applications. Diversifying 17 first- and second-shell sites and performing conventional aaRS positive and negative selection resulted in a high-activity aaRS. This MjTyrRS variant carries ten mutations and outperforms previously reported ONBY-specific aaRS variants isolated from traditional libraries. In response to a single in-frame amber stop codon, it mediates the in vivo incorporation of ONBY with an efficiency matching that of the wild type MjTyrRS enzyme acylating cognate tyrosine. These results exemplify an improved general strategy for aaRS library design and engineering.
Collapse
Affiliation(s)
- Tobias Baumann
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany.
| | - Matthias Hauf
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany.
| | - Florian Richter
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| | - Suki Albers
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| | - Andreas Möglich
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
- Lehrstuhl für Biochemie, Universität Bayreuth, 95447 Bayreuth, Germany.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| | - Nediljko Budisa
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany.
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
82
|
Structural Basis for Genetic-Code Expansion with Bulky Lysine Derivatives by an Engineered Pyrrolysyl-tRNA Synthetase. Cell Chem Biol 2019; 26:936-949.e13. [PMID: 31031143 DOI: 10.1016/j.chembiol.2019.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/25/2018] [Accepted: 03/15/2019] [Indexed: 11/24/2022]
Abstract
Pyrrolysyl-tRNA synthetase (PylRS) and tRNAPyl have been extensively used for genetic-code expansion. A Methanosarcina mazei PylRS mutant bearing the Y306A and Y384F mutations (PylRS(Y306A/Y384F)) encodes various bulky non-natural lysine derivatives by UAG. In this study, we examined how PylRS(Y306A/Y384F) recognizes many amino acids. Among 17 non-natural lysine derivatives, Nɛ-(benzyloxycarbonyl)lysine (ZLys) and 10 ortho/meta/para-substituted ZLys derivatives were efficiently ligated to tRNAPyl and were incorporated into proteins by PylRS(Y306A/Y384F). We determined crystal structures of 14 non-natural lysine derivatives bound to the PylRS(Y306A/Y384F) catalytic fragment. The meta- and para-substituted ZLys derivatives are snugly accommodated in the productive mode. In contrast, ZLys and the unsubstituted or ortho-substituted ZLys derivatives exhibited an alternative binding mode in addition to the productive mode. PylRS(Y306A/Y384F) displayed a high aminoacylation rate for ZLys, indicating that the double-binding mode minimally affects aminoacylation. These precise substrate recognition mechanisms by PylRS(Y306A/Y384F) may facilitate the structure-based design of novel non-natural amino acids.
Collapse
|
83
|
Italia JS, Addy PS, Erickson SB, Peeler JC, Weerapana E, Chatterjee A. Mutually Orthogonal Nonsense-Suppression Systems and Conjugation Chemistries for Precise Protein Labeling at up to Three Distinct Sites. J Am Chem Soc 2019; 141:6204-6212. [PMID: 30909694 DOI: 10.1021/jacs.8b12954] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Site-specific incorporation of multiple distinct noncanonical amino acids (ncAAs) into a protein is an emerging technology with tremendous potential. It relies on mutually orthogonal engineered aminoacyl-tRNA synthetase/tRNA pairs that suppress different nonsense/frameshift codons. So far, up to two distinct ncAAs have been incorporated into proteins expressed in E. coli, using archaea-derived tyrosyl and pyrrolysyl pairs. Here we report that the E. coli derived tryptophanyl pair can be combined with the archaeal tyrosyl or the pyrrolysyl pair in ATMW1 E. coli to incorporate two different ncAAs into one protein with high fidelity and efficiency. By combining all three orthogonal pairs, we further demonstrate simultaneous site-specific incorporation of three different ncAAs into one protein. To use this technology for chemoselectively labeling proteins with multiple distinct entities at predefined sites, we also sought to identify different bioconjugation handles that can be coincorporated into proteins as ncAA-side chains and subsequently functionalized through mutually compatible labeling chemistries. To this end, we show that the recently developed chemoselective rapid azo-coupling reaction (CRACR) directed to 5-hydroxytryptophan (5HTP) is compatible with strain-promoted azide-alkyne cycloaddition (SPAAC) targeted to p-azidophenylalanine (pAzF) and strain-promoted inverse electron-demand Diels-Alder cycloaddition (SPIEDAC) targeted to cyclopropene-lysine (CpK) for rapid, catalyst-free protein labeling at multiple sites. Combining these mutually orthogonal nonsense suppression systems and the mutually compatible bioconjugation handles they incorporate, we demonstrate site-specific labeling of recombinantly expressed proteins at up to three distinct sites.
Collapse
Affiliation(s)
- James S Italia
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| | - Partha Sarathi Addy
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| | - Sarah B Erickson
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| | - Jennifer C Peeler
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| | - Eranthie Weerapana
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| | - Abhishek Chatterjee
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| |
Collapse
|
84
|
Rezhdo A, Islam M, Huang M, Van Deventer JA. Future prospects for noncanonical amino acids in biological therapeutics. Curr Opin Biotechnol 2019; 60:168-178. [PMID: 30974337 DOI: 10.1016/j.copbio.2019.02.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
There is growing evidence that noncanonical amino acids (ncAAs) can be utilized in the creation of biological therapeutics ranging from protein conjugates to cell-based therapies. However, when does genetically encoding ncAAs yield biologics with unique properties compared to other approaches? In this review, we attempt to answer this question in the broader context of therapeutic development, emphasizing advances within the past two years. In several areas, ncAAs add valuable routes to therapeutically relevant entities, but application-specific needs ultimately determine whether ncAA-mediated or alternative solutions are preferred. Looking forward, using ncAAs to perform 'protein medicinal chemistry,' in which atomic-level changes to proteins dramatically enhance therapeutic properties, is a promising emerging area. Further upgrades to the performance of ncAA incorporation technologies will be essential to realizing the full potential of ncAAs in biological therapeutics.
Collapse
Affiliation(s)
- Arlinda Rezhdo
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - Mariha Islam
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - Manjie Huang
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States; Biomedical Engineering Department, Tufts University, Medford, MA 02155, United States.
| |
Collapse
|
85
|
Jin X, Park OJ, Hong SH. Incorporation of non-standard amino acids into proteins: challenges, recent achievements, and emerging applications. Appl Microbiol Biotechnol 2019; 103:2947-2958. [PMID: 30790000 PMCID: PMC6449208 DOI: 10.1007/s00253-019-09690-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/19/2022]
Abstract
The natural genetic code only allows for 20 standard amino acids in protein translation, but genetic code reprogramming enables the incorporation of non-standard amino acids (NSAAs). Proteins containing NSAAs provide enhanced or novel properties and open diverse applications. With increased attention to the recent advancements in synthetic biology, various improved and novel methods have been developed to incorporate single and multiple distinct NSAAs into proteins. However, various challenges remain in regard to NSAA incorporation, such as low yield and misincorporation. In this review, we summarize the recent efforts to improve NSAA incorporation by utilizing orthogonal translational system optimization, cell-free protein synthesis, genomically recoded organisms, artificial codon boxes, quadruplet codons, and orthogonal ribosomes, before closing with a discussion of the emerging applications of NSAA incorporation.
Collapse
Affiliation(s)
- Xing Jin
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Oh-Jin Park
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
- Department of Biological and Chemical Engineering, Yanbian University of Science and Technology, Yanji, Jilin, People's Republic of China
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| |
Collapse
|
86
|
Kumar S, Dangi AK, Shukla P, Baishya D, Khare SK. Thermozymes: Adaptive strategies and tools for their biotechnological applications. BIORESOURCE TECHNOLOGY 2019; 278:372-382. [PMID: 30709766 DOI: 10.1016/j.biortech.2019.01.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 05/10/2023]
Abstract
In today's scenario of global climate change, there is a colossal demand for sustainable industrial processes and enzymes from thermophiles. Plausibly, thermozymes are an important toolkit, as they are known to be polyextremophilic in nature. Small genome size and diverse molecular conformational modifications have been implicated in devising adaptive strategies. Besides, the utilization of chemical technology and gene editing attributions according to mechanical necessities are the additional key factor for efficacious bioprocess development. Microbial thermozymes have been extensively used in waste management, biofuel, food, paper, detergent, medicinal and pharmaceutical industries. To understand the strength of enzymes at higher temperatures different models utilize X-ray structures of thermostable proteins, machine learning calculations, neural networks, but unified adaptive measures are yet to be totally comprehended. The present review provides a recent updates on thermozymes and various interdisciplinary applications including the aspects of thermophiles bioengineering utilizing synthetic biology and gene editing tools.
Collapse
Affiliation(s)
- Sumit Kumar
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arun K Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Institute of Science and Technology, Gauhati University, Guwahati 781014, Assam, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
87
|
Kato Y. Translational Control using an Expanded Genetic Code. Int J Mol Sci 2019; 20:ijms20040887. [PMID: 30781713 PMCID: PMC6412442 DOI: 10.3390/ijms20040887] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 11/16/2022] Open
Abstract
A bio-orthogonal and unnatural substance, such as an unnatural amino acid (Uaa), is an ideal regulator to control target gene expression in a synthetic gene circuit. Genetic code expansion technology has achieved Uaa incorporation into ribosomal synthesized proteins in vivo at specific sites designated by UAG stop codons. This site-specific Uaa incorporation can be used as a controller of target gene expression at the translational level by conditional read-through of internal UAG stop codons. Recent advances in optimization of site-specific Uaa incorporation for translational regulation have enabled more precise control over a wide range of novel important applications, such as Uaa-auxotrophy-based biological containment, live-attenuated vaccine, and high-yield zero-leakage expression systems, in which Uaa translational control is exclusively used as an essential genetic element. This review summarizes the history and recent advance of the translational control by conditional stop codon read-through, especially focusing on the methods using the site-specific Uaa incorporation.
Collapse
Affiliation(s)
- Yusuke Kato
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Oowashi 1-2, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
88
|
Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation. Genes (Basel) 2018; 10:genes10010017. [PMID: 30597824 PMCID: PMC6356944 DOI: 10.3390/genes10010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023] Open
Abstract
The universal genetic code, which is the foundation of cellular organization for almost all organisms, has fostered the exchange of genetic information from very different paths of evolution. The result of this communication network of potentially beneficial traits can be observed as modern biodiversity. Today, the genetic modification techniques of synthetic biology allow for the design of specialized organisms and their employment as tools, creating an artificial biodiversity based on the same universal genetic code. As there is no natural barrier towards the proliferation of genetic information which confers an advantage for a certain species, the naturally evolved genetic pool could be irreversibly altered if modified genetic information is exchanged. We argue that an alien genetic code which is incompatible with nature is likely to assure the inhibition of all mechanisms of genetic information transfer in an open environment. The two conceivable routes to synthetic life are either de novo cellular design or the successive alienation of a complex biological organism through laboratory evolution. Here, we present the strategies that have been utilized to fundamentally alter the genetic code in its decoding rules or its molecular representation and anticipate future avenues in the pursuit of robust biocontainment.
Collapse
|
89
|
Wang J, Forster AC. Ribosomal incorporation of unnatural amino acids: lessons and improvements from fast kinetics studies. Curr Opin Chem Biol 2018; 46:180-187. [DOI: 10.1016/j.cbpa.2018.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/21/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022]
|