51
|
Li A, Gong Z, Long Y, Li Y, Liu C, Lu X, Li Q, He X, Lu H, Wu K, Nie Y, Tan J, Ye J, You H. Lactylation of LSD1 is an acquired epigenetic vulnerability of BRAFi/MEKi-resistant melanoma. Dev Cell 2025:S1534-5807(25)00121-2. [PMID: 40132584 DOI: 10.1016/j.devcel.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/17/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
BRAFV600E mutant melanomas treated with BRAF inhibitor (BRAFi) and MEK inhibitor (MEKi) almost invariably develop drug resistance, accompanied by restored glucose metabolism. How resumed glycolysis controls acquired resistance remains unknown. Here, we identify that lysine-specific demethylase 1 (LSD1) lactylation, induced by re-accumulated lactate in both human and murine BRAFi/MEKi-resistant melanoma cells, selectively drives survival via epigenetic reprogramming. Mechanistically, lactylation of LSD1 promotes its interaction with Fos-related antigen 1 (FosL1), preventing its degradation by E3 ligase tripartite-motif-containing protein 21 (TRIM21) and selectively enhancing its genomic enrichment. We further demonstrate that lactylated LSD1 co-directs gene transcription with FosL1 to repress ferroptosis via interfering with transferrin receptor protein 1 (TFRC)-mediated iron uptake. LSD1 inhibition activates ferroptosis, resulting in drastic regression of drug-resistant murine melanoma when combined with immunotherapy. Our results highlight a crucial role of metabolic rewiring-induced epigenetic reprogramming as a bypass resistance mechanism in BRAFi/MEKi-resistant melanoma, providing a therapeutically actionable strategy to overcome resistance to targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Aicun Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361104, P.R. China
| | - Zhicheng Gong
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, P.R. China
| | - Yuhan Long
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361104, P.R. China
| | - Yuanpei Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Chen Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361104, P.R. China
| | - Xiao Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361104, P.R. China
| | - Qing Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361104, P.R. China
| | - Xiaoniu He
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, P.R. China
| | - Hezhe Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastro intestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastro intestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Tan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Jing Ye
- Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.
| | - Han You
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361104, P.R. China.
| |
Collapse
|
52
|
Tan LK, Liu J, Ma CZ, Huang S, He FH, Long Y, Zheng ZS, Liang JL, Xu N, Wang G, Liu YF. Iron-Dependent Cell Death: Exploring Ferroptosis as a Unique Target in Triple-Negative Breast Cancer Management. Cancer Manag Res 2025; 17:625-637. [PMID: 40124838 PMCID: PMC11930262 DOI: 10.2147/cmar.s503932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/25/2025] [Indexed: 03/25/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by aggressive behavior, high metastatic potential, and frequent relapses, presenting significant treatment challenges. Ferroptosis, a unique form of programmed cell death marked by iron-dependent lipid peroxidation, has emerged as a crucial factor in cancer biology. Recent studies indicate that TNBC cells possess a distinct metabolic profile linked to iron and glutathione, which may render them more susceptible to ferroptosis than other breast cancer subtypes. Moreover, ferroptosis plays a role in the interactions between immune cells and tumor cells, suggesting its potential to modulate the tumor microenvironment and influence the immune response against TNBC.Evidence reveals that ferroptosis not only affects TNBC cell viability but also alters the tumor microenvironment by promoting the release of damage-associated molecular patterns (DAMPs), which can recruit immune cells to the tumor site. Specific ferroptosis-related genes and biomarkers, such as ACSL4 and GPX4, demonstrate altered expression patterns in TNBC tissues, offering promising avenues for diagnostic and prognostic applications. Furthermore, in preclinical models, the induction of ferroptosis has been shown to enhance the efficacy of existing therapies, indicating a synergistic effect that could be harnessed for therapeutic benefit. The compelling link between ferroptosis and TNBC underscores its potential as a novel therapeutic target. Future research should focus on developing strategies that exploit ferroptosis in conjunction with traditional therapies, including the identification of natural compounds and efficacious ferroptosis inducers for personalized treatment regimens. This review elucidates the multifaceted implications of ferroptosis in TNBC, providing valuable insights for improving both diagnosis and treatment of this formidable breast cancer subtype.
Collapse
Affiliation(s)
- Li-kuan Tan
- Breast Surgery, Tongren People’s Hospital, Tongren, People’s Republic of China
| | - Jiaxing Liu
- Breast Surgery, Tongren People’s Hospital, Tongren, People’s Republic of China
| | - Cheng-zhi Ma
- Breast Surgery, Tongren People’s Hospital, Tongren, People’s Republic of China
| | - Shaolong Huang
- Breast Surgery, Tongren People’s Hospital, Tongren, People’s Republic of China
| | - Feng-hui He
- Breast Surgery, Tongren People’s Hospital, Tongren, People’s Republic of China
| | - Yang Long
- Breast Surgery, Tongren People’s Hospital, Tongren, People’s Republic of China
| | - Zhi-sheng Zheng
- Breast Surgery, Tongren People’s Hospital, Tongren, People’s Republic of China
| | - Jia-liang Liang
- Breast Surgery, Tongren People’s Hospital, Tongren, People’s Republic of China
| | - Nan Xu
- Breast Surgery, Tongren People’s Hospital, Tongren, People’s Republic of China
| | - Guanghui Wang
- Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, People’s Republic of China
| | - Yu-fei Liu
- Breast Surgery, Tongren People’s Hospital, Tongren, People’s Republic of China
| |
Collapse
|
53
|
Zhou L, Lian G, Zhou T, Cai Z, Yang S, Li W, Cheng L, Ye Y, He M, Lu J, Deng Q, Huang B, Zhou X, Lu D, Zhi F, Cui J. Palmitoylation of GPX4 via the targetable ZDHHC8 determines ferroptosis sensitivity and antitumor immunity. NATURE CANCER 2025:10.1038/s43018-025-00937-y. [PMID: 40108413 DOI: 10.1038/s43018-025-00937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
Ferroptosis is closely linked with various pathophysiological processes, including aging, neurodegeneration, ischemia-reperfusion injury, viral infection and, notably, cancer progression; however, its post-translational regulatory mechanisms remain incompletely understood. Here we revealed a crucial role of S-palmitoylation in regulating ferroptosis through glutathione peroxidase 4 (GPX4), a pivotal enzyme that mitigates lipid peroxidation. We identified that zinc finger DHHC-domain containing protein 8 (zDHHC8), an S-acyltransferase that is highly expressed in multiple tumors, palmitoylates GPX4 at Cys75. Through small-molecule drug screening, we identified PF-670462, a zDHHC8-specific inhibitor that promotes the degradation of zDHHC8, consequently attenuating GPX4 palmitoylation and enhancing ferroptosis sensitivity. PF-670462 inhibition of zDHHC8 facilitates the CD8+ cytotoxic T cell-induced ferroptosis of tumor cells, thereby improving the efficacy of cancer immunotherapy in a B16-F10 xenograft model. Our findings reveal the prominent role of the zDHHC8-GPX4 axis in regulating ferroptosis and highlight the potential application of zDHHC8 inhibitors in anticancer therapy.
Collapse
Affiliation(s)
- Liang Zhou
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Guangyu Lian
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Tao Zhou
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Zhe Cai
- Guangzhou Institute of Pediatrics, Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Weining Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Lilin Cheng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Ying Ye
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingfeng He
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianru Lu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Qifeng Deng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Bihui Huang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaoqian Zhou
- Department of Gastrointestinal Surgery, The First People's Hospital of Gui Yang, Gui Yang, China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Cancer Research Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Feng Zhi
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
54
|
Hong L, Chen X, Liu Y, Liang H, Zhao Y, Guo P. The relationship between ferroptosis and respiratory infectious diseases: a novel landscape for therapeutic approach. Front Immunol 2025; 16:1550968. [PMID: 40170865 PMCID: PMC11959089 DOI: 10.3389/fimmu.2025.1550968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025] Open
Abstract
Respiratory infectious diseases, particularly those caused by respiratory viruses, have the potential to lead to global pandemics, thereby posing significant threats to public and human health. Historically, the primary treatment for respiratory bacterial infections has been antibiotic therapy, while severe cases of respiratory viral infections have predominantly been managed by controlling inflammatory cytokine storms. Ferroptosis is a novel form of programmed cell death that is distinct from apoptosis and autophagy. In recent years, Recent studies have demonstrated that ferroptosis plays a significant regulatory role in various respiratory infectious diseases, indicating that targeting ferroptosis may represent a novel approach for the treatment of these conditions. This article summarized the toxic mechanisms underlying ferroptosis, its relationship with respiratory infectious diseases, the mechanisms of action, and current treatment strategies. Particular attentions were given to the interplay between ferroptosis and Mycobacterium tuberculosis, Epstein-Barr virus, severe acute respiratory syndrome coronavirus-2, Pseudomonas aeruginosa, dengue virus, influenza virus and herpes simplex virus type1infection. A deeper understanding of the regulatory mechanisms of ferroptosis in respiratory infections will not only advance our knowledge of infection-related pathophysiology but also provide a theoretical foundation for the development of novel therapeutic strategies. Targeting ferroptosis pathways represents a promising therapeutic approach for respiratory infections, with significant clinical and translational implications.
Collapse
Affiliation(s)
- Longyan Hong
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiangyu Chen
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yiming Liu
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Hao Liang
- Department of Health Inspection and Quarantine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yinghui Zhao
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Pengbo Guo
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
55
|
Qian LH, Wen KL, Guo Y, Liao YN, Li MY, Li ZQ, Li SX, Nie HZ. Nutrient deficiency-induced downregulation of SNX1 inhibits ferroptosis through PPARs-ACSL1/4 axis in colorectal cancer. Apoptosis 2025:10.1007/s10495-025-02088-y. [PMID: 40095264 DOI: 10.1007/s10495-025-02088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 03/19/2025]
Abstract
Colorectal cancer (CRC) is among the most prevalent and deadly gastrointestinal malignancies, with advanced-stage tumors often exhibiting resistance to both chemotherapy and targeted therapies, underscoring the urgent need for novel therapeutic targets to improve clinical outcomes. Sorting nexin 1 (SNX1), previously implicated in receptor trafficking between early and late endosomes/lysosomes in cancer studies, has an unclear role in CRC tumorigenesis and progression. Our study revealed that SNX1 expression was downregulated in CRC, and its low levels correlated with advanced tumor stages and unfavorable clinical outcomes. Functionally, SNX1 significantly inhibited tumor cell growth both in vitro and in vivo. Further experiments showed that SNX1 induced ferroptosis in CRC cells by modulating the PPARs-ACSL1/4 pathway downstream of EGFR signaling. Moreover, glucose deprivation suppressed the Hippo pathway, promoted YAP nuclear translocation, and activated the transcription factor Yin Yang 1 (YY1), leading to SNX1 downregulation. This subsequently activated EGFR signaling and ultimately suppressed ferroptosis in CRC cells. Notably, the combination of SNX1 overexpression and 5-fluorouracil (5-FU) treatment exhibited a synergistic anti-tumor effect in a cell-derived xenograft (CDX) model. These findings underscore the critical role of SNX1 in regulating ferroptosis and tumor progression in CRC and highlight its potential as a therapeutic target to enhance chemotherapy effectiveness in CRC.
Collapse
Affiliation(s)
- Li-Heng Qian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai-Ling Wen
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Guo
- Radiology Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ying-Na Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming-Yue Li
- Innomodels Biotechnology Co., Ltd., Building 14, 79 Shuangying Xi Road, Changping District, Beijing, 102299, China
| | - Zuo-Qing Li
- Innomodels Biotechnology Co., Ltd., Building 14, 79 Shuangying Xi Road, Changping District, Beijing, 102299, China
| | - Shu-Xin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hui-Zhen Nie
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
56
|
Wu L, Chen HY, Zhang JT, Yang RY, Wang ZB, Xue PS, Peng W, Li KX, Gao WH, Zeng PH. Chlorogenic acid induces hepatocellular carcinoma cell ferroptosis via PTGS2/AKR1C3/GPX4 axis-mediated reprogramming of arachidonic acid metabolism. World J Gastrointest Oncol 2025; 17:98844. [PMID: 40092947 PMCID: PMC11866246 DOI: 10.4251/wjgo.v17.i3.98844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Ferroptosis is an iron-dependent programmed non-apoptotic cell death characterized by the accumulation of free iron ions and lipid peroxidation. It is associated with the inactivation of glutathione peroxidase (GPX) and the accumulation of lipid peroxides within cells. Ferroptosis is closely related to the occurrence and development of hepatocellular carcinoma (HCC). Chlorogenic acid (CGA), an important bioactive component found in 61 traditional Chinese medicines such as Eucommia ulmoides, has been extensively studied for its effects on various malignant tumors. However, the specific role and potential mechanism of CGA in HCC remain unclear. AIM To elucidate the anti-tumor characteristics and potential mechanisms of CGA in inducing ferroptosis in HCC cells. METHODS The effects of CGA on the proliferation, migration, and invasion of HCC cells were evaluated through in vitro experiments. Bioinformatics analysis combined with network pharmacology was used to study the potential targets and molecular mechanisms of CGA intervention in HCC ferroptosis. In vitro experiments were conducted to verify and explore the anti-HCC effects and mechanisms of CGA through the ferroptosis pathway. RESULTS In vitro experiments showed that CGA dose-dependently inhibited the proliferation, invasion, and migration of HCC cells. Bioinformatics analysis combined with network pharmacology revealed that the pathway of CGA intervention in HCC cell ferroptosis was mainly enriched in the prostaglandin endoperoxide synthase 2 (PTGS2)/aldo-keto reductase family 1 member C3 (AKR1C3)/GPX4 signaling pathway, which was associated with arachidonic acid. In vitro experiments further confirmed that CGA-induced ferroptosis in HCC cells was related to mitochondrial damage through the reprogramming of arachidonic acid metabolism by regulating the PTGS2/AKR1C3/GPX4 signaling pathway. CONCLUSION This study demonstrates that CGA inhibits HCC cell proliferation, migration, and invasion by inducing ferroptosis through the PTGS2/AKR1C3/GPX4 axis, suggesting its potential as a novel ferroptosis inducer or anti-HCC drug.
Collapse
Affiliation(s)
- Ling Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Hong-Yao Chen
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Jing-Ting Zhang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Ren-Yi Yang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhi-Bin Wang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Pei-Sen Xue
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Wei Peng
- Department of Oncology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Chinese, Changsha 410006, Hunan Province, China
| | - Ke-Xiong Li
- Department of Oncology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Chinese, Changsha 410006, Hunan Province, China
| | - Wen-Hui Gao
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Pu-Hua Zeng
- Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Chinese, Changsha 410006, Hunan Province, China
| |
Collapse
|
57
|
Yan D, Hou Y, Lei X, Xiao H, Zeng Z, Xiong W, Fan C. The Impact of Polyunsaturated Fatty Acids in Cancer and Therapeutic Strategies. Curr Nutr Rep 2025; 14:46. [PMID: 40085324 DOI: 10.1007/s13668-025-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
PURPOSE OF REVIEW Cancer is a disease influenced by both genetic and environmental factors, with dietary lipids being a significant contributing factor. This review summarizes the role of polyunsaturated fatty acids (PUFAs) in the mechanism of tumor occurrence and development, and elucidate the role of PUFAs in tumor treatment. RECENT FINDINGS PUFAs exert their impact on cancer through altering lipid composition in cell membranes, interacting with cell membrane lipid receptors, directly modulating gene expression in the cell nucleus, and participating in the metabolism of lipid mediators. Most omega-3 PUFAs are believed to inhibit cell proliferation, promote cancer cell death, suppress cancer metastasis, alter energy metabolism, inhibit tumor microenvironment inflammation, and regulate immune responses involving macrophages, T cells, NK cells, and others. However, certain omega-6 PUFAs exhibit weaker anti-tumor effects and may even promote tumor development, such as by fostering inflammatory tumor microenvironment and enhancing tumor cell proliferation. PUFAs play important roles in hallmarks of cancer including tumor cell proliferation, cell death, migration and invasion, energy metabolism remodeling, epigenetics, and immunity. These findings provide insights into the mechanisms of cancer development and offers options for dietary management of cancer.
Collapse
Affiliation(s)
- Dong Yan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Yingshan Hou
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Xinyi Lei
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Hao Xiao
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Zhaoyang Zeng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
- Department of Histology and Embryology, School of Basic Medicine Sciences, Central South University, Changsha, 410013, Hunan Province, China.
| |
Collapse
|
58
|
Chen Y, Wang D, Luo H, Tan M, Wang Q, Wu X, Du T, Zhang Q, Yuan W. STAT1 increases the sensitivity of lung adenocarcinoma to carbon ion irradiation via HO-1-mediated ferroptosis. Mol Cell Biochem 2025:10.1007/s11010-025-05240-z. [PMID: 40087208 DOI: 10.1007/s11010-025-05240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Radiotherapy is a vital treatment agent for lung adenocarcinoma (LUAD) patients, while radioresistance remains a major factor in treatment failure. Here, we aimed to elucidate how signal transducer and activator of transcription 1 (STAT1) affected sensitivity to carbon ion irradiation for LUAD cells in vivo and in vitro. The results of colony formation, CCK-8, EdU, and calcein-AM/PI double-staining assays demonstrated that the overexpression of STAT1 markedly enhanced the inhibitory effect of carbon ion irradiation on the viability of LUAD cells (A549 and PC9 cells). Lactate dehydrogenase (LDH) leakage assays identified ferroptosis as the predominant form of cell death induced by STAT1 overexpression in LUAD cells. Meanwhile, the ferroptosis-related PCR array confirmed heme oxygenase 1 (HO-1) as a potential effector molecule of STAT1-induced ferroptosis. Mechanistically, STAT1 overexpression resulted in phosphorylation at the serine 727 residue, triggering the upregulation of HO-1 expression and subsequent labile iron pool (LIP) accumulation. This process amplified the Fenton reaction, leading to increased reactive oxygen species (ROS), lipid peroxides (LPO), and glutathione (GSH) depletion. HO-1 knockdown eliminated the ferroptosis induced by the overexpression of STAT1. Furthermore, in vivo experiments showed that STAT1 overexpression enhanced the effect of carbon ion irradiation in inhibiting the growth of subcutaneous tumors in nude mice. These findings provide the foundation for the development of the STAT1-HO-1 axis as a radiosensitization target for LUAD patients.
Collapse
Affiliation(s)
- Yanliang Chen
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Donggang West Road, Lanzhou, 730030, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, Gansu, China
| | - Dandan Wang
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Donggang West Road, Lanzhou, 730030, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, Gansu, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, Gansu, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Mingyu Tan
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Donggang West Road, Lanzhou, 730030, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, Gansu, China
| | - Qian Wang
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Donggang West Road, Lanzhou, 730030, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, Gansu, China
| | - Xun Wu
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Donggang West Road, Lanzhou, 730030, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, Gansu, China
| | - Tianqi Du
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Donggang West Road, Lanzhou, 730030, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, Gansu, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, Gansu, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Wenzhen Yuan
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Donggang West Road, Lanzhou, 730030, Gansu, China.
- The First Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
59
|
Jonker PB, Sadullozoda M, Cognet G, Saab JJA, Sokol KH, Wu VX, Kumari D, Sheehan C, Ozgurses ME, Agovino D, Croley G, Patel SA, Bock-Hughes A, Macleod KF, Shah H, Coloff JL, Lien EC, Muir A. Microenvironmental arginine restriction sensitizes pancreatic cancers to polyunsaturated fatty acids by suppression of lipid synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642426. [PMID: 40161789 PMCID: PMC11952453 DOI: 10.1101/2025.03.10.642426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Nutrient limitation is a characteristic feature of poorly perfused tumors. In contrast to well-perfused tissues, nutrient deficits in tumors perturb cellular metabolic activity, which imposes metabolic constraints on cancer cells. The metabolic constraints created by the tumor microenvironment can lead to vulnerabilities in cancers. Identifying the metabolic constraints of the tumor microenvironment and the vulnerabilities that arise in cancers can provide new insight into tumor biology and identify promising antineoplastic targets. To identify how the microenvironment constrains the metabolism of pancreatic tumors, we challenged pancreatic cancer cells with microenvironmental nutrient levels and analyzed changes in cell metabolism. We found that arginine limitation in pancreatic tumors perturbs saturated and monounsaturated fatty acid synthesis by suppressing the lipogenic transcription factor SREBP1. Synthesis of these fatty acids is critical for maintaining a balance of saturated, monounsaturated, and polyunsaturated fatty acids in cellular membranes. As a consequence of microenvironmental constraints on fatty acid synthesis, pancreatic cancer cells and tumors are unable to maintain lipid homeostasis when exposed to polyunsaturated fatty acids, leading to cell death by ferroptosis. In sum, arginine restriction in the tumor microenvironment constrains lipid metabolism in pancreatic cancers, which renders these tumors vulnerable to polyunsaturatedenriched fat sources.
Collapse
Affiliation(s)
- Patrick B. Jonker
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Mumina Sadullozoda
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Guillaume Cognet
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Juan J. Apiz Saab
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Kelly H. Sokol
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, Michigan, USA, 49503
| | - Violet X. Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Deepa Kumari
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Colin Sheehan
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Mete E. Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA, 60612
| | - Darby Agovino
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Grace Croley
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Smit A. Patel
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Althea Bock-Hughes
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Kay F. Macleod
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Hardik Shah
- Metabolomics Platform, Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA, 60637
| | - Jonathan L. Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA, 60612
| | - Evan C. Lien
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, Michigan, USA, 49503
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| |
Collapse
|
60
|
Cabezón-Gutiérrez L, Palka-Kotlowska M, Custodio-Cabello S, Chacón-Ovejero B, Pacheco-Barcia V. Metabolic mechanisms of immunotherapy resistance. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002297. [PMID: 40092297 PMCID: PMC11907103 DOI: 10.37349/etat.2025.1002297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/22/2025] [Indexed: 03/19/2025] Open
Abstract
Immunotherapy has revolutionized cancer treatment, yet its efficacy is frequently compromised by metabolic mechanisms that drive resistance. Understanding how tumor metabolism shapes the immune microenvironment is essential for developing effective therapeutic strategies. This review examines key metabolic pathways influencing immunotherapy resistance, including glucose, lipid, and amino acid metabolism. We discuss their impact on immune cell function and tumor progression, highlighting emerging therapeutic strategies to counteract these effects. Tumor cells undergo metabolic reprogramming to sustain proliferation, altering the availability of essential nutrients and generating toxic byproducts that impair cytotoxic T lymphocytes (CTLs) and natural killer (NK) cell activity. The accumulation of lactate, deregulated lipid metabolism, and amino acid depletion contribute to an immunosuppressive tumor microenvironment (TME). Targeting metabolic pathways, such as inhibiting glycolysis, modulating lipid metabolism, and restoring amino acid balance, has shown promise in enhancing immunotherapy response. Addressing metabolic barriers is crucial to overcoming immunotherapy resistance. Integrating metabolic-targeted therapies with immune checkpoint inhibitors may improve clinical outcomes. Future research should focus on personalized strategies to optimize metabolic interventions and enhance antitumor immunity.
Collapse
Affiliation(s)
- Luis Cabezón-Gutiérrez
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Magda Palka-Kotlowska
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Sara Custodio-Cabello
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Beatriz Chacón-Ovejero
- Department of Pharmacy and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Vilma Pacheco-Barcia
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| |
Collapse
|
61
|
Wang Y, Hsu P, Hu H, Lin F, Wei X. Role of arachidonic acid metabolism in osteosarcoma prognosis by integrating WGCNA and bioinformatics analysis. BMC Cancer 2025; 25:445. [PMID: 40075313 PMCID: PMC11905593 DOI: 10.1186/s12885-024-13278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/02/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Osteosarcoma is a rare tumor with poor clinical outcomes. New therapeutic targets are urgently needed. Previous research indicates that genes abnormally expressed in osteosarcoma are significantly involved in the arachidonic acid (AA) metabolic pathway. However, the role of arachidonic acid metabolism-related genes (AAMRGs) in osteosarcoma prognosis remains unknown. METHODS Osteosarcoma samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were classified into high-score and low-score groups based on AAMRGs scores obtained through ssGSEA analysis. The intersecting genes were identified from weighted gene co-expression network analysis (WGCNA), DEGs (osteosarcoma vs. normal) and DE-AAMRGs (high- vs. low-score). An AA metabolism predictive model of the five AAMRGs were established by Cox regression and the LASSO algorithm. Model performance was evaluated using Kaplan-Meier survival and receiver operating characteristic (ROC) curve analysis. In vitro experiments of the AA related biomarkers was validated. RESULTS Our study constructed an AAMRGs prognostic signature (CD36, CLDN11, STOM, EPYC, PANX3). K-M analysis indicated that patients in the low-risk group showed superior overall survival to high-risk group (p<0.05). ROC curves showed that all AUC values in the prognostic model exceeded 0.76. By ESTIMATE algorithms, we discovered that patients in high-risk groups had lower immune score, stromal score, and estimate score. Correlation analysis showed the strongest positive correlation between STOM and natural killer cells, and the highest negative association between PANX3 and central memory CD8 T cells. An AAMRGs prognostic signature was constructed for osteosarcoma prognosis. CONCLUSION The study suggested that a high level of AAMRGs might serve as a biomarker for poor prognosis in osteosarcoma and offers a potential explanation for the role of cyclooxygenase inhibitors in cancer. The five biomarkers (CD36, CLDN11, EPYC, PANX3, and STOM) were screened to construct an AAMRGs risk model with prognostic value, providing a new reference for the prognosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yaling Wang
- Department of Oncology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Peichun Hsu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Hu
- Shanghai Clinical Research Ward (SCRW), Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Lin
- Department of Oncology, Shanghai Eighth People's Hospital, Shanghai, China.
| | - Xiaokang Wei
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
62
|
Zhang Y, Jing Y, He J, Dong R, Li T, Li F, Zheng X, Liu G, Jia R, Xu J, Wu F, Jia C, Song J, Zhang L, Zhou P, Wang H, Yao Z, Liu Q, Yu Y, Zhou J. Bile acid receptor FXR promotes intestinal epithelial ferroptosis and subsequent ILC3 dysfunction in neonatal necrotizing enterocolitis. Immunity 2025; 58:683-700.e10. [PMID: 40023163 DOI: 10.1016/j.immuni.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/14/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Necrotizing enterocolitis (NEC) is a common pediatric emergency primarily afflicting preterm infants, yet its mechanisms remain to be fully understood. Here, we report that plasma fibroblast growth factor (FGF)19, a target of farnesoid X receptor (FXR), was positively correlated with the clinical parameters of NEC. NEC patients and the NEC murine model displayed abundant FXR in intestinal epithelial cells (IECs), which was restricted by microbiota-derived short-chain fatty acids (SCFAs) under homeostasis. Genetic deficiency of FXR in IECs caused remission of NEC. Mechanistically, FXR facilitated ferroptosis of IECs via targeting acyl-coenzyme A synthetase long-chain family member 4 (Acsl4). Lipid peroxides released by ferroptotic IECs suppressed interleukin (IL)-22 secretion from type 3 innate lymphoid cells (ILC3s), thereby exacerbating NEC. Intestinal FXR antagonist, ACSL4 inhibitor, and ferroptosis inhibitor ameliorated murine NEC. Furthermore, the elevated lipid peroxides in NEC patients were positively correlated with FGF19 and disease parameters. These observations demonstrate the therapeutic value of targeting intestinal FXR and ferroptosis in NEC treatment.
Collapse
MESH Headings
- Animals
- Ferroptosis/immunology
- Humans
- Enterocolitis, Necrotizing/metabolism
- Enterocolitis, Necrotizing/immunology
- Enterocolitis, Necrotizing/pathology
- Mice
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Infant, Newborn
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Fibroblast Growth Factors/blood
- Fibroblast Growth Factors/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
- Coenzyme A Ligases/metabolism
- Mice, Knockout
- Female
- Male
- Immunity, Innate
Collapse
Affiliation(s)
- Yuxin Zhang
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Yuchao Jing
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China; Department of Immunology, Basic Medical College, Changzhi 046000, China
| | - Juan He
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Rui Dong
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Tongyang Li
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Fang Li
- Department of Central Laboratory, Changzhi Medical College, Changzhi 046000, China
| | - Xiaoqing Zheng
- Laboratory of Immunity, Inflammation & Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Gaoyu Liu
- Laboratory of Immunity, Inflammation & Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ran Jia
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jin Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Fan Wu
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| | - Chunhong Jia
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| | - Jin Song
- Department of Pediatric Surgery Maternal and Child Health Care of Changzhi, Changzhi 046011, China
| | - Lijuan Zhang
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Pan Zhou
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Haitao Wang
- Department of Oncology, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases, Tianjin 300211, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Qiang Liu
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China; Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300050, China
| | - Ying Yu
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China; Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Zhou
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China; Laboratory of Immunity, Inflammation & Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
63
|
Wu B, Yang X, Kong N, Liang J, Li S, Wang H. Engineering Modular Peptide Nanoparticles for Ferroptosis-Enhanced Tumor Immunotherapy. Angew Chem Int Ed Engl 2025; 64:e202421703. [PMID: 39721975 DOI: 10.1002/anie.202421703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors are promising for treating tumors but have limited efficacy due to the immunosuppressive tumor microenvironment. In this study, we develop an orchestrated nanoparticle system using modular peptide assemblies, where the co-assembled sequences are designed for the specific binding to the hydrophobic and hydrophilic domains, guiding the assembly process and enabling the customization of nanoparticle properties. We exploit the modularity of this platform to integrate a hydrophobic ferroptosis precursor, an IDO1 inhibitor, and a hydrophilic peptidic PD-L1 antagonist for optimizing therapeutic outcomes through ferroptosis-enhanced tumor immunotherapy. The resulting nanoparticles induce immunogenic ferroptosis, enhance the intratumoral function of T lymphocytes, suppress regulatory T cells, and effectively modulate the immunosuppressive tumor microenvironment, thereby facilitating regression of tumor growth. This work provides a modular peptide-based nanoparticle engineering strategy and holds significant potential for advancing cancer treatment.
Collapse
Affiliation(s)
- Bihan Wu
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Xuejiao Yang
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Nan Kong
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Juan Liang
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Sangshuang Li
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Huaimin Wang
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
64
|
Xia Z, Cheng R, Liu Q, Zu Y, Liao S. Screening and validating genes associated with cuproptosis in systemic lupus erythematosus by expression profiling combined with machine learning. BIOMOLECULES & BIOMEDICINE 2025; 25:965-975. [PMID: 39388708 PMCID: PMC11959400 DOI: 10.17305/bb.2024.10996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
Cell death has long been a focal point in life sciences research, and recently, scientists have discovered a novel form of cell death induced by copper, termed cuproptosis. This paper aimed to identify genes associated with cuproptosis in systemic lupus erythematosus (SLE) through machine learning, combined with single-cell RNA sequencing (scRNA-seq), to screen and validate related genes. The analytical results were then experimentally verified. Two published microarray gene expression datasets (GSE65391 and GSE61635) from SLE and control peripheral blood samples were downloaded from the GEO database. The GSE65391 dataset was used as the training group, while the GSE61635 dataset served as the validation group. Differentially expressed genes from GSE65391 identified 12 differential genes. Nine diagnostic genes, considered potential biomarkers, were selected using the least absolute shrinkage and selection operator and support vector machine recursive feature elimination analysis. The receiver operating characteristic (ROC) curves for both the training and validation groups were used to calculate the area under the curve to assess discriminatory properties. CIBERSORT was used to assess the relationship between these diagnostic genes and a reference set of infiltrating immune cells. scRNA-seq data (GSE162577) from SLE patients were also obtained from the GEO database and analyzed. Experimental validation of the most important SLE biomarkers was performed. Twelve significantly different cuproptosis-related genes were identified in the GSE65391 training set. Immune cell analysis revealed 12 immune cell types and identified nine signature genes, including PDHB, glutaminase (GLS), DLAT, LIAS, MTF1, DLST, DLD, LIPT1, and FDX1. In the GSE61635 validation set, seven genes were weakly expressed, and two genes were strongly expressed in the treatment group. According to the ROC curves, PDHB and GLS demonstrated significant diagnostic value. Additionally, correlation analysis was conducted on the nine characteristic genes in relation to immune infiltration. The distribution of key genes in immune cells was determined using scRNA-seq data. Finally, the mRNA expression of the nine diagnostic genes was validated using qPCR.
Collapse
Affiliation(s)
- Zhongbin Xia
- Health Management Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ruoying Cheng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qi Liu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuxin Zu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shilu Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
65
|
Carbone FP, Ancona P, Volinia S, Terrazzan A, Bianchi N. Druggable Molecular Networks in BRCA1/BRCA2-Mutated Breast Cancer. BIOLOGY 2025; 14:253. [PMID: 40136510 PMCID: PMC11940086 DOI: 10.3390/biology14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
Mutations in the tumor suppressor genes BRCA1 and BRCA2 are associated with the triple-negative breast cancer phenotype, particularly aggressive and hard-to-treat tumors lacking estrogen, progesterone, and human epidermal growth factor receptor 2. This research aimed to understand the metabolic and genetic links behind BRCA1 and BRCA2 mutations and investigate their relationship with effective therapies. Using the Cytoscape software, two networks were generated through a bibliographic analysis of articles retrieved from the PubMed-NCBI database. We identified 98 genes deregulated by BRCA mutations, and 24 were modulated by therapies. In particular, BIRC5, SIRT1, MYC, EZH2, and CSN2 are influenced by BRCA1, while BCL2, BAX, and BRIP1 are influenced by BRCA2 mutation. Moreover, the study evaluated the efficacy of several promising therapies, targeting only BRCA1/BRCA2-mutated cells. In this context, CDDO-Imidazolide was shown to increase ROS levels and induce DNA damage. Similarly, resveratrol decreased the expression of the anti-apoptotic gene BIRC5 while it increased SIRT1 both in vitro and in vivo. Other specific drugs were found to induce apoptosis selectively in BRCA-mutated cells or block cell growth when the mutation occurs, i.e., 3-deazaneplanocin A, genistein or daidzein, and PARP inhibitors. Finally, over-representation analysis on the genes highlights ferroptosis and proteoglycan pathways as potential drug targets for more effective treatments.
Collapse
Affiliation(s)
- Francesca Pia Carbone
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Laboratory for Technologies of Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Laboratory for Technologies of Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| |
Collapse
|
66
|
Wang C, Li X, Ye T, Gu J, Zheng Z, Chen G, Dong J, Zhou W, Shi J, Zhang L. Polydatin, a derivative of resveratrol, ameliorates busulfan-induced oligozoospermia in mice by inhibiting NF-κB pathway activation and suppressing ferroptosis. Bioorg Chem 2025; 156:108170. [PMID: 39848165 DOI: 10.1016/j.bioorg.2025.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
Polydatin (PD), a glucoside derivative of resveratrol (RES), is extracted as a monomer compound from the dried rhizome of Polygonum cuspidatum. Our laboratory synthesized PD via the biotransformation of resveratrol. To assess the reproductive protective effects of PD, an oligozoospermia mouse model was induced by administering 30 mg/kg busulfan (BUS) via intraperitoneal injection. Initially, mice were categorized into groups based on PD concentrations of 10, 50, and 100 mg/kg. Subsequently, the optimal concentration of 10 mg/kg was ascertained based on testis weight and spermatological parameters. Additionally, a 10 mg/kg resveratrol group was included as a control. The findings revealed that exposure to BUS resulted in a reduction of testicular weight, diminished spermatogenic cells and epididymal sperm counts, increased sperm deformity, disordered testicular cytoskeleton, compromised blood-testis barrier integrity, and a significant decrease in serum sex hormone levels, notably testosterone. This resulted in decreased expression of androgen receptors and other testosterone-related proteins, increased levels of malondialdehyde and reactive oxygen species, and promoted testicular ferroptosis. However, PD could successfully reverse these injuries. High-throughput sequencing data demonstrated that polydatin significantly downregulated the expression of inflammatory and metabolic genes, including PRKCQ and CARD11. These proteins are pivotal in the activation of the NF-κB pathway during the inflammatory response. Molecular docking studies showed that PD could interact with PRKCQ and CARD11 to reduce the level of inflammation. Additionally, PD was shown to interact with the ferroptosis-promoting gene ACSL4, modulating ferroptosis. In summary, PD facilitates the reversal of BUS-induced oligozoospermia through the mitigation of oxidative stress and inflammation, the inhibition of ferroptosis, and the modulation of hormonal levels.
Collapse
Affiliation(s)
- Chengniu Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaoran Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Taowen Ye
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Jiale Gu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Zihan Zheng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Guangtong Chen
- Department of Natural Medicines, School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Jin Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Wenbiao Zhou
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Jianwu Shi
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Lei Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China; School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
67
|
Xu J, Zhang Y, Zheng Y, Wang T, Zhang H, Wang K, Wang Y, Williams GR, Zhu LM. A smart responsive NIR-operated chitosan-based nanoswitch to induce cascade immunogenic tumor ferroptosis via cytokine storm. Carbohydr Polym 2025; 351:123120. [PMID: 39779027 DOI: 10.1016/j.carbpol.2024.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
In this work we present a near-infrared (NIR)-operated nanoswitch based on chitosan nanoparticles (EpCAM-CS-co-PNVCL@IR780/IMQ NPs) that induces cascade immunogenic tumor ferroptosis via cytokine storm. The formulation was prepared by loading a photosensitiser (IR780) and an immunotherapeutic drug (imiquimod; IMQ) into temperature- and pH-responsive chitosan-based NPs functionalized with tumor-targeting aptamers. The EpCAM aptamer can chaperone the NPs selectively into cancer cells, and allow them to enter the cell nucleus. In vitro and in vivo assays revelaed that the NPs were able to effectively induce the immunogenic ferroptosis of cancer cells. Under NIR irradiation, EpCAM-CS-co-PNVCL@IR780/IMQ cause cell death in tumors via photothermal therapy. Moreover, IMQ promotes the maturation of dendritic cells (DCs), which then activate cytotoxic T-lymphocytes (CTLs); these T-cells go on to provide immunotherapy of metastatic tumor cells. The metastatic tumor cells can be induced to undergo ferroptosis by the addition of arachidonic acid (AA), which interacts with interferon cytokines (IFN-γ) released from CTLs.
Collapse
Affiliation(s)
- Jianxiang Xu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Yanyan Zhang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Yilu Zheng
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Tong Wang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Huan Zhang
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Kai Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Wang
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Li-Min Zhu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
68
|
Chen Y, Zhong Z, Ruan X, Zhan X, Ding Y, Wei F, Qin X, Yu H, Lu Y. Novel biomarker in hepatocellular carcinoma: Stearoyl-CoA desaturase 1. Dig Liver Dis 2025; 57:770-781. [PMID: 39638727 DOI: 10.1016/j.dld.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND In recent years, more and more studies have shown that reprogramming lipid metabolism plays an important role in the occurrence and development of hepatocellular carcinoma (HCC). However, there is a lack of systematic exploration of fatty acid (FA) profiles in HCC. AIMS This study aims to systematically investigate the FA profile in HCC and assess the diagnostic potential of stearoyl-CoA desaturase 1 (SCD1) as a biomarker for HCC. METHODS The FA profile in HCC tissues was detected by gas chromatography mass spectrometry. Abnormal FA metabolism was analyzed by qRT-PCR, Western blot. Immunohistochemical and bioinformatics analysis were used to analyze SCD1 expression and function. Receiver operating characteristic curves were used to analyze the diagnostic efficacy of SCD1, and the relationship between SCD1 and immune infiltration in HCC was analyzed by the biological information method. RESULTS FAs were found to accumulate in the HCC samples, and abnormal FA metabolism in HCC related to the upregulation of the expression and activity of SCD1. The combination of SCD1 and alpha-fetoprotein produced a greater area under the receiver operating characteristic curve (0.925, P < 0.001) than SCD1 or alpha-fetoprotein alone. It also showed better sensitivity (77.5 %). Besides, high SCD1 expression was found to be related to immune infiltration in HCC. CONCLUSION SCD1 can serve as a reliable biomarker for HCC diagnosis.
Collapse
Affiliation(s)
- Yongling Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, No.6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Ziqing Zhong
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, No.6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Xuelian Ruan
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, No.6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Xiuyu Zhan
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital affiliated to Guangxi Medical University, No.8 Wenchang Road, Liuzhou, Guangxi 545006, China
| | - Yanting Ding
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital affiliated to Guangxi Medical University, No.8 Wenchang Road, Liuzhou, Guangxi 545006, China
| | - Fangyi Wei
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, No.6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, No.6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Hongli Yu
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital affiliated to Guangxi Medical University, No.8 Wenchang Road, Liuzhou, Guangxi 545006, China.
| | - Yu Lu
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital affiliated to Guangxi Medical University, No.8 Wenchang Road, Liuzhou, Guangxi 545006, China.
| |
Collapse
|
69
|
Wang Y, Liu C, Pang J, Li Z, Zhang J, Dong L. The Extra-Tumoral Vaccine Effects of Apoptotic Bodies in the Advancement of Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410503. [PMID: 39871756 PMCID: PMC11878267 DOI: 10.1002/smll.202410503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/16/2025] [Indexed: 01/29/2025]
Abstract
The induction of apoptosis in tumor cells is a common target for the development of anti-tumor therapies; however, these therapies still leave patients at increased risk of disease recurrence. For example, apoptotic tumor cells can promote tumor growth and immune evasion via the secretion of metabolites, apoptotic extracellular vesicles, and induction of pro-tumorigenic macrophages. This paradox of apoptosis induction and the pro-tumorigenic effects of tumor cell apoptosis has begged the question of whether apoptosis is a suitable cancer therapy, and led to further explorations into other immunogenic cell death-based approaches. However, these strategies still face multiple challenges, the most critical of which is the tumor microenvironment. Contrary to the promotion of immune tolerance mediated by apoptotic tumor cells, apoptotic bodies with enriched tumor-related antigens have demonstrated great immunogenic potential, as evidenced by their ability to initiate systemic T-cell immune responses. These characteristics indicate that apoptotic body-based therapies could be ideal "in situ" extra-tumoral tumor vaccine candidates for the treatment of cancers, and further address the current issues with apoptosis-based or immunotherapy treatments. Although not yet tested clinically, apoptotic body-based vaccines have the potential to better treatment strategies and patient outcomes in the future.
Collapse
Affiliation(s)
- Yulian Wang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Chunyan Liu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Jiayun Pang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zhenjiang Li
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- Chemistry and Biomedicine Innovative CenterNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
70
|
Chen YB, Yang X, Lv D, Tang LY, Liu YW. A prognostic model constructed by ferroptosis-associated genes (FAGs) in papillary renal cell carcinoma (PRCC) and its association with tumor mutation burden (TMB) and immune infiltration. Clin Transl Oncol 2025; 27:1232-1247. [PMID: 39150660 PMCID: PMC11914245 DOI: 10.1007/s12094-024-03617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND This study aimed to identify the prognostic-related differentially expressed ferroptosis-associated genes (DEFAGs) in papillary renal cell carcinoma (PRCC). METHODS Data encompassing simple nucleotide variation, transcriptome profiles, and relevant clinical information of PRCC patients were sourced from The Cancer Genome Atlas (TCGA) database. The expression matrix of ferroptosis-associated genes (FAGs) was analyzed using the "limma" package in R to identify differentially expressed DEFAGs. Lasso regression analysis, along with univariate and multivariate Cox proportional hazards regressions, was employed to identify independent prognostic-related DEFAGs and formulate a nomogram. Additionally, we examined potential independent survival-related clinical risk factors and compared immune cell infiltration and tumor mutation burden (TMB) differences between high- and low-risk patient groups. RESULTS A cohort of 321 patients were analyzed, revealing twelve FAGs significantly influencing the overall survival (OS) of PRCC patients. Among them, two mRNAs (GCLC, HSBP1) emerged as independent prognostic-related DEFAGs. Smoking status, tumor stage, and risk score were identified as independent clinical risk factors for PRCC. Furthermore, notable disparities in immune cell infiltration and function were observed between high- and low-risk groups. GCLC and HSBP1 were associated with various immune cells and functions, TMB, and immune evasion. CONCLUSION This finding revealed two independent prognostic-related DEFAGs in PRCC and established a robust prognostic model, offering potential therapeutic targets and promising insights for the management of this disease.
Collapse
Affiliation(s)
- Yong-Bo Chen
- Department of Urology, People's Hospital of Deyang City, 173#Northern Taishan Road, Deyang, 618000, China
| | - Xin Yang
- Department of Surgery, People's Hospital of Deyang City, 173#Northern Taishan Road, Deyang, 618000, China
| | - Dong Lv
- Department of Urology, People's Hospital of Deyang City, 173#Northern Taishan Road, Deyang, 618000, China
| | - Liang-You Tang
- Department of Urology, People's Hospital of Deyang City, 173#Northern Taishan Road, Deyang, 618000, China
| | - Ying-Wen Liu
- Department of Laboratory, People's Hospital of Deyang City, 173#Northern Taishan Road, Deyang, 618000, China.
| |
Collapse
|
71
|
ALMatrafi TA. Deciphering the role of TMEM164 in autophagy-mediated ferroptosis and immune modulation in non-small cell lung cancer. Cell Immunol 2025; 409-410:104915. [PMID: 39798196 DOI: 10.1016/j.cellimm.2024.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/13/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains one of the most prevalent and deadly malignancies. Despite advancements in molecular therapies and diagnostic methods, the 5-year survival rate for lung adenocarcinoma patients remains unacceptably low, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, a distinct form of regulated cell death, has emerged as a promising target in cancer treatment. This study investigates the role of TMEM164, a membrane protein, in promoting ferroptosis and modulating anti-tumor immunity in NSCLC, aiming to elucidate its therapeutic potential. METHODS Using publicly available datasets, we performed bioinformatics analyses to identify TMEM164-regulated genes involved in ferroptosis. In addition, in vitro and in vivo assays were conducted to assess the impact of TMEM164 on cellular functions in NSCLC. RESULTS Functional assays demonstrated that TMEM164 overexpression significantly inhibited invasion, migration, and cell proliferation in both in vitro and in vivo models. TMEM164 was also found to induce ferroptosis in NSCLC cells by promoting autophagy. Specifically, we identified a mechanism whereby TMEM164 mediates ATG5-dependent autophagosome formation, leading to the degradation of ferritin, GPX4, and lipid droplets. This degradation facilitated iron accumulation and lipid peroxidation, which triggered iron-dependent cell death. Notably, co-administration of TMEM164 upregulation and anti-PD-1 antibodies exhibited synergistic anti-tumor effects in a mouse model. CONCLUSION These findings suggest that targeting TMEM164 to enhance ferroptosis and stimulate anti-tumor immunity may inhibit NSCLC progression. Consequently, TMEM164 holds promise as a new therapeutic target for NSCLC treatment.
Collapse
|
72
|
Xia X, Wu H, Chen Y, Peng H, Wang S. Ferroptosis of T cell in inflammation and tumour immunity. Clin Transl Med 2025; 15:e70253. [PMID: 40045458 PMCID: PMC11882479 DOI: 10.1002/ctm2.70253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 03/09/2025] Open
Abstract
Ferroptosis is an innovative concept defined as a distinct programmed cell death mode regulated by iron-dependent lipid peroxidation accumulation. This process is governed by numerous energy metabolites such as fatty acids, amino acids and glucose, as well as iron homeostasis. In recent years, increasing studies have been devoted to the crucial effects of ferroptosis in immune cells during the pathogenesis of diseases such as infections, tumours and autoimmune disorders. This review summarises the latest advancements in T-cell ferroptosis, addresses the key components and mechanism of ferroptosis in T cells during inflammatory conditions and tumour progression, and highlights the potential target for treating related diseases. KEY POINTS: Ferroptosis-related mechanisms significantly affect the biology of CD4+ T-cell subsets and are further involved in inflammatory diseases. Crosstalk between CD8+ T cells and tumour cells induces ferroptosis in the tumour microenvironment. Glutathione peroxidase 4 loss promotes regulatory T-cell ferroptosis to enhance anti-tumour immunity.
Collapse
Affiliation(s)
- Xueli Xia
- Department of Laboratory MedicineJiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory DiseasesAffiliated Hospital of Jiangsu UniversityZhenjiangChina
- Department of ImmunologyJiangsu University School of MedicineZhenjiangChina
| | - Haisheng Wu
- Department of ImmunologyJiangsu University School of MedicineZhenjiangChina
- Qinghai Provincial Institute of Endemic Disease Prevention and ControlXiningChina
| | - Yuxuan Chen
- Department of ImmunologyJiangsu University School of MedicineZhenjiangChina
| | - Huiyong Peng
- Department of Laboratory MedicineAffiliated People's HospitalJiangsu UniversityZhenjiangChina
| | - Shengjun Wang
- Department of Laboratory MedicineJiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory DiseasesAffiliated Hospital of Jiangsu UniversityZhenjiangChina
- Department of ImmunologyJiangsu University School of MedicineZhenjiangChina
| |
Collapse
|
73
|
Guo D, Cai S, Deng L, Xu W, Fu S, Lin Y, Jiang T, Li Q, Shen Z, Zhang J, Luo P, Tang B, Wang L. Ferroptosis in Pulmonary Disease and Lung Cancer: Molecular Mechanisms, Crosstalk Regulation, and Therapeutic Strategies. MedComm (Beijing) 2025; 6:e70116. [PMID: 39991627 PMCID: PMC11847630 DOI: 10.1002/mco2.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/25/2025] Open
Abstract
Ferroptosis is a distinct form of iron-dependent programmed cell death characterized primarily by intracellular iron accumulation and lipid peroxidation. Multiple cellular processes, including amino acid metabolism, iron metabolism, lipid metabolism, various signaling pathways, and autophagy, have been demonstrated to influence the induction and progression of ferroptosis. Recent investigations have elucidated that ferroptosis plays a crucial role in the pathogenesis of various pulmonary disorders, including lung injury, chronic obstructive pulmonary disease, pulmonary fibrosis, and asthma. Ferroptosis is increasingly recognized as a promising novel strategy for cancer treatment. Various immune cells within the tumor microenvironment, including CD8+ T cells, macrophages, regulatory T cells, natural killer cells, and dendritic cells, have been shown to induce ferroptosis in tumor cells and modulate the process through the regulation of iron and lipid metabolism pathways. Conversely, ferroptosis can reciprocally alter the metabolic environment, leading to the activation or inhibition of immune cell functions, thereby modulating immune responses. This paper reviews the molecular mechanism of ferroptosis and describes the tumor immune microenvironment, discusses the connection between ferroptosis and the tumor microenvironment in lung cancer and pulmonary diseases, and discusses the development prospect of their interaction in the treatment of lung cancer and pulmonary diseases.
Collapse
Affiliation(s)
- Dandan Guo
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Songhua Cai
- Department of Thoracic SurgeryNational Cancer CenterNational Clinical Research Center for CancerCancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenGuangdongChina
| | - Lvdan Deng
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Wangting Xu
- Department of RespiratoryFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Sentao Fu
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Yaling Lin
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Tong Jiang
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Qing Li
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Zhijun Shen
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Jian Zhang
- The Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Peng Luo
- The Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Bufu Tang
- Department of Radiation OncologyZhongshan HospitalFudan UniversityShanghaiShanghaiChina
| | - Ling Wang
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| |
Collapse
|
74
|
Xu W, Guan G, Yue R, Dong Z, Lei L, Kang H, Song G. Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy. Chem Rev 2025; 125:1897-1961. [PMID: 39951340 DOI: 10.1021/acs.chemrev.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of regulatory cell death, has garnered significant interest as a therapeutic target in cancer treatment due to its distinct characteristics, including lipid peroxide generation and redox imbalance. However, its clinical application in oncology is currently limited by issues such as suboptimal efficacy and potential off-target effects. The advent of nanotechnology has provided a new way for overcoming these challenges through the development of activatable magnetic nanoparticles (MNPs). These innovative MNPs are designed to improve the specificity and efficacy of ferroptosis induction. This Review delves into the chemical and biological principles guiding the design of MNPs for ferroptosis-based cancer therapies and imaging-guided therapies. It discusses the regulatory mechanisms and biological attributes of ferroptosis, the chemical composition of MNPs, their mechanism of action as ferroptosis inducers, and their integration with advanced imaging techniques for therapeutic monitoring. Additionally, we examine the convergence of ferroptosis with other therapeutic strategies, including chemodynamic therapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, within the context of nanomedicine strategies utilizing MNPs. This Review highlights the potential of these multifunctional MNPs to surpass the limitations of conventional treatments, envisioning a future of drug-resistance-free, precision diagnostics and ferroptosis-based therapies for treating recalcitrant cancers.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lingling Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, 12 Seoul 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
75
|
Ru Q, Li Y, Zhang X, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects. Bone Res 2025; 13:27. [PMID: 40000618 PMCID: PMC11861620 DOI: 10.1038/s41413-024-00398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
76
|
Gollowitzer A, Pein H, Rao Z, Waltl L, Bereuter L, Loeser K, Meyer T, Jafari V, Witt F, Winkler R, Su F, Große S, Thürmer M, Grander J, Hotze M, Harder S, Espada L, Magnutzki A, Gstir R, Weinigel C, Rummler S, Bonn G, Pachmayr J, Ermolaeva M, Harayama T, Schlüter H, Kosan C, Heller R, Thedieck K, Schmitt M, Shimizu T, Popp J, Shindou H, Kwiatkowski M, Koeberle A. Attenuated growth factor signaling during cell death initiation sensitizes membranes towards peroxidation. Nat Commun 2025; 16:1774. [PMID: 40000627 PMCID: PMC11861335 DOI: 10.1038/s41467-025-56711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Cell death programs such as apoptosis and ferroptosis are associated with aberrant redox homeostasis linked to lipid metabolism and membrane function. Evidence for cross-talk between these programs is emerging. Here, we show that cytotoxic stress channels polyunsaturated fatty acids via lysophospholipid acyltransferase 12 into phospholipids that become susceptible to peroxidation under additional redox stress. This reprogramming is associated with altered acyl-CoA synthetase isoenzyme expression and caused by a decrease in growth factor receptor tyrosine kinase (RTK)-phosphatidylinositol-3-kinase signaling, resulting in suppressed fatty acid biosynthesis, for specific stressors via impaired Akt-SREBP1 activation. The reduced availability of de novo synthesized fatty acids favors the channeling of polyunsaturated fatty acids into phospholipids. Growth factor withdrawal by serum starvation mimics this phenotype, whereas RTK ligands counteract it. We conclude that attenuated RTK signaling during cell death initiation increases cells' susceptibility to oxidative membrane damage at the interface of apoptosis and alternative cell death programs.
Collapse
Affiliation(s)
- André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Helmut Pein
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Zhigang Rao
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Lorenz Waltl
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Leonhard Bereuter
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria
| | - Konstantin Loeser
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Tobias Meyer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena e.V., Member of Leibniz Health Technology, 07745, Jena, Germany
| | - Vajiheh Jafari
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Finja Witt
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University Jena, 07745, Jena, Germany
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916, Badalona, Spain
| | - Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria
| | - Silke Große
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745, Jena, Germany
| | - Maria Thürmer
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Julia Grander
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Madlen Hotze
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
| | - Sönke Harder
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Lilia Espada
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Alexander Magnutzki
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Ronald Gstir
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Silke Rummler
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Günther Bonn
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Johanna Pachmayr
- Institute of Pharmacy, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Maria Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Takeshi Harayama
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur - CNRS UMR7275 - Inserm U1323, 06560, Valbonne, France
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University Jena, 07745, Jena, Germany
| | - Regine Heller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745, Jena, Germany
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
- Department Metabolism, Senescence and Autophagy, Research Center One Health Ruhr, University Alliance Ruhr & University Hospital Essen, University Duisburg-Essen, 45141, Essen, Germany
- Freiburg Materials Research Center FMF, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
- German Cancer Consortium (DKTK), partner site Essen/Duesseldorf, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147, Essen, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
- Institute of Microbial Chemistry, Tokyo 141-0021, Japan
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena e.V., Member of Leibniz Health Technology, 07745, Jena, Germany
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria.
| |
Collapse
|
77
|
Zhao Y, Chen Z, Xie S, Xiao F, Hu Q, Ju Z. The emerging role and therapeutical implications of ferroptosis in wound healing. BURNS & TRAUMA 2025; 13:tkae082. [PMID: 39958433 PMCID: PMC11827611 DOI: 10.1093/burnst/tkae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 02/18/2025]
Abstract
Wound healing is a complex biological process involving multiple steps, including hemostasis, inflammation, proliferation, and remodeling. A novel form of regulated cell death, ferroptosis, has garnered attention because of its involvement in these processes. Ferroptosis is characterized by the accumulation of lipid peroxides and is tightly regulated by lipid metabolism, iron metabolism, and the lipid-peroxide repair network, all of which exert a significant influence on wound healing. This review highlights the current findings and emerging concepts regarding the multifaceted roles of ferroptosis throughout the stages of normal and chronic wound healing. Additionally, the potential of targeted interventions aimed at modulating ferroptosis to improve wound-healing outcomes is discussed.
Collapse
Affiliation(s)
- Yanan Zhao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Shenghao Xie
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Feng Xiao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Qian Hu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| |
Collapse
|
78
|
Chen X, Zhang F, Lu C, Wu R, Yang B, Liao T, Du B, Wu F, Ding J, Fang S, Zhao Z, Chen M, Shu G, Chen W, Ji J. Lactate-Fueled Theranostic Nanoplatforms for Enhanced MRI-Guided Ferroptosis Synergistic with Immunotherapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9155-9172. [PMID: 39901437 DOI: 10.1021/acsami.4c21890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Treatment for hepatocellular carcinoma (HCC) may be improved with ferroptosis, a regulated form of cell death. However, the sensitivity of HCC to ferroptosis was strongly limited by lactic acid. In this study, a platelet membrane (PM)-engineered nanoparticle loaded with erastin, superparamagnetic iron oxide nanoparticles (SPIO) and lactate oxidase (LOX) (termed PM@ESL NPs) was designed for magnetic resonance imaging (MRI)-guided enhanced ferroptosis-immunotherapy of HCC. It was found that PM@ESL NPs could actively accumulate into the tumor due to the tumor-homing ability of PM. Subsequently, PM@ESL NPs could effectively enhance the sensitivity of HCC to ferroptosis by removing the lactic acid in the tumor. The removal of lactic acid also produces hydrogen peroxide (H2O2), which therefore converted into the cytotoxic hydroxyl radicals by the reaction of H2O2 with Fe2+/Fe3+ released from SPIO. Due to the combined ferroptosis and chemodynamic therapy (CDT), PM@ESL NPS showed a strong ability to induce immunogenic cell death (ICD), which could effectively suppress the growth and metastasis of HCC when combined with αPD-L1 immunotherapy. Furthermore, the incorporation of SPIO endows PM@ESL NPs with an outstanding MRI-T2 monitoring capability for HCC treatment. In conclusion, this study introduces a pioneering MRI-guided approach that enhances ferroptosis in tumors and synergistically improves immunotherapy.
Collapse
Affiliation(s)
| | - Feng Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Chenying Lu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Ronghua Wu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Baozhu Yang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Tingting Liao
- College of pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Baojie Du
- Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Fazong Wu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jiayi Ding
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Gaofeng Shu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Weiqian Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- College of pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| |
Collapse
|
79
|
Zhu Z, Wu X, Zhang J, Zhu M, Tian M, Zhao P. Advances in understanding ferroptosis mechanisms and their impact on immune cell regulation and tumour immunotherapy. Discov Oncol 2025; 16:153. [PMID: 39930297 PMCID: PMC11811334 DOI: 10.1007/s12672-025-01911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Ferroptosis is a novel mode of iron-dependent non-apoptotic cell death that occurs mainly due to excessive accumulation of lipid peroxides. Numerous studies in recent years have shown that ferroptosis plays a vital role in the organism and has important interactions with immune cells. Ferroptosis has been shown to have great potential in tumour therapy through studying its mechanism of action. In addition, ferroptosis plays a major role in many types of tumour cells that can potently suppress the tumourigenesis and metastasis, provide a basis for the treatment of many malignant tumour diseases and become a novel therapeutic modality of antitumour immunity in the clinic. Current tumour immunotherapy for ferroptosis in combination with other conventional oncological modalities is not well elaborated. In this paper, we mainly discuss the connection of ferroptosis with immune cells and their mediated tumour immunotherapy in order to provide a better theoretical basis and new thinking about ferroptosis mediated antitumour immunity.
Collapse
Affiliation(s)
- Zengjun Zhu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, China
| | - Xuanxuan Wu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, China
| | - Jian Zhang
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255036, China
| | - Minghui Zhu
- Department of Clinical Laboratory, Huantai County People's Hospital, Zibo, 256400, China
| | - Maojin Tian
- Department of Critical Care Medicine, Zibo Central Hospital, Zibo, 255036, China.
| | - Peiqing Zhao
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255036, China.
| |
Collapse
|
80
|
Huang L, Zhang Q, Long J, Liu Z, Sun X. Construction of novel magnetic systems for cancer immunotherapy via cancer-immunity cycle circuits. J Control Release 2025; 378:38-59. [PMID: 39653150 DOI: 10.1016/j.jconrel.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
The tumor microenvironment (TME) is enriched with immunosuppressive factors that inhibit the recruitment and activation of dendritic cells (DCs), thereby reducing the efficacy of tumor immunotherapy. To address this challenge, we propose an innovative strategy involving the sequential administration of MCM magnetic nanoparticles carrying PROTAC drugs (MCM/ARV) and M-BMDCs in the TEM. This approach not only replenishes DCs in the TEM, but also increases antigen uptake through the attraction between the magnetic particles and promotes DC activation and antigen presentation, thus continuously enhancing the tumor immune cycle. MCM nanoparticles (magnetic nanoclusters coated with calcium-doped manganese carbonate) efficiently load the tumor-targeting drug PROTAC (ARV-825), enhancing its bioavailability, leading to specific degradation of BRD4 in tumor cells, and releasing a large number of tumor-associated antigens. These antigens were captured by MCM nanoparticles to construct magnetized tumor vaccines. Magnetic M-BMDCs introduced at the tumor site are attracted to these magnetized vaccines, resulting in a significant increase in antigen uptake and activation of DCs, significantly enhancing the tumor immune cycle. This co-administration strategy of magnetized vaccines and magnetized BMDCs provides a unique combination therapy for reversing immunosuppressive TEM and enhancing the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Linghong Huang
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Quan Zhang
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Jun Long
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Zonghua Liu
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Xinyuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China.
| |
Collapse
|
81
|
Dang W, Li Q, Wang X. ACSL4 promotes the formation of the proliferative subtype in hepatoblastoma. BMC Cancer 2025; 25:191. [PMID: 39901207 PMCID: PMC11789379 DOI: 10.1186/s12885-025-13592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric liver malignancy, with its significant heterogeneity complicating the identification of the most aggressive subtypes and the development of targeted therapies. In this study, we performed transcriptomic analysis of HB samples from the GEO database and identified three distinct molecular subtypes with varying prognostic outcomes. Among them, the proliferative subtype, characterized by enhanced proliferative capacity, poor prognosis, and an immunosuppressive tumor microenvironment, was particularly notable. ACSL4 emerged as a critical biomarker of this proliferative subtype, driving HB cell proliferation both in vitro and in vivo. Furthermore, pharmacological inhibition of ACSL4 using abemaciclib significantly suppressed tumor growth in xenograft models. Mechanistically, ACSL4 was found to promote cell proliferation by downregulating the interferon response signaling pathway which may implicate contribution to immunosuppression in the tumor. These findings underscore the pivotal role of ACSL4 in HB progression and highlight its potential as a therapeutic target for aggressive HB subtypes.
Collapse
Affiliation(s)
- Wei Dang
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qin Li
- Department of Pathology, Institute of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Xiaoying Wang
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
82
|
Jiang X, Huang Y, Hong X, Wu W, Lin Y, Lin L, Xue Y, Lin D. Exogenous dihomo-γ-linolenic acid triggers ferroptosis via ACSL4-mediated lipid metabolic reprogramming in acute myeloid leukemia cells. Transl Oncol 2025; 52:102227. [PMID: 39644823 PMCID: PMC11667188 DOI: 10.1016/j.tranon.2024.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024] Open
Abstract
Ferroptosis is a novel type of programmed cell death caused by excessive iron-dependent lipid peroxidation. According to various studies, there may be a link between ferroptosis and lipid metabolism. However, few studies have been reported on the lipid metabolism of ferroptosis in acute myeloid leukemia (AML). Here, we analyzed the relationship between lipid metabolism and ferroptosis in AML cells to explore new clinical treatment strategies. This study found that 12 fatty acids were significantly changed in acute myeloid leukemia cell ferroptosis, including dihomo-γ-linolenic acid (DGLA), arachidonic acid (AA), docosahexaenoic acid (DHA), etc. Exogenous DGLA substantially increases the sensitivity to ferroptosis and induces ferroptosis alone in AML cells. In addition, acyl-CoA synthetase long-chain family member 4 (ACSL4) knockout significantly inhibited DGLA-induced AML cells ferroptosis, and ACSL4 regulates DGLA-associated lipid synthesis to affect the sensitivity of AML cells to ferroptosis. Collectively, our studies indicate that a DGLA-enriched diet significantly restricted the growth of leukemia cells as well as induced ferroptosis in vivo.
Collapse
Affiliation(s)
- Xiandong Jiang
- Department of Laboratory Medicine, The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou 350122, China
| | - Yingying Huang
- Department of Laboratory Medicine, The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou 350122, China
| | - Xiaoying Hong
- Department of Laboratory Medicine, The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou 350122, China
| | - Wei Wu
- Department of Laboratory Medicine, The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China; Medical Technology Experimental Teaching Center, The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
| | - Yanfeng Lin
- Medical Technology Experimental Teaching Center, The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou 350122, China
| | - Liping Lin
- Department of Laboratory Medicine, The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou 350122, China
| | - Yan Xue
- Medical Technology Experimental Teaching Center, The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou 350122, China.
| | - Donghong Lin
- Department of Laboratory Medicine, The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou 350122, China.
| |
Collapse
|
83
|
Tian ZF, Hu RY, Wang Z, Wang YJ, Li W. Molecular mechanisms behind the inhibitory effects of ginsenoside Rg3 on hepatic fibrosis: a review. Arch Toxicol 2025; 99:541-561. [PMID: 39729114 DOI: 10.1007/s00204-024-03941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Hepatitis is a chronic inflammatory liver disease and an important cause of liver fibrosis, which can progress to cirrhosis and even hepatocellular carcinoma if left untreated. However, liver fibrosis is a reversible disease, so finding new intervention targets and molecular markers is the key to preventing and treating liver fibrosis. Ginseng, the roots of Panax ginseng C. A. Meyer, is a precious Traditional Chinese Medicines with high medicinal value and is known as the "king of all herbs", and its active ingredient, ginsenoside Rg3 is a rare saponin and a new class of drug, one of the most thoroughly and extensively studied in a large number of studies. Ginsenoside Rg3 is an active ingredient extracted from ginseng that possesses a variety of biological activities, including anti-inflammatory, antioxidant, and anti-fibrotic effects. Several studies have suggested that ginsenoside Rg3 may help reduce hepatic inflammation and oxidative stress, thereby slowing the progression of liver fibrosis. Ginsenoside Rg3 may have some therapeutic effects on liver fibrosis, and the underlying molecular mechanisms behind these effects are attributed to cellular autophagy, apoptosis, and anti-inflammation, as well as the modulation of antioxidant activity and multiple signaling pathways. The molecular mechanisms behind the inhibitory effect of ginsenoside Rg3 on hepatic fibrosis are reviewed, with a view to providing reference for related studies.
Collapse
Affiliation(s)
- Zhao-Feng Tian
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Rui-Yi Hu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| | - Ya-Jun Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
84
|
Xu L, Kong Y, Li K, Li J, Xu F, Xu Y, Liang S, Chen B. Neutrophil extracellular traps promote growth of lung adenocarcinoma by mediating the stability of m6A-mediated SLC2A3 mRNA-induced ferroptosis resistance and CD8(+) T cell inhibition. Clin Transl Med 2025; 15:e70192. [PMID: 39865544 PMCID: PMC11769710 DOI: 10.1002/ctm2.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025] Open
Abstract
To investigate the potential mechanisms underlying neutrophil extracellular traps (NETs) confer ferroptosis resistance and CD8(+) T cell inhibition in lung adenocarcinoma (LUAD). By the intravenous injection of LLC cells into the tail vein, a LUAD mouse model was created. Phorbol-12-myristate-13-acetate (PMA) stimulated neutrophils to facilitate NETs formation and combined with NETs inhibitor DNase I to explore NETs mechanism on LLC cell proliferation, migration, ferroptosis resistance, and CD8(+) T cell activity. CitH3, myeloperoxidase (MPO), cell-free DNA, and MPO-DNA levels in LUAD were increased, indicating an increase in NETs formation in LUAD. PMA promoted NETs formation in tumours of mice, increased the number of CD3(+)CD4(+) T cells, decreased perforin, granzyme A, granzyme B, IFNγ, and TNF-α levels, and promoted LUAD growth and the number of lung tumour nodules, indicating that PMA promoted NETs formation, reduced the activity of CD8(+)T cells, and promoted LUAD growth. DNase I partially reversed the effects of PMA. NETs promoted LLC cell proliferation and migration, while DNase I reversed NETs effects. Erastin inhibited LLC cell proliferation and migration and promoted ferroptosis. NETs partially reversed Erastin effects. Further results showed that NETs promoted LLC cell proliferation and migration and inhibited ferroptosis by promoting YTHDF2-mediated SLC2A3 mRNA degradation. Sh-YTHDF2 partially reversed the effect of NETs on LLC cells, whereas si-SLC2A3 partially reversed sh-YTHDF2 effects on LLC cells. In addition, NETs inhibited LLC cell ferroptosis by inhibiting CD8(+) T cell activity. Sh-YTHDF2 and DNase I inhibited NETs formation in tumours, increased the activity of CD8(+) T cells and inhibited LUAD growth. Our results suggested that NETs promoted the growth of LUAD through inhibiting ferroptosis and CD8(+) T cell activity by promoting YTHDF2-mediated SLC2A3 mRNA degradation.
Collapse
Affiliation(s)
- Li Xu
- The Second Department of Thoracic OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer HospitalChangshaHunan ProvinceP.R. China
| | - Yi Kong
- The Second Department of Thoracic OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer HospitalChangshaHunan ProvinceP.R. China
| | - Kang Li
- The Second Department of Thoracic OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer HospitalChangshaHunan ProvinceP.R. China
| | - Jia Li
- The Second Department of Thoracic OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer HospitalChangshaHunan ProvinceP.R. China
| | - Fang Xu
- The Second Department of Thoracic OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer HospitalChangshaHunan ProvinceP.R. China
| | - Yan Xu
- The Second Department of Thoracic OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer HospitalChangshaHunan ProvinceP.R. China
| | - Shuzhi Liang
- The Second Department of Thoracic OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer HospitalChangshaHunan ProvinceP.R. China
| | - Bolin Chen
- The Second Department of Thoracic OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer HospitalChangshaHunan ProvinceP.R. China
| |
Collapse
|
85
|
Liu S, Chen J, Li L, Ye Z, Liu J, Chen Y, Hu B, Tang J, Feng G, Li Z, Deng C, Deng R, Zhu X, Zhang H. Susceptibility of Mitophagy-Deficient Tumors to Ferroptosis Induction by Relieving the Suppression of Lipid Peroxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412593. [PMID: 39679775 PMCID: PMC11809388 DOI: 10.1002/advs.202412593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/27/2024] [Indexed: 12/17/2024]
Abstract
The identification of ferroptosis-sensitive cancers is critical for the application of ferroptosis-inducing therapies in cancer therapy. Here, patient-derived organoid screening models of colorectal cancer are established to identify tumors that are sensitive to ferroptosis-inducing therapy. This study discovers that patient-derived tumors characterized by mitophagy deficiency are hypersensitive to ferroptosis-inducing therapies. Mechanistically, a novel negative feedback regulatory pathway of lipid peroxidation is identified, which is one of the important intrinsic anti-ferroptosis mechanisms of cancer cells. Lipid peroxidation-mediated endoplasmic reticulum stress transcriptionally upregulates Parkin to promote mitophagy through ATF4. Mitophagy limits the generation of lipid peroxidation products and subsequently inhibits ferroptosis by inhibiting the accumulation of mitochondrial ROS. Mitophagy-deficient tumors lack this anti-ferroptotic mechanism, unleashing the generation of lipid peroxidation and potent ferroptotic cell death induced by erastin, RSL3, cysteine deprivation, radiotherapy, and immunotherapy. More importantly, ferroptosis-inducing therapy selectively inhibits the growth and distant metastasis of mitophagy-deficient tumors in vivo. In summary, patient-derived organoids of colorectal cancer patients for screening ferroptosis-sensitive tumors are established, providing a paradigm for identifying that patient-derived tumors are sensitive to ferroptosis-inducing therapies. This study concludes that mitophagy-deficient tumors are vulnerable to ferroptosis induction, which may lead to the development of new therapeutic strategies for tumors deficient in mitophagy.
Collapse
Affiliation(s)
- Shan Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Medical OncologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jing‐Hong Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
- Faculty of Health SciencesUniversity of MacauMacau SAR999078China
| | - Li‐Chao Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zhi‐Peng Ye
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jian‐Nan Liu
- Department of OncologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai264000China
| | - Yu‐Hong Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Bing‐Xin Hu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jia‐Hong Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Gong‐Kan Feng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zhi‐Ming Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Chu‐Xia Deng
- Faculty of Health SciencesUniversity of MacauMacau SAR999078China
| | - Rong Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiao‐Feng Zhu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hai‐Liang Zhang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
86
|
Xu K, Li K, He Y, Mao Y, Li X, Zhang L, Tan M, Yang Y, Luo Z, Liu P, Cai K. Engineered nanoplatform mediated gas therapy enhanced ferroptosis for tumor therapy in vivo. Bioact Mater 2025; 44:488-500. [PMID: 39559423 PMCID: PMC11570688 DOI: 10.1016/j.bioactmat.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
The high glutathione (GSH) environment poses a significant challenge for inducing ferroptosis in tumor cells, necessitating the development of nanoplatforms that can deplete intracellular GSH. In this study, we developed an engineered nanoplatform (MIL-100@Era/L-Arg-HA) that enhances ferroptosis through gas therapy. First, we confirmed that the Fe element in the nanoplatform undergoes valence changes under the influence of high GSH and H2O2 in tumor cells. Meanwhile, L-Arg generates NO gas in the presence of intracellular H2O2, which reacts with GSH. Additionally, Erastin depletes GSH by inhibiting the cystine/glutamate antiporter system, reducing cystine uptake and impairing GPX4, while also increasing intracellular H2O2 levels by activating NOX4 protein expression. Through these combined GSH-depletion mechanisms, we demonstrated that MIL-100@Era/L-Arg-HA effectively depletes GSH levels, disrupts GPX4 function, and increases intracellular lipid ROS levels in vitro. Furthermore, this nanoplatform significantly inhibited tumor cell growth and extended the survival time of tumor-bearing mice in vivo. This engineered nanoplatform, which enhances ferroptosis through gas therapy, shows significant promise for ferroptosis-based cancer therapy and offers potential strategies for clinical tumor treatment.
Collapse
Affiliation(s)
- Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
- Thomas Lord Department of Mechanical Engineered and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ye He
- Thomas Lord Department of Mechanical Engineered and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Yulan Mao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Liangshuai Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Meijun Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| |
Collapse
|
87
|
Jang N, Kim IK, Jung D, Chung Y, Kang YP. Regulation of Ferroptosis in Cancer and Immune Cells. Immune Netw 2025; 25:e6. [PMID: 40078787 PMCID: PMC11896659 DOI: 10.4110/in.2025.25.e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 03/14/2025] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, is driven by lipid peroxidation and shaped by metabolic and antioxidant pathways. In immune cells, ferroptosis susceptibility varies by cell types, lipid composition, and metabolic demands, influencing immune responses in cancer, infections, and autoimmune diseases. Therapeutically, targeting ferroptosis holds promise in cancer immunotherapy by enhancing antitumor immunity or inhibiting immunosuppressive cells. This review highlights the metabolic pathways underlying ferroptosis, its regulation in immune cells, its dual role in tumor progression and antitumor immunity, and its context-dependent therapeutic implications for optimizing cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Yeonseok Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
88
|
Leven AS, Wagner N, Nienaber S, Messiha D, Tasdogan A, Ugurel S. Changes in tumor and cardiac metabolism upon immune checkpoint. Basic Res Cardiol 2025; 120:133-152. [PMID: 39658699 PMCID: PMC11790718 DOI: 10.1007/s00395-024-01092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Cardiovascular disease and cancer are the leading causes of death in the Western world. The associated risk factors are increased by smoking, hypertension, diabetes, sedentary lifestyle, aging, unbalanced diet, and alcohol consumption. Therefore, the study of cellular metabolism has become of increasing importance, with current research focusing on the alterations and adjustments of the metabolism of cancer patients. This may also affect the efficacy and tolerability of anti-cancer therapies such as immune-checkpoint inhibition (ICI). This review will focus on metabolic adaptations and their consequences for various cell types, including cancer cells, cardiac myocytes, and immune cells. Focusing on ICI, we illustrate how anti-cancer therapies interact with metabolism. In addition to the desired tumor response, we highlight that ICI can also lead to a variety of side effects that may impact metabolism or vice versa. With regard to the cardiovascular system, ICI-induced cardiotoxicity is increasingly recognized as one of the most life-threatening adverse events with a mortality of up to 50%. As such, significant efforts are being made to assess the specific interactions and associated metabolic changes associated with ICIs to improve both efficacy and management of side effects.
Collapse
Affiliation(s)
- Anna-Sophia Leven
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Natalie Wagner
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stephan Nienaber
- Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Daniel Messiha
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Centre, University of Duisburg-Essen, Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
- National Center for Tumor Diseases (NCT)-West, Campus Essen, and Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
- National Center for Tumor Diseases (NCT)-West, Campus Essen, and Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
89
|
Guo Z, Liu Y, Chen D, Sun Y, Li D, Meng Y, Zhou Q, Zeng F, Deng G, Chen X. Targeting regulated cell death: Apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis in anticancer immunity. J Transl Int Med 2025; 13:10-32. [PMID: 40115032 PMCID: PMC11921819 DOI: 10.1515/jtim-2025-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
In the evolving landscape of cancer treatment, the strategic manipulation of regulated cell death (RCD) pathways has emerged as a crucial component of effective anti-tumor immunity. Evidence suggests that tumor cells undergoing RCD can modify the immunogenicity of the tumor microenvironment (TME), potentially enhancing its ability to suppress cancer progression and metastasis. In this review, we first explore the mechanisms of apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis, along with the crosstalk between these cell death modalities. We then discuss how these processes activate antigen-presenting cells, facilitate the cross-priming of CD8+ T cells, and trigger anti-tumor immune responses, highlighting the complex effects of novel forms of tumor cell death on TME and tumor biology. Furthermore, we summarize potential drugs and nanoparticles that can induce or inhibit these emerging RCD pathways and their therapeutic roles in cancer treatment. Finally, we put forward existing challenges and future prospects for targeting RCD in anti-cancer immunity. Overall, this review enhances our understanding of the molecular mechanisms and biological impacts of RCD-based therapies, providing new perspectives and strategies for cancer treatment.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Danyao Chen
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yuming Sun
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Furong Zeng
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
90
|
Lai L, Tan M, Hu M, Yue X, Tao L, Zhai Y, Li Y. Important molecular mechanisms in ferroptosis. Mol Cell Biochem 2025; 480:639-658. [PMID: 38668809 DOI: 10.1007/s11010-024-05009-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/07/2024] [Indexed: 02/19/2025]
Abstract
Ferroptosis is a type of cell death that is caused by the oxidation of lipids and is dependent on the presence of iron. It was first characterized by Brent R. Stockwell in 2012, and since then, research in the field of ferroptosis has rapidly expanded. The process of ferroptosis-induced cell death is genetically, biochemically, and morphologically distinct from other forms of cellular death, such as apoptosis, necroptosis, and non-programmed cell death. Extensive research has been devoted to comprehending the intricate process of ferroptosis and the various factors that contribute to it. While the majority of these studies have focused on examining the effects of lipid metabolism and mitochondria on ferroptosis, recent findings have highlighted the significant involvement of signaling pathways and associated proteins, including Nrf2, P53, and YAP/TAZ, in this process. This review provides a concise summary of the crucial signaling pathways associated with ferroptosis based on relevant studies. It also elaborates on the drugs that have been employed in recent years to treat ferroptosis-related diseases by targeting the relevant signaling pathways. The established and potential therapeutic targets for ferroptosis-related diseases, such as cancer and ischemic heart disease, are systematically addressed.
Collapse
Affiliation(s)
- Lunmeng Lai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Menglei Tan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Mingming Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xiyue Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Lulu Tao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yanru Zhai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yunsen Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
91
|
Wu Z, Zhang Y, Zhong W, Wu K, Zhong T, Jiang T. Targeting ferroptosis: a promising approach for treating lung carcinoma. Cell Death Discov 2025; 11:33. [PMID: 39875356 PMCID: PMC11775225 DOI: 10.1038/s41420-025-02308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Lung carcinoma incidence and fatality rates remain among the highest on a global scale. The efficacy of targeted therapies and immunotherapies is commonly compromised by the emergence of drug resistance and other factors, resulting in a lack of durable therapeutic benefits. Ferroptosis, a distinct pattern of cell death marked by the buildup of iron-dependent lipid peroxides, has been shown to be a novel and potentially more effective treatment for lung carcinoma. However, the mechanism and regulatory network of ferroptosis are exceptionally complex, and many unanswered questions remain. In addition, research on ferroptosis in the diagnosis and treatment of lung cancer has been growing exponentially. Therefore, it is necessary to provide a thorough summary of the latest advancements in the field of ferroptosis. Here, we comprehensively analyze the mechanisms underlying the preconditions of ferroptosis, the defense system, and the associated molecular networks. The potential strategies of ferroptosis in the treatment of lung carcinoma are also highlighted. Targeting ferroptosis improves tumor cell drug resistance and enhances the effectiveness of targeted drugs and immunotherapies. These findings may shed fresh light on the diagnosis and management of lung carcinoma, as well as the development of drugs related to ferroptosis.
Collapse
Affiliation(s)
- Ziyang Wu
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Yan Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wendi Zhong
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Kunjian Wu
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Tao Jiang
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China.
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao.
| |
Collapse
|
92
|
Ricci JE. Tumor-induced metabolic immunosuppression: Mechanisms and therapeutic targets. Cell Rep 2025; 44:115206. [PMID: 39798090 DOI: 10.1016/j.celrep.2024.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025] Open
Abstract
Metabolic reprogramming in both immune and cancer cells plays a crucial role in the antitumor immune response. Recent studies indicate that cancer metabolism not only sustains carcinogenesis and survival via altered signaling but also modulates immune cell function. Metabolic crosstalk within the tumor microenvironment results in nutrient competition and acidosis, thereby hindering immune cell functionality. Interestingly, immune cells also undergo metabolic reprogramming that enables their proliferation, differentiation, and effector functions. This review highlights the regulation of antitumor immune responses through metabolic reprogramming in cancer and immune cells and explores therapeutic strategies that target these metabolic pathways in cancer immunotherapy, including using chimeric antigen receptor (CAR)-T cells. We discuss innovative combinations of immunotherapy, cellular therapies, and metabolic interventions that could optimize the efficacy of existing treatment protocols.
Collapse
Affiliation(s)
- Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Nice, France; Équipe labellisée LIGUE Contre le Cancer, Nice, France.
| |
Collapse
|
93
|
Li D, Zhang W, Wang R, Xie S, Wang Y, Guo W, Huang Z, Lu C, Shan L, Liu H, Ma L, Hou X, Xu Z, Wang J. ROR1 CAR-T cells and ferroptosis inducers orchestrate tumor ferroptosis via PC-PUFA2. Biomark Res 2025; 13:17. [PMID: 39849645 PMCID: PMC11756136 DOI: 10.1186/s40364-025-00730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/11/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Lung cancer, particularly non-small cell lung cancer (NSCLC), has high recurrence rates and remains a leading cause of cancer-related death, despite recent advances in its treatment. Emerging therapies, such as chimeric antigen receptor (CAR)-T cell therapy, have shown promise but face significant challenges in targeting solid tumors. This study investigated the potential of combining receptor tyrosine kinase-like orphan receptor 1 (ROR1)-targeting CAR-T cells with ferroptosis inducers to promote ferroptosis of tumor cells and enhance anti-tumor efficacy. METHODS RNA-seq data and immunofluorescence analysis of relapsed NSCLC patient samples were used to explore ROR1 expression. In addition, ROR1-targeting CAR-T cells were developed to assess cytotoxic activity against ROR1+ tumor cells, and the effect of cytokine stimulation on their efficacy was evaluated. Lipidomics, immunofluorescent histochemistry, and western blotting were used to explore the observed effects. Ferroptosis indicators, including levels of reactive oxygen species, were used to detect the combined effect of CAR-T cells and ferroptosis-inducing drugs. Finally, tumor-bearing mice were used to validate the in vivo efficacy of the combination therapy strategy. RESULTS Tumor cells treated with ferroptosis inducers showed increased sensitivity to Interferon gamma (IFN-γ) secreted by ROR1 CAR-T cells. Furthermore, ROR1 CAR-T cells enhanced the production of phosphatidylcholine with diacyl-polyunsaturated fatty acid tails (PC-PUFA2) by working in tandem with IFN-γ. This enhancement promoted the expression of acyl-CoA synthetase long chain family member 4 (ACSL4), which in turn strengthened the overall anti-tumor response. CONCLUSIONS Combining ROR1 CAR-T cells with ferroptosis inducers enhanced anti-tumor efficacy in NSCLC by promoting ferroptosis through increased lipid peroxidation.
Collapse
Affiliation(s)
- Dan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Wenjie Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology,, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ruiheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Rui Jin Hospital, School of Medicine, School of Life Sciences and Biotechnology, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shufeng Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Rui Jin Hospital, School of Medicine, School of Life Sciences and Biotechnology, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yixin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Rui Jin Hospital, School of Medicine, School of Life Sciences and Biotechnology, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wanxin Guo
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zixuan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Rui Jin Hospital, School of Medicine, School of Life Sciences and Biotechnology, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chaoqun Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Rui Jin Hospital, School of Medicine, School of Life Sciences and Biotechnology, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Liang Shan
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Rui Jin Hospital, School of Medicine, School of Life Sciences and Biotechnology, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Xumin Hou
- Hospital's Office, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Zhenshu Xu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology,, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
94
|
Ma M, Zhang Y, Pu K, Tang W. Nanomaterial-enabled metabolic reprogramming strategies for boosting antitumor immunity. Chem Soc Rev 2025; 54:653-714. [PMID: 39620588 DOI: 10.1039/d4cs00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Immunotherapy has become a crucial strategy in cancer treatment, but its effectiveness is often constrained. Most cancer immunotherapies focus on stimulating T-cell-mediated immunity by driving the cancer-immunity cycle, which includes tumor antigen release, antigen presentation, T cell activation, infiltration, and tumor cell killing. However, metabolism reprogramming in the tumor microenvironment (TME) supports the viability of cancer cells and inhibits the function of immune cells within this cycle, presenting clinical challenges. The distinct metabolic needs of tumor cells and immune cells require precise and selective metabolic interventions to maximize therapeutic outcomes while minimizing adverse effects. Recent advances in nanotherapeutics offer a promising approach to target tumor metabolism reprogramming and enhance the cancer-immunity cycle through tailored metabolic modulation. In this review, we explore cutting-edge nanomaterial strategies for modulating tumor metabolism to improve therapeutic outcomes. We review the design principles of nanoplatforms for immunometabolic modulation, key metabolic pathways and their regulation, recent advances in targeting these pathways for the cancer-immunity cycle enhancement, and future prospects for next-generation metabolic nanomodulators in cancer immunotherapy. We expect that emerging immunometabolic modulatory nanotechnology will establish a new frontier in cancer immunotherapy in the near future.
Collapse
Affiliation(s)
- Muye Ma
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Dr 2, Singapore, 117545, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Dr, Singapore, 117597, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wei Tang
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
- Department of Pharmacy and Pharmaceutic Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
95
|
Wang X, Yang Y, Zhou X, Yu S, Luo X, Lu L, Gao Z, Yang J. IFNγ regulates ferroptosis in KFs by inhibiting the expression of SPOCD1 through DNMT3A. Cell Death Discov 2025; 11:9. [PMID: 39820341 PMCID: PMC11739694 DOI: 10.1038/s41420-024-02257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 01/19/2025] Open
Abstract
Keloid is benign skin tumor, and their curing is relatively difficult due to the unclear mechanism of formation. Inducing ferroptosis of keloid fibroblasts (KFs) may become a new method for treating keloid. Here, we discover interferon (IFN)γ could induce KFs ferroptosis through inhibiting SPOC domain-containing protein 1 (SPOCD1), serving as a mode of action for CD8+T cell (CTL)-mediated keloid killing. Mechanistically, keloid IFNγ deficiency in combination with reduced DNMT3A increase the expression of SPOCD1, thereby promoting KFs' proliferation and inhibiting its ferroptosis. Moreover, keloid SPOCD1 deficiency attenuates KFs progression and extracellular matrix (ECM) deposition. Reducing IFNγ and SPOCD1 simultaneously can increase the positive rate of reactive oxygen species (ROS) and promote mitochondrial shrinkage. Ex-vivo explant keloid culture has also confirmed that the reduction of SPOCD1 helps to reduce the proliferation rate of KFs, inhibit the angiogenesis of keloid scars, and thus inhibit keloid formation. Thus, IFNγ signaling paired with SPOCD1 is a natural keloid ferroptosis promoting mechanism and a mode of action of CTLs. Targeting SPOCD1 pathway is a potential anti-keloid approach.
Collapse
Affiliation(s)
- Xiuxia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Yating Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xianyu Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Shun Yu
- The Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Xusong Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Lin Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
96
|
Su C, Xue Y, Fan S, Sun X, Si Q, Gu Z, Wang J, Deng R. Ferroptosis and its relationship with cancer. Front Cell Dev Biol 2025; 12:1423869. [PMID: 39877159 PMCID: PMC11772186 DOI: 10.3389/fcell.2024.1423869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Marked by iron buildup and lipid peroxidation, ferroptosis is a relatively new regulatory cell death (RCD) pathway. Many diseases like cancer, myocardial ischemia-reperfusion injury (MIRI), neurological disorders and acute renal failure (AKI) are corelated with ferroptosis. The main molecular processes of ferroptosis discovered yet will be presented here, along with the approaches in which it interacts with tumour-associated signaling pathways and its uses in systemic therapy, radiation therapy, and immunotherapy managing tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Runzhi Deng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
97
|
Qiu Y, Su Y, Xie E, Cheng H, Du J, Xu Y, Pan X, Wang Z, Chen DG, Zhu H, Greenberg PD, Li G. Mannose metabolism reshapes T cell differentiation to enhance anti-tumor immunity. Cancer Cell 2025; 43:103-121.e8. [PMID: 39642888 PMCID: PMC11756673 DOI: 10.1016/j.ccell.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/23/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
Cellular metabolic status profoundly influences T cell differentiation, persistence, and anti-tumor efficacy. Our single-cell metabolic analyses of T cells reveal that diminished mannose metabolism is a prominent feature of T cell dysfunction. Conversely, experimental augmentation/restoration of mannose metabolism in adoptively transferred T cells via D-mannose supplementation enhances anti-tumor activity and restricts exhaustion differentiation both in vitro and in vivo. Mechanistically, D-mannose treatment induces intracellular metabolic programming and increases the O-GlcNAc transferase (OGT)-mediated O-GlcNAcylation of β-catenin, which preserves Tcf7 expression and epigenetic stemness, thereby promoting stem-like programs in T cells. Furthermore, in vitro expansion with D-mannose supplementation yields T cell products for adoptive therapy with stemness characteristics, even after extensive long-term expansion, that exhibits enhanced anti-tumor efficacy. These findings reveal cell-intrinsic mannose metabolism as a physiological regulator of CD8+ T cell fate, decoupling proliferation/expansion from differentiation, and underscoring the therapeutic potential of mannose modulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Yajing Qiu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Yapeng Su
- Program in Immunology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA; Herbold Computational Biology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ermei Xie
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Jing Du
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Yue Xu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Xiaoli Pan
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Zhe Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Daniel G Chen
- Program in Immunology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA; Herbold Computational Biology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hong Zhu
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215123, Jiangsu, China
| | - Philip D Greenberg
- Program in Immunology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
98
|
Tariq HK, Liang Z, Rabiu L, Ibrahim A, Mohamady Farouk Abdalsalam N, Li R, Yang Q, Wan X, Yan D. Blockade of TIPE2-Mediated Ferroptosis of Myeloid-Derived Suppressor Cells Achieves the Full Potential of Combinatory Ferroptosis and Anti-PD-L1 Cancer Immunotherapy. Cells 2025; 14:108. [PMID: 39851538 PMCID: PMC11763990 DOI: 10.3390/cells14020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Although immune checkpoint blockade (ICB) therapy has attained unprecedented clinical success, the tolerance and immune suppression mechanisms evolved by tumor cells and their tumor microenvironment (TME) hinder its maximum anti-cancer potential. Ferroptosis therapy can partially improve the efficacy of ICB, but it is still subject to immune suppression by myeloid-derived suppressor cells (MDSCs) in the TME. Recent research suggests that an MDSC blockade can unleash the full therapeutic potential of the combined therapy of ferroptosis and ICB in liver cancer treatment. However, whether blocking the intrinsic ferroptosis pathways of MDSCs can relieve imidazole ketone erastin (IKE)-initiated ferroptosis-induced immune suppression and ultimately trigger the optimal therapeutic effect of the combined ferroptosis and ICB therapy is still unknown. Here, we report that TIPE2, a phospholipid transfer protein, regulated the ferroptosis susceptibility in MDSCs through reprogramming lipid peroxidation-related phosphatidylethanolamine (PE) and phosphatidylcholine (PC) species composition. TIPE2-deficient MDSCs resisted IKE-induced ferroptosis by up-regulating SLC7A11 and GPX4, and dissolved ferroptosis-induced immunosuppressive function by down-regulating lipid ROS whilst encouraging T cell proliferation and infiltration into tumor tissues to improve ferroptosis therapy. More importantly, TIPE2-deficient MDSCs achieved the full anti-tumor therapeutic potential of IKE-induced ferroptosis therapy and a PD-L1 blockade. These findings indicate that TIPE2 confers the ferroptosis sensitivity of MDSCs, and combining the targeting of the TIPE2 of MDSCs, ferroptosis therapy, and ICB is a novel therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Hafiza Kashaf Tariq
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.K.T.); (Z.L.); (L.R.); (A.I.); (N.M.F.A.); (R.L.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Zihao Liang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.K.T.); (Z.L.); (L.R.); (A.I.); (N.M.F.A.); (R.L.)
| | - Lawan Rabiu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.K.T.); (Z.L.); (L.R.); (A.I.); (N.M.F.A.); (R.L.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Abdulrahman Ibrahim
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.K.T.); (Z.L.); (L.R.); (A.I.); (N.M.F.A.); (R.L.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Nada Mohamady Farouk Abdalsalam
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.K.T.); (Z.L.); (L.R.); (A.I.); (N.M.F.A.); (R.L.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Rong Li
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.K.T.); (Z.L.); (L.R.); (A.I.); (N.M.F.A.); (R.L.)
| | - Qiong Yang
- School of Medicine, South China University of Technology, Guangzhou 510006, China;
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.K.T.); (Z.L.); (L.R.); (A.I.); (N.M.F.A.); (R.L.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.K.T.); (Z.L.); (L.R.); (A.I.); (N.M.F.A.); (R.L.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| |
Collapse
|
99
|
Imam M, Ji J, Zhang Z, Yan S. Targeting the initiator to activate both ferroptosis and cuproptosis for breast cancer treatment: progress and possibility for clinical application. Front Pharmacol 2025; 15:1493188. [PMID: 39867656 PMCID: PMC11757020 DOI: 10.3389/fphar.2024.1493188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 01/28/2025] Open
Abstract
Breast cancer is the most commonly diagnosed cancer worldwide. Metal metabolism is pivotal for regulating cell fate and drug sensitivity in breast cancer. Iron and copper are essential metal ions critical for maintaining cellular function. The accumulation of iron and copper ions triggers distinct cell death pathways, known as ferroptosis and cuproptosis, respectively. Ferroptosis is characterized by iron-dependent lipid peroxidation, while cuproptosis involves copper-induced oxidative stress. They are increasingly recognized as promising targets for the development of anticancer drugs. Recently, compelling evidence demonstrated that the interplay between ferroptosis and cuproptosis plays a crucial role in regulating breast cancer progression. This review elucidates the converging pathways of ferroptosis and cuproptosis in breast cancer. Moreover, we examined the value of genes associated with ferroptosis and cuproptosis in the clinical diagnosis and treatment of breast cancer, mainly outlining the potential for a co-targeting approach. Lastly, we delve into the current challenges and limitations of this strategy. In general, this review offers an overview of the interaction between ferroptosis and cuproptosis in breast cancer, offering valuable perspectives for further research and clinical treatment.
Collapse
Affiliation(s)
| | | | | | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
100
|
Yang M, Cui W, Lv X, Xiong G, Sun C, Xuan H, Ma W, Cui X, Cheng Y, Han L, Chu B. S100P is a ferroptosis suppressor to facilitate hepatocellular carcinoma development by rewiring lipid metabolism. Nat Commun 2025; 16:509. [PMID: 39779666 PMCID: PMC11711731 DOI: 10.1038/s41467-024-55785-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Ferroptosis is a newly identified programmed cell death induced by iron-driven lipid peroxidation and implicated as a potential approach for tumor treatment. However, emerging evidence indicates that hepatocellular carcinoma (HCC) cells are generally resistant to ferroptosis and the underlying molecular mechanism is poorly understood. Here, our study confirms that S100 calcium binding protein P (S100P), which is significantly up-regulated in ferroptosis-resistant HCC cells, efficiently inhibits ferroptosis. Mechanistically, S100P facilitates lysosomal degradation of acetyl-CoA carboxylase alpha (ACC1), which is indispensable for de novo biosynthesis of lipids. Loss of S100P elevates the expression of ACC1 and promotes ferroptotic sensitivity of HCC cells. S100P-mediated ACC1 degradation relies on RAB5C, which directs ACC1 to lysosome via P62-dependent selective autophagy. Knockdown of RAB5C or P62 abrogates S100P-induced lysosomal degradation of ACC1 and restores resistance of HCC cells to ferroptosis. Our work reveals an alternative anti-ferroptosis pathway and suggests S100P as a promising druggable target for ferroptosis-related therapy of HCC.
Collapse
Grants
- National Key R&D Program of China(2022YFA0912600, B.C.), National Natural Science Foundation of China (32000515 and 32370800, B.C.; 82472725, 81972275 and 82171748, L.H.), Natural Science Foundation of Shandong Province (ZR2020QC074, B.C.), Joint Fund of Shandong Provincial Natural Science Foundation (ZR2023LZL010, L.H.), Distinguished Professor of Taishan Scholars (tstp20221109, L.H.)
Collapse
Affiliation(s)
- Min Yang
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Weiwei Cui
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaoting Lv
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Gaozhong Xiong
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Caiyu Sun
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Haocheng Xuan
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Wei Ma
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiuling Cui
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yeping Cheng
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Lihui Han
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|