51
|
Liang X, Di F, Wei H, Liu N, Chen C, Wang X, Sun M, Zhang M, Li M, Zhang J, Zhang S. Functional identification of long non-coding RNAs induced by PM 2.5 in microglia through microarray analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116136. [PMID: 38387142 DOI: 10.1016/j.ecoenv.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
As a dominating air pollutant, atmospheric fine particulate matter within 2.5 μm in diameter (PM2.5) has attracted increasing attention from the researchers all over the world, which will lead to various adverse effects on the central nervous system (CNS), yet the potential mechanism is unclear. In this study, the microglia (BV2 cell line) were exposed to different concentrations of PM2.5 (5, 10 and 20 μg/cm2) for 24 h. It was found that PM2.5 could result in adverse effects on microglia such as decreased cell viability, structural damage and even cell death. And it was reported that long non-coding RNAs (lncRNAs) could participate in multitudinous neurological diseases. Therefore, the microarray analysis was conducted in order to disclose the underlying neurotoxicity mechanism of PM2.5 by ascertaining the differentially expressed lncRNAs (DElncRNAs). The consequences indicated that the DElncRNAs were enriched in various biological pathways, including ferroptosis, IL-17 signaling pathway and NOD-like receptor signaling pathway. Moreover, the cis- and trans-regulated mRNAs by DElncRNAs as well as the corresponding transcriptional factors (TFs) were observed, such as CEBPA, MYC, MEIS1 and KLF4. In summary, our study supplies some candidate libraries and potential preventive target against PM2.5-induced toxicity through targeting lncRNAs. Furthermore, the post-transcriptional regulation will contribute to the future research on PM2.5-induced neurotoxicity.
Collapse
Affiliation(s)
- Xue Liang
- School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China.
| | - Fanglin Di
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Haiyun Wei
- School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Natong Liu
- School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Chao Chen
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Xinzhi Wang
- School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Meng Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Min Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Meng Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Jie Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| |
Collapse
|
52
|
Hiers NM, Li T, Traugot CM, Xie M. Target-directed microRNA degradation: Mechanisms, significance, and functional implications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1832. [PMID: 38448799 PMCID: PMC11098282 DOI: 10.1002/wrna.1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a fundamental role in enabling miRNA-mediated target repression, a post-transcriptional gene regulatory mechanism preserved across metazoans. Loss of certain animal miRNA genes can lead to developmental abnormalities, disease, and various degrees of embryonic lethality. These short RNAs normally guide Argonaute (AGO) proteins to target RNAs, which are in turn translationally repressed and destabilized, silencing the target to fine-tune gene expression and maintain cellular homeostasis. Delineating miRNA-mediated target decay has been thoroughly examined in thousands of studies, yet despite these exhaustive studies, comparatively less is known about how and why miRNAs are directed for decay. Several key observations over the years have noted instances of rapid miRNA turnover, suggesting endogenous means for animals to induce miRNA degradation. Recently, it was revealed that certain targets, so-called target-directed miRNA degradation (TDMD) triggers, can "trigger" miRNA decay through inducing proteolysis of AGO and thereby the bound miRNA. This process is mediated in animals via the ZSWIM8 ubiquitin ligase complex, which is recruited to AGO during engagement with triggers. Since its discovery, several studies have identified that ZSWIM8 and TDMD are indispensable for proper animal development. Given the rapid expansion of this field of study, here, we summarize the key findings that have led to and followed the discovery of ZSWIM8-dependent TDMD. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Nicholas M Hiers
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Tianqi Li
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Conner M Traugot
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
53
|
Brito Querido J, Díaz-López I, Ramakrishnan V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat Rev Mol Cell Biol 2024; 25:168-186. [PMID: 38052923 DOI: 10.1038/s41580-023-00624-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 12/07/2023]
Abstract
The regulation of gene expression is fundamental for life. Whereas the role of transcriptional regulation of gene expression has been studied for several decades, it has been clear over the past two decades that post-transcriptional regulation of gene expression, of which translation regulation is a major part, can be equally important. Translation can be divided into four main stages: initiation, elongation, termination and ribosome recycling. Translation is controlled mainly during its initiation, a process which culminates in a ribosome positioned with an initiator tRNA over the start codon and, thus, ready to begin elongation of the protein chain. mRNA translation has emerged as a powerful tool for the development of innovative therapies, yet the detailed mechanisms underlying the complex process of initiation remain unclear. Recent studies in yeast and mammals have started to shed light on some previously unclear aspects of this process. In this Review, we discuss the current state of knowledge on eukaryotic translation initiation and its regulation in health and disease. Specifically, we focus on recent advances in understanding the processes involved in assembling the 43S pre-initiation complex and its recruitment by the cap-binding complex eukaryotic translation initiation factor 4F (eIF4F) at the 5' end of mRNA. In addition, we discuss recent insights into ribosome scanning along the 5' untranslated region of mRNA and selection of the start codon, which culminates in joining of the 60S large subunit and formation of the 80S initiation complex.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Irene Díaz-López
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
54
|
Budnick A, Franklin MJ, Utley D, Edwards B, Charles M, Hornstein ED, Sederoff H. Long- and short-read sequencing methods discover distinct circular RNA pools in Lotus japonicus. THE PLANT GENOME 2024; 17:e20429. [PMID: 38243772 DOI: 10.1002/tpg2.20429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024]
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNAs, generated through a back-splicing process that links a downstream 5' site to an upstream 3' end. The only distinction in the sequence between circRNA and their linear cognate RNA is the back splice junction. Their low abundance and sequence similarity with their linear origin RNA have made the discovery and identification of circRNA challenging. We have identified almost 6000 novel circRNAs from Lotus japonicus leaf tissue using different enrichment, amplification, and sequencing methods as well as alternative bioinformatics pipelines. The different methodologies identified different pools of circRNA with little overlap. We validated circRNA identified by the different methods using reverse transcription polymerase chain reaction and characterized sequence variations using nanopore sequencing. We compared validated circRNA identified in L. japonicus to other plant species and showed conservation of high-confidence circRNA-expressing genes. This is the first identification of L. japonicus circRNA and provides a resource for further characterization of their function in gene regulation. CircRNAs identified in this study originated from genes involved in all biological functions of eukaryotic cells. The comparison of methodologies and technologies to sequence, identify, analyze, and validate circRNA from plant tissues will enable further research to characterize the function and biogenesis of circRNA in L. japonicus.
Collapse
Affiliation(s)
- Asa Budnick
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Megan J Franklin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Delecia Utley
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Brianne Edwards
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Melodi Charles
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Eli D Hornstein
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
55
|
Yang JH, Tsitsipatis D, Gorospe M. Stoichiometry of long noncoding RNA interactions with other RNAs: Insights from OIP5-AS1. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1841. [PMID: 38576135 DOI: 10.1002/wrna.1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Long noncoding (lnc)RNAs modulate gene expression programs in a range of developmental processes in different organs. In skeletal muscle, lncRNAs have been implicated in myogenesis, the process whereby muscle precursor cells form muscle fibers during embryonic development and regenerate muscle fibers in the adult. Here, we discuss OIP5-AS1, a lncRNA that is highly expressed in skeletal muscle and is capable of coordinating protein expression programs during myogenesis. Given that several myogenic functions of OIP5-AS1 involve interactions with MEF2C mRNA and with the microRNA miR-7, it was critical to carefully evaluate the precise levels of OIP5-AS1 during myogenesis. We discuss the approaches used to examine lncRNA copy number using OIP5-AS1 as an example, focusing on quantification by quantitative PCR analysis with reference to nucleic acids of known abundance, by droplet digital (dd)PCR measurement, and by microscopic visualization of individual lncRNAs in cells. We discuss considerations of RNA stoichiometry in light of developmental processes in which lncRNAs are implicated. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Institute of Biomedical Sciences, National Sun Yat-set University, Kaohsiung, Taiwan
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
56
|
Buhagiar AF, Kleaveland B. To kill a microRNA: emerging concepts in target-directed microRNA degradation. Nucleic Acids Res 2024; 52:1558-1574. [PMID: 38224449 PMCID: PMC10899785 DOI: 10.1093/nar/gkae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
MicroRNAs (miRNAs) guide Argonaute (AGO) proteins to bind mRNA targets. Although most targets are destabilized by miRNA-AGO binding, some targets induce degradation of the miRNA instead. These special targets are also referred to as trigger RNAs. All triggers identified thus far have binding sites with greater complementarity to the miRNA than typical target sites. Target-directed miRNA degradation (TDMD) occurs when trigger RNAs bind the miRNA-AGO complex and recruit the ZSWIM8 E3 ubiquitin ligase, leading to AGO ubiquitination and proteolysis and subsequent miRNA destruction. More than 100 different miRNAs are regulated by ZSWIM8 in bilaterian animals, and hundreds of trigger RNAs have been predicted computationally. Disruption of individual trigger RNAs or ZSWIM8 has uncovered important developmental and physiologic roles for TDMD across a variety of model organisms and cell types. In this review, we highlight recent progress in understanding the mechanistic basis and functions of TDMD, describe common features of trigger RNAs, outline best practices for validating trigger RNAs, and discuss outstanding questions in the field.
Collapse
Affiliation(s)
- Amber F Buhagiar
- Department of Pathology and Lab Medicine, Weill Cornell Medicine, New York, NY10065, USA
| | - Benjamin Kleaveland
- Department of Pathology and Lab Medicine, Weill Cornell Medicine, New York, NY10065, USA
| |
Collapse
|
57
|
Xie Q, Ma Y, Ren Z, Gu T, Jiang Z. Circular RNA: A new expectation for cardiovascular diseases. J Cell Biochem 2024; 125:e30512. [PMID: 38098251 DOI: 10.1002/jcb.30512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024]
Abstract
Circular RNA (circRNA) is a class of RNA with the 5' and 3' ends connected covalently to form a closed loop structure and characterized by high stability, conserved sequences and tissue specificity, which is caused by special reverse splicing methods. Currently, it has become a hot spot for research. With the discovery of its powerful regulatory functions and roles, the molecular mechanisms and future value of circRNA in participating in and regulating biological and pathological processes are becoming increasingly apparent. Among them is the increasing prevalence of cardiovascular diseases (CVDs). Many studies have elucidated that circRNA plays a crucial role in the development and progression of CVDs. Therefore, circRNA shows its advantages and brilliant expectations in the field of CVDs. In this review, we describe the biogenesis, bioinformatics detection and function of circRNA and discuss the role of circRNA and its effects on CVDs, including atherosclerosis, myocardial infarction, cardiac hypertrophy and heart failure, myocardial fibrosis, cardiac senescence, pulmonary hypertension, and diabetic cardiomyopathy by different mechanisms. That shows circRNA advantages and brilliant expectations in the field of CVDs.
Collapse
Affiliation(s)
- Qiao Xie
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tianhe Gu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
58
|
Kotagama K, Grimme AL, Braviner L, Yang B, Sakhawala RM, Yu G, Benner LK, Joshua-Tor L, McJunkin K. The catalytic activity of microRNA Argonautes plays a modest role in microRNA star strand destabilization in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.19.524782. [PMID: 36711716 PMCID: PMC9882359 DOI: 10.1101/2023.01.19.524782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Many Argonaute proteins can cleave RNA ("slicing") as part of the microRNA-induced silencing complex (miRISC), even though miRNA-mediated target repression is generally independent of target cleavage. Here we use genome editing in C. elegans to examine the role of miRNA-guided slicing in organismal development. In contrast to previous work, slicing-inactivating mutations did not interfere with normal development when introduced by CRISPR. We find that unwinding and decay of miRNA star strands is weakly defective in the absence of slicing, with the largest effect observed in embryos. Argonaute-Like Gene 2 (ALG-2) is more dependent on slicing for unwinding than ALG-1. The miRNAs that displayed the greatest (albeit minor) dependence on slicing for unwinding tend to form stable duplexes with their star strand, and in some cases, lowering duplex stability alleviates dependence on slicing. Gene expression changes were consistent with negligible to moderate loss of function for miRNA guides whose star strand was upregulated, suggesting a reduced proportion of mature miRISC in slicing mutants. While a few miRNA guide strands are reduced in the mutant background, the basis of this is unclear since changes were not dependent on EBAX-1, a factor in the Target-Directed miRNA Degradation (TDMD) pathway. Overall, this work defines a role for miRNA Argonaute slicing in star strand decay; future work should examine whether this role could have contributed to the selection pressure to conserve catalytic activity of miRNA Argonautes across the metazoan phylogeny.
Collapse
Affiliation(s)
- Kasuen Kotagama
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Acadia L. Grimme
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
- Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Leah Braviner
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Rima M. Sakhawala
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
- Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Guoyun Yu
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Lars Kristian Benner
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
- Current address: Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Leemor Joshua-Tor
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
59
|
Liu S, Li W, Liang L, Zhou Y, Li Y. The regulatory relationship between transcription factor STAT3 and noncoding RNA. Cell Mol Biol Lett 2024; 29:4. [PMID: 38172648 PMCID: PMC10763091 DOI: 10.1186/s11658-023-00521-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), as a key node in numerous carcinogenic signaling pathways, is activated in various tumor tissues and plays important roles in tumor formation, metastasis, and drug resistance. STAT3 is considered a potential subtarget for tumor therapy. Noncoding RNA (ncRNA) is a special type of RNA transcript. Transforming from "junk" transcripts into key molecules involved in cell apoptosis, growth, and functional regulation, ncRNA has been proven to be closely related to various epithelial-mesenchymal transition and drug resistance processes in tumor cells over the past few decades. Research on the relationship between transcription factor STAT3 and ncRNAs has attracted increased attention. To date, existing reviews have mainly focused on the regulation by ncRNAs on the transcription factor STAT3; there has been no review of the regulation by STAT3 on ncRNAs. However, understanding the regulation of ncRNAs by STAT3 and its mechanism is important to comprehensively understand the mutual regulatory relationship between STAT3 and ncRNAs. Therefore, in this review, we summarize the regulation by transcription factor STAT3 on long noncoding RNA, microRNA, and circular RNA and its possible mechanisms. In addition, we provide an update on research progress on the regulation of STAT3 by ncRNAs. This will provide a new perspective to comprehensively understand the regulatory relationship between transcription factor STAT3 and ncRNAs, as well as targeting STAT3 or ncRNAs to treat diseases such as tumors.
Collapse
Affiliation(s)
- Siyi Liu
- Department of Nuclear Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Lin Liang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China.
| | - Yanling Li
- Department of Nuclear Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
60
|
Antonazzo G, Gaudet P, Lovering RC, Attrill H. Representation of non-coding RNA-mediated regulation of gene expression using the Gene Ontology. RNA Biol 2024; 21:36-48. [PMID: 39374113 PMCID: PMC11459742 DOI: 10.1080/15476286.2024.2408523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Regulatory non-coding RNAs (ncRNAs) are increasingly recognized as integral to the control of biological processes. This is often through the targeted regulation of mRNA expression, but this is by no means the only mechanism through which regulatory ncRNAs act. The Gene Ontology (GO) has long been used for the systematic annotation of protein-coding and ncRNA gene function, but rapid progress in the understanding of ncRNAs meant that the ontology needed to be revised to accurately reflect current knowledge. Here, a targeted effort to revise GO terms used for the annotation of regulatory ncRNAs is described, focusing on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). This paper provides guidance to biocurators annotating ncRNA-mediated processes using the GO and serves as background for researchers wishing to make use of the GO in their studies of ncRNAs and the biological processes they regulate.
Collapse
Affiliation(s)
- Giulia Antonazzo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Pascale Gaudet
- SIB Swiss Institute of Bioinformatics, Swiss-Prot Group, Geneva, Switzerland
| | - Ruth C. Lovering
- Functional Gene Annotation, Institute of Cardiovascular Science, University College London, London, UK
| | - Helen Attrill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
61
|
Wang R, Yuan Q, Wen Y, Zhang Y, Hu Y, Wang S, Yuan C. ANRIL: A Long Noncoding RNA in Age-related Diseases. Mini Rev Med Chem 2024; 24:1930-1939. [PMID: 38716553 DOI: 10.2174/0113895575295976240415045602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 10/16/2024]
Abstract
The intensification of the aging population is often accompanied by an increase in agerelated diseases, which impair the quality of life of the elderly. The characteristic feature of aging is progressive physiological decline, which is the largest cause of human pathology and death worldwide. However, natural aging interacts in exceptionally complex ways within and between organs, but its underlying mechanisms are still poorly understood. Long non-coding RNA (lncRNA) is a type of noncoding RNA that exceeds 200 nucleotides in length and does not possess protein-coding ability. It plays a crucial role in the occurrence and development of diseases. ANRIL, also known as CDKN2B-AS1, is an antisense ncRNA located at the INK4 site. It can play a crucial role in agerelated disease progression by regulating single nucleotide polymorphism, histone modifications, or post-transcriptional modifications (such as RNA stability and microRNA), such as cardiovascular disease, diabetes, tumor, arthritis, and osteoporosis. Therefore, a deeper understanding of the molecular mechanisms of lncRNA ANRIL in age-related diseases will help provide new diagnostic and therapeutic targets for clinical practice.
Collapse
Affiliation(s)
- Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Qi Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yuan Wen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
62
|
Kelly D, Schratt G. Screening and Characterization of Functional circRNAs in Neuronal Cultures. Methods Mol Biol 2024; 2765:311-324. [PMID: 38381347 DOI: 10.1007/978-1-0716-3678-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
This chapter describes a methodology for the screening and characterization of functional circRNAs, particularly in the context of neural circuit development. Taking advantage of a primary rat neuron culture model of synaptogenesis, we propose a means of selecting from the plethora of circRNA species based on their expression levels, dendritic localization, conservation, and activity regulation. These candidates are then knocked down with RNAi approaches in a functional screen for their potential role in the formation and maturation of excitatory synapses.Upon identification of top candidates regulating synaptogenesis, we tie together different "Omics" approaches to explore the molecular mechanisms underlying the phenotypes observed upon circRNA knockdown. We utilized our EnrichMir algorithm to identify overrepresented miRNA binding sites in differentially expressed genes from polyA-RNA-seq following circRNA knockdown. Furthermore, our ScanMiR web tool allows for the miRNA binding prediction of reconstructed internal circular RNA sequences. Small-RNA sequencing is used to monitor changes in miRNA levels in the circRNA knockdown to complement results obtained from EnrichMiR. Finally, the experimental validation of promising miRNA-circRNA pairs sets the stage for in-depth biochemical exploration of the circRNA interactome and mechanism of action.
Collapse
Affiliation(s)
- Darren Kelly
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland.
| |
Collapse
|
63
|
Patop IL, Canori M, Kadener S. In Vivo Tissue-Specific Knockdown of circRNAs Using shRNAs in Drosophila melanogaster. Methods Mol Biol 2024; 2765:161-172. [PMID: 38381339 DOI: 10.1007/978-1-0716-3678-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Studying circular RNAs' function in vivo has been challenging due to the lack of generic tools to manipulate their levels without affecting their linear counterparts. This is particularly challenging as the back-splice junction is the only sequence not shared between the linear and circular version. In this chapter, we describe a method to study circRNA function in vivo targeting shRNAs against the desired back-splice junction to achieve knockdown with tissue-specific resolution in flies.
Collapse
|
64
|
Wang Y, Wang J, Gruninger RJ, McAllister TA, Li M, Guan LL. Assessment of different enrichment methods revealed the optimal approach to identify bovine circRnas. RNA Biol 2024; 21:1-13. [PMID: 38797889 PMCID: PMC11135877 DOI: 10.1080/15476286.2024.2356334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/14/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Although circular RNAs (circRNAs) play important roles in regulating gene expression, the understanding of circRNAs in livestock animals is scarce due to the significant challenge to characterize them from a biological sample. In this study, we assessed the outcomes of bovine circRNA identification using six enrichment approaches with the combination of ribosomal RNAs removal (Ribo); linear RNAs degradation (R); linear RNAs and RNAs with structured 3' ends degradation (RTP); ribosomal RNAs coupled with linear RNAs elimination (Ribo-R); ribosomal RNA, linear RNAs and RNAs with poly (A) tailing elimination (Ribo-RP); and ribosomal RNA, linear RNAs and RNAs with structured 3' ends elimination (Ribo-RTP), respectively. RNA-sequencing analysis revealed that different approaches led to varied ratio of uniquely mapped reads, false-positive rate of identifying circRNAs, and the number of circRNAs per million clean reads (Padj <0.05). Out of 2,285 and 2,939 highly confident circRNAs identified in liver and rumen tissues, respectively, 308 and 260 were commonly identified from five methods, with Ribo-RTP method identified the highest number of circRNAs. Besides, 507 of 4,051 identified bovine highly confident circRNAs had shared splicing sites with human circRNAs. The findings from this work provide optimized methods to identify bovine circRNAs from cattle tissues for downstream research of their biological roles in cattle.
Collapse
Affiliation(s)
- Yixin Wang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jian Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Robert J. Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Mingzhou Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
65
|
Abstract
MicroRNAs are a class of small regulatory RNAs that mediate regulation of protein synthesis by recognizing sequence elements in mRNAs. MicroRNAs are processed through a series of steps starting from transcription and primary processing in the nucleus to precursor processing and mature function in the cytoplasm. It is also in the cytoplasm where levels of mature microRNAs can be modulated through decay mechanisms. Here, we review the recent progress in the lifetime of a microRNA at all steps required for maintaining their homoeostasis. The increasing knowledge about microRNA regulation upholds great promise as therapeutic targets.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- RNA Biology and Innovation, Institute of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Ulf Andersson Vang Ørom
- RNA Biology and Innovation, Institute of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
66
|
Min KW, Jo MH, Song M, Lee JW, Shim MJ, Kim K, Park HB, Ha S, Mun H, Polash A, Hafner M, Cho JH, Kim D, Jeong JH, Ko S, Hohng S, Kang SU, Yoon JH. Mature microRNA-binding protein QKI promotes microRNA-mediated gene silencing. RNA Biol 2024; 21:1-15. [PMID: 38372062 PMCID: PMC10878027 DOI: 10.1080/15476286.2024.2314846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Although Argonaute (AGO) proteins have been the focus of microRNA (miRNA) studies, we observed AGO-free mature miRNAs directly interacting with RNA-binding proteins, implying the sophisticated nature of fine-tuning gene regulation by miRNAs. To investigate microRNA-binding proteins (miRBPs) globally, we analyzed PAR-CLIP data sets to identify RBP quaking (QKI) as a novel miRBP for let-7b. Potential existence of AGO-free miRNAs were further verified by measuring miRNA levels in genetically engineered AGO-depleted human and mouse cells. We have shown that QKI regulates miRNA-mediated gene silencing at multiple steps, and collectively serves as an auxiliary factor empowering AGO2/let-7b-mediated gene silencing. Depletion of QKI decreases interaction of AGO2 with let-7b and target mRNA, consequently controlling target mRNA decay. This finding indicates that QKI is a complementary factor in miRNA-mediated mRNA decay. QKI, however, also suppresses the dissociation of let-7b from AGO2, and slows the assembly of AGO2/miRNA/target mRNA complexes at the single-molecule level. We also revealed that QKI overexpression suppresses cMYC expression at post-transcriptional level, and decreases proliferation and migration of HeLa cells, demonstrating that QKI is a tumour suppressor gene by in part augmenting let-7b activity. Our data show that QKI is a new type of RBP implicated in the versatile regulation of miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Myung Hyun Jo
- Department of Physics & Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Minseok Song
- Department of Physics & Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Lee
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Min Ji Shim
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Kyungmin Kim
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Hyun Bong Park
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Shinwon Ha
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Hyejin Mun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Oncology Science, University of Oklahoma, Oklahoma City, USA
| | - Ahsan Polash
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, USA
| | - Jung-Hyun Cho
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Dongsan Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ji-Hoon Jeong
- Department of Oncology Science, University of Oklahoma, Oklahoma City, USA
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Sungchul Hohng
- Department of Physics & Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Oncology Science, University of Oklahoma, Oklahoma City, USA
| |
Collapse
|
67
|
Wheeler BD, Gagnon JD, Zhu WS, Muñoz-Sandoval P, Wong SK, Simeonov DS, Li Z, DeBarge R, Spitzer MH, Marson A, Ansel KM. The lncRNA Malat1 inhibits miR-15/16 to enhance cytotoxic T cell activation and memory cell formation. eLife 2023; 12:RP87900. [PMID: 38127070 PMCID: PMC10735224 DOI: 10.7554/elife.87900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Proper activation of cytotoxic T cells via the T cell receptor and the costimulatory receptor CD28 is essential for adaptive immunity against viruses, intracellular bacteria, and cancers. Through biochemical analysis of RNA:protein interactions, we uncovered a non-coding RNA circuit regulating activation and differentiation of cytotoxic T cells composed of the long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) and the microRNA family miR-15/16. miR-15/16 is a widely and highly expressed tumor suppressor miRNA family important for cell proliferation and survival. miR-15/16 play important roles in T cell responses to viral infection, including the regulation of antigen-specific T cell expansion and memory. Comparative Argonaute-2 high-throughput sequencing of crosslinking immunoprecipitation (AHC) combined with gene expression profiling in normal and miR-15/16-deficient mouse T cells revealed a large network of hundreds of direct miR-15/16 target mRNAs, many with functional relevance for T cell activation, survival and memory formation. Among these targets, Malat1 contained the largest absolute magnitude miR-15/16-dependent AHC peak. This binding site was among the strongest lncRNA:miRNA interactions detected in the T cell transcriptome. We used CRISPR targeting with homology directed repair to generate mice with a 5-nucleotide mutation in the miR-15/16-binding site in Malat1. This mutation interrupted Malat1:miR-15/16 interaction, and enhanced the repression of other miR-15/16 target genes, including CD28. Interrupting Malat1 interaction with miR-15/16 decreased cytotoxic T cell activation, including the expression of interleukin 2 (IL-2) and a broader CD28-responsive gene program. Accordingly, Malat1 mutation diminished memory cell persistence in mice following LCMV Armstrong and Listeria monocytogenes infection. This study marks a significant advance in the study of long non-coding RNAs in the immune system by ascribing cell-intrinsic, sequence-specific in vivo function to Malat1. These findings have implications for T cell-mediated autoimmune diseases, antiviral and anti-tumor immunity, as well as lung adenocarcinoma and other malignancies where Malat1 is overexpressed.
Collapse
Affiliation(s)
- Benjamin D Wheeler
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| | - John D Gagnon
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| | - Wandi S Zhu
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| | - Priscila Muñoz-Sandoval
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| | - Simon K Wong
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
| | - Dimitre S Simeonov
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
| | - Rachel DeBarge
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
- Department of Otolaryngology-Head and Neck Surgery, University of California San FranciscoSan FranciscoUnited States
| | - Matthew H Spitzer
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
- Department of Otolaryngology-Head and Neck Surgery, University of California San FranciscoSan FranciscoUnited States
- Parker Institute for Cancer Immunotherapy, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Alexander Marson
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
- Department of Medicine, University of California San FranciscoLexingtonUnited States
| | - K Mark Ansel
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
68
|
Zhu Y, Huang C, Zhang C, Zhou Y, Zhao E, Zhang Y, Pan X, Huang H, Liao W, Wang X. LncRNA MIR200CHG inhibits EMT in gastric cancer by stabilizing miR-200c from target-directed miRNA degradation. Nat Commun 2023; 14:8141. [PMID: 38065939 PMCID: PMC10709323 DOI: 10.1038/s41467-023-43974-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Gastric cancer (GC) is a heterogeneous disease, threatening millions of lives worldwide, yet the functional roles of long non-coding RNAs (lncRNAs) in different GC subtypes remain poorly characterized. Microsatellite stable (MSS)/epithelial-mesenchymal transition (EMT) GC is the most aggressive subtype associated with a poor prognosis. Here, we apply integrated network analysis to uncover lncRNA heterogeneity between GC subtypes, and identify MIR200CHG as a master regulator mediating EMT specifically in MSS/EMT GC. The expression of MIR200CHG is silenced in MSS/EMT GC by promoter hypermethylation, associated with poor prognosis. MIR200CHG reverses the mesenchymal identity of GC cells in vitro and inhibits metastasis in vivo. Mechanistically, MIR200CHG not only facilitates the biogenesis of its intronic miRNAs miR-200c and miR-141, but also protects miR-200c from target-directed miRNA degradation (TDMD) through direct binding to miR-200c. Our studies reveal a landscape of a subtype-specific lncRNA regulatory network, providing clinically relevant biological insights towards MSS/EMT GC.
Collapse
Grants
- 2020N368 Shenzhen Science and Technology Innovation Commission
- C4024-22GF Research Grants Council, University Grants Committee (RGC, UGC)
- 14104223 Research Grants Council, University Grants Committee (RGC, UGC)
- 11103619 Research Grants Council, University Grants Committee (RGC, UGC)
- 14111522 Research Grants Council, University Grants Committee (RGC, UGC)
- R4017-18 Research Grants Council, University Grants Committee (RGC, UGC)
- 82173289 National Natural Science Foundation of China (National Science Foundation of China)
- 81872401 National Natural Science Foundation of China (National Science Foundation of China)
- Guangdong Basic and Applied Basic Research Foundation (Project No.2019B030302012), a startup grant (Project No. 4937084), direct grant (2021.077), Faculty Postdoctoral Fellowship Scheme 2021/22 (Project No. FPFS/2122/32), Shenzhen Bay Scholars Program.
- Guangdong Basic and Applied Basic Research Foundation (2021A1515010425)
Collapse
Affiliation(s)
- Yixiao Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chengmei Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yi Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Enen Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yaxin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xingyan Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Wenting Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
69
|
Lee S, Aubee JI, Lai EC. Regulation of alternative splicing and polyadenylation in neurons. Life Sci Alliance 2023; 6:e202302000. [PMID: 37793776 PMCID: PMC10551640 DOI: 10.26508/lsa.202302000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Cell-type-specific gene expression is a fundamental feature of multicellular organisms and is achieved by combinations of regulatory strategies. Although cell-restricted transcription is perhaps the most widely studied mechanism, co-transcriptional and post-transcriptional processes are also central to the spatiotemporal control of gene functions. One general category of expression control involves the generation of multiple transcript isoforms from an individual gene, whose balance and cell specificity are frequently tightly regulated via diverse strategies. The nervous system makes particularly extensive use of cell-specific isoforms, specializing the neural function of genes that are expressed more broadly. Here, we review regulatory strategies and RNA-binding proteins that direct neural-specific isoform processing. These include various classes of alternative splicing and alternative polyadenylation events, both of which broadly diversify the neural transcriptome. Importantly, global alterations of splicing and alternative polyadenylation are characteristic of many neural pathologies, and recent genetic studies demonstrate how misregulation of individual neural isoforms can directly cause mutant phenotypes.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Joseph I Aubee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
70
|
Shang R, Lee S, Senavirathne G, Lai EC. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet 2023; 24:816-833. [PMID: 37380761 PMCID: PMC11087887 DOI: 10.1038/s41576-023-00611-y] [Citation(s) in RCA: 301] [Impact Index Per Article: 150.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/30/2023]
Abstract
Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR-Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.
Collapse
Affiliation(s)
- Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Gayan Senavirathne
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
71
|
Liau WS, Zhao Q, Bademosi A, Gormal RS, Gong H, Marshall PR, Periyakaruppiah A, Madugalle SU, Zajaczkowski EL, Leighton LJ, Ren H, Musgrove M, Davies J, Rauch S, He C, Dickinson BC, Li X, Wei W, Meunier FA, Fernández-Moya SM, Kiebler MA, Srinivasan B, Banerjee S, Clark M, Spitale RC, Bredy TW. Fear extinction is regulated by the activity of long noncoding RNAs at the synapse. Nat Commun 2023; 14:7616. [PMID: 37993455 PMCID: PMC10665438 DOI: 10.1038/s41467-023-43535-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) represent a multidimensional class of regulatory molecules that are involved in many aspects of brain function. Emerging evidence indicates that lncRNAs are localized to the synapse; however, a direct role for their activity in this subcellular compartment in memory formation has yet to be demonstrated. Using lncRNA capture-seq, we identified a specific set of lncRNAs that accumulate in the synaptic compartment within the infralimbic prefrontal cortex of adult male C57/Bl6 mice. Among these was a splice variant related to the stress-associated lncRNA, Gas5. RNA immunoprecipitation followed by mass spectrometry and single-molecule imaging revealed that this Gas5 isoform, in association with the RNA binding proteins G3BP2 and CAPRIN1, regulates the activity-dependent trafficking and clustering of RNA granules. In addition, we found that cell-type-specific, activity-dependent, and synapse-specific knockdown of the Gas5 variant led to impaired fear extinction memory. These findings identify a new mechanism of fear extinction that involves the dynamic interaction between local lncRNA activity and RNA condensates in the synaptic compartment.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| | - Qiongyi Zhao
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Adekunle Bademosi
- Single Molecule Neuroscience Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Rachel S Gormal
- Single Molecule Neuroscience Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Hao Gong
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Marshall
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ambika Periyakaruppiah
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sachithrani U Madugalle
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Esmi L Zajaczkowski
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Laura J Leighton
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Haobin Ren
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mason Musgrove
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Joshua Davies
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Simone Rauch
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Frédéric A Meunier
- Single Molecule Neuroscience Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sandra M Fernández-Moya
- Biomedical Centre, Ludwig Maximilian University of Munich, Munich, Germany
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, 08908, Barcelona, Spain
| | - Michael A Kiebler
- Biomedical Centre, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | - Michael Clark
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, The University of California, Irvine, CA, USA
| | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
72
|
Sberna G, Maggi F, Amendola A. Virus-Encoded Circular RNAs: Role and Significance in Viral Infections. Int J Mol Sci 2023; 24:16547. [PMID: 38003737 PMCID: PMC10671809 DOI: 10.3390/ijms242216547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
Circular RNAs (circRNAs) have been the focus of intense scientific research to understand their biogenesis, mechanisms of action and regulatory functions. CircRNAs are single stranded, covalently closed RNA molecules lacking the 5'-terminal cap and the 3'-terminal polyadenine chain, characteristics that make them very stable and resistant. Synthesised by both cells and viruses, in the past circRNAs were considered to have no precise function. Today, increasing evidence shows that circRNAs are ubiquitous, some of them are tissue- and cell-specific, and critical in multiple regulatory processes (i.e., infections, inflammation, oncogenesis, gene expression). Moreover, circRNAs are emerging as important biomarkers of viral infection and disease progression. In this review, we provided an updated overview of current understanding of virus-encoded and cellular-encoded circRNAs and their involvement in cellular pathways during viral infection.
Collapse
Affiliation(s)
| | | | - Alessandra Amendola
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00149 Rome, Italy; (G.S.)
| |
Collapse
|
73
|
Shao Y, Xu J, Liang B, Zhang S, Chen W, Wang Y, Xing D. The role of CDR1as/ciRS-7 in cardio-cerebrovascular diseases. Biomed Pharmacother 2023; 167:115589. [PMID: 37776642 DOI: 10.1016/j.biopha.2023.115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Cerebellar degeneration-related protein 1 antisense RNA (CDR1as), also known as ciRS-7, is a circular natural antisense transcript of CDR1. It is a widely studied and powerful representative of circular RNAs. Based on its widely reported role in cancer, CDR1as is considered one of the most promising biomarkers for diagnosing and treating tumours. However, some recent studies have extensively focused on its regulatory role in cardio-cerebrovascular diseases instead of in tumours. Studies have shown that CDR1as plays a unique role in the occurrence of cardio-cerebrovascular diseases; thus, it may be a potential target for preventing and treating cardio-cerebrovascular diseases. Furthermore, CDR1as has also been found to be related to signal transduction pathways related to inflammatory response, oxidative stress, etc., which may reveal its potential mechanism in cardio-cerebrovascular diseases. However, there is no literature to summarize the role and possible mechanism of CDR1as in cardio-cerebrovascular diseases. Therefore, in the present review, we have comprehensively summarised the latest progress in the biological characteristics, development processes, regulatory mechanisms, and roles of CDR1as in cardio-cerebrovascular diseases, aiming to provide a reference and guidance for future studies.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Shuangshuang Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
74
|
Kechagia Z, Sáez P, Gómez-González M, Canales B, Viswanadha S, Zamarbide M, Andreu I, Koorman T, Beedle AEM, Elosegui-Artola A, Derksen PWB, Trepat X, Arroyo M, Roca-Cusachs P. The laminin-keratin link shields the nucleus from mechanical deformation and signalling. NATURE MATERIALS 2023; 22:1409-1420. [PMID: 37709930 PMCID: PMC10627833 DOI: 10.1038/s41563-023-01657-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/31/2023] [Indexed: 09/16/2023]
Abstract
The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111-unlike fibronectin or collagen I-impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin β4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that β4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals.
Collapse
Affiliation(s)
- Zanetta Kechagia
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Pablo Sáez
- Laboratori de Càlcul Numèric (LàCaN), Universitat Politècnica de Catalunya, Barcelona, Spain
- Institut de Matemátiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
| | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Brenda Canales
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, King's College London, London, UK
| | - Srivatsava Viswanadha
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Ion Andreu
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Amy E M Beedle
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Physics, King's College London, London, UK
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, King's College London, London, UK
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Laboratori de Càlcul Numèric (LàCaN), Universitat Politècnica de Catalunya, Barcelona, Spain
- Institut de Matemátiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
| |
Collapse
|
75
|
Larivera S, Neumeier J, Meister G. Post-transcriptional gene silencing in a dynamic RNP world. Biol Chem 2023; 404:1051-1067. [PMID: 37739934 DOI: 10.1515/hsz-2023-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
MicroRNA (miRNA)-guided gene silencing is a key regulatory process in various organisms and linked to many human diseases. MiRNAs are processed from precursor molecules and associate with Argonaute proteins to repress the expression of complementary target mRNAs. Excellent work by numerous labs has contributed to a detailed understanding of the mechanisms of miRNA function. However, miRNA effects have mostly been analyzed and viewed as isolated events and their natural environment as part of complex RNA-protein particles (RNPs) is often neglected. RNA binding proteins (RBPs) regulate key enzymes of the miRNA processing machinery and furthermore RBPs or readers of RNA modifications may modulate miRNA activity on mRNAs. Such proteins may function similarly to miRNAs and add their own contributions to the overall expression level of a particular gene. Therefore, post-transcriptional gene regulation might be more the sum of individual regulatory events and should be viewed as part of a dynamic and complex RNP world.
Collapse
Affiliation(s)
- Simone Larivera
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, D-93053, Regensburg, Germany
| | - Julia Neumeier
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, D-93053, Regensburg, Germany
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
76
|
Singh S, Sinha T, Panda AC. Regulation of microRNA by circular RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1820. [PMID: 37783567 DOI: 10.1002/wrna.1820] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Circular (circ)RNAs have emerged as novel regulators of gene expression through various mechanisms. However, most publications focus on functional circRNAs regulating target gene expression by interacting with micro (mi)RNAs and acting as competing endogenous RNAs (ceRNAs). Although the theory of miRNA sponging by ceRNAs suggests the inhibition of miRNA activity, many studies are biased toward the selection of miRNAs showing a reverse expression pattern compared with circRNA expression. Although several computational tools and molecular assays have been used to predict and validate the interaction of miRNAs with circRNAs, the actual validation of functional in vivo interactions needs careful consideration of molecular experiments with specific controls. As extensive research is being performed on circRNA, many questions arise on the functional significance of circRNA-miRNA interactions. We hope the critical discussion on the criteria for selecting circRNA-miRNA pairs for functional analysis and providing standard methods for validating circRNA-miRNA interactions will advance our understanding of circRNAs as novel gene regulators. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Translation > Regulation RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Suman Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Tanvi Sinha
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Amaresh C Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| |
Collapse
|
77
|
Zhu WS, Wheeler BD, Ansel KM. RNA circuits and RNA-binding proteins in T cells. Trends Immunol 2023; 44:792-806. [PMID: 37599172 PMCID: PMC10890840 DOI: 10.1016/j.it.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
RNA is integral to the regulatory circuits that control cell identity and behavior. Cis-regulatory elements in mRNAs interact with RNA-binding proteins (RBPs) that can alter RNA sequence, stability, and translation into protein. Similarly, long noncoding RNAs (lncRNAs) scaffold ribonucleoprotein complexes that mediate transcriptional and post-transcriptional regulation of gene expression. Indeed, cell programming is fundamental to multicellular life and, in this era of cellular therapies, it is of particular interest in T cells. Here, we review key concepts and recent advances in our understanding of the RNA circuits and RBPs that govern mammalian T cell differentiation and immune function.
Collapse
Affiliation(s)
- Wandi S Zhu
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Benjamin D Wheeler
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - K Mark Ansel
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
78
|
Shukla V, Mallya S, Adiga D, Sriharikrishnaa S, Chakrabarty S, Kabekkodu SP. Bioinformatic Analysis of miR-200b/429 and Hub Gene Network in Cervical Cancer. Biochem Genet 2023; 61:1898-1916. [PMID: 36879084 PMCID: PMC10517900 DOI: 10.1007/s10528-023-10356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
The miR-200b/429 located at 1p36 is a highly conserved miRNA cluster emerging as a critical regulator of cervical cancer. Using publicly available miRNA expression data from TCGA and GEO followed by independent validation, we aimed to identify the association between miR-200b/429 expression and cervical cancer. miR-200b/429 cluster was significantly overexpressed in cancer samples compared to normal samples. miR-200b/429 expression did not correlate with patient survival; however, its overexpression correlated with histological type. Protein-protein interaction analysis of 90 target genes of miR-200b/429 identified EZH2, FLT1, IGF2, IRS1, JUN, KDR, SOX2, MYB, ZEB1, and TIMP2 as the top ten hub genes. PI3K-AKT and MAPK signaling pathways emerged as major target pathways of miR-200b/429 and their hub genes. Kaplan-Meier survival analysis showed the expression of seven miR-200b/429 target genes (EZH2, FLT1, IGF2, IRS1, JUN, SOX2, and TIMP2) to influence the overall survival of patients. The miR-200a-3p and miR-200b-5p could help predict cervical cancer with metastatic potential. The cancer hallmark enrichment analysis showed hub genes to promote growth, sustained proliferation, resistance to apoptosis, induction of angiogenesis, activation of invasion, and metastasis, enabling replicative immortality, evading immune destruction, and tumor-promoting inflammation. The drug-gene interaction analysis identified 182 potential drugs to interact with 27 target genes of miR-200b/429 with paclitaxel, doxorubicin, dabrafenib, bortezomib, docetaxel, ABT-199, eribulin, vorinostat, etoposide, and mitoxantrone emerging as the top ten best candidate drugs. Taken together, miR-200b/429 and associated hub genes can be helpful for prognostic application and clinical management of cervical cancer.
Collapse
Affiliation(s)
- Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
- Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
- Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
79
|
Groslambert J, Prokhorova E, Wondisford AR, Tromans-Coia C, Giansanti C, Jansen J, Timinszky G, Dobbelstein M, Ahel D, O'Sullivan RJ, Ahel I. The interplay of TARG1 and PARG protects against genomic instability. Cell Rep 2023; 42:113113. [PMID: 37676774 PMCID: PMC10933786 DOI: 10.1016/j.celrep.2023.113113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
The timely removal of ADP-ribosylation is crucial for efficient DNA repair. However, much remains to be discovered about ADP-ribosylhydrolases. Here, we characterize the physiological role of TARG1, an ADP-ribosylhydrolase that removes aspartate/glutamate-linked ADP-ribosylation. We reveal its function in the DNA damage response and show that the loss of TARG1 sensitizes cells to inhibitors of topoisomerase II, ATR, and PARP. Furthermore, we find a PARP1-mediated synthetic lethal interaction between TARG1 and PARG, driven by the toxic accumulation of ADP-ribosylation, that induces replication stress and genomic instability. Finally, we show that histone PARylation factor 1 (HPF1) deficiency exacerbates the toxicity and genomic instability induced by excessive ADP-ribosylation, suggesting a close crosstalk between components of the serine- and aspartate/glutamate-linked ADP-ribosylation pathways. Altogether, our data identify TARG1 as a potential biomarker for the response of cancer cells to PARP and PARG inhibition and establish that the interplay of TARG1 and PARG protects cells against genomic instability.
Collapse
Affiliation(s)
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer, University of Pittsburgh, Pittsburgh, PA, USA
| | - Callum Tromans-Coia
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Celeste Giansanti
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Jennifer Jansen
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Gyula Timinszky
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), 6276 Szeged, Hungary
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
80
|
Dong X, Bai Y, Liao Z, Gritsch D, Liu X, Wang T, Borges-Monroy R, Ehrlich A, Serrano GE, Feany MB, Beach TG, Scherzer CR. Circular RNAs in the human brain are tailored to neuron identity and neuropsychiatric disease. Nat Commun 2023; 14:5327. [PMID: 37723137 PMCID: PMC10507039 DOI: 10.1038/s41467-023-40348-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/20/2023] [Indexed: 09/20/2023] Open
Abstract
Little is known about circular RNAs (circRNAs) in specific brain cells and human neuropsychiatric disease. Here, we systematically identify over 11,039 circRNAs expressed in vulnerable dopamine and pyramidal neurons laser-captured from 190 human brains and non-neuronal cells using ultra-deep, total RNA sequencing. 1526 and 3308 circRNAs are custom-tailored to the cell identity of dopamine and pyramidal neurons and enriched in synapse pathways. 29% of Parkinson's and 12% of Alzheimer's disease-associated genes produced validated circRNAs. circDNAJC6, which is transcribed from a juvenile-onset Parkinson's gene, is already dysregulated during prodromal, onset stages of common Parkinson's disease neuropathology. Globally, addiction-associated genes preferentially produce circRNAs in dopamine neurons, autism-associated genes in pyramidal neurons, and cancers in non-neuronal cells. This study shows that circular RNAs in the human brain are tailored to neuron identity and implicate circRNA-regulated synaptic specialization in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xianjun Dong
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Genomics and Bioinformatics Hub, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Yunfei Bai
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- State Key Lab of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhixiang Liao
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - David Gritsch
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Xiaoli Liu
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Department of Neurology, Zhejiang Hospital, Zhejiang, China
| | - Tao Wang
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Rebeca Borges-Monroy
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Alyssa Ehrlich
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mel B Feany
- Departement of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Clemens R Scherzer
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA.
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
81
|
Shi CY, Elcavage LE, Chivukula RR, Stefano J, Kleaveland B, Bartel DP. ZSWIM8 destabilizes many murine microRNAs and is required for proper embryonic growth and development. Genome Res 2023; 33:1482-1496. [PMID: 37532519 PMCID: PMC10620050 DOI: 10.1101/gr.278073.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
MicroRNAs (miRNAs) pair to sites in mRNAs to direct the degradation of these RNA transcripts. Conversely, certain RNA transcripts can direct the degradation of particular miRNAs. This target-directed miRNA degradation (TDMD) requires the ZSWIM8 E3 ubiquitin ligase. Here, we report the function of ZSWIM8 in the mouse embryo. Zswim8 -/- embryos were smaller than their littermates and died near the time of birth. This highly penetrant perinatal lethality was apparently caused by a lung sacculation defect attributed to failed maturation of alveolar epithelial cells. Some mutant individuals also had heart ventricular septal defects. These developmental abnormalities were accompanied by aberrant accumulation of more than 50 miRNAs observed across 12 tissues, which often led to enhanced repression of their mRNA targets. These ZSWIM8-sensitive miRNAs were preferentially produced from genomic miRNA clusters, and in some cases, ZSWIM8 caused a switch in the dominant strand or isoform that accumulated from a miRNA hairpin-observations suggesting that TDMD provides a mechanism to uncouple coproduced miRNAs from each other. Overall, our findings indicate that the regulatory influence of ZSWIM8, and presumably TDMD, in mammalian biology is widespread and consequential, and posit the existence of many yet-unidentified transcripts that trigger miRNA degradation.
Collapse
Affiliation(s)
- Charlie Y Shi
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Lara E Elcavage
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Raghu R Chivukula
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Joanna Stefano
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Benjamin Kleaveland
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10021, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA;
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
82
|
Wang K, Su X, Song Q, Chen Z, Chen H, Han Y, Zhu C, Shen H. The circ_006573/miR-376b-3p Axis Advances Spinal Cord Functional Recovery after Injury by Modulating Vascular Regeneration. Mol Neurobiol 2023; 60:4983-4999. [PMID: 37209265 DOI: 10.1007/s12035-023-03357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/18/2023] [Indexed: 05/22/2023]
Abstract
Abnormal expression of non-coding RNAs after spinal cord injury (SCI) is associated with pathophysiological outcomes. We bioinformatically predicted a circRNA-miRNA-mRNA axis in SCI. A total of 4690 mRNAs, 17 miRNAs, and 3928 circRNAs were differentially expressed, with co-expressed RNAs predicted to regulate pathways related to wound healing. Among the most highly differentially expressed circRNAs, circ_006573, but not circ_016395, weakened the viability and migration of rat aortic endothelial cells, and its biological effects were rescued with miR-376b-3p mimics. Furthermore, circ_006573 overexpression induced changes in Cebpb, IL-18, and Plscr1 expression that were reversed by miR-376b-3p. In a rat model, circ_006573 shRNA administration improved the pathological manifestations of SCI and ameliorated motor function. Moreover, the expression of CD31, CD34, and VEGF-A in spinal cord tissues was significantly elevated after circ_006573 shRNA treatment, indicating that circ_006573 may be involved in vascular regeneration and functional recovery after SCI. Thus, the circ_006573-miR-376b-3p axis offers a foundation for understanding pathophysiological mechanisms and predicting strategies for treating SCI.
Collapse
Affiliation(s)
- Kun Wang
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinjin Su
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingxin Song
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Chen
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingchao Han
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Zhu
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hongxing Shen
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
83
|
Liu J, Zhao F, Chen LL, Su S. Dysregulation of circular RNAs in inflammation and cancers. FUNDAMENTAL RESEARCH 2023; 3:683-691. [PMID: 38933304 PMCID: PMC11197579 DOI: 10.1016/j.fmre.2023.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 06/28/2024] Open
Abstract
Emerging lines of evidence have shown that the production of the covalently closed single-stranded circular RNAs is not splicing errors, but rather a regulated process with distinct biogenesis and turnover. Circular RNAs are expressed in a cell type- and tissue-specific manner and often localize to specific subcellular regions or organelles for functions. The dysregulation of circular RNAs from birth to death is linked to the pathogenesis and progression of diverse diseases. This review outlines how aberrant circular RNA biogenesis, subcellular location, and degradation are linked to disease progression, focusing on metaflammation and cancers. We also discuss potential therapeutic strategies and obstacles in targeting such disease-related circular RNAs.
Collapse
Affiliation(s)
- Jiayu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310003, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200092, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310003, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
84
|
Zhang Z, Li L, Shi H, Chen B, Li X, Zhang Y, Liu F, Wei W, Zhou Y, Liu K, Xia W, Gu X, Huang J, Tu S, Yin C, Shao A, Jiang L. Role of Circular RNAs in Atherosclerosis through Regulation of Inflammation, Cell Proliferation, Migration, and Apoptosis: Focus on Atherosclerotic Cerebrovascular Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1461. [PMID: 37629751 PMCID: PMC10456328 DOI: 10.3390/medicina59081461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Atherosclerosis (AS) is a disease dangerous to human health and the main pathological cause of ischemic cardiovascular diseases. Although its pathogenesis is not fully understood, numerous basic and clinical studies have shown that AS is a chronic inflammatory disease existing in all stages of atherogenesis. It may be a common link or pathway in the pathogenesis of multiple atherogenic factors. Inflammation is associated with AS complications, such as plaque rupture and ischemic cerebral infarction. In addition to inflammation, apoptosis plays an important role in AS. Apoptosis is a type of programmed cell death, and different apoptotic cells have different or even opposite roles in the process of AS. Unlike linear RNA, circular RNA (circRNA) a covalently closed circular non-coding RNA, is stable and can sponge miRNA, which can affect the stages of AS by regulating downstream pathways. Ultimately, circRNAs play very important roles in AS by regulating inflammation, apoptosis, and some other mechanisms. The study of circular RNAs can provide new ideas for the prediction, prevention, and treatment of AS.
Collapse
Affiliation(s)
- Zheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Huanqing Shi
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Biao Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Xiaoqin Li
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Yuyao Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Fei Liu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Wan Wei
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Yongji Zhou
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Keqin Liu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Wenqing Xia
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Xin Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Jinyu Huang
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China;
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, China;
| | - Congguo Yin
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Disease, Hangzhou 310009, China
| | - Lin Jiang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| |
Collapse
|
85
|
Wheeler BD, Gagnon JD, Zhu WS, Muñoz-Sandoval P, Wong SK, Simeonov DR, Li Z, Debarge R, Spitzer MH, Marson A, Ansel KM. The lncRNA Malat1 Inhibits miR-15/16 to Enhance Cytotoxic T Cell Activation and Memory Cell Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.536843. [PMID: 37547023 PMCID: PMC10401941 DOI: 10.1101/2023.04.14.536843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Proper activation of cytotoxic T cells via the T cell receptor and the costimulatory receptor CD28 is essential for adaptive immunity against viruses, many intracellular bacteria and cancers. Through biochemical analysis of RNA:protein interactions, we uncovered a non-coding RNA circuit regulating activation and differentiation of cytotoxic T cells composed of the long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) and the microRNA family miR-15/16. miR-15/16 is a widely and highly expressed tumor suppressor miRNA family important for cell proliferation and survival. miR-15/16 also play important roles in T cell responses to viral infection, including the regulation of antigen-specific T cell expansion and T cell memory. Comparative Argonaute-2 high throughput sequencing of crosslinking immunoprecipitation (Ago2 HITS-CLIP, or AHC) combined with gene expression profiling in normal and miR-15/16-deficient T cells revealed a large network of several hundred direct miR-15/16 target mRNAs, many with functional relevance for T cell activation, survival and memory formation. Among these targets, the long non-coding RNA Malat1 contained the largest absolute magnitude miR-15/16-dependent AHC peak in T cells. This binding site was also among the strongest lncRNA:miRNA interactions detected in the T cell transcriptome. We used CRISPR targeting with homology directed repair to generate mice with a 5-nucleotide mutation in the miR-15/16 binding site in Malat1. This mutation interrupted Malat1:miR-15/16 interaction, and enhanced the repression of other miR-15/16 target genes, including CD28. Interrupting Malat1 interaction with miR-15/16 decreased cytotoxic T cell activation, including the expression of IL-2 and a broader CD28-responsive gene program. Accordingly, Malat1 mutation diminished memory cell persistence following LCMV Armstrong and Listeria monocytogenes infection. This study marks a significant advance in the study of long noncoding RNAs in the immune system by ascribing cell-intrinsic, sequence-specific in vivo function to Malat1. These findings have implications for T cell-mediated autoimmune diseases, antiviral and anti-tumor immunity, as well as lung adenocarcinoma and other malignancies where Malat1 is overexpressed.
Collapse
Affiliation(s)
- Benjamin D Wheeler
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| | - John D Gagnon
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| | - Wandi S Zhu
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| | - Priscila Muñoz-Sandoval
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| | - Simon K Wong
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Dimitre R Simeonov
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Rachel Debarge
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew H Spitzer
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Alexander Marson
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - K Mark Ansel
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
86
|
Titze-de-Almeida SS, Titze-de-Almeida R. Progress in circRNA-Targeted Therapy in Experimental Parkinson's Disease. Pharmaceutics 2023; 15:2035. [PMID: 37631249 PMCID: PMC10459713 DOI: 10.3390/pharmaceutics15082035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Circular RNAs (circRNAs) are single-stranded RNA molecules often circularized by backsplicing. Growing evidence implicates circRNAs in the underlying mechanisms of various diseases, such as Alzheimer's and Parkinson's disease (PD)-the first and second most prevalent neurodegenerative disorders. In this sense, circSNCA, circHIPK2, circHIPK3, and circSLC8A1 are circRNAs that have been related to the neurodegenerative process of PD. Gain-of-function and loss-of-function studies on circRNAs have shed light on their roles in the pathobiology of various diseases. Gain-of-function approaches typically employ viral or non-viral vectors that hyperexpress RNA sequences capable of circularizing to form the specific circRNA under investigation. In contrast, loss-of-function studies utilize CRISPR/Cas systems, antisense oligonucleotides (ASOs), or RNAi techniques to knock down the target circRNA. The role of aberrantly expressed circRNAs in brain pathology has raised a critical question: could circRNAs serve as viable targets for neuroprotective treatments? Translating any oligonucleotide-based therapy, including those targeting circRNAs, involves developing adequate brain delivery systems, minimizing off-target effects, and addressing the high costs of treatment. Nonetheless, RNAi-based FDA-approved drugs have entered the market, and circRNAs have attracted significant attention and investment from major pharmaceutical companies. Spanning from bench to bedside, circRNAs present a vast opportunity in biotechnology for oligonucleotide-based therapies designed to slow or even halt the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Simoneide Souza Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
- Research Center for Major Themes, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
- Research Center for Major Themes, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
87
|
Chen C, Guo M, Zhao X, Zhao J, Chen L, He Z, Xu L, Zha Y. MicroRNA-7: A New Intervention Target for Inflammation and Related Diseases. Biomolecules 2023; 13:1185. [PMID: 37627250 PMCID: PMC10452300 DOI: 10.3390/biom13081185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA that can regulate physiological and pathological processes through post-transcriptional regulatory gene expression. As an important member of the miRNAs family, microRNA-7 (miR-7) was first discovered in 2001 to play an important regulatory role in tissue and organ development. Studies have shown that miR-7 participates in various tissue and organ development processes, tumorigenesis, aging, and other processes by regulating different target molecules. Notably, a series of recent studies have determined that miR-7 plays a key regulatory role in the occurrence of inflammation and related diseases. In particular, miR-7 can affect the immune response of the body by influencing T cell activation, macrophage function, dendritic cell (DC) maturation, inflammatory body activation, and other mechanisms, which has important potential application value in the intervention of related diseases. This article reviews the current regulatory role of miR-7 in inflammation and related diseases, including viral infection, autoimmune hepatitis, inflammatory bowel disease, and encephalitis. It expounds on the molecular mechanism by which miR-7 regulates the occurrence of inflammatory diseases. Finally, the existing problems and future development directions of miR-7-based intervention on inflammation and related diseases are discussed to provide new references and help strengthen the understanding of the pathogenesis of inflammation and related diseases, as well as the development of new strategies for clinical intervention.
Collapse
Affiliation(s)
- Chao Chen
- School of Medicine, Guizhou University, Guiyang 550025, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Xu Zhao
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Longqing Chen
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Yan Zha
- School of Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
88
|
Fabbrini M, Scicchitano D, Candela M, Turroni S, Rampelli S. Connect the dots: sketching out microbiome interactions through networking approaches. MICROBIOME RESEARCH REPORTS 2023; 2:25. [PMID: 38058764 PMCID: PMC10696587 DOI: 10.20517/mrr.2023.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 12/08/2023]
Abstract
Microbiome networking analysis has emerged as a powerful tool for studying the complex interactions among microorganisms in various ecological niches, including the human body and several environments. This analysis has been used extensively in both human and environmental studies, revealing key taxa and functional units peculiar to the ecosystem considered. In particular, it has been mainly used to investigate the effects of environmental stressors, such as pollution, climate change or therapies, on host-associated microbial communities and ecosystem function. In this review, we discuss the latest advances in microbiome networking analysis, including methods for constructing and analyzing microbiome networks, and provide a case study on how to use these tools. These analyses typically involve constructing a network that represents interactions among microbial taxa or functional units, such as genes or metabolic pathways. Such networks can be based on a variety of data sources, including 16S rRNA sequencing, metagenomic sequencing, and metabolomics data. Once constructed, these networks can be analyzed to identify key nodes or modules important for the stability and function of the microbiome. By providing insights into essential ecological features of microbial communities, microbiome networking analysis has the potential to transform our understanding of the microbial world and its impact on human health and the environment.
Collapse
Affiliation(s)
- Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
- Authors contributed equally
| | - Daniel Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
- Authors contributed equally
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
89
|
Jones BT, Han J, Zhang H, Hammer RE, Evers BM, Rakheja D, Acharya A, Mendell JT. Target-directed microRNA degradation regulates developmental microRNA expression and embryonic growth in mammals. Genes Dev 2023; 37:661-674. [PMID: 37553261 PMCID: PMC10499020 DOI: 10.1101/gad.350906.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play critical roles in development and disease. Target-directed miRNA degradation (TDMD), a pathway in which miRNAs that bind to specialized targets with extensive complementarity are rapidly decayed, has emerged as a potent mechanism of controlling miRNA levels. Nevertheless, the biological role and scope of miRNA regulation by TDMD in mammals remains poorly understood. To address these questions, we generated mice with constitutive or conditional deletion of Zswim8, which encodes an essential TDMD factor. Loss of Zswim8 resulted in developmental defects in the heart and lungs, growth restriction, and perinatal lethality. Small RNA sequencing of embryonic tissues revealed widespread miRNA regulation by TDMD and greatly expanded the known catalog of miRNAs regulated by this pathway. These experiments also uncovered novel features of TDMD-regulated miRNAs, including their enrichment in cotranscribed clusters and examples in which TDMD underlies "arm switching," a phenomenon wherein the dominant strand of a miRNA precursor changes in different tissues or conditions. Importantly, deletion of two miRNAs, miR-322 and miR-503, rescued growth of Zswim8-null embryos, directly implicating the TDMD pathway as a regulator of mammalian body size. These data illuminate the broad landscape and developmental role of TDMD in mammals.
Collapse
Affiliation(s)
- Benjamin T Jones
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jaeil Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Robert E Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Asha Acharya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
90
|
Jones BT, Han J, Zhang H, Hammer RE, Evers BM, Rakheja D, Acharya A, Mendell JT. Target-directed microRNA degradation regulates developmental microRNA expression and embryonic growth in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546601. [PMID: 37425885 PMCID: PMC10327180 DOI: 10.1101/2023.06.26.546601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play critical roles in development and disease. Target-directed miRNA degradation (TDMD), a pathway in which miRNAs that bind to specialized targets with extensive complementarity are rapidly decayed, has emerged as a potent mechanism of controlling miRNA levels. Nevertheless, the biological role and scope of miRNA regulation by TDMD in mammals remains poorly understood. To address these questions, we generated mice with constitutive or conditional deletion of Zswim8 , which encodes an essential TDMD factor. Loss of Zswim8 resulted in developmental defects in heart and lung, growth restriction, and perinatal lethality. Small RNA sequencing of embryonic tissues revealed widespread miRNA regulation by TDMD and greatly expanded the known catalog of miRNAs regulated by this pathway. These experiments also uncovered novel features of TDMD-regulated miRNAs, including their enrichment in co-transcribed clusters and examples in which TDMD underlies 'arm switching', a phenomenon wherein the dominant strand of a miRNA precursor changes in different tissues or conditions. Importantly, deletion of two miRNAs, miR-322 and miR-503, rescued growth of Zswim8 null embryos, directly implicating the TDMD pathway as a regulator of mammalian body size. These data illuminate the broad landscape and developmental role of TDMD in mammals.
Collapse
Affiliation(s)
- Benjamin T Jones
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jaeil Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bret M. Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Asha Acharya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T. Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
91
|
Lin H, Li J, Wang M, Zhang X, Zhu T. Exosomal Long Noncoding RNAs in NSCLC: Dysfunctions and Clinical Potential. J Cancer 2023; 14:1736-1750. [PMID: 37476194 PMCID: PMC10355206 DOI: 10.7150/jca.84506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023] Open
Abstract
Exosomes are a typical subset of extracellular vesicles (EVs) that can be transmitted from parent cells to recipient cells via human bodily fluids. Exosomes perform a vital role in mediating intercellular communication by shuttling bioactive cargos, such as nucleic acids, proteins and lipids. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides without protein translation ability and can be selectively packaged into exosomes. Accumulating evidence indicates that exosomal lncRNAs have a critical role in tumor initiation and progression through regulating tumor proliferation, apoptosis, invasion, metastasis, angiogenesis, treatment resistance and tumor microenvironment. Increasing studies suggest that exosomal lncRNAs have great potential to be served as novel targets and non-invasive biomarkers for diagnosis and prognosis in non-small cell lung cancer (NSCLC). In this review, we provide an overview of current research on the disordered functions of exosomal lncRNAs in NSCLC and summarize their potential clinical applications as diagnostic and prognostic biomarkers and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Hongze Lin
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital affiliated to Jiangsu University, Yixing 214200, China
| | - Jiaying Li
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital affiliated to Jiangsu University, Yixing 214200, China
| | - Maoye Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital affiliated to Jiangsu University, Yixing 214200, China
| |
Collapse
|
92
|
Yang S, Kim SH, Kang M, Joo JY. Harnessing deep learning into hidden mutations of neurological disorders for therapeutic challenges. Arch Pharm Res 2023:10.1007/s12272-023-01450-5. [PMID: 37261600 DOI: 10.1007/s12272-023-01450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
The relevant study of transcriptome-wide variations and neurological disorders in the evolved field of genomic data science is on the rise. Deep learning has been highlighted utilizing algorithms on massive amounts of data in a human-like manner, and is expected to predict the dependency or druggability of hidden mutations within the genome. Enormous mutational variants in coding and noncoding transcripts have been discovered along the genome by far, despite of the fine-tuned genetic proofreading machinery. These variants could be capable of inducing various pathological conditions, including neurological disorders, which require lifelong care. Several limitations and questions emerge, including the use of conventional processes via limited patient-driven sequence acquisitions and decoding-based inferences as well as how rare variants can be deduced as a population-specific etiology. These puzzles require harnessing of advanced systems for precise disease prediction, drug development and drug applications. In this review, we summarize the pathophysiological discoveries of pathogenic variants in both coding and noncoding transcripts in neurological disorders, and the current advantage of deep learning applications. In addition, we discuss the challenges encountered and how to outperform them with advancing interpretation.
Collapse
Affiliation(s)
- Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Rm 407, Bldg.42, 55 Hanyangdaehak-Ro, Sangnok-Gu Ansan, Ansan, Gyeonggi-Do, 15588, Republic of Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Rm 407, Bldg.42, 55 Hanyangdaehak-Ro, Sangnok-Gu Ansan, Ansan, Gyeonggi-Do, 15588, Republic of Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV, 89154, USA
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Rm 407, Bldg.42, 55 Hanyangdaehak-Ro, Sangnok-Gu Ansan, Ansan, Gyeonggi-Do, 15588, Republic of Korea.
| |
Collapse
|
93
|
Krausová M, Kreplová M, Banik P, Cvačková Z, Kubovčiak J, Modrák M, Zudová D, Lindovský J, Kubik-Zahorodna A, Pálková M, Kolář M, Procházka J, Sedláček R, Staněk D. Retinitis pigmentosa-associated mutations in mouse Prpf8 cause misexpression of circRNAs and degeneration of cerebellar granule cells. Life Sci Alliance 2023; 6:e202201855. [PMID: 37019475 PMCID: PMC10078954 DOI: 10.26508/lsa.202201855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
A subset of patients with retinitis pigmentosa (RP) carry mutations in several spliceosomal components including the PRPF8 protein. Here, we established two alleles of murine Prpf8 that genocopy or mimic aberrant PRPF8 found in RP patients-the substitution p.Tyr2334Asn and an extended protein variant p.Glu2331ValfsX15. Homozygous mice expressing the aberrant Prpf8 variants developed within the first 2 mo progressive atrophy of the cerebellum because of extensive granule cell loss, whereas other cerebellar cells remained unaffected. We further show that a subset of circRNAs were deregulated in the cerebellum of both Prpf8-RP mouse strains. To identify potential risk factors that sensitize the cerebellum for Prpf8 mutations, we monitored the expression of several splicing proteins during the first 8 wk. We observed down-regulation of all selected splicing proteins in the WT cerebellum, which coincided with neurodegeneration onset. The decrease in splicing protein expression was further pronounced in mouse strains expressing mutated Prpf8. Collectively, we propose a model where physiological reduction in spliceosomal components during postnatal tissue maturation sensitizes cells to the expression of aberrant Prpf8 and the subsequent deregulation of circRNAs triggers neuronal death.
Collapse
Affiliation(s)
- Michaela Krausová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Kreplová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Poulami Banik
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Cvačková
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kubovčiak
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Modrák
- Core Facility Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dagmar Zudová
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Jiří Lindovský
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Agnieszka Kubik-Zahorodna
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Marcela Pálková
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Procházka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedláček
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
94
|
Qian SH, Xiong YL, Chen L, Geng YJ, Tang XM, Chen ZX. Dynamic Spatial-temporal Expression Ratio of X Chromosome to Autosomes but Stable Dosage Compensation in Mammals. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:589-600. [PMID: 36031057 PMCID: PMC10787176 DOI: 10.1016/j.gpb.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In the evolutionary model of dosage compensation, per-allele expression level of the X chromosome has been proposed to have twofold up-regulation to compensate its dose reduction in males (XY) compared to females (XX). However, the expression regulation of X-linked genes is still controversial, and comprehensive evaluations are still lacking. By integrating multi-omics datasets in mammals, we investigated the expression ratios including X to autosomes (X:AA ratio) and X to orthologs (X:XX ratio) at the transcriptome, translatome, and proteome levels. We revealed a dynamic spatial-temporal X:AA ratio during development in humans and mice. Meanwhile, by tracing the evolution of orthologous gene expression in chickens, platypuses, and opossums, we found a stable expression ratio of X-linked genes in humans to their autosomal orthologs in other species (X:XX ≈ 1) across tissues and developmental stages, demonstrating stable dosage compensation in mammals. We also found that different epigenetic regulations contributed to the high tissue specificity and stage specificity of X-linked gene expression, thus affecting X:AA ratios. It could be concluded that the dynamics of X:AA ratios were attributed to the different gene contents and expression preferences of the X chromosome, rather than the stable dosage compensation.
Collapse
Affiliation(s)
- Sheng Hu Qian
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Li Xiong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying-Jie Geng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Man Tang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen-Xia Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
95
|
Lau Zajaczkowski E, Zhao Q, Liau WS, Gong H, Umanda Madugalle S, Periyakaruppiah A, Jane Leighton L, Musgrove M, Ren H, Davies J, Robert Marshall P, William Bredy T. Localised Cdr1as activity is required for fear extinction memory. Neurobiol Learn Mem 2023:107777. [PMID: 37257557 DOI: 10.1016/j.nlm.2023.107777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Circular RNAs (circRNAs) comprise a novel class of regulatory RNAs that are abundant in the brain, particularly within synapses. They are highly stable, dynamically regulated, and display a range of functions, including serving as decoys for microRNAs and proteins and, in some cases, circRNAs also undergo translation. Early work in animal models revealed an association between circRNAs and neurodegenerative and neuropsychiatric disorders; however, little is known about the link between circRNA function and memory. To address this, we examined circRNA in synaptosomes derived from the medial prefrontal cortex of fear extinction-trained male C57BL/6J mice and found 12837 circRNAs that were enriched at the synapse, including cerebellar degeneration-related protein 1 antisense RNA (Cdr1as). Targeted knockdown of Cdr1as in the neural processes of the infralimbic cortex led to impaired fear extinction memory. These findings highlight the involvement of localised circRNA activity at the synapse in memory formation.
Collapse
Affiliation(s)
- Esmi Lau Zajaczkowski
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Qiongyi Zhao
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Wei-Siang Liau
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Hao Gong
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Ambika Periyakaruppiah
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Laura Jane Leighton
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Mason Musgrove
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Haobin Ren
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Joshua Davies
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul Robert Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Genome Sciences and Cancer Division & Eccles Institute of Neuroscience, Australian National University, Canberra, Australia.
| | - Timothy William Bredy
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
96
|
Soutschek M, Schratt G. Non-coding RNA in the wiring and remodeling of neural circuits. Neuron 2023:S0896-6273(23)00341-0. [PMID: 37230080 DOI: 10.1016/j.neuron.2023.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
The brain constantly adapts to changes in the environment, a capability that underlies memory and behavior. Long-term adaptations require the remodeling of neural circuits that are mediated by activity-dependent alterations in gene expression. Over the last two decades, it has been shown that the expression of protein-coding genes is significantly regulated by a complex layer of non-coding RNA (ncRNA) interactions. The aim of this review is to summarize recent discoveries regarding the functional involvement of ncRNAs during different stages of neural circuit development, activity-dependent circuit remodeling, and circuit maladapations underlying neurological and neuropsychiatric disorders. In addition to the intensively studied microRNA (miRNA) family, we focus on more recently added ncRNA classes, such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs), and discuss the complex regulatory interactions between these different RNAs. We conclude by discussing the potential relevance of ncRNAs for cell-type and -state-specific regulation in the context of memory formation, the evolution of human cognitive abilities, and the development of new diagnostic and therapeutic tools in brain disorders.
Collapse
Affiliation(s)
- Michael Soutschek
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, 8057 Zurich, Switzerland
| | - Gerhard Schratt
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, 8057 Zurich, Switzerland.
| |
Collapse
|
97
|
Wang PY, Bartel DP. A statistical approach for identifying primary substrates of ZSWIM8-mediated microRNA degradation in small-RNA sequencing data. BMC Bioinformatics 2023; 24:195. [PMID: 37170259 PMCID: PMC10176919 DOI: 10.1186/s12859-023-05306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND One strategy for identifying targets of a regulatory factor is to perturb the factor and use high-throughput RNA sequencing to examine the consequences. However, distinguishing direct targets from secondary effects and experimental noise can be challenging when confounding signal is present in the background at varying levels. RESULTS Here, we present a statistical modeling strategy to identify microRNAs that are primary substrates of target-directed miRNA degradation (TDMD) mediated by ZSWIM8. This method uses a bi-beta-uniform mixture (BBUM) model to separate primary from background signal components, leveraging the expectation that primary signal is restricted to upregulation and not downregulation upon loss of ZSWIM8. The BBUM model strategy retained the apparent sensitivity and specificity of the previous ad hoc approach but was more robust against outliers, achieved a more consistent stringency, and could be performed using a single cutoff of false discovery rate (FDR). CONCLUSIONS We developed the BBUM model, a robust statistical modeling strategy to account for background secondary signal in differential expression data. It performed well for identifying primary substrates of TDMD and should be useful for other applications in which the primary regulatory targets are only upregulated or only downregulated. The BBUM model, FDR-correction algorithm, and significance-testing methods are available as an R package at https://github.com/wyppeter/bbum .
Collapse
Affiliation(s)
- Peter Y Wang
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David P Bartel
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
98
|
Bersani F, Picca F, Morena D, Righi L, Napoli F, Russo M, Oddo D, Rospo G, Negrino C, Castella B, Volante M, Listì A, Zambelli V, Benso F, Tabbò F, Bironzo P, Monteleone E, Poli V, Pietrantonio F, Di Nicolantonio F, Bardelli A, Ponzetto C, Novello S, Scagliotti GV, Taulli R. Exploring circular MET RNA as a potential biomarker in tumors exhibiting high MET activity. J Exp Clin Cancer Res 2023; 42:120. [PMID: 37170152 PMCID: PMC10176894 DOI: 10.1186/s13046-023-02690-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND MET-driven acquired resistance is emerging with unanticipated frequency in patients relapsing upon molecular therapy treatments. However, the determination of MET amplification remains challenging using both standard and next-generation sequencing-based methodologies. Liquid biopsy is an effective, non-invasive approach to define cancer genomic profiles, track tumor evolution over time, monitor treatment response and detect molecular resistance in advance. Circular RNAs (circRNAs), a family of RNA molecules that originate from a process of back-splicing, are attracting growing interest as potential novel biomarkers for their stability in body fluids. METHODS We identified a circRNA encoded by the MET gene (circMET) and exploited blood-derived cell-free RNA (cfRNA) and matched tumor tissues to identify, stratify and monitor advanced cancer patients molecularly characterized by high MET activity, generally associated with genomic amplification. RESULTS Using publicly available bioinformatic tools, we discovered that the MET locus transcribes several circRNA molecules, but only one candidate, circMET, was particularly abundant. Deeper molecular analysis revealed that circMET levels positively correlated with MET expression and activity, especially in MET-amplified cells. We developed a circMET-detection strategy and, in parallel, we performed standard FISH and IHC analyses in the same specimens to assess whether circMET quantification could identify patients displaying high MET activity. Longitudinal monitoring of circMET levels in the plasma of selected patients revealed the early emergence of MET amplification as a mechanism of acquired resistance to molecular therapies. CONCLUSIONS We found that measurement of circMET levels allows identification and tracking of patients characterized by high MET activity. Circulating circMET (ccMET) detection and analysis could be a simple, cost-effective, non-invasive approach to better implement patient stratification based on MET expression, as well as to dynamically monitor over time both therapy response and clonal evolution during treatment.
Collapse
Affiliation(s)
- Francesca Bersani
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Francesca Picca
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Deborah Morena
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisella Righi
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Francesca Napoli
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Mariangela Russo
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Daniele Oddo
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Giuseppe Rospo
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Carola Negrino
- Department of Oncology, University of Torino, Orbassano, Italy
| | - Barbara Castella
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), University of Torino, Turin, Italy
| | - Marco Volante
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Angela Listì
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Vanessa Zambelli
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Federica Benso
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Fabrizio Tabbò
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Paolo Bironzo
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Emanuele Monteleone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Orbassano, Italy
- IFOM, Istituto Fondazione di Oncologia Molecolare ETS, Milan, Italy
| | - Carola Ponzetto
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Silvia Novello
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Giorgio V Scagliotti
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy.
| | - Riccardo Taulli
- Department of Oncology, University of Torino, Orbassano, Italy.
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy.
| |
Collapse
|
99
|
Dabi Y, Favier A, Razakamanantsoa L, Suisse S, Marie Y, Touboul C, Ferrier C, Bendifallah S, Daraï E. Value of non-coding RNAs to assess lymph node status in cervical cancer. Front Oncol 2023; 13:1144672. [PMID: 37234986 PMCID: PMC10206114 DOI: 10.3389/fonc.2023.1144672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Cervical cancer (CC) is the fourth cancer in women and is the leading cause of cancer death in 42 countries. Lymph node metastasis is a determinant prognostic factor, as underlined in the latest FIGO classification. However, assessment of lymph node status remains difficult, despite the progress of imaging such as PET-CT and MRI. In the specific setting of CC, all data underlined the need for new biomarkers easily available to assess lymph node status. Previous studies have underlined the potential value of ncRNA expression in gynecological cancers. In this review, we aimed to evaluate the contribution of ncRNAs in tissue and biofluid samples to determine lymph node status in CC with potential impact on both surgical and adjuvant therapies. In tissue samples, our analysis found that there are arguments to support the role of ncRNAs in physiopathology, differential diagnosis from normal tissue, preinvasive and invasive tumors. In biofluids, despite small studies especially concerning miRNAs expression, promising data opens up new avenue to establish a non-invasive signature for lymph node status as well as a tool to predict response to neo- and adjuvant therapies, thus improving management algorithm of patients with CC.
Collapse
Affiliation(s)
- Yohann Dabi
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Amelia Favier
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Léo Razakamanantsoa
- Sorbonne University, Inserm UMR S 938, Centre de recherche de saint Antoine (CRSA), Hôpital Saint Antoine, Paris, France
- Department of Radiology imaging and Interventional speciality imaging, Tenon Hospital, Paris, France
| | | | - Yannick Marie
- Gentoyping and Sequencing core facility, iGenSeq, Institut du Cerveau et de la Moelle épinière, Institut du Cerveau et de la Moelle (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Cyril Touboul
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Clément Ferrier
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Sofiane Bendifallah
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Emile Daraï
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| |
Collapse
|
100
|
Yu LL, Xiao Q, Yu B, Lv QL, Liu ZQ, Yin JY. CircRNAs in tumor immunity and immunotherapy: Perspectives from innate and adaptive immunity. Cancer Lett 2023; 564:216219. [PMID: 37146937 DOI: 10.1016/j.canlet.2023.216219] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Tumor immunotherapy is a new therapeutic approach that has been evolving in the last decade and has dramatically changed the treatment options for cancer. Circular RNAs (circRNAs) are non-coding RNAs (ncRNAs) with high stability, tissue-specific and cell-specific expression. There is growing evidence that circRNAs are involved in the regulation of both adaptive and innate immunity. They play important roles in tumor immunotherapy by affecting macrophage, NK and T cell function. The high stability and tissue specificity make them ideal candidate biomarkers for therapeutic effects. CircRNAs also represent one of promising targets or adjuvant for immunotherapy. Investigations in this field progress rapidly and provide essential support for the diagnosis, prognosis and treatment guidance of cancers in the future. In this review, we summarize the role of circRNAs on tumor immunity from the viewpoint of innate and adaptive immunity, and explore the role of circRNAs in tumor immunotherapy.
Collapse
Affiliation(s)
- Lu-Lu Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
| | - Qi Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
| | - Bing Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
| | - Qiao-Li Lv
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, PR China; National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, PR China.
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| |
Collapse
|