51
|
Sukjoi W, Young C, Acland M, Siritutsoontorn S, Roytrakul S, Klingler-Hoffmann M, Hoffmann P, Jitrapakdee S. Proteomic analysis of holocarboxylase synthetase deficient-MDA-MB-231 breast cancer cells revealed the biochemical changes associated with cell death, impaired growth signaling, and metabolism. Front Mol Biosci 2024; 10:1250423. [PMID: 38283944 PMCID: PMC10812114 DOI: 10.3389/fmolb.2023.1250423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
We have previously shown that the holocarboxylase synthetase (HLCS) is overexpressed in breast cancer tissue of patients, and silencing of its expression in triple-negative cancer cell line inhibits growth and migration. Here we investigated the global biochemical changes associated with HLCS knockdown in MDA-MB-231 cells to discern the pathways that involve HLCS. Proteomic analysis of two independent HLCS knockdown cell lines identified 347 differentially expressed proteins (DEPs) whose expression change > 2-fold (p < 0.05) relative to the control cell line. GO enrichment analysis showed that these DEPs were mainly associated with the cellular process such as cellular metabolic process, cellular response to stimulus, and cellular component organization or biogenesis, metabolic process, biological regulation, response to stimuli, localization, and signaling. Among the 347 identified DEPs, 64 proteins were commonly found in both HLCS knockdown clones, confirming their authenticity. Validation of some of these DEPs by Western blot analysis showed that plasminogen activator inhibitor type 2 (SerpinB2) and interstitial collagenase (MMP1) were approximately 90% decreased in HLCS knockdown cells, consistent with a 50%-60% decrease in invasion ability of knockdown cells. Notably, argininosuccinate synthase 1 (ASS1), one of the enzymes in the urea cycle, showed approximately a 10-fold increase in the knockdown cells, suggesting the crucial role of HLCS in supporting the urea cycle in the triple-negative cancer cell line. Collectively, our proteomic data provide biochemical insights into how suppression of HLCS expression perturbs global changes in cellular processes and metabolic pathways, impairing cell growth and invasion.
Collapse
Affiliation(s)
- Witchuda Sukjoi
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Clifford Young
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mitchell Acland
- Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | | | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Agency, Pathumthani, Thailand
| | | | - Peter Hoffmann
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
52
|
Zhang JX, Luo WM, Wang BW, Li RT, Zhang Q, Zhang XY, Fang ZZ, Zhang ZP. The association between plasma free amino acids and type 2 diabetes mellitus complicated with infection in Chinese patients. Diabetol Metab Syndr 2024; 16:9. [PMID: 38191455 PMCID: PMC10775586 DOI: 10.1186/s13098-023-01203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM), one of the most common public diseases threatening human health, is always accompanied by infection. Though there are still a variety of flaws in the treatment of some infectious diseases, metabolomics provides a fresh perspective to explore the relationship between T2DM and infection. Our research aimed to investigate the association between plasma free amino acids (PFAAs) and T2DM complicated with infection in Chinese patients. METHODS A cross-sectional study was conducted from May 2015 to August 2016. We retrieved the medical records of 1032 inpatients with T2DM from Liaoning Medical University First Affiliated Hospital and we used mass spectrometry to quantify 23 PFAAs. Infections contained 15 individual categories that could be retrieved from the database. Principal component analysis was used to extract factors of PFAAs. Multi-variable binary logistic regression was used to obtain odds ratios (OR) and their 95% confidence intervals (CI). RESULTS Among 1032 inpatients,109 (10.6%) had infectious diseases. Six factors, accounting for 68.6% of the total variance, were extracted. Factor 4 consisted of Glu, Asp and Orn. Factor 5 consisted of Hcy and Pip. After adjusting for potential confounders, factor 4 was positively correlated with T2DM complicated with infection in Chinese T2DM patients (OR: 1.27, 95%CI: 1.06-1.52). Individual Hcy in factor 5 was positively associated with T2DM complicated with infection (OR: 1.33, 95%CI: 1.08-1.64). Furthermore, factor 4 (OR: 1.44, 95%CI: 1.11-1.87), Orn (OR: 1.01, 95%CI: 1.00-1.02) and Hcy (OR: 1.56, 95%CI: 1.14-3.14) were positively associated with bacterial infection in Chinese T2DM patients, while factor 5 (OR: 0.71, 95%CI: 0.50-1.00) was negatively associated with bacterial infection. CONCLUSIONS Urea cycle-related metabolites (Orn, Asp, Glu) and Hcy were positively associated with T2DM complicated with infection in China. Orn and Hcy were positively associated with bacterial infection in T2DM patients in China.
Collapse
Affiliation(s)
- Jing-Xi Zhang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China
| | - Wei-Ming Luo
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China
| | - Bo-Wen Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China
| | - Ru-Tao Li
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China
| | - Qian Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China
| | - Xiang-Yu Zhang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China.
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China.
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300041, China.
| | - Zhi-Peng Zhang
- General Surgery of Peking University Third Hospital, Beijing, China
| |
Collapse
|
53
|
Pan M, Ge CC, Niu SZ, Duan YY, Fan YM, Jin QW, Chen X, Tao JP, Huang SY. Functional analyses of Toxoplasma gondii dihydroorotase reveal a promising anti-parasitic target. FASEB J 2024; 38:e23397. [PMID: 38149908 DOI: 10.1096/fj.202301493r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Toxoplasma gondii relies heavily on the de novo pyrimidine biosynthesis pathway for fueling the high uridine-5'-monophosphate (UMP) demand during parasite growth. The third step of de novo pyrimidine biosynthesis is catalyzed by dihydroorotase (DHO), a metalloenzyme that catalyzes the reversible condensation of carbamoyl aspartate to dihydroorotate. Here, functional analyses of TgDHO reveal that tachyzoites lacking DHO are impaired in overall growth due to decreased levels of UMP, and the noticeably growth restriction could be partially rescued after supplementation with uracil or high concentrations of L-dihydroorotate in vitro. When pyrimidine salvage pathway is disrupted, both DHOH35A and DHOD284E mutant strains proliferated much slower than DHO-expressing parasites, suggesting an essential role of both TgDHO His35 and Asp284 residues in parasite growth. Additionally, DHO deletion causes the limitation of bradyzoite growth under the condition of uracil supplementation or uracil deprivation. During the infection in mice, the DHO-deficient parasites are avirulent, despite the generation of smaller tissue cysts. The results reveal that TgDHO contributes to parasite growth both in vitro and in vivo. The significantly differences between TgDHO and mammalian DHO reflect that DHO can be exploited to produce specific inhibitors targeting apicomplexan parasites. Moreover, potential DHO inhibitors exert beneficial effects on enzymatic activity of TgDHO and T. gondii growth in vitro. In conclusion, these data highlight the important role of TgDHO in parasite growth and reveal that it is a promising anti-parasitic target for future control of toxoplasmosis.
Collapse
Affiliation(s)
- Ming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Ceng-Ceng Ge
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Shui-Zhu Niu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Yin-Yan Duan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Yi-Min Fan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Qi-Wang Jin
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Xiang Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Jian-Ping Tao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Si-Yang Huang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
54
|
Trejo-Solis C, Silva-Adaya D, Serrano-García N, Magaña-Maldonado R, Jimenez-Farfan D, Ferreira-Guerrero E, Cruz-Salgado A, Castillo-Rodriguez RA. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma. Int J Mol Sci 2023; 24:17633. [PMID: 38139462 PMCID: PMC10744281 DOI: 10.3390/ijms242417633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Elizabeth Ferreira-Guerrero
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | | |
Collapse
|
55
|
Ene CD, Tampa M, Georgescu SR, Matei C, Leulescu IMT, Dogaru CI, Penescu MN, Nicolae I. Disturbances in Nitric Oxide Cycle and Related Molecular Pathways in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2023; 15:5797. [PMID: 38136342 PMCID: PMC10741465 DOI: 10.3390/cancers15245797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
It is important to note that maintaining adequate levels of nitric oxide (NO), the turnover, and the oxidation level of nitrogen are essential for the optimal progression of cellular processes, and alterations in the NO cycle indicate a crucial step in the onset and progression of multiple diseases. Cellular accumulation of NO and reactive nitrogen species in many types of tumour cells is expressed by an increased susceptibility to oxidative stress in the tumour microenvironment. Clear cell renal cell carcinoma (ccRCC) is a progressive metabolic disease in which tumour cells can adapt to metabolic reprogramming to enhance NO production in the tumour space. Understanding the factors governing NO biosynthesis metabolites in ccRCC represents a relevant, valuable approach to studying NO-based anticancer therapy. Exploring the molecular processes mediated by NO, related disturbances in molecular pathways, and NO-mediated signalling pathways in ccRCC could have significant therapeutic implications in managing and treating this condition.
Collapse
Affiliation(s)
- Corina Daniela Ene
- Department of Nephrology, Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania; (C.D.E.); (M.N.P.)
- Department of Nephrology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania; (I.M.T.L.); (C.I.D.); (I.N.)
| | - Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania; (I.M.T.L.); (C.I.D.); (I.N.)
| | - Clara Matei
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Iulia Maria Teodora Leulescu
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania; (I.M.T.L.); (C.I.D.); (I.N.)
| | - Claudia Ioana Dogaru
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania; (I.M.T.L.); (C.I.D.); (I.N.)
| | - Mircea Nicolae Penescu
- Department of Nephrology, Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania; (C.D.E.); (M.N.P.)
- Department of Nephrology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ilinca Nicolae
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania; (I.M.T.L.); (C.I.D.); (I.N.)
| |
Collapse
|
56
|
Liu S, Guan L, Peng C, Cheng Y, Cheng H, Wang F, Ma M, Zheng R, Ji Z, Cui P, Ren Y, Li L, Shi C, Wang J, Huang X, Cai X, Qu D, Zhang H, Mao Z, Liu H, Wang P, Sha W, Yang H, Wang L, Ge B. Mycobacterium tuberculosis suppresses host DNA repair to boost its intracellular survival. Cell Host Microbe 2023; 31:1820-1836.e10. [PMID: 37848028 DOI: 10.1016/j.chom.2023.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Mycobacterium tuberculosis (Mtb) triggers distinct changes in macrophages, resulting in the formation of lipid droplets that serve as a nutrient source. We discover that Mtb promotes lipid droplets by inhibiting DNA repair responses, resulting in the activation of the type-I IFN pathway and scavenger receptor-A1 (SR-A1)-mediated lipid droplet formation. Bacterial urease C (UreC, Rv1850) inhibits host DNA repair by interacting with RuvB-like protein 2 (RUVBL2) and impeding the formation of the RUVBL1-RUVBL2-RAD51 DNA repair complex. The suppression of this repair pathway increases the abundance of micronuclei that trigger the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway and subsequent interferon-β (IFN-β) production. UreC-mediated activation of the IFN-β pathway upregulates the expression of SR-A1 to form lipid droplets that facilitate Mtb replication. UreC inhibition via a urease inhibitor impaired Mtb growth within macrophages and in vivo. Thus, our findings identify mechanisms by which Mtb triggers a cascade of cellular events that establish a nutrient-rich replicative niche.
Collapse
Affiliation(s)
- Shanshan Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Liru Guan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Cheng Peng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yuanna Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Zhe Ji
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Pengfei Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yefei Ren
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Liru Li
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Chenyue Shi
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xia Cai
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Di Qu
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Haiping Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Haipeng Liu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Peng Wang
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China.
| |
Collapse
|
57
|
Ali ES, Ben-Sahra I. Regulation of nucleotide metabolism in cancers and immune disorders. Trends Cell Biol 2023; 33:950-966. [PMID: 36967301 PMCID: PMC10518033 DOI: 10.1016/j.tcb.2023.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
Nucleotides are the foundational elements of life. Proliferative cells acquire nutrients for energy production and the synthesis of macromolecules, including proteins, lipids, and nucleic acids. Nucleotides are continuously replenished through the activation of the nucleotide synthesis pathways. Despite the importance of nucleotides in cell physiology, there is still much to learn about how the purine and pyrimidine synthesis pathways are regulated in response to intracellular and exogenous signals. Over the past decade, evidence has emerged that several signaling pathways [Akt, mechanistic target of rapamycin complex I (mTORC1), RAS, TP53, and Hippo-Yes-associated protein (YAP) signaling] alter nucleotide synthesis activity and influence cell function. Here, we examine the mechanisms by which these signaling networks affect de novo nucleotide synthesis in mammalian cells. We also discuss how these molecular links can be targeted in diseases such as cancers and immune disorders.
Collapse
Affiliation(s)
- Eunus S Ali
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
58
|
Wei T, Liu J, Ma S, Wang M, Yuan Q, Huang A, Wu Z, Shang D, Yin P. A Nucleotide Metabolism-Related Gene Signature for Risk Stratification and Prognosis Prediction in Hepatocellular Carcinoma Based on an Integrated Transcriptomics and Metabolomics Approach. Metabolites 2023; 13:1116. [PMID: 37999212 PMCID: PMC10673507 DOI: 10.3390/metabo13111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 11/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. The in-depth study of genes and metabolites related to nucleotide metabolism will provide new ideas for predicting the prognosis of HCC patients. This study integrated the transcriptome data of different cancer types to explore the characteristics and significance of nucleotide metabolism-related genes (NMGRs) in different cancer types. Then, we constructed a new HCC classifier and prognosis model based on HCC samples from TCGA and GEO, and detected the gene expression level in the model through molecular biology experiments. Finally, nucleotide metabolism-related products in serum of HCC patients were examined using untargeted metabolomics. A total of 97 NMRGs were obtained based on bioinformatics techniques. In addition, a clinical model that could accurately predict the prognostic outcome of HCC was constructed, which contained 11 NMRGs. The results of PCR experiments showed that the expression levels of these genes were basically consistent with the predicted trends. Meanwhile, the results of untargeted metabolomics also proved that there was a significant nucleotide metabolism disorder in the development of HCC. Our results provide a promising insight into nucleotide metabolism in HCC, as well as a tailored prognostic and chemotherapy sensitivity prediction tool for patients.
Collapse
Affiliation(s)
- Tianfu Wei
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Jifeng Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Shurong Ma
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Mimi Wang
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Qihang Yuan
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Anliang Huang
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Zeming Wu
- iPhenome Biotechnology (Yun Pu Kang) Inc., Dalian 116000, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Peiyuan Yin
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| |
Collapse
|
59
|
Marrocco I, Yarden Y. Resistance of Lung Cancer to EGFR-Specific Kinase Inhibitors: Activation of Bypass Pathways and Endogenous Mutators. Cancers (Basel) 2023; 15:5009. [PMID: 37894376 PMCID: PMC10605519 DOI: 10.3390/cancers15205009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitors (TKIs) have changed the landscape of lung cancer therapy. For patients who are treated with the new TKIs, the current median survival exceeds 3 years, substantially better than the average 20 month survival rate only a decade ago. Unfortunately, despite initial efficacy, nearly all treated patients evolve drug resistance due to the emergence of either new mutations or rewired signaling pathways that engage other receptor tyrosine kinases (RTKs), such as MET, HER3 and AXL. Apparently, the emergence of mutations is preceded by a phase of epigenetic alterations that finely regulate the cell cycle, bias a mesenchymal phenotype and activate antioxidants. Concomitantly, cells that evade TKI-induced apoptosis (i.e., drug-tolerant persister cells) activate an intrinsic mutagenic program reminiscent of the SOS system deployed when bacteria are exposed to antibiotics. This mammalian system imbalances the purine-to-pyrimidine ratio, inhibits DNA repair and boosts expression of mutation-prone DNA polymerases. Thus, the net outcome of the SOS response is a greater probability to evolve new mutations. Deeper understanding of the persister-to-resister transformation, along with the development of next-generation TKIs, EGFR-specific proteolysis targeting chimeras (PROTACs), as well as bispecific antibodies, will permit delaying the onset of relapses and prolonging survival of patients with EGFR+ lung cancer.
Collapse
Affiliation(s)
- Ilaria Marrocco
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
60
|
Zheng P, Mao Z, Luo M, Zhou L, Wang L, Liu H, Liu W, Wei S. Comprehensive bioinformatics analysis of the solute carrier family and preliminary exploration of SLC25A29 in lung adenocarcinoma. Cancer Cell Int 2023; 23:222. [PMID: 37775731 PMCID: PMC10543265 DOI: 10.1186/s12935-023-03082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
According to the latest epidemiological investigation, lung adenocarcinoma (LUAD) is one of the most fatal cancer among both men and women. Despite continuous advancements in treatment approaches in recent years, the prognosis for LUAD remains relatively poor. Given the crucial role of the solute carrier (SLC) family in maintaining cellular energy metabolism stability, we conducted a comprehensive analysis of the association between SLC genes and LUAD prognosis. In the present study, we identified 71 genes among the SLC family members, of which 32 were downregulated and 39 were upregulated in LUAD samples. Based on these differentially expressed genes, a prognostic risk scoring model was established that was composed of five genes (SLC16A7, SLC16A4, SLC16A3, SLC12A8, and SLC25A15) and clinical characteristics; this model could effectively predict the survival and prognosis of patients in the cohort. Notably, SLC2A1, SLC25A29, and SLC27A4 were identified as key genes associated with survival and tumor stage. Further analysis revealed that SLC25A29 was underexpressed in LUAD tissue and regulated the phenotype of endothelial cells. Endothelial cell proliferation and migration increased and apoptosis decreased with a decrease in SLC25A29 expression. Investigation of the upstream regulatory mechanisms of SLC25A29 revealed that SLC25A29 expression gradually decreased as the lactate concentration increased. This phenomenon suggested that the expression of SLC25A29 may be related to lactylation modification. ChIP-qPCR experiments confirmed the critical regulatory role played by H3K14la and H3K18la modifications in the promoter region of SLC25A29. In conclusion, this study confirmed the role of SLC family genes in LUAD prognosis and revealed the role of SLC25A29 in regulating endothelial cell phenotypes. These study results provided important clues to further understand LUAD pathogenesis and develop appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Miao Luo
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
61
|
Hu Y, Zhang X, Li Q, Zhou Q, Fang D, Lu Y. An immune and epigenetics-related scoring model and drug candidate prediction for hepatic carcinogenesis via dynamic network biomarker analysis and connectivity mapping. Comput Struct Biotechnol J 2023; 21:4619-4633. [PMID: 37817777 PMCID: PMC10561057 DOI: 10.1016/j.csbj.2023.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high mortality. This study aimed to build a prognostic signature for HCC patients based on immune-related genes (IRGs) and epigenetics-related genes (EPGs). RNA-seq data from Gene Expression Omnibus were used for dynamic network biomarker (DNB) analysis to identify 56 candidate IRG-EPG-DNBs and their first-neighbor genes. These genes were screened using LASSO-Cox regression analysis to finally obtain five candidate genes-RNF2, YBX1, EZH2, CAD, and PSMD1-which constituted the prognostic signature panel. According to this panel, patients in The Cancer Genome Atlas and International Cancer Genome Consortium were divided into high- and low-risk groups. The prognosis, clinicopathological features, and immune cell infiltration significantly differed between the two risk groups. The prognostic ability of the signature panel and expression profiling were further validated using online databases. We used an independent cohort of patients to validate the expression profiles of the five genes using reverse transcription-PCR. CMap and CellMiner predicted four small molecule drug-protein pairs based on the five prognostic genes. Of them, two market drugs approved by the Food and Drug Administration (AT-13387 and KU-55933) have emerged as candidates for HCC study. This new signature panel may serve as a potential prognostic marker, engendering the possibility of novel personalized therapy with classification of HCC patients.
Collapse
Affiliation(s)
- Yuting Hu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xingli Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingya Li
- Henan University of Chinese Medicine, Henan 450046, China
| | - Qianmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dongdong Fang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyu Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
62
|
Tangudu NK, Buj R, Wang H, Wang J, Cole AR, Uboveja A, Fang R, Amalric A, Sajjakulnukit P, Lyons MA, Cooper K, Hempel N, Snyder NW, Lyssiotis CA, Chandran UR, Aird KM. De novo purine metabolism is a metabolic vulnerability of cancers with low p16 expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.15.549149. [PMID: 37503050 PMCID: PMC10369956 DOI: 10.1101/2023.07.15.549149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in ~50% of all human cancers. In its canonical role, p16 inhibits the G1-S phase cell cycle progression through suppression of cyclin dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. Whether other nucleotide metabolic genes and pathways are affected by p16/CDKN2A loss and if these can be specifically targeted in p16/CDKN2A-low tumors has not been previously explored. Using CRISPR KO libraries in multiple isogenic human and mouse melanoma cell lines, we determined that many nucleotide metabolism genes are negatively enriched in p16/CDKN2A knockdown cells compared to controls. Indeed, many of the genes that are required for survival in the context of low p16/CDKN2A expression based on our CRISPR screens are upregulated in p16 knockdown melanoma cells and those with endogenously low CDKN2A expression. We determined that cells with low p16/Cdkn2a expression are sensitive to multiple inhibitors of de novo purine synthesis, including anti-folates. Tumors with p16 knockdown were more sensitive to the anti-folate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2A-low tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents.
Collapse
Affiliation(s)
- Naveen Kumar Tangudu
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Raquel Buj
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hui Wang
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jiefei Wang
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Aidan R. Cole
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Apoorva Uboveja
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Richard Fang
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Amandine Amalric
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Maureen A. Lyons
- Genomics Facility UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kristine Cooper
- Biostatistics Facility UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Nathaniel W. Snyder
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Uma R. Chandran
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Katherine M. Aird
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
63
|
Liu Y, Xiong H, Yan C, Wang Y, Cao W, Qie S. Bioinformatic Analysis of The Prognostic Value of A Panel of Six Amino Acid Transporters in Human Cancers. CELL JOURNAL 2023; 25:613-624. [PMID: 37718764 PMCID: PMC10520983 DOI: 10.22074/cellj.2023.2004011.1319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/05/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVE Solid tumor cells utilize amino acid transporters (AATs) to increase amino acid uptake in response to nutrient-insufficiency. The upregulation of AATs is therefore critical for tumor development and progression. This study identifies the upregulated AATs under amino acid deprived conditions, and further determines the clinicopathological importance of these AATs in evaluating the prognosis of patients with cancers. MATERIALS AND METHODS In this experimental study, the Gene Expression Omnibus (GEO) datasets (GSE62673, GSE26370, GSE125782 and GSE150874) were downloaded from the NCBI website and utilized for integrated differential expression and pathway analysis v0.96, Gene Set Enrichment Analysis (GSEA), and REACTOME analyses to identify the AATs upregulated in response to amino acid deprivation. In addition, The Cancer Genome Atlas (TCGA) datasets with prognostic information were assessed and employed to evaluate the association of identified AATs with patients' prognoses using SurvExpress analysis. RESULTS Using analysis of NCBI GEO data, this study shows that amino acid deprivation leads to the upregulation of six AAT genes; SLC3A2, SLC7A5, SLC7A1, SLC1A4, SLC7A11 and SLC1A5. GSEA and REACTOME analyses identified altered signaling in cells exposed to amino acid deprivation, such as pathways related to stress responses, the cell cycle and apoptosis. In addition, Principal Component Analysis showed these six AAT genes to be well divided into two distinct clusters in relation to TCGA tumor tissues versus normal counterparts. Finally, Log-Rank analysis confirmed the upregulation of this panel of six AAT genes is correlated with poor prognosis in patients with colorectal, esophageal, kidney and lung cancers. CONCLUSION The upregulation of a panel of six AATs is common in several human cancers and may provide a valuable diagnostic tool to evaluate the prognosis of patients with colorectal, esophageal, kidney and lung cancers.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Haijuan Xiong
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chenhui Yan
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yalei Wang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenfeng Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shuo Qie
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
64
|
Nappi A, Miro C. The intricate role of glutamine in pathophysiological contexts. J Basic Clin Physiol Pharmacol 2023; 34:555-557. [PMID: 37589654 DOI: 10.1515/jbcpp-2023-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
65
|
Pan Q, Yu F, Jin H, Zhang P, Huang X, Peng J, Xie X, Li X, Ma N, Wei Y, Wen W, Zhang J, Zhang B, Yu H, Xiao Y, Liu R, Liu Q, Meng X, Lee M. eIF3f Mediates SGOC Pathway Reprogramming by Enhancing Deubiquitinating Activity in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300759. [PMID: 37544925 PMCID: PMC10520677 DOI: 10.1002/advs.202300759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Indexed: 08/08/2023]
Abstract
Numerous studies have demonstrated that individual proteins can moonlight. Eukaryotic Initiation translation factor 3, f subunit (eIF3f) is involved in critical biological functions; however, its role independent of protein translation in regulating colorectal cancer (CRC) is not characterized. Here, it is demonstrated that eIF3f is upregulated in CRC tumor tissues and that both Wnt and EGF signaling pathways are participating in eIF3f's oncogenic impact on targeting phosphoglycerate dehydrogenase (PHGDH) during CRC development. Mechanistically, EGF blocks FBXW7β-mediated PHGDH ubiquitination through GSK3β deactivation, and eIF3f antagonizes FBXW7β-mediated PHGDH ubiquitination through its deubiquitinating activity. Additionally, Wnt signals transcriptionally activate the expression of eIF3f, which also exerts its deubiquitinating activity toward MYC, thereby increasing MYC-mediated PHGDH transcription. Thereby, both impacts allow eIF3f to elevate the expression of PHGDH, enhancing Serine-Glycine-One-Carbon (SGOC) signaling pathway to facilitate CRC development. In summary, the study uncovers the intrinsic role and underlying molecular mechanism of eIF3f in SGOC signaling, providing novel insight into the strategies to target eIF3f-PHGDH axis in CRC.
Collapse
Affiliation(s)
- Qihao Pan
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of Obstetrics and GynecologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Fenghai Yu
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Huilin Jin
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Peng Zhang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Xiaoling Huang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Jingxuan Peng
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Xiaoshan Xie
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Xiangli Li
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Ning Ma
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Yue Wei
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Weijie Wen
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Jieping Zhang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Boyu Zhang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Hongyan Yu
- Department of Clinical Biological Resource BankGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Yuanxun Xiao
- Burn Plastic SurgeryYue bei People's HospitalWujiang512099China
| | - Ran‐yi Liu
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Qingxin Liu
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Xiangqi Meng
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Mong‐Hong Lee
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of OncologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| |
Collapse
|
66
|
Kodama M, Toyokawa G, Sugahara O, Sugiyama S, Haratake N, Yamada Y, Wada R, Takamori S, Shimokawa M, Takenaka T, Tagawa T, Kittaka H, Tsuruda T, Tanaka K, Komatsu Y, Nakata K, Imado Y, Yamazaki K, Okamoto I, Oda Y, Takahashi M, Izumi Y, Bamba T, Shimizu H, Yoshizumi T, Nakayama KI. Modulation of host glutamine anabolism enhances the sensitivity of small cell lung cancer to chemotherapy. Cell Rep 2023; 42:112899. [PMID: 37531252 DOI: 10.1016/j.celrep.2023.112899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/22/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Small cell lung cancer (SCLC) is one of the deadliest human cancers, with a 5-year survival rate of ∼7%. Here, we performed a targeted proteomics analysis of human SCLC samples and thereby identified hypoxanthine phosphoribosyltransferase 1 (HPRT1) in the salvage purine synthesis pathway as a factor that contributes to SCLC malignancy by promoting cell survival in a glutamine-starved environment. Inhibition of HPRT1 by 6-mercaptopurine (6-MP) in combination with methotrexate (MTX), which blocks the de novo purine synthesis pathway, attenuated the growth of SCLC in mouse xenograft models. Moreover, modulation of host glutamine anabolism with the glutamine synthetase inhibitor methionine sulfoximine (MSO) in combination with 6-MP and MTX treatment resulted in marked tumor suppression and prolongation of host survival. Our results thus suggest that modulation of host glutamine anabolism combined with simultaneous inhibition of the de novo and salvage purine synthesis pathways may be of therapeutic benefit for SCLC.
Collapse
Affiliation(s)
- Manabu Kodama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Gouji Toyokawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Thoracic Surgery, NHO Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka 810-0065, Japan
| | - Osamu Sugahara
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigeaki Sugiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoki Haratake
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Reona Wada
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shinkichi Takamori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mototsugu Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tetsuzo Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroki Kittaka
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; LSI Medience Corporation, 1-13-4 Uchikanda, Chiyoda-ku, Tokyo 101-8517, Japan
| | - Takeshi Tsuruda
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kentaro Tanaka
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yushiro Komatsu
- Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Keisuke Nakata
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuri Imado
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koji Yamazaki
- Department of Thoracic Surgery, NHO Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka 810-0065, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideyuki Shimizu
- Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
67
|
Zhang Q, Hu W, Xiong L, Wen J, Wei T, Yan L, Liu Q, Zhu S, Bai Y, Zeng Y, Yin Z, Yang J, Zhang W, Wu M, Zhang Y, Peng G, Bao S, Liu L. IHGA: An interactive web server for large-scale and comprehensive discovery of genes of interest in hepatocellular carcinoma. Comput Struct Biotechnol J 2023; 21:3987-3998. [PMID: 37635767 PMCID: PMC10457689 DOI: 10.1016/j.csbj.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Mining gene expression data is valuable for discovering novel biomarkers and therapeutic targets in hepatocellular carcinoma (HCC). Although emerging data mining tools are available for pan-cancer-related gene data analysis, few tools are dedicated to HCC. Moreover, tools specifically designed for HCC have restrictions such as small data scale and limited functionality. Therefore, we developed IHGA, a new interactive web server for discovering genes of interest in HCC on a large-scale and comprehensive basis. Integrative HCC Gene Analysis (IHGA) contains over 100 independent HCC patient-derived datasets (with over 10,000 tissue samples) and more than 90 cell models. IHGA allows users to conduct a series of large-scale and comprehensive analyses and data visualizations based on gene mRNA levels, including expression comparison, correlation analysis, clinical characteristics analysis, survival analysis, immune system interaction analysis, and drug sensitivity analysis. This method notably enhanced the richness of clinical data in IHGA. Additionally, IHGA integrates artificial intelligence (AI)-assisted gene screening based on natural language models. IHGA is free, user-friendly, and can effectively reduce time spent during data collection, organization, and analysis. In conclusion, IHGA is competitive in terms of data scale, data diversity, and functionality. It effectively alleviates the obstacles caused by HCC heterogeneity to data mining work and helps advance research on the molecular mechanisms of HCC.
Collapse
Affiliation(s)
- Qiangnu Zhang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, 510632 Guangzhou, China
| | - Weibin Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Lingfeng Xiong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510632 Guangzhou, China
| | - Jin Wen
- Department of Neurology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Teng Wei
- Cytotherapy Laboratory, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Lesen Yan
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Quan Liu
- Laboratory Medicine Center, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), 518000 Shenzhen, China
| | - Siqi Zhu
- Laboratory Medicine Center, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), 518000 Shenzhen, China
| | - Yu Bai
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Yuandi Zeng
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Zexin Yin
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Jilin Yang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Wenjian Zhang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Meilong Wu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Yusen Zhang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Gongze Peng
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Shiyun Bao
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Liping Liu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| |
Collapse
|
68
|
Goldman O, Adler LN, Hajaj E, Croese T, Darzi N, Galai S, Tishler H, Ariav Y, Lavie D, Fellus-Alyagor L, Oren R, Kuznetsov Y, David E, Jaschek R, Stossel C, Singer O, Malitsky S, Barak R, Seger R, Erez N, Amit I, Tanay A, Saada A, Golan T, Rubinek T, Sang Lee J, Ben-Shachar S, Wolf I, Erez A. Early Infiltration of Innate Immune Cells to the Liver Depletes HNF4α and Promotes Extrahepatic Carcinogenesis. Cancer Discov 2023; 13:1616-1635. [PMID: 36972357 PMCID: PMC10326600 DOI: 10.1158/2159-8290.cd-22-1062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Multiple studies have identified metabolic changes within the tumor and its microenvironment during carcinogenesis. Yet, the mechanisms by which tumors affect the host metabolism are unclear. We find that systemic inflammation induced by cancer leads to liver infiltration of myeloid cells at early extrahepatic carcinogenesis. The infiltrating immune cells via IL6-pSTAT3 immune-hepatocyte cross-talk cause the depletion of a master metabolic regulator, HNF4α, consequently leading to systemic metabolic changes that promote breast and pancreatic cancer proliferation and a worse outcome. Preserving HNF4α levels maintains liver metabolism and restricts carcinogenesis. Standard liver biochemical tests can identify early metabolic changes and predict patients' outcomes and weight loss. Thus, the tumor induces early metabolic changes in its macroenvironment with diagnostic and potentially therapeutic implications for the host. SIGNIFICANCE Cancer growth requires a permanent nutrient supply starting from early disease stages. We find that the tumor extends its effect to the host's liver to obtain nutrients and rewires the systemic and tissue-specific metabolism early during carcinogenesis. Preserving liver metabolism restricts tumor growth and improves cancer outcomes. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Omer Goldman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lital N Adler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emma Hajaj
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tommaso Croese
- Department of Brain Science, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Darzi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Galai
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Tishler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yarden Ariav
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dor Lavie
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal David
- Department of System Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Rami Jaschek
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Chani Stossel
- Oncology Institute, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Oded Singer
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Renana Barak
- Oncology Division, Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Amit
- Department of System Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Medical Center, Hebrew University and Faculty of Medicine, Jerusalem, Israel
| | - Talia Golan
- Oncology Institute, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Rubinek
- Oncology Division, Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Joo Sang Lee
- Department of Precision Medicine, School of Medicine and Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shay Ben-Shachar
- Clalit Research Institute, Innovation Division, Clalit Health Services, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Wolf
- Oncology Division, Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
69
|
Ong KH, Hsieh YY, Sun DP, Huang SKH, Tian YF, Chou CL, Shiue YL, Joseph K, Chang IW. Underexpression of Carbamoyl Phosphate Synthetase I as Independent Unfavorable Prognostic Factor in Intrahepatic Cholangiocarcinoma: A Potential Theranostic Biomarker. Diagnostics (Basel) 2023; 13:2296. [PMID: 37443694 PMCID: PMC10340233 DOI: 10.3390/diagnostics13132296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (IHCC) is the second most common malignant neoplasm of the liver. In spite of the increasing incidence worldwide, it is relatively rare in Western countries. IHCC is relatively common in Eastern and Southeastern Asia. Patients with IHCC are usually diagnosed at an advanced stage, therefore, the clinical outcome is dismal. Dysregulation of urea cycle metabolic enzyme expression is found in different types of cancers. Nevertheless, a comprehensive evaluation of genes related to the urea cycle (i.e., GO:0000050) has not been conducted in IHCC. By performing a comparative analysis of gene expression profiles, we specifically examined genes associated with the urea cycle (GO:0000050) in a publicly accessible transcriptomic dataset (GSE26566). Interestingly, CPS1 was identified as the second most prominently down-regulated gene in this context. Tumor tissues of 182 IHCC patients who underwent curative-intent hepatectomy were enrolled. The expression level of CPS1 protein in our IHCC cohort was assessed by immunohistochemical study. Subsequent to that, statistical analyses were carried out to examine the expression of CPS1 in relation to various clinicopathological factors, as well as to assess its impact on survival outcomes. We noticed that lower immunoreactivity of CPS1 in IHCC was associated with tumor progression (pT status) with statistical significance (p = 0.003). CPS1 underexpression was not only negatively correlated to overall survival (OS), disease-specific survival (DSS), local recurrence-free survival (LRFS) and metastasis-free survival (MeFS) in univariate analysis but also an independent prognosticator to forecast poorer clinical outcome for all prognostic indices (OS, DSS, LRFS and MeFs) in patients with IHCC (all p ≤ 0.001). These results support that CPS1 may play a crucial role in IHCC oncogenesis and tumor progression and serve as a novel prognostic factor and a potential diagnostic and theranostic biomarker.
Collapse
Affiliation(s)
- Khaa Hoo Ong
- Division of Gastroenterology & General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan; (K.H.O.); (D.-P.S.)
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan;
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Yao-Yu Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan;
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ding-Ping Sun
- Division of Gastroenterology & General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan; (K.H.O.); (D.-P.S.)
| | - Steven Kuan-Hua Huang
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan;
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan;
| | - Chia-Ling Chou
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan;
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan;
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Keva Joseph
- St. Jude Hospital, Vieux Fort LC12 201, Saint Lucia;
| | - I-Wei Chang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Clinical Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
| |
Collapse
|
70
|
Laurent J, Le Berre I, Armengaud J, Kailasam S, Couteau J, Waeles M, Le Floch S, Laroche J, Pichereau V. Integration of environmental signatures and omics-based approaches on the European flounder to assist with health assessment of estuarine ecosystems in Brittany, France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163195. [PMID: 37003335 DOI: 10.1016/j.scitotenv.2023.163195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023]
Abstract
This study aimed to develop a multidisciplinary approach to assess the ecological status of six moderate-sized French estuaries. For each estuary, we gathered geographical information, hydrobiological data, chemistry of pollutants and fish biology, including integration of proteomics and transcriptomics data. This integrative study covered the entire hydrological system studied, from the watershed to the estuary, and considered all the anthropogenic factors that can impact this environment. To reach this goal, European flounder (Platichthys flesus) were collected from six estuaries in September, which ensures a minimum residence time of five months within an estuary. Geographical metrics are used to characterize land use in each watershed. The concentrations of nitrite, nitrate, organic pollutants, and trace elements were measured in water, sediments and biota. All of these environmental parameters allowed to set up a typology of estuaries. Classical fish biomarkers, coupled with molecular data from transcriptomics and shotgun proteomics, highlighted the flounder's responses to stressors in its environment. We analysed the protein abundances and gene expression levels in the liver of fish from the different estuaries. We showed clear positive deregulation of proteins associated with xenobiotic detoxification in a system characterized by a large population density and industrial activity, as well as in a predominantly agricultural catchment area (mostly cultures of vegetables and pig breeding) mainly impacted by pesticides. Fish from the latter estuary also displayed strong deregulation of the urea cycle, most probably related to high nitrogen load. Proteomic and transcriptomic data also revealed a deregulation of proteins and genes related to the response to hypoxia, and a probable endocrine disruption in some estuaries. Coupling these data allowed the precise identification of the main stressors interacting within each hydrosystem.
Collapse
Affiliation(s)
- Jennifer Laurent
- LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France; CEDRE, 715 rue Alain Colas, 29200 Brest, France.
| | - Iwan Le Berre
- LETG-Brest GEOMER, UMR 6554 CNRS, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRAe, F-30207 Bagnols-sur-Cèze, France
| | - Senthilkumar Kailasam
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec H3A 0G1, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Jérôme Couteau
- TOXEM, 12 rue des 4 saisons, 76290 Montivilliers, France
| | - Matthieu Waeles
- LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France
| | | | - Jean Laroche
- LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France
| | - Vianney Pichereau
- LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France.
| |
Collapse
|
71
|
Dai W, Zong WX. Glutamine synthetase: a tumor suppressor in hepatocellular carcinoma? J Mol Cell Biol 2023; 15:mjad007. [PMID: 36737414 PMCID: PMC10251431 DOI: 10.1093/jmcb/mjad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Affiliation(s)
- Weiwei Dai
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
72
|
González-Moreno L, Santamaría-Cano A, Paradela A, Martínez-Chantar ML, Martín MÁ, Pérez-Carreras M, García-Picazo A, Vázquez J, Calvo E, González-Aseguinolaza G, Saheki T, del Arco A, Satrústegui J, Contreras L. Exogenous aralar/slc25a12 can replace citrin/slc25a13 as malate aspartate shuttle component in liver. Mol Genet Metab Rep 2023; 35:100967. [PMID: 36967723 PMCID: PMC10031141 DOI: 10.1016/j.ymgmr.2023.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The deficiency of CITRIN, the liver mitochondrial aspartate-glutamate carrier (AGC), is the cause of four human clinical phenotypes, neonatal intrahepatic cholestasis caused by CITRIN deficiency (NICCD), silent period, failure to thrive and dyslipidemia caused by CITRIN deficiency (FTTDCD), and citrullinemia type II (CTLN2). Clinical symptoms can be traced back to disruption of the malate-aspartate shuttle due to the lack of citrin. A potential therapy for this condition is the expression of aralar, the AGC present in brain, to replace citrin. To explore this possibility we have first verified that the NADH/NAD+ ratio increases in hepatocytes from citrin(-/-) mice, and then found that exogenous aralar expression reversed the increase in NADH/NAD+ observed in these cells. Liver mitochondria from citrin (-/-) mice expressing liver specific transgenic aralar had a small (~ 4-6 nmoles x mg prot-1 x min-1) but consistent increase in malate aspartate shuttle (MAS) activity over that of citrin(-/-) mice. These results support the functional replacement between AGCs in the liver. To explore the significance of AGC replacement in human therapy we studied the relative levels of citrin and aralar in mouse and human liver through absolute quantification proteomics. We report that mouse liver has relatively high aralar levels (citrin/aralar molar ratio of 7.8), whereas human liver is virtually devoid of aralar (CITRIN/ARALAR ratio of 397). This large difference in endogenous aralar levels partly explains the high residual MAS activity in liver of citrin(-/-) mice and why they fail to recapitulate the human disease, but supports the benefit of increasing aralar expression to improve the redox balance capacity of human liver, as an effective therapy for CITRIN deficiency.
Collapse
Key Words
- (BNGE), Blue native gel electrophoresis
- AGC, aspartate-glutamate carrier
- AQUA, Absolute Quantification methods
- Aspartate-glutamate carrier
- CD, CITRIN Deficiency
- CTNL2, citrullinemia type II
- Citrin deficiency
- DAB, 3,3-diaminobenzidine
- FBS, Fetal Bovine serum
- FTTDCD, failure to thrive and dyslipidemia caused by CITRIN Deficiency
- GOT, aspartate transaminase
- GPD2, mitochondrial glycerol phosphate dehydrogenase
- GPS, glycerol phosphate shuttle
- Hepatocyte
- IM, imaging medium
- LC-MS, liquid chromatography mass spectrometry
- LNP, lipid nanoparticles
- MAS, malate aspartate shuttle
- Malate-aspartate shuttle
- Mitochondria
- NAA, N-Acetyl-aspartate
- NICCD, neonatal intrahepatic cholestasis caused by CITRIN Deficiency
- OXPHOS, oxidative phosphorylation
- PFA, paraformaldehyde
- PRM, parallel reaction monitoring
- SDS, sodium dodecyl sulfate
- TBS, Tris-Buffered saline.
- hCitrin, human citrin
Collapse
Affiliation(s)
- Luis González-Moreno
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, (IUBM), and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Andrea Santamaría-Cano
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, (IUBM), and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alberto Paradela
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
| | - María Luz Martínez-Chantar
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Á. Martín
- Grupo Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Servicio de Genética, Hospital Universitario 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | | | - Alberto García-Picazo
- Departamento de Cirugía General Aparato Digestivo, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Gloria González-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, 31008 Pamplona, Spain
| | | | - Araceli del Arco
- Instituto Universitario de Biología Molecular, (IUBM), and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla la Mancha, Toledo 45071, Spain
- Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina, Toledo 45071, Spain
| | - Jorgina Satrústegui
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, (IUBM), and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Contreras
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, (IUBM), and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
73
|
Wang C, Xue L, Zhu W, Liu L, Zhang S, Luo D. Lactate from glycolysis regulates inflammatory macrophage polarization in breast cancer. Cancer Immunol Immunother 2023; 72:1917-1932. [PMID: 36729212 PMCID: PMC10991532 DOI: 10.1007/s00262-023-03382-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/21/2023] [Indexed: 02/03/2023]
Abstract
Globally, breast cancer is one of the leading causes of cancer death in women. Metabolic reprogramming and immune escape are two important mechanisms supporting the progression of breast cancer. Lactate in tumors mainly comes from glycolysis and glutaminolysis. Using multiomics data analysis, we found that lactate is mainly derived from glycolysis in breast cancer. Single-cell transcriptome analysis found that breast cancer cells with higher malignancy, especially those in the cell cycle, have higher expression levels of glycolytic metabolic enzymes. Combined with clinical data analysis, it was found that the expression of the lactate transporter SLC16A3 is correlated with breast cancer molecular subtypes and immune infiltration. Among 22 immune cells, macrophages are the most abundant immune cells in breast cancer tissues, and the proportion of M1 macrophages is lower in the high SLC16A3 expression group. Finally, in vitro experiments confirmed that lactate could inhibit the expression of M1 macrophage markers at both RNA and protein levels. In conclusion, we found that lactate produced by glycolysis regulates the polarization of inflammatory macrophages in breast cancer.
Collapse
Affiliation(s)
- Chao Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Linxuan Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Wenqiang Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Lina Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Shuhua Zhang
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Cardiovascular Research Institute, Nanchang, 330006, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
74
|
Apiz Saab JJ, Dzierozynski LN, Jonker PB, AminiTabrizi R, Shah H, Menjivar RE, Scott AJ, Nwosu ZC, Zhu Z, Chen RN, Oh M, Sheehan C, Wahl DR, Pasca di Magliano M, Lyssiotis CA, Macleod KF, Weber CR, Muir A. Pancreatic tumors exhibit myeloid-driven amino acid stress and upregulate arginine biosynthesis. eLife 2023; 12:e81289. [PMID: 37254839 PMCID: PMC10260022 DOI: 10.7554/elife.81289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/25/2023] [Indexed: 06/01/2023] Open
Abstract
Nutrient stress in the tumor microenvironment requires cancer cells to adopt adaptive metabolic programs for survival and proliferation. Therefore, knowledge of microenvironmental nutrient levels and how cancer cells cope with such nutrition is critical to understand the metabolism underpinning cancer cell biology. Previously, we performed quantitative metabolomics of the interstitial fluid (the local perfusate) of murine pancreatic ductal adenocarcinoma (PDAC) tumors to comprehensively characterize nutrient availability in the microenvironment of these tumors. Here, we develop Tumor Interstitial Fluid Medium (TIFM), a cell culture medium that contains nutrient levels representative of the PDAC microenvironment, enabling us to study PDAC metabolism ex vivo under physiological nutrient conditions. We show that PDAC cells cultured in TIFM adopt a cellular state closer to that of PDAC cells present in tumors compared to standard culture models. Further, using the TIFM model, we found arginine biosynthesis is active in PDAC and allows PDAC cells to maintain levels of this amino acid despite microenvironmental arginine depletion. We also show that myeloid derived arginase activity is largely responsible for the low levels of arginine in PDAC tumors. Altogether, these data indicate that nutrient availability in tumors is an important determinant of cancer cell metabolism and behavior, and cell culture models that incorporate physiological nutrient availability have improved fidelity to in vivo systems and enable the discovery of novel cancer metabolic phenotypes.
Collapse
Affiliation(s)
- Juan J Apiz Saab
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | | | - Patrick B Jonker
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Roya AminiTabrizi
- Metabolomics Platform, Comprehensive Cancer Center, University of ChicagoChicagoUnited States
| | - Hardik Shah
- Metabolomics Platform, Comprehensive Cancer Center, University of ChicagoChicagoUnited States
| | - Rosa Elena Menjivar
- Cellular and Molecular Biology Program, University of Michigan-Ann ArborAnn ArborUnited States
| | - Andrew J Scott
- Department of Radiation Oncology, University of MichiganAnn ArborUnited States
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Zhou Zhu
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Riona N Chen
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Moses Oh
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Colin Sheehan
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Daniel R Wahl
- Department of Radiation Oncology, University of MichiganAnn ArborUnited States
| | | | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Kay F Macleod
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | | | - Alexander Muir
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| |
Collapse
|
75
|
Wu Z, Bezwada D, Harris RC, Pan C, Nguyen PT, Faubert B, Cai L, Cai F, Vu HS, Chen H, Sandoval MM, Do D, Gu W, Zhang Y, Ko B, Brooks B, Kelekar S, Zhang Y, Zacharias LG, Oaxaca KC, Mathews TP, Garcia-Bermudez J, Ni M, DeBerardinis RJ. Electron transport chain inhibition increases cellular dependence on purine transport and salvage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540429. [PMID: 37214913 PMCID: PMC10197673 DOI: 10.1101/2023.05.11.540429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cancer cells reprogram their metabolism to support cell growth and proliferation in harsh environments. While many studies have documented the importance of mitochondrial oxidative phosphorylation (OXPHOS) in tumor growth, some cancer cells experience conditions of reduced OXPHOS in vivo and induce alternative metabolic pathways to compensate. To assess how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts and plasma from patients with inborn errors of mitochondrial metabolism, and in cancer cells subjected to inhibition of the electron transport chain (ETC). All these analyses revealed extensive perturbations in purine-related metabolites; in non-small cell lung cancer (NSCLC) cells, ETC blockade led to purine metabolite accumulation arising from a reduced cytosolic NAD + /NADH ratio (NADH reductive stress). Stable isotope tracing demonstrated that ETC deficiency suppressed de novo purine nucleotide synthesis while enhancing purine salvage. Analysis of NSCLC patients infused with [U- 13 C]glucose revealed that tumors with markers of low oxidative mitochondrial metabolism exhibited high expression of the purine salvage enzyme HPRT1 and abundant levels of the HPRT1 product inosine monophosphate (IMP). ETC blockade also induced production of ribose-5' phosphate (R5P) by the pentose phosphate pathway (PPP) and import of purine nucleobases. Blocking either HPRT1 or nucleoside transporters sensitized cancer cells to ETC inhibition, and overexpressing nucleoside transporters was sufficient to drive growth of NSCLC xenografts. Collectively, this study mechanistically delineates how cells compensate for suppressed purine metabolism in response to ETC blockade, and uncovers a new metabolic vulnerability in tumors experiencing NADH excess.
Collapse
|
76
|
Wang YC, Kelso AA, Karamafrooz A, Chen YH, Chen WK, Cheng CT, Qi Y, Gu L, Malkas L, Taglialatela A, Kung HJ, Moldovan GL, Ciccia A, Stark JM, Ann DK. Arginine shortage induces replication stress and confers genotoxic resistance by inhibiting histone H4 translation and promoting PCNA ubiquitination. Cell Rep 2023; 42:112296. [PMID: 36961817 PMCID: PMC10517088 DOI: 10.1016/j.celrep.2023.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023] Open
Abstract
The arginine dependency of cancer cells creates metabolic vulnerability. In this study, we examine the impact of arginine availability on DNA replication and genotoxicity resistance. Using DNA combing assays, we find that limiting extracellular arginine results in the arrest of cancer cells at S phase and a slowing or stalling of DNA replication. The translation of new histone H4 is arginine dependent and influences DNA replication. Increased proliferating cell nuclear antigen (PCNA) occupancy and helicase-like transcription factor (HLTF)-catalyzed PCNA K63-linked polyubiquitination protect arginine-starved cells from DNA damage. Arginine-deprived cancer cells display tolerance to genotoxicity in a PCNA K63-linked polyubiquitination-dependent manner. Our findings highlight the crucial role of extracellular arginine in nutrient-regulated DNA replication and provide potential avenues for the development of cancer treatments.
Collapse
Affiliation(s)
- Yi-Chang Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Andrew A Kelso
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Adak Karamafrooz
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yi-Hsuan Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Wei-Kai Chen
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Chun-Ting Cheng
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Yue Qi
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Long Gu
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Linda Malkas
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hsing-Jien Kung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - David K Ann
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
77
|
Liu J, Zhong L, Deng D, Zhang Y, Yuan Q, Shang D. The combined signatures of the tumour microenvironment and nucleotide metabolism-related genes provide a prognostic and therapeutic biomarker for gastric cancer. Sci Rep 2023; 13:6622. [PMID: 37095256 PMCID: PMC10126105 DOI: 10.1038/s41598-023-33213-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/09/2023] [Indexed: 04/26/2023] Open
Abstract
The tumour microenvironment (TME) is vital to tumour development and influences the immunotherapy response. Abnormal nucleotide metabolism (NM) not only promotes tumour cell proliferation but also inhibits immune responses in the TME. Therefore, this study aimed to determine whether the combined signatures of NM and the TME could better predict the prognosis and treatment response in gastric cancer (GC). 97 NM-related genes and 22 TME cells were evaluated in TCGA-STAD samples, and predictive NM and TME characteristics were determined. Subsequent correlation analysis and single-cell data analysis illustrated a link between NM scores and TME cells. Thereafter, NM and TME characteristics were combined to construct an NM-TME classifier. Patients in the NMlow/TMEhigh group exhibited better clinical outcomes and treatment responses, which could be attributed to the differences in immune cell infiltration, immune checkpoint genes, tumour somatic mutations, immunophenoscore, immunotherapy response rate and proteomap. Additionally, the NMhigh/TMElow group benefited more from Imatinib, Midostaurin and Linsitinib, while patients in the NMlow/TMEhigh group benefited more from Paclitaxel, Methotrexate and Camptothecin. Finally, a highly reliable nomogram was developed. In conclusion, the NM-TME classifier demonstrated a pretreatment predictive value for prognosis and therapeutic responses, which may offer novel strategies for strategizing patients with optimal therapies.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lei Zhong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dawei Deng
- Department of Hepato-Biliary-Pancreas, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yunshu Zhang
- Department of Traditional Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Qihang Yuan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
78
|
Owusu-Ansah M, Guptan N, Alindogan D, Morizono M, Caldovic L. NAGS, CPS1, and SLC25A13 (Citrin) at the Crossroads of Arginine and Pyrimidines Metabolism in Tumor Cells. Int J Mol Sci 2023; 24:ijms24076754. [PMID: 37047726 PMCID: PMC10094985 DOI: 10.3390/ijms24076754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Urea cycle enzymes and transporters collectively convert ammonia into urea in the liver. Aberrant overexpression of carbamylphosphate synthetase 1 (CPS1) and SLC25A13 (citrin) genes has been associated with faster proliferation of tumor cells due to metabolic reprogramming that increases the activity of the CAD complex and pyrimidine biosynthesis. N-acetylglutamate (NAG), produced by NAG synthase (NAGS), is an essential activator of CPS1. Although NAGS is expressed in lung cancer derived cell lines, expression of the NAGS gene and its product was not evaluated in tumors with aberrant expression of CPS1 and citrin. We used data mining approaches to identify tumor types that exhibit aberrant overexpression of NAGS, CPS1, and citrin genes, and evaluated factors that may contribute to increased expression of the three genes and their products in tumors. Median expression of NAGS, CPS1, and citrin mRNA was higher in glioblastoma multiforme (GBM), glioma, and stomach adenocarcinoma (STAD) samples compared to the matched normal tissue. Median expression of CPS1 and citrin mRNA was higher in the lung adenocarcinoma (LUAD) sample while expression of NAGS mRNA did not differ. High NAGS expression was associated with an unfavorable outcome in patients with glioblastoma and GBM. Low NAGS expression was associated with an unfavorable outcome in patients with LUAD. Patterns of DNase hypersensitive sites and histone modifications in the upstream regulatory regions of NAGS, CPS1, and citrin genes were similar in liver tissue, lung tissue, and A549 lung adenocarcinoma cells despite different expression levels of the three genes in the liver and lung. Citrin gene copy numbers correlated with its mRNA expression in glioblastoma, GBM, LUAD, and STAD samples. There was little overlap between NAGS, CPS1, and citrin sequence variants found in patients with respective deficiencies, tumor samples, and individuals without known rare genetic diseases. The correlation between NAGS, CPS1, and citrin mRNA expression in the individual glioblastoma, GBM, LUAD, and STAD samples was very weak. These results suggest that the increased cytoplasmic supply of either carbamylphosphate, produced by CPS1, or aspartate may be sufficient to promote tumorigenesis, as well as the need for an alternative explanation of CPS1 activity in the absence of NAGS expression and NAG.
Collapse
Affiliation(s)
- Melissa Owusu-Ansah
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Nikita Guptan
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Dylon Alindogan
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Michio Morizono
- School of Mathematics, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ljubica Caldovic
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| |
Collapse
|
79
|
Liu Y, Wu M, Xu S, Niu X, Liu W, Miao C, Lin A, Xu Y, Yu L. PSMD2 contributes to the progression of esophageal squamous cell carcinoma by repressing autophagy. Cell Biosci 2023; 13:67. [PMID: 36998052 DOI: 10.1186/s13578-023-01016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND The ubiquitin-proteasome and autophagy-lysosomal systems collaborate in regulating the levels of intracellular proteins. Dysregulation of protein homeostasis is a central feature of malignancy. The gene encoding 26S proteasome non-ATPase regulatory subunit 2 (PSMD2) of the ubiquitin-proteasome system is an oncogene in various types of cancer. However, the detailed role of PSMD2 in autophagy and its relationship to tumorigenesis in esophageal squamous cell carcinoma (ESCC) remain unknown. In the present study, we have investigated the tumor-promoting roles of PSMD2 in the context of autophagy in ESCC. METHODS Molecular approaches including DAPgreen staining, 5-Ethynyl-2'-deoxyuridine (EdU), cell counting kit 8 (CCK8), colony formation, transwell assays, and cell transfection, xenograft model, immunoblotting and Immunohistochemical analysis were used to investigate the roles of PSMD2 in ESCC cells. Data-independent acquisition (DIA) quantification proteomics analysis and rescue experiments were used to study the roles of PSMD2 in ESCC cells. RESULTS We demonstrate that the overexpression of PSMD2 promotes ESCC cell growth by inhibiting autophagy and is correlated with tumor progression and poor prognosis of ESCC patients. DIA quantification proteomics analysis shows a significant positive correlation between argininosuccinate synthase 1 (ASS1) and PSMD2 levels in ESCC tumors. Further studies indicate that PSMD2 activates the mTOR pathway by upregulating ASS1 to inhibit autophagy. CONCLUSIONS PSMD2 plays an important role in repressing autophagy in ESCC, and represents a promising biomarker to predict prognosis and a therapeutic target of ESCC patients.
Collapse
Affiliation(s)
- Yachen Liu
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Meng Wu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shuxiang Xu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xiangjie Niu
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Weiling Liu
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Chuanwang Miao
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Ai Lin
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Yang Xu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Lili Yu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
80
|
Espinosa-Rodriguez BA, Treviño-Almaguer D, Carranza-Rosales P, Ramirez-Cabrera MA, Ramirez-Estrada K, Arredondo-Espinoza EU, Mendez-Lopez LF, Balderas-Renteria I. Metformin May Alter the Metabolic Reprogramming in Cancer Cells by Disrupting the L-Arginine Metabolism: A Preliminary Computational Study. Int J Mol Sci 2023; 24:ijms24065316. [PMID: 36982390 PMCID: PMC10049129 DOI: 10.3390/ijms24065316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Metabolic reprogramming in cancer is considered to be one of the most important hallmarks to drive proliferation, angiogenesis, and invasion. AMP-activated protein kinase activation is one of the established mechanisms for metformin’s anti-cancer actions. However, it has been suggested that metformin may exert antitumoral effects by the modulation of other master regulators of cellular energy. Here, based on structural and physicochemical criteria, we tested the hypothesis that metformin may act as an antagonist of L-arginine metabolism and other related metabolic pathways. First, we created a database containing different L-arginine-related metabolites and biguanides. After that, comparisons of structural and physicochemical properties were performed employing different cheminformatic tools. Finally, we performed molecular docking simulations using AutoDock 4.2 to compare the affinities and binding modes of biguanides and L-arginine-related metabolites against their corresponding targets. Our results showed that biguanides, especially metformin and buformin, exhibited a moderate-to-high similarity to the metabolites belonging to the urea cycle, polyamine metabolism, and creatine biosynthesis. The predicted affinities and binding modes for biguanides displayed good concordance with those obtained for some L-arginine-related metabolites, including L-arginine and creatine. In conclusion, metabolic reprogramming in cancer cells by metformin and biguanides may be also driven by metabolic disruption of L-arginine and structurally related compounds.
Collapse
Affiliation(s)
- Bryan Alejandro Espinosa-Rodriguez
- Universidad Autonoma de Nuevo Leon, School of Chemistry, Laboratory of Molecular Pharmacology and Biological Models, San Nicolas de los Garza 64570, Mexico; (B.A.E.-R.); (D.T.-A.); (M.A.R.-C.); (K.R.-E.); (E.U.A.-E.)
| | - Daniela Treviño-Almaguer
- Universidad Autonoma de Nuevo Leon, School of Chemistry, Laboratory of Molecular Pharmacology and Biological Models, San Nicolas de los Garza 64570, Mexico; (B.A.E.-R.); (D.T.-A.); (M.A.R.-C.); (K.R.-E.); (E.U.A.-E.)
| | - Pilar Carranza-Rosales
- Centro de Investigacion Biomedica del Noreste, Laboratory of Cell Biology, Instituto Mexicano del Seguro Social, Monterrey 66720, Mexico;
| | - Monica Azucena Ramirez-Cabrera
- Universidad Autonoma de Nuevo Leon, School of Chemistry, Laboratory of Molecular Pharmacology and Biological Models, San Nicolas de los Garza 64570, Mexico; (B.A.E.-R.); (D.T.-A.); (M.A.R.-C.); (K.R.-E.); (E.U.A.-E.)
| | - Karla Ramirez-Estrada
- Universidad Autonoma de Nuevo Leon, School of Chemistry, Laboratory of Molecular Pharmacology and Biological Models, San Nicolas de los Garza 64570, Mexico; (B.A.E.-R.); (D.T.-A.); (M.A.R.-C.); (K.R.-E.); (E.U.A.-E.)
| | - Eder Ubaldo Arredondo-Espinoza
- Universidad Autonoma de Nuevo Leon, School of Chemistry, Laboratory of Molecular Pharmacology and Biological Models, San Nicolas de los Garza 64570, Mexico; (B.A.E.-R.); (D.T.-A.); (M.A.R.-C.); (K.R.-E.); (E.U.A.-E.)
| | - Luis Fernando Mendez-Lopez
- Universidad Autonoma de Nuevo Leon, School of Public Health and Nutrition, Center for Research on Nutrition and Public Health, Monterrey 66460, Mexico
- Correspondence: (L.F.M.-L.); (I.B.-R.);Tel.: +52-81-1042-2622 (L.F.M.-L.); +52-81-8329-4000 (I.B.-R.)
| | - Isaias Balderas-Renteria
- Universidad Autonoma de Nuevo Leon, School of Chemistry, Laboratory of Molecular Pharmacology and Biological Models, San Nicolas de los Garza 64570, Mexico; (B.A.E.-R.); (D.T.-A.); (M.A.R.-C.); (K.R.-E.); (E.U.A.-E.)
- Correspondence: (L.F.M.-L.); (I.B.-R.);Tel.: +52-81-1042-2622 (L.F.M.-L.); +52-81-8329-4000 (I.B.-R.)
| |
Collapse
|
81
|
Srivastava A, Vinod PK. Identification and Characterization of Metabolic Subtypes of Endometrial Cancer Using a Systems-Level Approach. Metabolites 2023; 13:metabo13030409. [PMID: 36984849 PMCID: PMC10054278 DOI: 10.3390/metabo13030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Endometrial cancer (EC) is the most common gynecological cancer worldwide. Understanding metabolic adaptation and its heterogeneity in tumor tissues may provide new insights and help in cancer diagnosis, prognosis, and treatment. In this study, we investigated metabolic alterations of EC to understand the variations in metabolism within tumor samples. Integration of transcriptomics data of EC (RNA-Seq) and the human genome-scale metabolic network was performed to identify the metabolic subtypes of EC and uncover the underlying dysregulated metabolic pathways and reporter metabolites in each subtype. The relationship between metabolic subtypes and clinical variables was explored. Further, we correlated the metabolic changes occurring at the transcriptome level with the genomic alterations. Based on metabolic profile, EC patients were stratified into two subtypes (metabolic subtype-1 and subtype-2) that significantly correlated to patient survival, tumor stages, mutation, and copy number variations. We observed the co-activation of the pentose phosphate pathway, one-carbon metabolism, and genes involved in controlling estrogen levels in metabolic subtype-2, which is linked to poor survival. PNMT and ERBB2 are also upregulated in metabolic subtype-2 samples and present on the same chromosome locus 17q12, which is amplified. PTEN and TP53 mutations show mutually exclusive behavior between subtypes and display a difference in survival. This work identifies metabolic subtypes with distinct characteristics at the transcriptome and genome levels, highlighting the metabolic heterogeneity within EC.
Collapse
|
82
|
Duncan-Lowey B, Tal N, Johnson AG, Rawson S, Mayer ML, Doron S, Millman A, Melamed S, Fedorenko T, Kacen A, Brandis A, Mehlman T, Amitai G, Sorek R, Kranzusch PJ. Cryo-EM structure of the RADAR supramolecular anti-phage defense complex. Cell 2023; 186:987-998.e15. [PMID: 36764290 PMCID: PMC9994260 DOI: 10.1016/j.cell.2023.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/02/2022] [Accepted: 01/06/2023] [Indexed: 02/11/2023]
Abstract
RADAR is a two-protein bacterial defense system that was reported to defend against phage by "editing" messenger RNA. Here, we determine cryo-EM structures of the RADAR defense complex, revealing RdrA as a heptameric, two-layered AAA+ ATPase and RdrB as a dodecameric, hollow complex with twelve surface-exposed deaminase active sites. RdrA and RdrB join to form a giant assembly up to 10 MDa, with RdrA docked as a funnel over the RdrB active site. Surprisingly, our structures reveal an RdrB active site that targets mononucleotides. We show that RdrB catalyzes ATP-to-ITP conversion in vitro and induces the massive accumulation of inosine mononucleotides during phage infection in vivo, limiting phage replication. Our results define ATP mononucleotide deamination as a determinant of RADAR immunity and reveal supramolecular assembly of a nucleotide-modifying machine as a mechanism of anti-phage defense.
Collapse
Affiliation(s)
- Brianna Duncan-Lowey
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nitzan Tal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alex G Johnson
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Shaun Rawson
- Harvard Center for Cryo-Electron Microscopy, Harvard Medical School, Boston, MA 02115, USA
| | - Megan L Mayer
- Harvard Center for Cryo-Electron Microscopy, Harvard Medical School, Boston, MA 02115, USA
| | - Shany Doron
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Taya Fedorenko
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Kacen
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Mehlman
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
83
|
Abstract
Tumours exhibit notable metabolic alterations compared with their corresponding normal tissue counterparts. These metabolic alterations can support anabolic growth, enable survival in hostile environments and regulate gene expression programmes that promote malignant progression. Whether these metabolic changes are selected for during malignant transformation or can themselves be drivers of tumour initiation is unclear. However, intriguingly, many of the major bottlenecks for tumour initiation - control of cell fate, survival and proliferation - are all amenable to metabolic regulation. In this article, we review evidence demonstrating a critical role for metabolic pathways in processes that support the earliest stages of tumour development. We discuss how cell-intrinsic factors, such as the cell of origin or transforming oncogene, and cell-extrinsic factors, such as local nutrient availability, promote or restrain tumour initiation. Deeper insight into how metabolic pathways control tumour initiation will improve our ability to design metabolic interventions to limit tumour incidence.
Collapse
Affiliation(s)
- Julia S Brunner
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lydia W S Finley
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
84
|
Liu X, Zhang J, Jin L, Chen C, He J, Xu Q, Lu J. Divalent Oxidation State Ni as an Active Intermediate in Prussian Blue Analogues for Electrocatalytic Urea Oxidation. Inorg Chem 2023; 62:3637-3645. [PMID: 36792148 DOI: 10.1021/acs.inorgchem.2c04465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Urea degradation is one of the most crucial links in the natural nitrogen cycle. Exploring the real active species in the urea electro-oxidation process is of great significance for understanding the urea electro-oxidation mechanism and designing catalysts. A highly active and stable Prussian blue analogue catalyst (PBA@NiFe/NF) loaded on nickel foam was synthesized for electro-oxidation of urea. In situ Raman spectra revealed that Ni in PBA@NiFe/NF was able to maintain a stable divalent nickel (Ni(II)) state for up to 3.5 h during the initial urea oxidation process, which is rarely reported in previous research studies. In addition, with the participation of iron, the Ni-Fe bimetallic center significantly improves the electro-oxidation of urea. Our work provides a new idea for prolonging the Ni(II) activity in electrocatalytic oxidation of urea.
Collapse
Affiliation(s)
- Xiaofang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianhua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chunchao Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
85
|
Zhao Y, Chen Y, Wei L, Ran J, Wang K, Zhu S, Liu Q. p53 inhibits the Urea cycle and represses polyamine biosynthesis in glioma cell lines. Metab Brain Dis 2023; 38:1143-1153. [PMID: 36745250 DOI: 10.1007/s11011-023-01173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023]
Abstract
Glioma is the most common malignant tumor of the central nervous system. The urea cycle (UC) is an essential pathway to convert excess nitrogen and ammonia into the less toxic urea in humans. However, less is known about the functional significance of the urea cycle in glioma. p53 functions as a tumor suppressor and modulates several cellular functions and disease processes. In the present study, we aimed to explore whether p53 influences glioma progression by regulating the urea cycle. Here, we demonstrated the inhibitory impact of p53 on the expression of urea cycle enzymes and urea genesis in glioma cells. The level of polyamine, a urea cycle metabolite, was also regulated by p53 in glioma cells. Carbamoyl phosphate synthetase-1 (CPS1) is the first key enzyme involved in the urea cycle. Functionally, we demonstrated that CPS1 knockdown suppressed glioma cell proliferation, migration and invasion. Mechanistically, we demonstrated that the expression of ornithine decarboxylase (ODC), which determines the generation of polyamine, was regulated by CPS1. In addition, the impacts of p53 knockdown on ODC expression, glioma cell growth and aggressive phenotypes were significantly reversed by CPS1 inhibition. In conclusion, these results demonstrated that p53 inhibits polyamine metabolism by suppressing the urea cycle, which inhibits glioma progression.
Collapse
Affiliation(s)
- Yuhong Zhao
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Yingxi Chen
- Department of basic Medicine, Chongqing College of traditional Chinese Medicine, Chongqing, 402760, PR China
| | - Ling Wei
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Jianhua Ran
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Kejian Wang
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Shujuan Zhu
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Qian Liu
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China.
- Department of basic Medicine, Chongqing College of traditional Chinese Medicine, Chongqing, 402760, PR China.
| |
Collapse
|
86
|
Wang YC, Kelso AA, Karamafrooz A, Chen YH, Chen WK, Cheng CT, Qi Y, Gu L, Malkas L, Kung HJ, Moldovan GL, Ciccia A, Stark JM, Ann DK. Arginine shortage induces replication stress and confers genotoxic resistance by inhibiting histone H4 translation and promoting PCNA polyubiquitination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526362. [PMID: 36778247 PMCID: PMC9915598 DOI: 10.1101/2023.01.31.526362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The unique arginine dependencies of cancer cell proliferation and survival creates metabolic vulnerability. Here, we investigate the impact of extracellular arginine availability on DNA replication and genotoxic resistance. Using DNA combing assays, we find that when extracellular arginine is limited, cancer cells are arrested at S-phase and DNA replication forks slow or stall instantly until arginine is re-supplied. The translation of new histone H4 is arginine-dependent and impacts DNA replication and the expression of newly synthesized histone H4 is reduced in the avascular nutrient-poor breast cancer xenograft tumor cores. Furthermore, we demonstrate that increased PCNA occupancy and HLTF-catalyzed PCNA K63-linked polyubiquitination protects arginine-starved cells from hydroxyurea-induced, DNA2-catalyzed nascent strand degradation. Finally, arginine-deprived cancer cells are tolerant to genotoxic insults in a PCNA K63-linked polyubiquitination-dependent manner. Together, these findings reveal that extracellular arginine is the "linchpin" for nutrient-regulated DNA replication. Such information could be leveraged to expand current modalities or design new drug targets against cancer.
Collapse
Affiliation(s)
- Yi-Chang Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Andrew A. Kelso
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Adak Karamafrooz
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yi-Hsuan Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Wei-Kai Chen
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Chun-Ting Cheng
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Yue Qi
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Long Gu
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Linda Malkas
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Hsing-Jien Kung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - David K Ann
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
87
|
Murine breast cancers disorganize the liver transcriptome in a zonated manner. Commun Biol 2023; 6:97. [PMID: 36694005 PMCID: PMC9873924 DOI: 10.1038/s42003-023-04479-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
The spatially organized gene expression program within the liver specifies hepatocyte functions according to their relative distances to the bloodstream (i.e., zonation), contributing to liver homeostasis. Despite the knowledge that solid cancers remotely disrupt liver homeostasis, it remains unexplored whether solid cancers affect liver zonation. Here, using spatial transcriptomics, we thoroughly investigate the abundance and zonation of hepatic genes in cancer-bearing mice. We find that breast cancers affect liver zonation in various distinct manners depending on biological pathways. Aspartate metabolism and triglyceride catabolic processes retain relatively intact zonation patterns, but the zonation of xenobiotic catabolic process genes exhibits a strong disruption. The acute phase response is induced in zonated manners. Furthermore, we demonstrate that breast cancers activate innate immune cells in particular neutrophils in distinct zonated manners, rather than in a uniform fashion within the liver. Collectively, breast cancers disorganize hepatic transcriptomes in zonated manners, thereby disrupting zonated functions of the liver.
Collapse
|
88
|
Hsu DJ, Gao J, Yamaguchi N, Pinzaru A, Wu Q, Mandayam N, Liberti M, Heissel S, Alwaseem H, Tavazoie S, Tavazoie SF. Arginine limitation drives a directed codon-dependent DNA sequence evolution response in colorectal cancer cells. SCIENCE ADVANCES 2023; 9:eade9120. [PMID: 36608131 PMCID: PMC9821863 DOI: 10.1126/sciadv.ade9120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/01/2022] [Indexed: 05/18/2023]
Abstract
Utilization of specific codons varies between organisms. Cancer represents a model for understanding DNA sequence evolution and could reveal causal factors underlying codon evolution. We found that across human cancer, arginine codons are frequently mutated to other codons. Moreover, arginine limitation-a feature of tumor microenvironments-is sufficient to induce arginine codon-switching mutations in human colon cancer cells. Such DNA codon switching events encode mutant proteins with arginine residue substitutions. Mechanistically, arginine limitation caused rapid reduction of arginine transfer RNAs and the stalling of ribosomes over arginine codons. Such selective pressure against arginine codon translation induced an adaptive proteomic shift toward low-arginine codon-containing genes, including specific amino acid transporters, and caused mutational evolution away from arginine codons-reducing translational bottlenecks that occurred during arginine starvation. Thus, environmental availability of a specific amino acid can influence DNA sequence evolution away from its cognate codons and generate altered proteins.
Collapse
Affiliation(s)
- Dennis J. Hsu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jenny Gao
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Alexandra Pinzaru
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Qiushuang Wu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Nandan Mandayam
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Maria Liberti
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Saeed Tavazoie
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Sohail F. Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
89
|
Bell HN, Huber AK, Singhal R, Korimerla N, Rebernick RJ, Kumar R, El-Derany MO, Sajjakulnukit P, Das NK, Kerk SA, Solanki S, James JG, Kim D, Zhang L, Chen B, Mehra R, Frankel TL, Győrffy B, Fearon ER, Pasca di Magliano M, Gonzalez FJ, Banerjee R, Wahl DR, Lyssiotis CA, Green M, Shah YM. Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer. Cell Metab 2023; 35:134-149.e6. [PMID: 36528023 PMCID: PMC9841369 DOI: 10.1016/j.cmet.2022.11.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Effective therapies are lacking for patients with advanced colorectal cancer (CRC). The CRC tumor microenvironment has elevated metabolic waste products due to altered metabolism and proximity to the microbiota. The role of metabolite waste in tumor development, progression, and treatment resistance is unclear. We generated an autochthonous metastatic mouse model of CRC and used unbiased multi-omic analyses to reveal a robust accumulation of tumoral ammonia. The high ammonia levels induce T cell metabolic reprogramming, increase exhaustion, and decrease proliferation. CRC patients have increased serum ammonia, and the ammonia-related gene signature correlates with altered T cell response, adverse patient outcomes, and lack of response to immune checkpoint blockade. We demonstrate that enhancing ammonia clearance reactivates T cells, decreases tumor growth, and extends survival. Moreover, decreasing tumor-associated ammonia enhances anti-PD-L1 efficacy. These findings indicate that enhancing ammonia detoxification can reactivate T cells, highlighting a new approach to enhance the efficacy of immunotherapies.
Collapse
Affiliation(s)
- Hannah N Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda K Huber
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Navyateja Korimerla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Ryan J Rebernick
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Roshan Kumar
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marwa O El-Derany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nupur K Das
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel A Kerk
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jadyn G James
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Donghwan Kim
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon Chen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Balázs Győrffy
- Department of Bioinformatics and 2(nd) Department of Pediatrics, Semmelweis University, Budapest, Hungary; TTK Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Eric R Fearon
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Veteran's Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
90
|
Hsu DJ, Gao J, Yamaguchi N, Pinzaru A, Mandayam N, Liberti M, Heissel S, Alwaseem H, Tavazoie S, Tavazoie SF. Arginine limitation causes a directed DNA sequence evolution response in colorectal cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.521806. [PMID: 36711568 PMCID: PMC9881871 DOI: 10.1101/2023.01.02.521806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Utilization of specific codons varies significantly across organisms. Cancer represents a model for understanding DNA sequence evolution and could reveal causal factors underlying codon evolution. We found that across human cancer, arginine codons are frequently mutated to other codons. Moreover, arginine restriction-a feature of tumor microenvironments-is sufficient to induce arginine codon-switching mutations in human colon cancer cells. Such DNA codon switching events encode mutant proteins with arginine residue substitutions. Mechanistically, arginine limitation caused rapid reduction of arginine transfer RNAs and the stalling of ribosomes over arginine codons. Such selective pressure against arginine codon translation induced a proteomic shift towards low arginine codon containing genes, including specific amino acid transporters, and caused mutational evolution away from arginine codons-reducing translational bottlenecks that occurred during arginine starvation. Thus, environmental availability of a specific amino acid can influence DNA sequence evolution away from its cognate codons and generate altered proteins.
Collapse
Affiliation(s)
- Dennis J. Hsu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jenny Gao
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Alexandra Pinzaru
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Nandan Mandayam
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Maria Liberti
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Saeed Tavazoie
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY USA
| | - Sohail F. Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
91
|
Tang K, Zhang H, Deng J, Wang D, Liu S, Lu S, Cui Q, Chen C, Liu J, Yang Z, Li Y, Chen J, Lv J, Ma J, Huang B. Ammonia detoxification promotes CD8 + T cell memory development by urea and citrulline cycles. Nat Immunol 2023; 24:162-173. [PMID: 36471170 DOI: 10.1038/s41590-022-01365-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022]
Abstract
Amino acid metabolism is essential for cell survival, while the byproduct ammonia is toxic and can injure cellular longevity. Here we show that CD8+ memory T (TM) cells mobilize the carbamoyl phosphate (CP) metabolic pathway to clear ammonia, thus promoting memory development. CD8+ TM cells use β-hydroxybutyrylation to upregulate CP synthetase 1 and trigger the CP metabolic cascade to form arginine in the cytosol. This cytosolic arginine is then translocated into the mitochondria where it is split by arginase 2 to urea and ornithine. Cytosolic arginine is also converted to nitric oxide and citrulline by nitric oxide synthases. Thus, both the urea and citrulline cycles are employed by CD8+ T cells to clear ammonia and enable memory development. This ammonia clearance machinery might be targeted to improve T cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Huafeng Zhang
- Department of Pathology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinghui Deng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dianheng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Shichuan Liu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuya Lu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingfa Cui
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jincheng Liu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoshun Yang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Jie Chen
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China.
| |
Collapse
|
92
|
Zhang J, Chen M, Peng Y, Li S, Han D, Ren S, Qin K, Li S, Han T, Wang Y, Gao Z. Wearable biosensors for human fatigue diagnosis: A review. Bioeng Transl Med 2023; 8:e10318. [PMID: 36684114 PMCID: PMC9842037 DOI: 10.1002/btm2.10318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
Fatigue causes deleterious effects to physical and mental health of human being and may cause loss of lives. Therefore, the adverse effects of fatigue on individuals and the society are massive. With the ever-increasing frequency of overtraining among modern military and sports personnel, timely, portable and accurate fatigue diagnosis is essential to avoid fatigue-induced accidents. However, traditional detection methods require complex sample preparation and blood sampling processes, which cannot meet the timeliness and portability of fatigue diagnosis. With the development of flexible materials and biosensing technology, wearable biosensors have attracted increased attention to the researchers. Wearable biosensors collect biomarkers from noninvasive biofluids, such as sweat, saliva, and tears, followed by biosensing with the help of biosensing modules continuously and quantitatively. The detection signal can then be transmitted through wireless communication modules that constitute a method for real-time understanding of abnormality. Recent developments of wearable biosensors are focused on miniaturized wearable electrochemistry and optical biosensors for metabolites detection, of which, few have exhibited satisfactory results in medical diagnosis. However, detection performance limits the wide-range applicability of wearable fatigue diagnosis. In this article, the application of wearable biosensors in fatigue diagnosis has been discussed. In fact, exploration of the composition of different biofluids and their potential toward fatigue diagnosis have been discussed here for the very first time. Moreover, discussions regarding the current bottlenecks in wearable fatigue biosensors and the latest advancements in biochemical reaction and data communication modules have been incorporated herein. Finally, the main challenges and opportunities were discussed for wearable fatigue diagnosis in the future.
Collapse
Affiliation(s)
- Jingyang Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Mengmeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Kang Qin
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Sen Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| |
Collapse
|
93
|
Dai W, Shen J, Yan J, Bott AJ, Maimouni S, Daguplo HQ, Wang Y, Khayati K, Guo JY, Zhang L, Wang Y, Valvezan A, Ding WX, Chen X, Su X, Gao S, Zong WX. Glutamine synthetase limits β-catenin-mutated liver cancer growth by maintaining nitrogen homeostasis and suppressing mTORC1. J Clin Invest 2022; 132:e161408. [PMID: 36256480 PMCID: PMC9754002 DOI: 10.1172/jci161408] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022] Open
Abstract
Glutamine synthetase (GS) catalyzes de novo synthesis of glutamine that facilitates cancer cell growth. In the liver, GS functions next to the urea cycle to remove ammonia waste. As a dysregulated urea cycle is implicated in cancer development, the impact of GS's ammonia clearance function has not been explored in cancer. Here, we show that oncogenic activation of β-catenin (encoded by CTNNB1) led to a decreased urea cycle and elevated ammonia waste burden. While β-catenin induced the expression of GS, which is thought to be cancer promoting, surprisingly, genetic ablation of hepatic GS accelerated the onset of liver tumors in several mouse models that involved β-catenin activation. Mechanistically, GS ablation exacerbated hyperammonemia and facilitated the production of glutamate-derived nonessential amino acids, which subsequently stimulated mechanistic target of rapamycin complex 1 (mTORC1). Pharmacological and genetic inhibition of mTORC1 and glutamic transaminases suppressed tumorigenesis facilitated by GS ablation. While patients with hepatocellular carcinoma, especially those with CTNNB1 mutations, have an overall defective urea cycle and increased expression of GS, there exists a subset of patients with low GS expression that is associated with mTORC1 hyperactivation. Therefore, GS-mediated ammonia clearance serves as a tumor-suppressing mechanism in livers that harbor β-catenin activation mutations and a compromised urea cycle.
Collapse
Affiliation(s)
- Weiwei Dai
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Jianliang Shen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Junrong Yan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Alex J. Bott
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Sara Maimouni
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Heineken Q. Daguplo
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yujue Wang
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Khoosheh Khayati
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jessie Yanxiang Guo
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Lanjing Zhang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Alexander Valvezan
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
- Center for Advanced Biotechnology and Medicine, Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA
| | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Shenglan Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
94
|
Semreen AM, Alsoud LO, El-Huneidi W, Ahmed M, Bustanji Y, Abu-Gharbieh E, El-Awady R, Ramadan WS, Alqudah MA, Shara M, Abuhelwa AY, Soares NC, Semreen MH, Alzoubi KH. Metabolomics Analysis Revealed Significant Metabolic Changes in Brain Cancer Cells Treated with Paclitaxel and/or Etoposide. Int J Mol Sci 2022; 23:13940. [PMID: 36430415 PMCID: PMC9693830 DOI: 10.3390/ijms232213940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer of the central nervous system (CNS) is ranked as the 19th most prevalent form of the disease in 2020. This study aims to identify candidate biomarkers and metabolic pathways affected by paclitaxel and etoposide, which serve as potential treatments for glioblastoma, and are linked to the pathogenesis of glioblastoma. We utilized an untargeted metabolomics approach using the highly sensitive ultra-high-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS) for identification. In this study, 92 and 94 metabolites in U87 and U373 cell lines were profiled, respectively. The produced metabolites were then analyzed utilizing t-tests, volcano plots, and enrichment analysis modules. Our analysis revealed distinct metabolites to be significantly dysregulated (nutriacholic acid, L-phenylalanine, L-arginine, guanosine, ADP, hypoxanthine, and guanine), and to a lesser extent, mevalonic acid in paclitaxel and/or etoposide treated cells. Furthermore, both urea and citric acid cycles, and metabolism of polyamines and amino acids (aspartate, arginine, and proline) were significantly enriched. These findings can be used to create a map that can be utilized to assess the antitumor effect of paclitaxel and/or etoposide within the studied cancer cells.
Collapse
Affiliation(s)
- Ahlam M. Semreen
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Leen Oyoun Alsoud
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yasser Bustanji
- Department of Basic and Clinical Pharmacology, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Eman Abu-Gharbieh
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Raafat El-Awady
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S. Ramadan
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad A.Y. Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohd Shara
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmad Y. Abuhelwa
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Karem H. Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
95
|
Noronha A, Belugali Nataraj N, Lee JS, Zhitomirsky B, Oren Y, Oster S, Lindzen M, Mukherjee S, Will R, Ghosh S, Simoni-Nieves A, Verma A, Chatterjee R, Borgoni S, Robinson W, Sinha S, Brandis A, Kerr DL, Wu W, Sekar A, Giri S, Chung Y, Drago-Garcia D, Danysh BP, Lauriola M, Fiorentino M, Ardizzoni A, Oren M, Blakely CM, Ezike J, Wiemann S, Parida L, Bivona TG, Aqeilan RI, Brugge JS, Regev A, Getz G, Ruppin E, Yarden Y. AXL and Error-Prone DNA Replication Confer Drug Resistance and Offer Strategies to Treat EGFR-Mutant Lung Cancer. Cancer Discov 2022; 12:2666-2683. [PMID: 35895872 PMCID: PMC9627128 DOI: 10.1158/2159-8290.cd-22-0111] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023]
Abstract
Anticancer therapies have been limited by the emergence of mutations and other adaptations. In bacteria, antibiotics activate the SOS response, which mobilizes error-prone factors that allow for continuous replication at the cost of mutagenesis. We investigated whether the treatment of lung cancer with EGFR inhibitors (EGFRi) similarly engages hypermutators. In cycling drug-tolerant persister (DTP) cells and in EGFRi-treated patients presenting residual disease, we observed upregulation of GAS6, whereas ablation of GAS6's receptor, AXL, eradicated resistance. Reciprocally, AXL overexpression enhanced DTP survival and accelerated the emergence of T790M, an EGFR mutation typical to resistant cells. Mechanistically, AXL induces low-fidelity DNA polymerases and activates their organizer, RAD18, by promoting neddylation. Metabolomics uncovered another hypermutator, AXL-driven activation of MYC, and increased purine synthesis that is unbalanced by pyrimidines. Aligning anti-AXL combination treatments with the transition from DTPs to resistant cells cured patient-derived xenografts. Hence, similar to bacteria, tumors tolerate therapy by engaging pharmacologically targetable endogenous mutators. SIGNIFICANCE EGFR-mutant lung cancers treated with kinase inhibitors often evolve resistance due to secondary mutations. We report that in similarity to the bacterial SOS response stimulated by antibiotics, endogenous mutators are activated in drug-treated cells, and this heralds tolerance. Blocking the process prevented resistance in xenograft models, which offers new treatment strategies. This article is highlighted in the In This Issue feature, p. 2483.
Collapse
Affiliation(s)
- Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Joo Sang Lee
- Cancer Data Science Lab, NCI, NIH, Bethesda, Maryland.,Next-Gen Medicine Lab, School of Medicine and Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea
| | | | - Yaara Oren
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Sara Oster
- Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Saptaparna Mukherjee
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rainer Will
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Soma Ghosh
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Arturo Simoni-Nieves
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Aakanksha Verma
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Rishita Chatterjee
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Simone Borgoni
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Sanju Sinha
- Cancer Data Science Lab, NCI, NIH, Bethesda, Maryland
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - D. Lucas Kerr
- Department of Medicine, University of California, San Francisco, California
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, California
| | - Arunachalam Sekar
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Suvendu Giri
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Youngmin Chung
- Next-Gen Medicine Lab, School of Medicine and Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Diana Drago-Garcia
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Brian P. Danysh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Michelangelo Fiorentino
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Medical Oncology IRCCS Azienda Ospedaliero, University of Bologna, Bologna, Italy
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Collin M. Blakely
- Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Jideofor Ezike
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laxmi Parida
- Thomas J. Watson Research Center, IBM Research, Yorktown Heights, New York
| | - Trever G. Bivona
- Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| | - Rami I. Aqeilan
- Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Joan S. Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Aviv Regev
- Genentech Inc., South San Francisco, California
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Cancer Center and Department of Pathology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Eytan Ruppin
- Cancer Data Science Lab, NCI, NIH, Bethesda, Maryland
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.,Corresponding Author: Yosef Yarden, Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel. Phone: 972-8-934-3974; Fax: 972-8-934-2488; E-mail:
| |
Collapse
|
96
|
Unraveling the therapeutic potential of carbamoyl phosphate synthetase 1 (CPS1) in human disease. Bioorg Chem 2022; 130:106253. [DOI: 10.1016/j.bioorg.2022.106253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
97
|
Guo H, Wang Y, Gou L, Wang X, Tang Y, Wang X. A novel prognostic model based on urea cycle-related gene signature for colorectal cancer. Front Surg 2022; 9:1027655. [PMID: 36338624 PMCID: PMC9633963 DOI: 10.3389/fsurg.2022.1027655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Background Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the world. This study aimed to develop a urea cycle (UC)-related gene signature that provides a theoretical foundation for the prognosis and treatment of patients with CRC. Methods Differentially expressed UC-related genes in CRC were confirmed using differential analysis and Venn diagrams. Univariate Cox and least absolute shrinkage and selection operator regression analyses were performed to identify UC-related prognostic genes. A UC-related signature was created and confirmed using distinct datasets. Independent prognostic predictors were authenticated using Cox analysis. The Cell-type Identification by Estimating Relative Subsets of RNA Transcripts algorithm and Spearman method were applied to probe the linkage between UC-related prognostic genes and tumor immune-infiltrating cells. The Human Protein Atlas database was used to determine the protein expression levels of prognostic genes in CRC and normal tissues. Verification of the expression levels of UC-related prognostic genes in clinical tissue samples was performed using real-time quantitative polymerase chain reaction (qPCR). Results A total of 49 DEUCRGs in CRC were mined. Eight prognostic genes (TIMP1, FABP4, MMP3, MMP1, CD177, CA2, S100P, and SPP1) were identified to construct a UC-related gene signature. The signature was then affirmed using an external validation set. The risk score was demonstrated to be a credible independent prognostic predictor using Cox regression analysis. Functional enrichment analysis revealed that focal adhesion, ECM-receptor interaction, IL-17 signaling pathway, and nitrogen metabolism were associated with the UC-related gene signature. Immune infiltration and correlation analyses revealed a significant correlation between UC-related prognostic genes and differential immune cells between the two risk subgroups. Finally, the qPCR results of clinical samples further confirmed the results of the public database. Conclusion Taken together, this study authenticated UC-related prognostic genes and developed a gene signature for the prognosis of CRC, which will be of great significance in the identification of prognostic molecular biomarkers, clinical prognosis prediction, and development of treatment strategies for patients with CRC.
Collapse
Affiliation(s)
- Haiyang Guo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yuanbiao Wang
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Lei Gou
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaobo Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yong Tang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianfei Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Correspondence: Xianfei Wang
| |
Collapse
|
98
|
Duff C, Baruteau J. Modelling urea cycle disorders using iPSCs. NPJ Regen Med 2022; 7:56. [PMID: 36163209 PMCID: PMC9513077 DOI: 10.1038/s41536-022-00252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
The urea cycle is a liver-based pathway enabling disposal of nitrogen waste. Urea cycle disorders (UCDs) are inherited metabolic diseases caused by deficiency of enzymes or transporters involved in the urea cycle and have a prevalence of 1:35,000 live births. Patients present recurrent acute hyperammonaemia, which causes high rate of death and neurological sequelae. Long-term therapy relies on a protein-restricted diet and ammonia scavenger drugs. Currently, liver transplantation is the only cure. Hence, high unmet needs require the identification of effective methods to model these diseases to generate innovative therapeutics. Advances in both induced pluripotent stem cells (iPSCs) and genome editing technologies have provided an invaluable opportunity to model patient-specific phenotypes in vitro by creating patients' avatar models, to investigate the pathophysiology, uncover novel therapeutic targets and provide a platform for drug discovery. This review summarises the progress made thus far in generating 2- and 3-dimensional iPSCs models for UCDs, the challenges encountered and how iPSCs offer future avenues for innovation in developing the next-generation of therapies for UCDs.
Collapse
Affiliation(s)
- Claire Duff
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK.
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
99
|
Shi DD, Savani MR, Levitt MM, Wang AC, Endress JE, Bird CE, Buehler J, Stopka SA, Regan MS, Lin YF, Puliyappadamba VT, Gao W, Khanal J, Evans L, Lee JH, Guo L, Xiao Y, Xu M, Huang B, Jennings RB, Bonal DM, Martin-Sandoval MS, Dang T, Gattie LC, Cameron AB, Lee S, Asara JM, Kornblum HI, Mak TW, Looper RE, Nguyen QD, Signoretti S, Gradl S, Sutter A, Jeffers M, Janzer A, Lehrman MA, Zacharias LG, Mathews TP, Losman JA, Richardson TE, Cahill DP, DeBerardinis RJ, Ligon KL, Xu L, Ly P, Agar NYR, Abdullah KG, Harris IS, Kaelin WG, McBrayer SK. De novo pyrimidine synthesis is a targetable vulnerability in IDH mutant glioma. Cancer Cell 2022; 40:939-956.e16. [PMID: 35985343 PMCID: PMC9515386 DOI: 10.1016/j.ccell.2022.07.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022]
Abstract
Mutations affecting isocitrate dehydrogenase (IDH) enzymes are prevalent in glioma, leukemia, and other cancers. Although mutant IDH inhibitors are effective against leukemia, they seem to be less active in aggressive glioma, underscoring the need for alternative treatment strategies. Through a chemical synthetic lethality screen, we discovered that IDH1-mutant glioma cells are hypersensitive to drugs targeting enzymes in the de novo pyrimidine nucleotide synthesis pathway, including dihydroorotate dehydrogenase (DHODH). We developed a genetically engineered mouse model of mutant IDH1-driven astrocytoma and used it and multiple patient-derived models to show that the brain-penetrant DHODH inhibitor BAY 2402234 displays monotherapy efficacy against IDH-mutant gliomas. Mechanistically, this reflects an obligate dependence of glioma cells on the de novo pyrimidine synthesis pathway and mutant IDH's ability to sensitize to DNA damage upon nucleotide pool imbalance. Our work outlines a tumor-selective, biomarker-guided therapeutic strategy that is poised for clinical translation.
Collapse
Affiliation(s)
- Diana D Shi
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA 02215, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Milan R Savani
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael M Levitt
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam C Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer E Endress
- Ludwig Cancer Center, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Cylaina E Bird
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Joseph Buehler
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Fen Lin
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vinesh T Puliyappadamba
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenhua Gao
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Januka Khanal
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Laura Evans
- Bayer HealthCare Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Joyce H Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Xiao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Xu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bofu Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca B Jennings
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis M Bonal
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Misty S Martin-Sandoval
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tammie Dang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren C Gattie
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Amy B Cameron
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Sungwoo Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - John M Asara
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Harley I Kornblum
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Behavioral Sciences, and Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON M5G 2M9, Canada; The Princess Margaret Cancer Centre and Ontario Cancer Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ryan E Looper
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stefan Gradl
- Bayer AG, Muellerstrasse 178, 13353 Berlin, Germany
| | | | - Michael Jeffers
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, NJ 07981, USA
| | | | - Mark A Lehrman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julie-Aurore Losman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Timothy E Richardson
- Department of Pathology, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pathology, Children's Hospital Boston, Boston, MA 02115, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Isaac S Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Samuel K McBrayer
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
100
|
Carpentier J, Pavlyk I, Mukherjee U, Hall PE, Szlosarek PW. Arginine Deprivation in SCLC: Mechanisms and Perspectives for Therapy. LUNG CANCER (AUCKLAND, N.Z.) 2022; 13:53-66. [PMID: 36091646 PMCID: PMC9462517 DOI: 10.2147/lctt.s335117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Arginine deprivation has gained increasing traction as a novel and safe antimetabolite strategy for the treatment of several hard-to-treat cancers characterised by a critical dependency on arginine. Small cell lung cancer (SCLC) displays marked arginine auxotrophy due to inactivation of the rate-limiting enzyme argininosuccinate synthetase 1 (ASS1), and as a consequence may be targeted with pegylated arginine deiminase or ADI-PEG20 (pegargiminase) and human recombinant pegylated arginases (rhArgPEG, BCT-100 and pegzilarginase). Although preclinical studies reveal that ASS1-deficient SCLC cell lines are highly sensitive to arginine-degrading enzymes, there is a clear disconnect with the clinic with minimal activity seen to date that may be due in part to patient selection. Recent studies have explored resistance mechanisms to arginine depletion focusing on tumor adaptation, such as ASS1 re-expression and autophagy, stromal cell inputs including macrophage infiltration, and tumor heterogeneity. Here, we explore how arginine deprivation may be combined strategically with novel agents to improve SCLC management by modulating resistance and increasing the efficacy of existing agents. Moreover, recent work has identified an intriguing role for targeting arginine in combination with PD-1/PD-L1 immune checkpoint inhibitors and clinical trials are in progress. Thus, future studies of arginine-depleting agents with chemoimmunotherapy, the current standard of care for SCLC, may lead to enhanced disease control and much needed improvements in long-term survival for patients.
Collapse
Affiliation(s)
- Joséphine Carpentier
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Iuliia Pavlyk
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Uma Mukherjee
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| | - Peter E Hall
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| | - Peter W Szlosarek
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| |
Collapse
|