51
|
Lu S, Mi Z, Liu P, Ding J, Ma Y, Yang J, Rong P, Zhou W. Repolarizing neutrophils via MnO 2 nanoparticle-activated STING pathway enhances Salmonella-mediated tumor immunotherapy. J Nanobiotechnology 2024; 22:443. [PMID: 39068474 PMCID: PMC11282601 DOI: 10.1186/s12951-024-02726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Engineered Salmonella has emerged as a promising microbial immunotherapy against tumors; however, its clinical effectiveness has encountered limitations. In our investigation, we unveil a non-dose-dependent type of behavior regarding Salmonella's therapeutic impact and reveal the regulatory role of neutrophils in diminishing the efficacy of this. While Salmonella colonization within tumors recruits a substantial neutrophil population, these neutrophils predominantly polarize into the pro-tumor N2 phenotype, elevating PD-L1 expression and fostering an immunosuppressive milieu within the tumor microenvironment. In order to bypass this challenge, we introduce MnO2 nanoparticles engineered to activate the STING pathway. Harnessing the STING pathway to stimulate IFN-β secretion prompts a shift in neutrophil polarization from the N2 to the N1 phenotype. This strategic repolarization remodels the tumor immune microenvironment, making the infiltration and activation of CD8+ T cells possible. Through these orchestrated mechanisms, the combined employment of Salmonella and MnO2 attains the synergistic enhancement of anti-tumor efficacy, achieving the complete inhibition of tumor growth within 20 days and an impressive 80% survival rate within 40 days, with no discernible signs of significant adverse effects. Our study not only unveils the crucial in vivo constraints obstructing microbial immune therapy but also sets out an innovative strategy to augment its efficacy. These findings pave the way for advancements in cell-based immunotherapy centered on leveraging the potential of neutrophils.
Collapse
Affiliation(s)
- Shan Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Peng Liu
- Key Laboratory of Biological Nanotechnology, NHC. No. 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Yiran Ma
- Hunan Prize Life Science Research Institute Co., LTD, 229 Guyuan Road, Changsha, Hunan, 410008, China
| | - Jieru Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China.
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan, 410008, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan, 410008, China.
| |
Collapse
|
52
|
Massara M, Dolfi B, Wischnewski V, Nolan E, Held W, Malanchi I, Joyce JA. Investigation of a fluorescent reporter microenvironment niche labeling strategy in experimental brain metastasis. iScience 2024; 27:110284. [PMID: 39040072 PMCID: PMC11261144 DOI: 10.1016/j.isci.2024.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Brain metastases are the most common brain tumors in patients and are associated with poor prognosis. Investigating the colonization and outgrowth of brain metastases is challenging given the complexity of the organ, tissue sampling difficulty, and limited experimental models. To address this challenge, we employed a strategy to analyze the metastatic niche in established lesions, based on the release of a cell-penetrating mCherry tag from labeled tumor cells to neighboring niche cells, using different brain metastasis mouse models. We found that CD206+ macrophages were the most abundant cells taking up the mCherry label in established metastases. In vitro and in vivo experiments demonstrated that macrophages uptake and retain the canonical form of mCherry, even without the cell-penetrating portion of the tag. These results identify a specific macrophage subset in the brain that retains tumor-supplied fluorescent molecules, thereby complicating the long-term use of niche labeling strategies in established experimental brain metastasis.
Collapse
Affiliation(s)
- Matteo Massara
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Bastien Dolfi
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Vladimir Wischnewski
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Emma Nolan
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Werner Held
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Johanna A. Joyce
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| |
Collapse
|
53
|
Zhang Y, Xi K, Fu Z, Zhang Y, Cheng B, Feng F, Dong Y, Fang Z, Zhang Y, Shen J, Wang M, Han X, Geng H, Sun L, Li X, Chen C, Jiang X, Ni S. Stimulation of tumoricidal immunity via bacteriotherapy inhibits glioblastoma relapse. Nat Commun 2024; 15:4241. [PMID: 38762500 PMCID: PMC11102507 DOI: 10.1038/s41467-024-48606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor characterized by invasive behavior and a compromised immune response, presenting treatment challenges. Surgical debulking of GBM fails to address its highly infiltrative nature, leaving neoplastic satellites in an environment characterized by impaired immune surveillance, ultimately paving the way for tumor recurrence. Tracking and eradicating residual GBM cells by boosting antitumor immunity is critical for preventing postoperative relapse, but effective immunotherapeutic strategies remain elusive. Here, we report a cavity-injectable bacterium-hydrogel superstructure that targets GBM satellites around the cavity, triggers GBM pyroptosis, and initiates innate and adaptive immune responses, which prevent postoperative GBM relapse in male mice. The immunostimulatory Salmonella delivery vehicles (SDVs) engineered from attenuated Salmonella typhimurium (VNP20009) seek and attack GBM cells. Salmonella lysis-inducing nanocapsules (SLINs), designed to trigger autolysis, are tethered to the SDVs, eliciting antitumor immune response through the intracellular release of bacterial components. Furthermore, SDVs and SLINs administration via intracavitary injection of the ATP-responsive hydrogel can recruit phagocytes and promote antigen presentation, initiating an adaptive immune response. Therefore, our work offers a local bacteriotherapy for stimulating anti-GBM immunity, with potential applicability for patients facing malignancies at a high risk of recurrence.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Kaiyan Xi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Department of Pediatrics, Qilu hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Zhipeng Fu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yuying Zhang
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Road, Jinan, 250033, Shandong, China
| | - Bo Cheng
- Department of Radiation Oncology, Qilu Hospital affiliated to Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Fan Feng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yuanmin Dong
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Zezheng Fang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yi Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Jianyu Shen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Mingrui Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xu Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Huimin Geng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Lei Sun
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, Shandong, China
| | - Chen Chen
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Xinyi Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
54
|
Bugakova AS, Chudakova DA, Myzina MS, Yanysheva EP, Ozerskaya IV, Soboleva AV, Baklaushev VP, Yusubalieva GM. Non-Tumor Cells within the Tumor Microenvironment-The "Eminence Grise" of the Glioblastoma Pathogenesis and Potential Targets for Therapy. Cells 2024; 13:808. [PMID: 38786032 PMCID: PMC11119139 DOI: 10.3390/cells13100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignancy of the central nervous system in adults. GBM has high levels of therapy failure and its prognosis is usually dismal. The phenotypic heterogeneity of the tumor cells, dynamic complexity of non-tumor cell populations within the GBM tumor microenvironment (TME), and their bi-directional cross-talk contribute to the challenges of current therapeutic approaches. Herein, we discuss the etiology of GBM, and describe several major types of non-tumor cells within its TME, their impact on GBM pathogenesis, and molecular mechanisms of such an impact. We also discuss their value as potential therapeutic targets or prognostic biomarkers, with reference to the most recent works on this subject. We conclude that unless all "key player" populations of non-tumor cells within the TME are considered, no breakthrough in developing treatment for GBM can be achieved.
Collapse
Affiliation(s)
- Aleksandra S. Bugakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Daria A. Chudakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Maria S. Myzina
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Elvira P. Yanysheva
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Iuliia V. Ozerskaya
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Alesya V. Soboleva
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
55
|
Sun C, Wang S, Ma Z, Zhou J, Ding Z, Yuan G, Pan Y. Neutrophils in glioma microenvironment: from immune function to immunotherapy. Front Immunol 2024; 15:1393173. [PMID: 38779679 PMCID: PMC11109384 DOI: 10.3389/fimmu.2024.1393173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Glioma is a malignant tumor of the central nervous system (CNS). Currently, effective treatment options for gliomas are still lacking. Neutrophils, as an important member of the tumor microenvironment (TME), are widely distributed in circulation. Recently, the discovery of cranial-meningeal channels and intracranial lymphatic vessels has provided new insights into the origins of neutrophils in the CNS. Neutrophils in the brain may originate more from the skull and adjacent vertebral bone marrow. They cross the blood-brain barrier (BBB) under the action of chemokines and enter the brain parenchyma, subsequently migrating to the glioma TME and undergoing phenotypic changes upon contact with tumor cells. Under glycolytic metabolism model, neutrophils show complex and dual functions in different stages of cancer progression, including participation in the malignant progression, immune suppression, and anti-tumor effects of gliomas. Additionally, neutrophils in the TME interact with other immune cells, playing a crucial role in cancer immunotherapy. Targeting neutrophils may be a novel generation of immunotherapy and improve the efficacy of cancer treatments. This article reviews the molecular mechanisms of neutrophils infiltrating the central nervous system from the external environment, detailing the origin, functions, classifications, and targeted therapies of neutrophils in the context of glioma.
Collapse
Affiliation(s)
- Chao Sun
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Siwen Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhen Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Jinghuan Zhou
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zilin Ding
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Guoqiang Yuan
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yawen Pan
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
56
|
Kaminska P, Ovesen PL, Jakiel M, Obrebski T, Schmidt V, Draminski M, Bilska AG, Bieniek M, Anink J, Paterczyk B, Jensen AMG, Piatek S, Andersen OM, Aronica E, Willnow TE, Kaminska B, Dabrowski MJ, Malik AR. SorLA restricts TNFα release from microglia to shape a glioma-supportive brain microenvironment. EMBO Rep 2024; 25:2278-2305. [PMID: 38499808 PMCID: PMC11094098 DOI: 10.1038/s44319-024-00117-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
SorLA, encoded by the gene SORL1, is an intracellular sorting receptor of the VPS10P domain receptor gene family. Although SorLA is best recognized for its ability to shuttle target proteins between intracellular compartments in neurons, recent data suggest that also its microglial expression can be of high relevance for the pathogenesis of brain diseases, including glioblastoma (GBM). Here, we interrogated the impact of SorLA on the functional properties of glioma-associated microglia and macrophages (GAMs). In the GBM microenvironment, GAMs are re-programmed and lose the ability to elicit anti-tumor responses. Instead, they acquire a glioma-supporting phenotype, which is a key mechanism promoting glioma progression. Our re-analysis of published scRNA-seq data from GBM patients revealed that functional phenotypes of GAMs are linked to the level of SORL1 expression, which was further confirmed using in vitro models. Moreover, we demonstrate that SorLA restrains secretion of TNFα from microglia to restrict the inflammatory potential of these cells. Finally, we show that loss of SorLA exacerbates the pro-inflammatory response of microglia in the murine model of glioma and suppresses tumor growth.
Collapse
Affiliation(s)
- Paulina Kaminska
- Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Peter L Ovesen
- Max-Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | - Mateusz Jakiel
- Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
- Institute of Computer Science, 01-248, Warsaw, Poland
| | - Tomasz Obrebski
- Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Vanessa Schmidt
- Max-Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | | | - Aleksandra G Bilska
- Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
- Museum and Institute of Zoology, Polish Academy of Sciences, 00-679, Warsaw, Poland
| | | | - Jasper Anink
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Bohdan Paterczyk
- Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | | | - Sylwia Piatek
- Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Olav M Andersen
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland, 2103 SW, Heemstede, The Netherlands
| | - Thomas E Willnow
- Max-Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - Bozena Kaminska
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | | | - Anna R Malik
- Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland.
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
57
|
Jenkins MR, Drummond KJ. CAR T-Cell Therapy for Glioblastoma. N Engl J Med 2024; 390:1329-1332. [PMID: 38598802 DOI: 10.1056/nejme2401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Misty R Jenkins
- From the Immunology Division, Walter and Eliza Hall Institute, and the Department of Medical Biology, University of Melbourne, Parkville, VIC (M.R.J.), and the Department of Surgery, University of Melbourne, Melbourne, VIC (K.J.D.) - all in Australia
| | - Katharine J Drummond
- From the Immunology Division, Walter and Eliza Hall Institute, and the Department of Medical Biology, University of Melbourne, Parkville, VIC (M.R.J.), and the Department of Surgery, University of Melbourne, Melbourne, VIC (K.J.D.) - all in Australia
| |
Collapse
|
58
|
Wisdom AJ, Barker CA, Chang JY, Demaria S, Formenti S, Grassberger C, Gregucci F, Hoppe BS, Kirsch DG, Marciscano AE, Mayadev J, Mouw KW, Palta M, Wu CC, Jabbour SK, Schoenfeld JD. The Next Chapter in Immunotherapy and Radiation Combination Therapy: Cancer-Specific Perspectives. Int J Radiat Oncol Biol Phys 2024; 118:1404-1421. [PMID: 38184173 DOI: 10.1016/j.ijrobp.2023.12.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Immunotherapeutic agents have revolutionized cancer treatment over the past decade. However, most patients fail to respond to immunotherapy alone. A growing body of preclinical studies highlights the potential for synergy between radiation therapy and immunotherapy, but the outcomes of clinical studies have been mixed. This review summarizes the current state of immunotherapy and radiation combination therapy across cancers, highlighting existing challenges and promising areas for future investigation.
Collapse
Affiliation(s)
- Amy J Wisdom
- Harvard Radiation Oncology Program, Boston, Massachusetts
| | - Christopher A Barker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joe Y Chang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Silvia Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Clemens Grassberger
- Department of Radiation Oncology, University of Washington, Fred Hutch Cancer Center, Seattle, Washington
| | - Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Bradford S Hoppe
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - David G Kirsch
- Department of Radiation Oncology, University of Toronto, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ariel E Marciscano
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jyoti Mayadev
- Department of Radiation Oncology, UC San Diego School of Medicine, San Diego, California
| | - Kent W Mouw
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Manisha Palta
- Department of Radiation Oncology, Duke Cancer Center, Durham, North Carolina
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
| | - Jonathan D Schoenfeld
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
59
|
Tuysuz EC, Mourati E, Rosberg R, Moskal A, Gialeli C, Johansson E, Governa V, Belting M, Pietras A, Blom AM. Tumor suppressor role of the complement inhibitor CSMD1 and its role in TNF-induced neuroinflammation in gliomas. J Exp Clin Cancer Res 2024; 43:98. [PMID: 38561856 PMCID: PMC10986120 DOI: 10.1186/s13046-024-03019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The complement inhibitor CSMD1 acts as a tumor suppressor in various types of solid cancers. Despite its high level of expression in the brain, its function in gliomas, malignant brain tumors originating from glial cells, has not been investigated. METHODS Three cohorts of glioma patients comprising 1500 patients were analyzed in our study along with their clinical data. H4, U-118 and U-87 cell lines were used to investigate the tumor suppressor function of CSMD1 in gliomas. PDGFB-induced brain tumor model was utilized for the validation of in vitro data. RESULTS The downregulation of CSMD1 expression correlated with reduced overall and disease-free survival, elevated tumor grade, wild-type IDH genotype, and intact 1p/19q status. Moreover, enhanced activity was noted in the neuroinflammation pathway. Importantly, ectopic expression of CSMD1 in glioma cell lines led to decreased aggressiveness in vitro. Mechanically, CSMD1 obstructed the TNF-induced NF-kB and STAT3 signaling pathways, effectively suppressing the secretion of IL-6 and IL-8. There was also reduced survival in PDGFB-induced brain tumors in mice when Csmd1 was downregulated. CONCLUSIONS Our study has identified CSMD1 as a tumor suppressor in gliomas and elucidated its role in TNF-induced neuroinflammation, contributing to a deeper understanding of glioma pathogenesis.
Collapse
Affiliation(s)
- Emre Can Tuysuz
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Eleni Mourati
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Rebecca Rosberg
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Aleksandra Moskal
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Chrysostomi Gialeli
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
- Department of Clinical Sciences, Cardiovascular Research Translational Studies, Lund University, Malmö, Sweden
| | - Elinn Johansson
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Valeria Governa
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Alexander Pietras
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden.
| |
Collapse
|
60
|
Cassatella MA, Scapini P, Tamassia N. How murine neutrophils are hijacked within the microenvironment of pancreatic cancer. J Leukoc Biol 2024; 115:585-588. [PMID: 38394343 DOI: 10.1093/jleuko/qiae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Discoveries made in the past decades have brought out that, in addition to their classical primary defensive functions against infections, polymorphonuclear neutrophils play key effector roles not only in chronic inflammatory and immune-mediated diseases but also in cancer. In addition, depending on their differentiation/activation status and/or on the physiological or pathological microenvironment in which they reside, neutrophils have been shown to behave as highly plastic cells, able to acquire new phenotypes/functional states. All these features are well manifested in cancer and modulated during tumor progression. Herein, we discuss intriguing data by Lai Ng's group that have shed light on the origin and development of terminally differentiated, proangiogenic, tumor-associated neutrophils, facilitating tumor growth in a murine orthotopic model of pancreatic ductal adenocarcinoma. These findings help to progress toward the ambitious goal of selectively targeting only the skewed pathological neutrophil populations present within the tumor microenvironment.
Collapse
Affiliation(s)
- Marco Antonio Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Patrizia Scapini
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
61
|
Swanton C, Bernard E, Abbosh C, André F, Auwerx J, Balmain A, Bar-Sagi D, Bernards R, Bullman S, DeGregori J, Elliott C, Erez A, Evan G, Febbraio MA, Hidalgo A, Jamal-Hanjani M, Joyce JA, Kaiser M, Lamia K, Locasale JW, Loi S, Malanchi I, Merad M, Musgrave K, Patel KJ, Quezada S, Wargo JA, Weeraratna A, White E, Winkler F, Wood JN, Vousden KH, Hanahan D. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024; 187:1589-1616. [PMID: 38552609 PMCID: PMC12077170 DOI: 10.1016/j.cell.2024.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.
Collapse
Affiliation(s)
- Charles Swanton
- The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Elsa Bernard
- The Francis Crick Institute, London, UK; INSERM U981, Gustave Roussy, Villejuif, France
| | | | - Fabrice André
- INSERM U981, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Paris Saclay University, Kremlin-Bicetre, France
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Allan Balmain
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gerard Evan
- The Francis Crick Institute, London, UK; Kings College London, London, UK
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrés Hidalgo
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Area of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Johanna A Joyce
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Katja Lamia
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA; Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Department of Medical Oncology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Miriam Merad
- Department of immunology and immunotherapy, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn Musgrave
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK; Department of Haematology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sergio Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Jennifer A Wargo
- Department of Surgical Oncology, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashani Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton, NJ, USA
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John N Wood
- Molecular Nociception Group, WIBR, University College London, London, UK
| | | | - Douglas Hanahan
- Lausanne Branch, Ludwig Institute for Cancer Research, Lausanne, Switzerland; Swiss institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Agora Translational Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
62
|
Bejarano L, Kauzlaric A, Lamprou E, Lourenco J, Fournier N, Ballabio M, Colotti R, Maas R, Galland S, Massara M, Soukup K, Lilja J, Brouland JP, Hottinger AF, Daniel RT, Hegi ME, Joyce JA. Interrogation of endothelial and mural cells in brain metastasis reveals key immune-regulatory mechanisms. Cancer Cell 2024; 42:378-395.e10. [PMID: 38242126 DOI: 10.1016/j.ccell.2023.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/11/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Brain metastasis (BrM) is a common malignancy, predominantly originating from lung, melanoma, and breast cancers. The vasculature is a key component of the BrM tumor microenvironment with critical roles in regulating metastatic seeding and progression. However, the heterogeneity of the major BrM vascular components, namely endothelial and mural cells, is still poorly understood. We perform single-cell and bulk RNA-sequencing of sorted vascular cell types and detect multiple subtypes enriched specifically in BrM compared to non-tumor brain, including previously unrecognized immune regulatory subtypes. We integrate the human data with mouse models, creating a platform to interrogate vascular targets for the treatment of BrM. We find that the CD276 immune checkpoint molecule is significantly upregulated in the BrM vasculature, and anti-CD276 blocking antibodies prolonged survival in preclinical trials. This study provides important insights into the complex interactions between the vasculature, immune cells, and cancer cells, with translational relevance for designing therapeutic interventions.
Collapse
Affiliation(s)
- Leire Bejarano
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Annamaria Kauzlaric
- Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eleni Lamprou
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Joao Lourenco
- Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michelle Ballabio
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland
| | - Roberto Colotti
- In Vivo Imaging Facility (IVIF), University of Lausanne, Lausanne, Switzerland
| | - Roeltje Maas
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sabine Galland
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Matteo Massara
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Klara Soukup
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland
| | - Johanna Lilja
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Brouland
- Department of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Andreas F Hottinger
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roy T Daniel
- Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Monika E Hegi
- Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
63
|
Brandau S. Mononuclear myeloid cells can shape neutrophils in brain tumors. Trends Immunol 2024; 45:78-80. [PMID: 38267278 DOI: 10.1016/j.it.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
In most human solid cancer types, a high frequency of intratumoral neutrophils is associated with poor prognosis. In a recent study, Maas et al. identified an intratumoral niche in which mononuclear myeloid cells drive proinflammatory neutrophil activation in brain tumors. This study sheds new light on the intratumoral modulation of neutrophils.
Collapse
Affiliation(s)
- Sven Brandau
- Research Division, Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Essen, Essen, Germany; German Cancer Consortium, partner site Essen-Düsseldorf, Essen, Germany.
| |
Collapse
|
64
|
Losurdo A, Di Muzio A, Cianciotti BC, Dipasquale A, Persico P, Barigazzi C, Bono B, Feno S, Pessina F, Santoro A, Simonelli M. T Cell Features in Glioblastoma May Guide Therapeutic Strategies to Overcome Microenvironment Immunosuppression. Cancers (Basel) 2024; 16:603. [PMID: 38339353 PMCID: PMC10854506 DOI: 10.3390/cancers16030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive and lethal primary brain tumor, bearing a survival estimate below 10% at five years, despite standard chemoradiation treatment. At recurrence, systemic treatment options are limited and the standard of care is not well defined, with inclusion in clinical trials being highly encouraged. So far, the use of immunotherapeutic strategies in GBM has not proved to significantly improve patients' prognosis in the treatment of newly diagnosed GBM, nor in the recurrent setting. Probably this has to do with the unique immune environment of the central nervous system, which harbors several immunosuppressive/pro-tumorigenic factors, both soluble (e.g., TGF-β, IL-10, STAT3, prostaglandin E2, and VEGF) and cellular (e.g., Tregs, M2 phenotype TAMs, and MDSC). Here we review the immune composition of the GBMs microenvironment, specifically focusing on the phenotype and function of the T cell compartment. Moreover, we give hints on the therapeutic strategies, such as immune checkpoint blockade, vaccinations, and adoptive cell therapy, that, interacting with tumor-infiltrating lymphocytes, might both target in different ways the tumor microenvironment and potentiate the activity of standard therapies. The path to be followed in advancing clinical research on immunotherapy for GBM treatment relies on a twofold strategy: testing combinatorial treatments, aiming to restore active immune anti-tumor responses, tackling immunosuppression, and additionally, designing more phase 0 and window opportunity trials with solid translational analyses to gain deeper insight into the on-treatment shaping of the GBM microenvironment.
Collapse
Affiliation(s)
- Agnese Losurdo
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (A.L.); (A.D.M.); (A.D.); (P.P.); (C.B.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Antonio Di Muzio
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (A.L.); (A.D.M.); (A.D.); (P.P.); (C.B.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Beatrice Claudia Cianciotti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (B.C.C.); (S.F.)
| | - Angelo Dipasquale
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (A.L.); (A.D.M.); (A.D.); (P.P.); (C.B.); (A.S.)
| | - Pasquale Persico
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (A.L.); (A.D.M.); (A.D.); (P.P.); (C.B.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Chiara Barigazzi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (A.L.); (A.D.M.); (A.D.); (P.P.); (C.B.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Beatrice Bono
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Simona Feno
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (B.C.C.); (S.F.)
| | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Armando Santoro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (A.L.); (A.D.M.); (A.D.); (P.P.); (C.B.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Matteo Simonelli
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (A.L.); (A.D.M.); (A.D.); (P.P.); (C.B.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| |
Collapse
|
65
|
Wang J, Peng J, Chen Y, Nasser MI, Qin H. The role of stromal cells in epithelial-mesenchymal plasticity and its therapeutic potential. Discov Oncol 2024; 15:13. [PMID: 38244071 PMCID: PMC10799841 DOI: 10.1007/s12672-024-00867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a critical tumor invasion and metastasis process. EMT enables tumor cells to migrate, detach from their original location, enter the circulation, circulate within it, and eventually exit from blood arteries to colonize in foreign sites, leading to the development of overt metastases, ultimately resulting in death. EMT is intimately tied to stromal cells around the tumor and is controlled by a range of cytokines secreted by stromal cells. This review summarizes recent research on stromal cell-mediated EMT in tumor invasion and metastasis. We also discuss the effects of various stromal cells on EMT induction and focus on the molecular mechanisms by which several significant stromal cells convert from foes to friends of cancer cells to fuel EMT processes via their secretions in the tumor microenvironment (TME). As a result, a better knowledge of the role of stromal cells in cancer cells' EMT may pave the path to cancer eradication.
Collapse
Affiliation(s)
- Juanjing Wang
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmaceutical Science, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Junmei Peng
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmaceutical Science, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yonglin Chen
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, China
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China.
| | - Hui Qin
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
66
|
Würtemberger U, Diebold M, Rau A, Akgün V, Becker L, Beck J, Reinacher PC, Taschner CA, Reisert M, Fehrenbacher L, Erny D, Scherer F, Hohenhaus M, Urbach H, Demerath T. Advanced diffusion imaging reveals microstructural characteristics of primary CNS lymphoma, allowing differentiation from glioblastoma. Neurooncol Adv 2024; 6:vdae093. [PMID: 38946879 PMCID: PMC11214103 DOI: 10.1093/noajnl/vdae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Background Primary CNS lymphoma (PCNSL) and glioblastoma (GBM) both represent frequent intracranial malignancies with differing clinical management. However, distinguishing PCNSL from GBM with conventional MRI can be challenging when atypical imaging features are present. We employed advanced dMRI for noninvasive characterization of the microstructure of PCNSL and differentiation from GBM as the most frequent primary brain malignancy. Methods Multiple dMRI metrics including Diffusion Tensor Imaging, Neurite Orientation Dispersion and Density Imaging, and Diffusion Microstructure Imaging were extracted from the contrast-enhancing tumor component in 10 PCNSL and 10 age-matched GBM on 3T MRI. Imaging findings were correlated with cell density and axonal markers obtained from histopathology. Results We found significantly increased intra-axonal volume fractions (V-intra and intracellular volume fraction) and microFA in PCNSL compared to GBM (all P < .001). In contrast, mean diffusivity (MD), axial diffusivity (aD), and microADC (all P < .001), and also free water fractions (V-CSF and V-ISO) were significantly lower in PCNSL (all P < .01). Receiver-operating characteristic analysis revealed high predictive values regarding the presence of a PCNSL for MD, aD, microADC, V-intra, ICVF, microFA, V-CSF, and V-ISO (area under the curve [AUC] in all >0.840, highest for MD and ICVF with an AUC of 0.960). Comparative histopathology between PCNSL and GBM revealed a significantly increased cell density in PCNSL and the presence of axonal remnants in a higher proportion of samples. Conclusions Advanced diffusion imaging enables the characterization of the microstructure of PCNSL and reliably distinguishes PCNSL from GBM. Both imaging and histopathology revealed a relatively increased cell density and a preserved axonal microstructure in PCNSL.
Collapse
Affiliation(s)
- Urs Würtemberger
- Department of Neuroradiology, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Martin Diebold
- Institute of Neuropathology, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
- IMM-PACT Clinician Scientist Program, University of Freiburg, Freiburg, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Veysel Akgün
- Department of Neuroradiology, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Lucas Becker
- Department of Neuroradiology, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Peter C Reinacher
- Fraunhofer Institute for Laser Technology, Aachen, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Christian A Taschner
- Department of Neuroradiology, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
- Department of Medical Physics, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Luca Fehrenbacher
- Institute of Neuropathology, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Institute of Neuropathology, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Florian Scherer
- Department of Medicine I, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Marc Hohenhaus
- Department of Neurosurgery, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Theo Demerath
- Department of Neuroradiology, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
67
|
Yadav N, Purow BW. Understanding current experimental models of glioblastoma-brain microenvironment interactions. J Neurooncol 2024; 166:213-229. [PMID: 38180686 PMCID: PMC11056965 DOI: 10.1007/s11060-023-04536-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Glioblastoma (GBM) is a common and devastating primary brain tumor, with median survival of 16-18 months after diagnosis in the setting of substantial resistance to standard-of-care and inevitable tumor recurrence. Recent work has implicated the brain microenvironment as being critical for GBM proliferation, invasion, and resistance to treatment. GBM does not operate in isolation, with neurons, astrocytes, and multiple immune populations being implicated in GBM tumor progression and invasiveness. The goal of this review article is to provide an overview of the available in vitro, ex vivo, and in vivo experimental models for assessing GBM-brain interactions, as well as discuss each model's relative strengths and limitations. Current in vitro models discussed will include 2D and 3D co-culture platforms with various cells of the brain microenvironment, as well as spheroids, whole organoids, and models of fluid dynamics, such as interstitial flow. An overview of in vitro and ex vivo organotypic GBM brain slices is also provided. Finally, we conclude with a discussion of the various in vivo rodent models of GBM, including xenografts, syngeneic grafts, and genetically-engineered models of GBM.
Collapse
Affiliation(s)
- Niket Yadav
- Department of Neurology, University of Virginia Comprehensive Cancer Center, University of Virginia Health System, Charlottesville, VA, 22903, USA
- Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Benjamin W Purow
- Department of Neurology, University of Virginia Comprehensive Cancer Center, University of Virginia Health System, Charlottesville, VA, 22903, USA.
| |
Collapse
|
68
|
Sumagin R. Phenotypic and Functional Diversity of Neutrophils in Gut Inflammation and Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2-12. [PMID: 37918801 PMCID: PMC10768535 DOI: 10.1016/j.ajpath.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Neutrophils [polymorphonuclear leukocytes (PMNs)] execute important effector functions protecting the host against invading pathogens. However, their activity in tissue can exacerbate inflammation and inflammation-associated tissue injury and tumorigenesis. Until recently, PMNs were considered to be short-lived, terminally differentiated phagocytes. However, this view is rapidly changing with the emerging evidence of increased PMN lifespan in tissues, PMN plasticity, and phenotypic heterogeneity. Specialized PMN subsets have been identified in inflammation and in developing tumors, consistent with both beneficial and detrimental functions of PMNs in these conditions. Because PMN and tumor-associated neutrophil activity and the resulting beneficial/detrimental impacts primarily occur after homing to inflamed tissue/tumors, studying the underlying mechanisms of PMN/tumor-associated neutrophil trafficking is of high interest and clinical relevance. This review summarizes some of the key findings from over a decade of work from my laboratory and others on the regulation of PMN recruitment and identification of phenotypically and functionally diverse PMN subtypes as they pertain to gut inflammation and colon cancer.
Collapse
Affiliation(s)
- Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
69
|
Yu C, Hsieh K, Cherry DR, Nehlsen AD, Resende Salgado L, Lazarev S, Sindhu KK. Immune Escape in Glioblastoma: Mechanisms of Action and Implications for Immune Checkpoint Inhibitors and CAR T-Cell Therapy. BIOLOGY 2023; 12:1528. [PMID: 38132354 PMCID: PMC10741174 DOI: 10.3390/biology12121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Glioblastoma, the most common primary brain cancer in adults, is characterized by a poor prognosis and resistance to standard treatments. The advent of immunotherapy has revolutionized the treatment of several cancers in recent years but has failed to demonstrate benefit in patients with glioblastoma. Understanding the mechanisms by which glioblastoma exerts tumor-mediated immune suppression in both the tumor microenvironment and the systemic immune landscape is a critical step towards developing effective immunotherapeutic strategies. In this review, we discuss the current understanding of immune escape mechanisms in glioblastoma that compromise the efficacy of immunotherapies, with an emphasis on immune checkpoint inhibitors and chimeric antigen receptor T-cell therapy. In parallel, we review data from preclinical studies that have identified additional therapeutic targets that may enhance overall treatment efficacy in glioblastoma when administered alongside existing immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kunal K. Sindhu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.Y.); (D.R.C.); (A.D.N.); (L.R.S.); (S.L.)
| |
Collapse
|
70
|
Genoud V, Kinnersley B, Brown NF, Ottaviani D, Mulholland P. Therapeutic Targeting of Glioblastoma and the Interactions with Its Microenvironment. Cancers (Basel) 2023; 15:5790. [PMID: 38136335 PMCID: PMC10741850 DOI: 10.3390/cancers15245790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumour, and it confers a dismal prognosis despite intensive multimodal treatments. Whilst historically, research has focussed on the evolution of GBM tumour cells themselves, there is growing recognition of the importance of studying the tumour microenvironment (TME). Improved characterisation of the interaction between GBM cells and the TME has led to a better understanding of therapeutic resistance and the identification of potential targets to block these escape mechanisms. This review describes the network of cells within the TME and proposes treatment strategies for simultaneously targeting GBM cells, the surrounding immune cells, and the crosstalk between them.
Collapse
Affiliation(s)
- Vassilis Genoud
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
- Department of Oncology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Centre for Translational Research in Onco-Haematology, University of Geneva, 1205 Geneva, Switzerland
| | - Ben Kinnersley
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| | - Nicholas F. Brown
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Guy’s Cancer, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 3SS, UK
| | - Diego Ottaviani
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| | - Paul Mulholland
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| |
Collapse
|
71
|
Senft D. Inflammatory neutrophils. Nat Rev Cancer 2023; 23:801. [PMID: 37946086 DOI: 10.1038/s41568-023-00644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
|
72
|
Elizarova AY, Sokolov AV, Vasilyev VB. Ceruloplasmin Reduces the Lactoferrin/Oleic Acid Antitumor Complex-Mediated Release of Heme-Containing Proteins from Blood Cells. Int J Mol Sci 2023; 24:16711. [PMID: 38069040 PMCID: PMC10706732 DOI: 10.3390/ijms242316711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 12/18/2023] Open
Abstract
Our previous study showed that not only bovine lactoferrin (LF), the protein of milk and neutrophils, but also the human species forms complexes with oleic acid (OA) that inhibit tumor growth. Repeated injections of human LF in complex with OA (LF/8OA) to hepatoma-carrying mice decelerated tumor growth and increased animals' longevity. However, whether the effect of the LF/8OA complex is directed exclusively against malignant cells was not studied. Hence, its effect on normal blood cells was assayed, along with its possible modulation of ceruloplasmin (CP), the preferred partner of LF among plasma proteins. The complex LF/8OA (6 μM) caused hemolysis, unlike LF alone or BSA/8OA (250 μM). The activation of neutrophils with exocytosis of myeloperoxidase (MPO), a potent oxidant, was induced by 1 μM LF/8OA, whereas BSA/8OA had a similar effect at a concentration increased by an order. The egress of heme-containing proteins, i.e., MPO and hemoglobin, from blood cells affected by LF/8OA was followed by a pronounced oxidative/halogenating stress. CP, which is the natural inhibitor of MPO, added at a concentration of 2 mol per 1 mol of LF/8OA abrogated its cytotoxic effect. It seems likely that CP can be used effectively in regulating the LF/8OA complex's antitumor activity.
Collapse
Affiliation(s)
| | - Alexey V. Sokolov
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia; (A.Y.E.); (V.B.V.)
| | | |
Collapse
|
73
|
Schetters STT, Dammeijer F, Desmet CJ. Editorial: The development and plasticity of myeloid immunity in the lung. Front Immunol 2023; 14:1332852. [PMID: 38045688 PMCID: PMC10690406 DOI: 10.3389/fimmu.2023.1332852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Affiliation(s)
- Sjoerd T T Schetters
- Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium, Ghent, Belgium
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Laboratory of Tumor Immunology, Department of Medical Oncology, Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Christophe J Desmet
- Laboratory of Cellular and Molecular Immunology, GIGA Inflammation, Infection and Immunity, GIGA Institute, University of Liège, Liège, Belgium
- Laboratory of Pneumology, GIGA Inflammation, Infection and Immunity, GIGA Institute, University of Liège, Liège, Belgium
| |
Collapse
|
74
|
Ross JL, Hambardzumyan D. Et tu neutrophils? The brain reprograms neutrophils to facilitate tumor progression. Immunity 2023; 56:2469-2471. [PMID: 37967529 DOI: 10.1016/j.immuni.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
Neutrophils have remained understudied in malignant brain tumors. In a recent issue of Cell, Maas et al. analyze brain tumor-patient samples and demonstrate that the brain microenvironment reprograms infiltrating neutrophils to enhance their longevity and increase their immune-suppressive and pro-angiogenic properties.
Collapse
Affiliation(s)
- James L Ross
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Dolores Hambardzumyan
- Departments of Oncological Sciences and Neurosurgery, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, USA.
| |
Collapse
|
75
|
Bordon Y. The brain tumour microenvironment imparts neutrophils with pro-tumour properties. Nat Rev Immunol 2023; 23:702. [PMID: 37816953 DOI: 10.1038/s41577-023-00959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
|