51
|
Ahmadi A, De Toma I, Vilor-Tejedor N, Eftekhariyan Ghamsari MR, Sadeghi I. Transposable elements in brain health and disease. Ageing Res Rev 2020; 64:101153. [PMID: 32977057 DOI: 10.1016/j.arr.2020.101153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Transposable elements (TEs) occupy a large fraction of the human genome but only a small proportion of these elements are still active today. Recent works have suggested that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in behavior and cognition, and contribute to vulnerability to disease. As active TEs could induce genetic diversity and mutagenesis, their influences on human brain development and diseases are of great interest. In this review, we will focus on the active TEs in the human genome and discuss in detail their impacts on human brain development. Furthermore, the association between TEs and brain-related diseases is discussed.
Collapse
|
52
|
Evans TA, Erwin JA. Retroelement-derived RNA and its role in the brain. Semin Cell Dev Biol 2020; 114:68-80. [PMID: 33229216 DOI: 10.1016/j.semcdb.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Comprising ~40% of the human genome, retroelements are mobile genetic elements which are transcribed into RNA, then reverse-transcribed into DNA and inserted into a new site in the genome. Retroelements are referred to as "genetic parasites", residing among host genes and relying on host machinery for transcription and evolutionary propagation. The healthy brain has the highest expression of retroelement-derived sequences compared to other somatic tissue, which leads to the question: how does retroelement-derived RNA influence human traits and cellular states? While the functional importance of upregulating retroelement expression in the brain is an active area of research, RNA species derived from retroelements influence both self- and host gene expression by contributing to chromatin remodeling, alternative splicing, somatic mosaicism and translational repression. Here, we review the emerging evidence that the functional importance of RNA derived from retroelements is multifaceted. Retroelements can influence organismal states through the seeding of epigenetic states in chromatin, the production of structured RNA and even catalytically active ribozymes, the generation of cytoplasmic ssDNA and RNA/DNA hybrids, the production of viral-like proteins, and the generation of somatic mutations. Comparative sequencing suggests that retroelements can contribute to intraspecies variation through these mechanisms to alter transcript identity and abundance. In humans, an increasing number of neurodevelopmental and neurodegenerative conditions are associated with dysregulated retroelements, including Aicardi-Goutieres syndrome (AGS), Rett syndrome (RTT), Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS), schizophrenia (SZ), and aging. Taken together, these concepts suggest a larger functional role for RNA derived from retroelements. This review aims to define retroelement-derived RNA, discuss how it impacts the mammalian genome, as well as summarize data supporting phenotypic consequences of this unique RNA subset in the brain.
Collapse
Affiliation(s)
- Taylor A Evans
- Lieber Institute for Brain Development, Baltimore, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer Ann Erwin
- Lieber Institute for Brain Development, Baltimore, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
53
|
Mustelin T, Ukadike KC. How Retroviruses and Retrotransposons in Our Genome May Contribute to Autoimmunity in Rheumatological Conditions. Front Immunol 2020; 11:593891. [PMID: 33281822 PMCID: PMC7691656 DOI: 10.3389/fimmu.2020.593891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
More than 200 human disorders include various manifestations of autoimmunity. The molecular events that lead to these diseases are still incompletely understood and their causes remain largely unknown. Numerous potential triggers of autoimmunity have been proposed over the years, but very few of them have been conclusively confirmed or firmly refuted. Viruses have topped the lists of suspects for decades, and it seems that many viruses, including those of the Herpesviridae family, indeed can influence disease initiation and/or promote exacerbations by a number of mechanisms that include prolonged anti-viral immunity, immune subverting factors, and mechanisms, and perhaps “molecular mimicry”. However, no specific virus has yet been established as being truly causative. Here, we discuss a different, but perhaps mechanistically related possibility, namely that retrotransposons or retroviruses that infected us in the past and left a lasting copy of themselves in our genome still can provoke an escalating immune response that leads to autoimmune disease. Many of these loci still encode for retroviral proteins that have retained some, or all, of their original functions. Importantly, these endogenous proviruses cannot be eliminated by the immune system the way it can eliminate exogenous viruses. Hence, if not properly controlled, they may drive a frustrated and escalating chronic, or episodic, immune response to the point of a frank autoimmune disorder. Here, we discuss the evidence and the proposed mechanisms, and assess the therapeutic options that emerge from the current understanding of this field.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kennedy C Ukadike
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
54
|
Kim ET, Roche KL, Kulej K, Spruce LA, Seeholzer SH, Coen DM, Diaz-Griffero F, Murphy EA, Weitzman MD. SAMHD1 Modulates Early Steps during Human Cytomegalovirus Infection by Limiting NF-κB Activation. Cell Rep 2020; 28:434-448.e6. [PMID: 31291579 DOI: 10.1016/j.celrep.2019.06.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/22/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular SAMHD1 inhibits replication of many viruses by limiting intracellular deoxynucleoside triphosphate (dNTP) pools. We investigate the influence of SAMHD1 on human cytomegalovirus (HCMV). During HCMV infection, we observe SAMHD1 induction, accompanied by phosphorylation via viral kinase UL97. SAMHD1 depletion increases HCMV replication in permissive fibroblasts and conditionally permissive myeloid cells. We show this is due to enhanced gene expression from the major immediate-early (MIE) promoter and is independent of dNTP levels. SAMHD1 suppresses innate immune responses by inhibiting nuclear factor κB (NF-κB) activation. We show that SAMHD1 regulates the HCMV MIE promoter through NF-κB activation. Chromatin immunoprecipitation reveals increased RELA and RNA polymerase II on the HCMV MIE promoter in the absence of SAMHD1. Our studies reveal a mechanism of HCMV virus restriction by SAMHD1 and show how SAMHD1 deficiency activates an innate immune pathway that paradoxically results in increased viral replication through transcriptional activation of the HCMV MIE gene promoter.
Collapse
Affiliation(s)
- Eui Tae Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kathryn L Roche
- Department of Translational Medicine, Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; Evrys Bio, Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Katarzyna Kulej
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lynn A Spruce
- Protein and Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Steven H Seeholzer
- Protein and Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eain A Murphy
- Department of Translational Medicine, Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; Evrys Bio, Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
55
|
dnmt1 function is required to maintain retinal stem cells within the ciliary marginal zone of the zebrafish eye. Sci Rep 2020; 10:11293. [PMID: 32647199 PMCID: PMC7347529 DOI: 10.1038/s41598-020-68016-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022] Open
Abstract
The ciliary marginal zone (CMZ) of the zebrafish retina contains a population of actively proliferating resident stem cells, which generate retinal neurons throughout life. The maintenance methyltransferase, dnmt1, is expressed within the CMZ. Loss of dnmt1 function results in gene misregulation and cell death in a variety of developmental contexts, however, its role in retinal stem cell (RSC) maintenance is currently unknown. Here, we demonstrate that zebrafish dnmt1s872 mutants possess severe defects in RSC maintenance within the CMZ. Using a combination of immunohistochemistry, in situ hybridization, and a transgenic reporter assay, our results demonstrate a requirement for dnmt1 activity in the regulation of RSC proliferation, gene expression and in the repression of endogenous retroelements (REs). Ultimately, cell death is elevated in the dnmt1−/− CMZ, but in a p53-independent manner. Using a transgenic reporter for RE transposition activity, we demonstrate increased transposition in the dnmt1−/− CMZ. Taken together our data identify a critical role for dnmt1 function in RSC maintenance in the vertebrate eye.
Collapse
|
56
|
Affiliation(s)
- Angelo Veronese
- Center for Advanced Studies & Technology (CAST), G. d'Annunzio University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging, & Clinical Sciences, G. d'Annunzio University, 66100 Chieti, Italy
| |
Collapse
|
57
|
Del Re B, Giorgi G. Long INterspersed element-1 mobility as a sensor of environmental stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:465-493. [PMID: 32144842 DOI: 10.1002/em.22366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Long INterspersed element (LINE-1, L1) retrotransposons are the most abundant transposable elements in the human genome, constituting approximately 17%. They move by a "copy-paste" mechanism, involving reverse transcription of an RNA intermediate and insertion of its cDNA copy at a new site in the genome. L1 retrotransposition (L1-RTP) can cause insertional mutations, alter gene expression, transduce exons, and induce epigenetic dysregulation. L1-RTP is generally repressed; however, a number of observations collected over about 15 years revealed that it can occur in response to environmental stresses. Moreover, emerging evidence indicates that L1-RTP can play a role in the onset of several neurological and oncological diseases in humans. In recent years, great attention has been paid to the exposome paradigm, which proposes that health effects of an environmental factor should be evaluated considering both cumulative environmental exposures and the endogenous processes resulting from the biological response. L1-RTP could be an endogenous process considered for this application. Here, we summarize the current understanding of environmental factors that can affect the retrotransposition of human L1 elements. Evidence indicates that L1-RTP alteration is triggered by numerous and various environmental stressors, such as chemical agents (heavy metals, carcinogens, oxidants, and drugs), physical agents (ionizing and non-ionizing radiations), and experiential factors (voluntary exercise, social isolation, maternal care, and environmental light/dark cycles). These data come from in vitro studies on cell lines and in vivo studies on transgenic animals: future investigations should be focused on physiologically relevant models to gain a better understanding of this topic.
Collapse
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianfranco Giorgi
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
58
|
SAMHD1 Functions and Human Diseases. Viruses 2020; 12:v12040382. [PMID: 32244340 PMCID: PMC7232136 DOI: 10.3390/v12040382] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022] Open
Abstract
Deoxynucleoside triphosphate (dNTP) molecules are essential for the replication and maintenance of genomic information in both cells and a variety of viral pathogens. While the process of dNTP biosynthesis by cellular enzymes, such as ribonucleotide reductase (RNR) and thymidine kinase (TK), has been extensively investigated, a negative regulatory mechanism of dNTP pools was recently found to involve sterile alpha motif (SAM) domain and histidine-aspartate (HD) domain-containing protein 1, SAMHD1. When active, dNTP triphosphohydrolase activity of SAMHD1 degrades dNTPs into their 2'-deoxynucleoside (dN) and triphosphate subparts, steadily depleting intercellular dNTP pools. The differential expression levels and activation states of SAMHD1 in various cell types contributes to unique dNTP pools that either aid (i.e., dividing T cells) or restrict (i.e., nondividing macrophages) viral replication that consumes cellular dNTPs. Genetic mutations in SAMHD1 induce a rare inflammatory encephalopathy called Aicardi-Goutières syndrome (AGS), which phenotypically resembles viral infection. Recent publications have identified diverse roles for SAMHD1 in double-stranded break repair, genome stability, and the replication stress response through interferon signaling. Finally, a series of SAMHD1 mutations were also reported in various cancer cell types while why SAMHD1 is mutated in these cancer cells remains to investigated. Here, we reviewed a series of studies that have begun illuminating the highly diverse roles of SAMHD1 in virology, immunology, and cancer biology.
Collapse
|
59
|
Carter V, LaCava J, Taylor MS, Liang SY, Mustelin C, Ukadike KC, Bengtsson A, Lood C, Mustelin T. High Prevalence and Disease Correlation of Autoantibodies Against p40 Encoded by Long Interspersed Nuclear Elements in Systemic Lupus Erythematosus. Arthritis Rheumatol 2020; 72:89-99. [PMID: 31342656 DOI: 10.1002/art.41054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Long interspersed nuclear element 1 (LINE-1) encodes 2 proteins, the RNA binding protein p40 and endonuclease and reverse transcriptase (open-reading frame 2p [ORF2p]), which are both required for LINE-1 to retrotranspose. In cells expressing LINE-1, these proteins assemble with LINE-1 RNA and additional RNA binding proteins, some of which are well-known autoantigens in patients with systemic lupus erythematosus (SLE). This study was undertaken to investigate whether SLE patients also produce autoantibodies against LINE-1 p40. METHODS Highly purified p40 protein was used to quantitate IgG autoantibodies in serum from 172 SLE patients and from disease controls and age-matched healthy subjects by immunoblotting and enzyme-linked immunosorbent assay (ELISA). Preparations of p40 that also contained associated proteins were analyzed by immunoblotting with patient sera. RESULTS Antibodies reactive with p40 were detected in the majority of patients and many healthy controls. Their levels were higher in patients with SLE, but not those with systemic sclerosis, compared to healthy subjects (P = 0.01). Anti-p40 reactivity was higher in patients during a flare than in patients with disease in remission (P = 0.03); correlated with the SLE Disease Activity Index score (P = 0.0002), type I interferon score (P = 0.006), decrease in complement C3 level (P = 0.0001), the presence of anti-DNA antibodies (P < 0.0001) and anti-C1q antibodies (P = 0.004), and current or past history of nephritis (P = 0.02 and P = 0.003, respectively); and correlated inversely with age (r = -0.49, P < 0.0001). SLE patient sera also reacted with p40-associated proteins. CONCLUSION Autoantibodies reacting with LINE-1 p40 characterize a population of SLE patients with severe and active disease. These autoantibodies may represent an early immune response against LINE-1 p40 that does not yet by itself imply clinically significant autoimmunity, but may represent an early, and still reversible, step toward SLE pathogenesis.
Collapse
Affiliation(s)
| | - John LaCava
- The Rockefeller University, New York, New York, and European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin S Taylor
- Massachusetts General Hospital, Boston, and Whitehead Institute, Cambridge, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
60
|
Terry DM, Devine SE. Aberrantly High Levels of Somatic LINE-1 Expression and Retrotransposition in Human Neurological Disorders. Front Genet 2020; 10:1244. [PMID: 31969897 PMCID: PMC6960195 DOI: 10.3389/fgene.2019.01244] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
Retrotransposable elements (RTEs) have actively multiplied over the past 80 million years of primate evolution, and as a consequence, such elements collectively occupy ∼ 40% of the human genome. As RTE activity can have detrimental effects on the human genome and transcriptome, silencing mechanisms have evolved to restrict retrotransposition. The brain is the only known somatic tissue where RTEs are de-repressed throughout the life of a healthy human and each neuron in specific brain regions accumulates up to ∼13.7 new somatic L1 insertions (and perhaps more). However, even higher levels of somatic RTE expression and retrotransposition have been found in a number of human neurological disorders. This review is focused on how RTE expression and retrotransposition in neuronal tissues might contribute to the initiation and progression of these disorders. These disorders are discussed in three broad and sometimes overlapping categories: 1) disorders such as Rett syndrome, Aicardi-Goutières syndrome, and ataxia–telangiectasia, where expression/retrotransposition is increased due to mutations in genes that play a role in regulating RTEs in healthy cells, 2) disorders such as autism spectrum disorder, schizophrenia, and substance abuse disorders, which are thought to be caused by a combination of genetic and environmental stress factors, and 3) disorders associated with age, such as frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), and normal aging, where there is a time-dependent accumulation of neurological degeneration, RTE copy number, and phenotypes. Research has revealed increased levels of RTE activity in many neurological disorders, but in most cases, a clear causal link between RTE activity and these disorders has not been well established. At the same time, even if increased RTE activity is a passenger and not a driver of disease, a detrimental effect is more likely than a beneficial one. Thus, a better understanding of the role of RTEs in neuronal tissues likely is an important part of understanding, preventing, and treating these disorders.
Collapse
Affiliation(s)
- Diane M Terry
- Molecular Medicine Graduate Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Scott E Devine
- Molecular Medicine Graduate Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
61
|
Li Z, Huan C, Wang H, Liu Y, Liu X, Su X, Yu J, Zhao Z, Yu X, Zheng B, Zhang W. TRIM21-mediated proteasomal degradation of SAMHD1 regulates its antiviral activity. EMBO Rep 2020; 21:e47528. [PMID: 31797533 PMCID: PMC6944907 DOI: 10.15252/embr.201847528] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 10/09/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
SAMHD1 possesses multiple functions, but whether cellular factors regulate SAMHD1 expression or its function remains not well characterized. Here, by investigating why cultured RD and HEK293T cells show different sensitivity to enterovirus 71 (EV71) infection, we demonstrate that SAMHD1 is a restriction factor for EV71. Importantly, we identify TRIM21, an E3 ubiquitin ligase, as a key regulator of SAMHD1, which specifically interacts and degrades SAMHD1 through the proteasomal pathway. However, TRIM21 has no effect on EV71 replication itself. Moreover, we prove that interferon production stimulated by EV71 infection induces increased TRIM21 and SAMHD1 expression, whereas increasing TRIM21 overrides SAMHD1 inhibition of EV71 in cells and in a neonatal mouse model. TRIM21-mediated degradation of SAMHD1 also affects SAMHD1-dependent restriction of HIV-1 and the regulation of interferon production. We further identify the functional domains in TRIM21 required for SAMHD1 binding and the ubiquitination site K622 in SAMHD1 and show that phosphorylation of SAMHD1 at T592 also blocks EV71 restriction. Our findings illuminate how EV71 overcomes SAMHD1 inhibition via the upregulation of TRIM21.
Collapse
Affiliation(s)
- Zhaolong Li
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Chen Huan
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Hong Wang
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Yue Liu
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Xin Liu
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Xing Su
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Jinghua Yu
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Zhilei Zhao
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Xiao‐Fang Yu
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education)Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Baisong Zheng
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Wenyan Zhang
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| |
Collapse
|
62
|
Wang Z, Bhattacharya A, White T, Buffone C, McCabe A, Nguyen LA, Shepard CN, Pardo S, Kim B, Weintraub ST, Demeler B, Diaz-Griffero F, Ivanov DN. Functionality of Redox-Active Cysteines Is Required for Restriction of Retroviral Replication by SAMHD1. Cell Rep 2020; 24:815-823. [PMID: 30044979 PMCID: PMC6067006 DOI: 10.1016/j.celrep.2018.06.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 05/01/2018] [Accepted: 06/21/2018] [Indexed: 01/04/2023] Open
Abstract
SAMHD1 is a dNTP triphosphohydrolase (dNTPase) that impairs retroviral replication in a subset of noncycling immune cells. Here we show that SAMHD1 is a redox-sensitive enzyme and identify three redox-active cysteines within the protein: C341, C350, and C522. The three cysteines reside near one another and the allosteric nucleotide binding site. Mutations C341S and C522S abolish the ability of SAMHD1 to restrict HIV replication, whereas the C350S mutant remains restriction competent. The C522S mutation makes the protein resistant to inhibition by hydrogen peroxide but has no effect on the tetramerization-dependent dNTPase activity of SAMHD1 in vitro or on the ability of SAMHD1 to deplete cellular dNTPs. Our results reveal that enzymatic activation of SAMHD1 via nucleotide-dependent tetramerization is not sufficient for the establishment of the antiviral state and that retroviral restriction depends on the ability of the protein to undergo redox transformations.
Collapse
Affiliation(s)
- Zhonghua Wang
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Akash Bhattacharya
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Tommy White
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cindy Buffone
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aine McCabe
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Laura A Nguyen
- Center for Drug Discovery, Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Caitlin N Shepard
- Center for Drug Discovery, Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Sammy Pardo
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA; School of Pharmacy, Kyunghee University, Seoul, South Korea
| | - Susan T Weintraub
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Borries Demeler
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Dmitri N Ivanov
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
63
|
Tonduti D, Fazzi E, Badolato R, Orcesi S. Novel and emerging treatments for Aicardi-Goutières syndrome. Expert Rev Clin Immunol 2020; 16:189-198. [PMID: 31855085 DOI: 10.1080/1744666x.2019.1707663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Aicardi-Goutières syndrome (AGS) is the prototype of the type I interferonopathies, a new heterogeneous group of autoinflammatory disorders in which type I interferon plays a pivotal role. The disease usually manifests itself during infancy, primarily affecting the brain and the skin, and is characterized by cerebrospinal fluid chronic lymphocytosis and raised levels of interferon-alpha and by cardinal neuroradiological features: cerebral calcification, leukoencephalopathy and cerebral atrophy. Recently many aspects of the pathogenesis of AGS have been clarified, making it possible to hypothesize new therapeutic strategies.Areas covered: We here review recent data concerning pathogenesis and novel therapeutic strategies in AGS, including the use of Janus kinase inhibitors, reverse transcriptase inhibitors, anti-IFN-α antibodies, anti-interleukin antibodies, antimalarial drugs and other cGAS inhibitors.Expert opinion: Thanks to the identification of the molecular basis of AGS, many aspects of its pathogenesis have been clarified, making it possible to propose new therapeutic strategies for AGS and type I interferonopathies. A number of therapeutic options are now becoming possible, even though their efficacy is still to be proven. However, in spite of research advances coming from clinical trials and case series, there are still a number of open questions, which urgently need to be addressed.
Collapse
Affiliation(s)
- Davide Tonduti
- Paediatric Neurology Unit, V. Buzzi Children's Hospital, Milan, Italy
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Molecular Medicine Institute "Angelo Nocivelli" and Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Unit of Child and Adolescent Neurology, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
64
|
Cerritelli SM, Crouch RJ. RNase H2-RED carpets the path to eukaryotic RNase H2 functions. DNA Repair (Amst) 2019; 84:102736. [PMID: 31761672 PMCID: PMC6936605 DOI: 10.1016/j.dnarep.2019.102736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/15/2019] [Indexed: 11/24/2022]
Abstract
Eukaryotic RNases H2 have dual functions in initiating the removal of ribonucleoside monophosphates (rNMPs) incorporated by DNA polymerases during DNA synthesis and in cleaving the RNA moiety of RNA/DNA hybrids formed during transcription and retrotransposition. The other major cellular RNase H, RNase H1, shares the hybrid processing activity, but not all substrates. After RNase H2 incision at the rNMPs in DNA the Ribonucleotide Excision Repair (RER) pathway completes the removal, restoring dsDNA. The development of the RNase H2-RED (Ribonucleotide Excision Defective) mutant enzyme, which can process RNA/DNA hybrids but is unable to cleave rNMPs embedded in DNA has unlinked the two activities and illuminated the roles of RNase H2 in cellular metabolism. Studies mostly in Saccharomyces cerevisiae, have shown both activities of RNase H2 are necessary to maintain genome integrity and that RNase H1 and H2 have overlapping as well as distinct RNA/DNA hybrid substrates. In mouse RNase H2-RED confirmed that rNMPs in DNA during embryogenesis induce lethality in a p53-dependent DNA damage response. In mammalian cell cultures, RNase H2-RED helped identifying DNA lesions produced by Top1 cleavage at rNMPs and led to determine that RNase H2 participates in the retrotransposition of LINE-1 elements. In this review, we summarize the studies and conclusions reached by utilization of RNase H2-RED enzyme in different model systems.
Collapse
Affiliation(s)
- Susana M Cerritelli
- SFR, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Crouch
- SFR, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
65
|
Gao W, Li G, Bian X, Rui Y, Zhai C, Liu P, Su J, Wang H, Zhu C, Du Y, Zheng W, Zheng B, Zhang W, Zhang H, Zhao K, Yang Y, Yu X. Defective modulation of LINE-1 retrotransposition by cancer-associated SAMHD1 mutants. Biochem Biophys Res Commun 2019; 519:213-219. [PMID: 31492497 DOI: 10.1016/j.bbrc.2019.08.155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022]
Abstract
Long interspersed nuclear elements (LINE-1) is now considered as the only active autonomous mobile DNA in humans, LINE-1 retrotransposition activities are associated with and fluctuate during cancer initiation and progression; however, the mechanism underlying the increased LINE-1 activity in cancer is poorly understood. SAMHD1 has been reported to be a potent inhibitor of LINE-1 retrotransposition, and SAMHD1 mutations are frequently associated with cancer development. To gain insights on whether cancer-related SAMHD1 mutants affect LINE-1 activity, we explored the biochemical and cellular properties of some human mutants known correlate with the development of cancer. Most of the tested SAMHD1 cancer-related mutations were defective in LINE-1 inhibition. Interestingly we also found that SAMHD1 mutant K288T was defective for dNTPase activity but showed potent activity against LINE-1 retrotransposition. These findings suggest that LINE-1 inhibition does not depend solely on the dNTPase activity of SAMHD1. In contrast, SAMHD1's ability to inhibit ORF2p-mediated LINE-1 RNP reverse transcription was correlated with SAMHD1-mediated LINE-1 inhibition. Together, our data could also facilitate the deeper understanding for the inhibition of endogenous LINE-1 elements by SAMHD1.
Collapse
Affiliation(s)
- Wenying Gao
- The First Hospital of Jilin University, Institute of Virology and AIDS Research & Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Xuefeng Bian
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenyang Zhai
- The First Hospital of Jilin University, Institute of Virology and AIDS Research & Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Panpan Liu
- The First Hospital of Jilin University, Institute of Virology and AIDS Research & Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Wang
- The First Hospital of Jilin University, Institute of Virology and AIDS Research & Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chunfeng Zhu
- School of Life Science, Tianjin University, Tianjin, China
| | - Yanjia Du
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Wenwen Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Baisong Zheng
- The First Hospital of Jilin University, Institute of Virology and AIDS Research & Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenyan Zhang
- The First Hospital of Jilin University, Institute of Virology and AIDS Research & Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hui Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ke Zhao
- The First Hospital of Jilin University, Institute of Virology and AIDS Research & Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Yongjun Yang
- The First Hospital of Jilin University, Institute of Virology and AIDS Research & Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - XiaoFang Yu
- The First Hospital of Jilin University, Institute of Virology and AIDS Research & Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
66
|
HIV-2/SIV Vpx targets a novel functional domain of STING to selectively inhibit cGAS-STING-mediated NF-κB signalling. Nat Microbiol 2019; 4:2552-2564. [PMID: 31659299 DOI: 10.1038/s41564-019-0585-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/10/2019] [Indexed: 12/28/2022]
Abstract
Innate immunity is the first line of host defence against pathogens. Suppression of innate immune responses is essential for the survival of all viruses. However, the interplay between innate immunity and HIV/SIV is only poorly characterized. We have discovered Vpx as a novel inhibitor of innate immune activation that associates with STING signalosomes and interferes with the nuclear translocation of NF-κB and the induction of innate immune genes. This new function of Vpx could be separated from its role in mediating degradation of the antiviral factor SAMHD1, and is conserved among diverse HIV-2/SIV Vpx. Vpx selectively suppressed cGAS-STING-mediated nuclear factor-κB signalling. Furthermore, Vpx and Vpr had complementary activities against cGAS-STING activity. Since SIVMAC lacking both Vpx and Vpr was less pathogenic than SIV deficient for Vpr or Vpx alone, suppression of innate immunity by HIV/SIV is probably a key pathogenic determinant, making it a promising target for intervention.
Collapse
|
67
|
Rutherford HA, Hamilton N. Animal models of leukodystrophy: a new perspective for the development of therapies. FEBS J 2019; 286:4176-4191. [DOI: 10.1111/febs.15060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/31/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Holly A. Rutherford
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease University of Sheffield UK
| | - Noémie Hamilton
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease University of Sheffield UK
| |
Collapse
|
68
|
Mandhana R, Qian LK, Horvath CM. Constitutively Active MDA5 Proteins Are Inhibited by Paramyxovirus V Proteins. J Interferon Cytokine Res 2019; 38:319-332. [PMID: 30130154 DOI: 10.1089/jir.2018.0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Excessive interferon (IFN) production and signaling can lead to immunological and developmental defects giving rise to autoimmune diseases referred to collectively as "type I interferonopathies." A subset of these diseases is caused by monogenic mutations affecting proteins involved in nucleic acid sensing, homeostasis, and metabolism. Interferonopathic mutations in the cytosolic antiviral sensor MDA5 render it constitutively hyperactive, resulting in chronic IFN production and IFN-stimulated gene expression. Few therapeutic options are available for patients with interferonopathic diseases, but a large number of IFN evasion and antagonism strategies have evolved in viral pathogens that can counteract IFN production and signaling to enhance virus replication. To test the hypothesis that these natural IFN suppressors could be used to subdue the activity of interferonopathic signaling proteins, hyperactive MDA5 variants were assessed for susceptibility to a family of viral MDA5 inhibitors. In this study, Paramyxovirus V proteins were tested for their ability to counteract constitutively active MDA5 proteins. Results indicate that the V proteins are able to bind to and disrupt the signaling activity of these MDA5 proteins, irrespective of their specific mutations, reducing IFN production and IFN-stimulated gene expression to effectively suppress the hyperactive antiviral response.
Collapse
Affiliation(s)
- Roli Mandhana
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| | - Lily K Qian
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| |
Collapse
|
69
|
Morris ER, Taylor IA. The missing link: allostery and catalysis in the anti-viral protein SAMHD1. Biochem Soc Trans 2019; 47:1013-1027. [PMID: 31296733 PMCID: PMC7045340 DOI: 10.1042/bst20180348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
Vertebrate protein SAMHD1 (sterile-α-motif and HD domain containing protein 1) regulates the cellular dNTP (2'-deoxynucleoside-5'-triphosphate) pool by catalysing the hydrolysis of dNTP into 2'-deoxynucleoside and triphosphate products. As an important regulator of cell proliferation and a key player in dNTP homeostasis, mutations to SAMHD1 are implicated in hypermutated cancers, and germline mutations are associated with Chronic Lymphocytic Leukaemia and the inflammatory disorder Aicardi-Goutières Syndrome. By limiting the supply of dNTPs for viral DNA synthesis, SAMHD1 also restricts the replication of several retroviruses, such as HIV-1, and some DNA viruses in dendritic and myeloid lineage cells and resting T-cells. SAMHD1 activity is regulated throughout the cell cycle, both at the level of protein expression and post-translationally, through phosphorylation. In addition, allosteric regulation further fine-tunes the catalytic activity of SAMHD1, with a nucleotide-activated homotetramer as the catalytically active form of the protein. In cells, GTP and dATP are the likely physiological activators of two adjacent allosteric sites, AL1 (GTP) and AL2 (dATP), that bridge monomer-monomer interfaces to stabilise the protein homotetramer. This review summarises the extensive X-ray crystallographic, biophysical and molecular dynamics experiments that have elucidated important features of allosteric regulation in SAMHD1. We present a comprehensive mechanism detailing the structural and protein dynamics components of the allosteric coupling between nucleotide-induced tetramerization and the catalysis of dNTP hydrolysis by SAMHD1.
Collapse
Affiliation(s)
- Elizabeth R Morris
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| |
Collapse
|
70
|
Tam OH, Ostrow LW, Gale Hammell M. Diseases of the nERVous system: retrotransposon activity in neurodegenerative disease. Mob DNA 2019; 10:32. [PMID: 31372185 PMCID: PMC6659213 DOI: 10.1186/s13100-019-0176-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Transposable Elements (TEs) are mobile genetic elements whose sequences constitute nearly half of the human genome. Each TE copy can be present in hundreds to thousands of locations within the genome, complicating the genetic and genomic studies of these highly repetitive sequences. The recent development of better tools for evaluating TE derived sequences in genomic studies has enabled an increasing appreciation for the contribution of TEs to human development and disease. While some TEs have contributed novel and beneficial host functions, this review will summarize the evidence for detrimental TE activity in neurodegenerative disorders. Much of the evidence for pathogenicity implicates endogenous retroviruses (ERVs), a subset of TEs that entered the genome by retroviral infections of germline cells in our evolutionary ancestors and have since been passed down as a substantial fraction of the human genome. Human specific ERVs (HERVs) represent some of the youngest ERVs in the genome, and thus are presumed to retain greater function and resultant pathogenic potential.
Collapse
Affiliation(s)
- Oliver H Tam
- 1Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 USA
| | - Lyle W Ostrow
- 2Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Molly Gale Hammell
- 1Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 USA
| |
Collapse
|
71
|
García Pérez JL, Alarcón-Riquelme ME. The TREX1 Dinosaur Bites the Brain through the LINE. Cell Stem Cell 2019; 21:287-288. [PMID: 28886359 DOI: 10.1016/j.stem.2017.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this issue of Cell Stem Cell, Thomas et al. (2017) define the nature of accumulated ssDNA present in the neuron and astrocyte cytoplasm of TREX1 mutated stem cell-derived organoids. Accumulated ssDNAs are derived from LINE-1 endogenous retroelements, providing new clues as to the development of Aicardi-Goutières syndrome in the neural system.
Collapse
Affiliation(s)
- José Luis García Pérez
- Pfizer - University of Granada - Andalusian Government Center for Genomics and Oncological Research (GENYO), PTS, 18016, Granada, Spain; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Marta E Alarcón-Riquelme
- Pfizer - University of Granada - Andalusian Government Center for Genomics and Oncological Research (GENYO), PTS, 18016, Granada, Spain; Unit for Chronic Inflammatory Diseases, Institute for Environmental Medicine, Karolinska Institute, Solna, 171 77, Sweden.
| |
Collapse
|
72
|
Lee JH, Chiang C, Gack MU. Endogenous Nucleic Acid Recognition by RIG-I-Like Receptors and cGAS. J Interferon Cytokine Res 2019; 39:450-458. [PMID: 31066607 DOI: 10.1089/jir.2019.0015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The innate immune defense of mammalian hosts relies on its capacity to detect invading pathogens and then directly eliminate them or help guide adaptive immune responses. Recognition of microbial DNA and RNA by pattern recognition receptors (PRRs) is central to the detection of pathogens by initiating cytokine-mediated innate immunity. In contrast, disturbance of this pathogen surveillance system can result in aberrant innate immune activation, leading to proinflammatory or autoimmune diseases. Among the many important PRRs are proteins of the retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) family as well as cyclic GMP-AMP synthase (cGAS), which detect viral RNA and DNA, respectively, within the host cell. Intriguingly, recent evidence has shown that "unmasked," misprocessed, or mislocalized host-derived RNA or DNA molecules can also be recognized by RLRs or cGAS, thereby triggering antiviral host defenses or causing inflammation. Here, we review recent advances of endogenous nucleic acid recognition by RLRs and cGAS during viral infection and systemic proinflammatory/autoimmune disorders.
Collapse
Affiliation(s)
- Jung-Hyun Lee
- Department of Microbiology, The University of Chicago, Chicago, Illinois
| | - Cindy Chiang
- Department of Microbiology, The University of Chicago, Chicago, Illinois
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
73
|
Pontis J, Planet E, Offner S, Turelli P, Duc J, Coudray A, Theunissen TW, Jaenisch R, Trono D. Hominoid-Specific Transposable Elements and KZFPs Facilitate Human Embryonic Genome Activation and Control Transcription in Naive Human ESCs. Cell Stem Cell 2019; 24:724-735.e5. [PMID: 31006620 PMCID: PMC6509360 DOI: 10.1016/j.stem.2019.03.012] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/04/2019] [Accepted: 03/12/2019] [Indexed: 11/17/2022]
Abstract
Expansion of transposable elements (TEs) coincides with evolutionary shifts in gene expression. TEs frequently harbor binding sites for transcriptional regulators, thus enabling coordinated genome-wide activation of species- and context-specific gene expression programs, but such regulation must be balanced against their genotoxic potential. Here, we show that Krüppel-associated box (KRAB)-containing zinc finger proteins (KZFPs) control the timely and pleiotropic activation of TE-derived transcriptional cis regulators during early embryogenesis. Evolutionarily recent SVA, HERVK, and HERVH TE subgroups contribute significantly to chromatin opening during human embryonic genome activation and are KLF-stimulated enhancers in naive human embryonic stem cells (hESCs). KZFPs of corresponding evolutionary ages are simultaneously induced and repress the transcriptional activity of these TEs. Finally, the same KZFP-controlled TE-based enhancers later serve as developmental and tissue-specific enhancers. Thus, by controlling the transcriptional impact of TEs during embryogenesis, KZFPs facilitate their genome-wide incorporation into transcriptional networks, thereby contributing to human genome regulation. KLFs foster EGA by activating enhancers embedded in young TEs (TEENhancers) TEENhancers confer a degree of species specificity to early genome activation TEENhancers stimulate the expression of KZFPs responsible for their repression These KZFPs in turn facilitate TEENhancers’ exaptation as tissue-specific regulators
Collapse
Affiliation(s)
- Julien Pontis
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Evarist Planet
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sandra Offner
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alexandre Coudray
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thorold W Theunissen
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
74
|
SAMHD1 Enhances Chikungunya and Zika Virus Replication in Human Skin Fibroblasts. Int J Mol Sci 2019; 20:ijms20071695. [PMID: 30959732 PMCID: PMC6480247 DOI: 10.3390/ijms20071695] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/23/2019] [Accepted: 04/03/2019] [Indexed: 01/19/2023] Open
Abstract
Chikungunya virus (CHIKV) and Zika virus (ZIKV) are emerging arboviruses that pose a worldwide threat to human health. Currently, neither vaccine nor antiviral treatment to control their infections is available. As the skin is a major viral entry site for arboviruses in the human host, we determined the global proteomic profile of CHIKV and ZIKV infections in human skin fibroblasts using Stable Isotope Labelling by Amino acids in Cell culture (SILAC)-based mass-spectrometry analysis. We show that the expression of the interferon-stimulated proteins MX1, IFIT1, IFIT3 and ISG15, as well as expression of defense response proteins DDX58, STAT1, OAS3, EIF2AK2 and SAMHD1 was significantly up-regulated in these cells upon infection with either virus. Exogenous expression of IFITs proteins markedly inhibited CHIKV and ZIKV replication which, accordingly, was restored following the abrogation of IFIT1 or IFIT3. Overexpression of SAMHD1 in cutaneous cells, or pretreatment of cells with the virus-like particles containing SAMHD1 restriction factor Vpx, resulted in a strong increase or inhibition, respectively, of both CHIKV and ZIKV replication. Moreover, silencing of SAMHD1 by specific SAMHD1-siRNA resulted in a marked decrease of viral RNA levels. Together, these results suggest that IFITs are involved in the restriction of replication of CHIKV and ZIKV and provide, as yet unreported, evidence for a proviral role of SAMHD1 in arbovirus infection of human skin cells.
Collapse
|
75
|
Schumann GG, Fuchs NV, Tristán-Ramos P, Sebe A, Ivics Z, Heras SR. The impact of transposable element activity on therapeutically relevant human stem cells. Mob DNA 2019; 10:9. [PMID: 30899334 PMCID: PMC6408843 DOI: 10.1186/s13100-019-0151-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Human stem cells harbor significant potential for basic and clinical translational research as well as regenerative medicine. Currently ~ 3000 adult and ~ 30 pluripotent stem cell-based, interventional clinical trials are ongoing worldwide, and numbers are increasing continuously. Although stem cells are promising cell sources to treat a wide range of human diseases, there are also concerns regarding potential risks associated with their clinical use, including genomic instability and tumorigenesis concerns. Thus, a deeper understanding of the factors and molecular mechanisms contributing to stem cell genome stability are a prerequisite to harnessing their therapeutic potential for degenerative diseases. Chemical and physical factors are known to influence the stability of stem cell genomes, together with random mutations and Copy Number Variants (CNVs) that accumulated in cultured human stem cells. Here we review the activity of endogenous transposable elements (TEs) in human multipotent and pluripotent stem cells, and the consequences of their mobility for genomic integrity and host gene expression. We describe transcriptional and post-transcriptional mechanisms antagonizing the spread of TEs in the human genome, and highlight those that are more prevalent in multipotent and pluripotent stem cells. Notably, TEs do not only represent a source of mutations/CNVs in genomes, but are also often harnessed as tools to engineer the stem cell genome; thus, we also describe and discuss the most widely applied transposon-based tools and highlight the most relevant areas of their biomedical applications in stem cells. Taken together, this review will contribute to the assessment of the risk that endogenous TE activity and the application of genetically engineered TEs constitute for the biosafety of stem cells to be used for substitutive and regenerative cell therapies.
Collapse
Affiliation(s)
- Gerald G Schumann
- 1Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str.51-59, 63225 Langen, Germany
| | - Nina V Fuchs
- 2Host-Pathogen Interactions, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Pablo Tristán-Ramos
- 3GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada-Avenida de la Ilustración, 114, 18016 Granada, Spain.,4Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Attila Sebe
- 1Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str.51-59, 63225 Langen, Germany
| | - Zoltán Ivics
- 1Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str.51-59, 63225 Langen, Germany
| | - Sara R Heras
- 3GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada-Avenida de la Ilustración, 114, 18016 Granada, Spain.,4Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| |
Collapse
|
76
|
Nucleocytoplasmic shuttling of SAMHD1 is important for LINE-1 suppression. Biochem Biophys Res Commun 2019; 510:551-557. [DOI: 10.1016/j.bbrc.2019.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/02/2019] [Indexed: 11/21/2022]
|
77
|
Profiling of LINE-1-Related Genes in Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:ijms20030645. [PMID: 30717368 PMCID: PMC6387036 DOI: 10.3390/ijms20030645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prime public health concern that accounts for most of the primary liver malignancies in humans. The most common etiological factor of HCC is hepatitis B virus (HBV). Despite recent advances in treatment strategies, there has been little success in improving the survival of HCC patients. To develop a novel therapeutic approach, evaluation of a working hypothesis based on different viewpoints might be important. Long interspersed element 1 (L1) retrotransposons have been suggested to play a role in HCC. However, the molecular machineries that can modulate L1 biology in HBV-related HCC have not been well-evaluated. Here, we summarize the profiles of expression and/or activation status of L1-related genes in HBV-related HCC, and HBV- and HCC-related genes that may impact L1-mediated tumorigenesis. L1 restriction factors appear to be suppressed by HBV infection. Since some of the L1 restriction factors also limit HBV, these factors may be exhausted in HBV-infected cells, which causes de-suppression of L1. Several HBV- and HCC-related genes that interact with L1 can affect oncogenic processes. Thus, L1 may be a novel prime therapeutic target for HBV-related HCC. Studies in this area will provide insights into HCC and other types of cancers.
Collapse
|
78
|
Changes in the biochemical taste of cytoplasmic and cell-free DNA are major fuels for inflamm-aging. Semin Immunol 2018; 40:6-16. [DOI: 10.1016/j.smim.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
|
79
|
Rohrback S, Siddoway B, Liu CS, Chun J. Genomic mosaicism in the developing and adult brain. Dev Neurobiol 2018; 78:1026-1048. [PMID: 30027562 PMCID: PMC6214721 DOI: 10.1002/dneu.22626] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
Since the discovery of DNA, the normal developing and functioning brain has been assumed to be composed of cells with identical genomes, which remains the dominant view even today. However, this pervasive assumption is incorrect, as proven by increasing numbers of reports within the last 20 years that have identified multiple forms of somatically produced genomic mosaicism (GM), wherein brain cells-especially neurons-from a single individual show diverse alterations in DNA, distinct from the germline. Critically, these changes alter the actual DNA nucleotide sequences-in contrast to epigenetic mechanisms-and almost certainly contribute to the remarkably diverse phenotypes of single brain cells, including single-cell transcriptomic profiles. Here, we review the history of GM within the normal brain, including its major forms, initiating mechanisms, and possible functions. GM forms include aneuploidies and aneusomies, smaller copy number variations (CNVs), long interspersed nuclear element type 1 (LINE1) repeat elements, and single nucleotide variations (SNVs), as well as DNA content variation (DCV) that reflects all forms of GM with greatest coverage of large, brain cell populations. In addition, technical considerations are examined, along with relationships among GM forms and multiple brain diseases. GM affecting genes and loci within the brain contrast with current neural discovery approaches that rely on sequencing nonbrain DNA (e.g., genome-wide association studies (GWAS)). Increasing knowledge of neural GM has implications for mechanisms of development, diversity, and function, as well as understanding diseases, particularly considering the overwhelming prevalence of sporadic brain diseases that are unlinked to germline mutations. © 2018 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol, 2018.
Collapse
Affiliation(s)
- Suzanne Rohrback
- Biomedical Sciences Graduate Program, School of MedicineUniversity of California San DiegoLa JollaCalifornia92093
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
- Present address:
Illumina, Inc.San DiegoCA 92122USA
| | - Benjamin Siddoway
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
| | - Christine S. Liu
- Biomedical Sciences Graduate Program, School of MedicineUniversity of California San DiegoLa JollaCalifornia92093
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
| |
Collapse
|
80
|
Chen S, Bonifati S, Qin Z, St Gelais C, Wu L. SAMHD1 Suppression of Antiviral Immune Responses. Trends Microbiol 2018; 27:254-267. [PMID: 30336972 DOI: 10.1016/j.tim.2018.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022]
Abstract
SAMHD1 is a host triphosphohydrolase that degrades intracellular deoxynucleoside triphosphates (dNTPs) to a lower level that restricts viral DNA synthesis, and thus prevents replication of diverse viruses in nondividing cells. Recent progress indicates that SAMHD1 negatively regulates antiviral innate immune responses and inflammation through interacting with various key proteins in immune signaling and DNA damage-repair pathways. SAMHD1 can also modulate antibody production in adaptive immune responses. In this review, we summarize how SAMHD1 regulates antiviral immune responses through distinct mechanisms, and discuss the implications of these new functions of SAMHD1. Furthermore, we propose important new questions and future directions that can advance functional and mechanistic studies of SAMHD1-mediated immune regulation during viral infections.
Collapse
Affiliation(s)
- Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China; Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Serena Bonifati
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Zhihua Qin
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Corine St Gelais
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
81
|
Kawano K, Doucet AJ, Ueno M, Kariya R, An W, Marzetta F, Kuroki M, Turelli P, Sukegawa S, Okada S, Strebel K, Trono D, Ariumi Y. HIV-1 Vpr and p21 restrict LINE-1 mobility. Nucleic Acids Res 2018; 46:8454-8470. [PMID: 30085096 PMCID: PMC6144823 DOI: 10.1093/nar/gky688] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 01/12/2023] Open
Abstract
Long interspersed element-1 (LINE-1, L1) composes ∼17% of the human genome. However, genetic interactions between L1 and human immunodeficiency virus type 1 (HIV-1) remain poorly understood. In this study, we found that HIV-1 suppresses L1 retrotransposition. Notably, HIV-1 Vpr strongly inhibited retrotransposition without inhibiting L1 promoter activity. Since Vpr is known to regulate host cell cycle, we examined the possibility whether Vpr suppresses L1 retrotransposition in a cell cycle dependent manner. We showed that the inhibitory effect of a mutant Vpr (H71R), which is unable to arrest the cell cycle, was significantly relieved compared with that of wild-type Vpr, suggesting that Vpr suppresses L1 mobility in a cell cycle dependent manner. Furthermore, a host cell cycle regulator p21Waf1 strongly suppressed L1 retrotransposition. The N-terminal kinase inhibitory domain (KID) of p21 was required for this inhibitory effect. Another KID-containing host cell cycle regulator p27Kip1 also strongly suppressed L1 retrotransposition. We showed that Vpr and p21 coimmunoprecipitated with L1 ORF2p and they suppressed the L1 reverse transcriptase activity in LEAP assay, suggesting that Vpr and p21 inhibit ORF2p-mediated reverse transcription. Altogether, our results suggest that viral and host cell cycle regulatory machinery limit L1 mobility in cultured cells.
Collapse
Affiliation(s)
- Koudai Kawano
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Aurélien J Doucet
- Institute for Research on Cancer and Aging, Nice (IRCAN), INSERM U1081, CNRS UMR 7284, Université de Nice-Sophia-Antipolis, Faculté de Médecine, 06107 Nice Cedex 2, France
| | - Mikinori Ueno
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryusho Kariya
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Flavia Marzetta
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Misao Kuroki
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Sayaka Sukegawa
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
- Clinical Research Center, Nagoya Medical Center, Nagoya 460-0001, Japan
| | - Seiji Okada
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Klaus Strebel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Yasuo Ariumi
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
82
|
Transposable element dysregulation in systemic lupus erythematosus and regulation by histone conformation and Hsp90. Clin Immunol 2018; 197:6-18. [PMID: 30149120 DOI: 10.1016/j.clim.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/27/2023]
Abstract
Systemic lupus erythematosus (SLE) represents an autoimmune disease in which activation of the type I interferon pathway leads to dysregulation of tolerance and the generation of autoantibodies directed against nuclear constituents. The mechanisms driving the activation of the interferon pathway in SLE have been the subject of intense investigation but are still incompletely understood. Transposable elements represent an enormous source of RNA that could potentially stimulate the cell intrinsic RNA-recognition pathway, leading to upregulation of interferons. We used RNA-seq to define transposable element families and subfamilies in three cell types in SLE and found diverse effects on transposable element expression in the three cell types and even within a given family of transposable elements. When potential mechanisms were examined, we found that Hsp90 inhibition could drive increased expression of multiple type of transposable elements. Both direct inhibition and the delivery of a heat shock itself, which redirects heat shock regulators (including Hsp90) off of basal expression promoters and onto heat shock-responsive promoters, led to increased transposable element expression. This effect was amplified by the concurrent delivery of a histone deacetylase inhibitor. We conclude that transposable elements are dysregulated in SLE and there are tissue-specific effects and locus-specific effects. The magnitude of RNAs attributable to transposable elements makes their dysregulation of critical interest in SLE where transposable element RNA complexed with proteins has been shown to drive interferon expression.
Collapse
|
83
|
Martinez-Lopez A, Martin-Fernandez M, Buta S, Kim B, Bogunovic D, Diaz-Griffero F. SAMHD1 deficient human monocytes autonomously trigger type I interferon. Mol Immunol 2018; 101:450-460. [PMID: 30099227 DOI: 10.1016/j.molimm.2018.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023]
Abstract
Germline mutations in the human SAMHD1 gene cause the development of Aicardi-Goutières Syndrome (AGS), with a dominant feature being increased systemic type I interferon(IFN) production. Here we tested the state of type I IFN induction and response to, in SAMHD1 knockout (KO) human monocytic cells. SAMHD1 KO cells exhibited spontaneous transcription and translation of IFN-β and subsequent interferon-stimulated genes (ISGs) as compared to parental wild-type cells. This elevation of IFN-β and ISGs was abrogated via inhibition of the TBK1-IRF3 pathway in the SAMHD1 KO cells. In agreement, we found that SAMHD1 KO cells present high levels of phosphorylated TBK1 when compared to control cells. Moreover, addition of blocking antibody against type I IFN also reversed elevation of ISGs. These experiments suggested that SAMHD1 KO cells are persistently auto-stimulating the TBK1-IRF3 pathway, leading to an enhanced production of type I IFN and subsequent self-induction of ISGs.
Collapse
Affiliation(s)
- Alicia Martinez-Lopez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Marta Martin-Fernandez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Sofija Buta
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Baek Kim
- Department of Pediatrics, Emory University, Atlanta, GA 30322, United States
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
84
|
Benitez-Guijarro M, Lopez-Ruiz C, Tarnauskaitė Ž, Murina O, Mian Mohammad M, Williams TC, Fluteau A, Sanchez L, Vilar-Astasio R, Garcia-Canadas M, Cano D, Kempen MJH, Sanchez-Pozo A, Heras SR, Jackson AP, Reijns MA, Garcia-Perez JL. RNase H2, mutated in Aicardi-Goutières syndrome, promotes LINE-1 retrotransposition. EMBO J 2018; 37:e98506. [PMID: 29959219 PMCID: PMC6068448 DOI: 10.15252/embj.201798506] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 12/03/2022] Open
Abstract
Long INterspersed Element class 1 (LINE-1) elements are a type of abundant retrotransposons active in mammalian genomes. An average human genome contains ~100 retrotransposition-competent LINE-1s, whose activity is influenced by the combined action of cellular repressors and activators. TREX1, SAMHD1 and ADAR1 are known LINE-1 repressors and when mutated cause the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). Mutations in RNase H2 are the most common cause of AGS, and its activity was proposed to similarly control LINE-1 retrotransposition. It has therefore been suggested that increased LINE-1 activity may be the cause of aberrant innate immune activation in AGS Here, we establish that, contrary to expectations, RNase H2 is required for efficient LINE-1 retrotransposition. As RNase H1 overexpression partially rescues the defect in RNase H2 null cells, we propose a model in which RNase H2 degrades the LINE-1 RNA after reverse transcription, allowing retrotransposition to be completed. This also explains how LINE-1 elements can retrotranspose efficiently without their own RNase H activity. Our findings appear to be at odds with LINE-1-derived nucleic acids driving autoinflammation in AGS.
Collapse
Affiliation(s)
- Maria Benitez-Guijarro
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Cesar Lopez-Ruiz
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Žygimantė Tarnauskaitė
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Olga Murina
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Mahwish Mian Mohammad
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Thomas C Williams
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Adeline Fluteau
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Laura Sanchez
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Raquel Vilar-Astasio
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Marta Garcia-Canadas
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - David Cano
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Marie-Jeanne Hc Kempen
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Antonio Sanchez-Pozo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Sara R Heras
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Andrew P Jackson
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Martin Am Reijns
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Jose L Garcia-Perez
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
85
|
Faulkner GJ, Billon V. L1 retrotransposition in the soma: a field jumping ahead. Mob DNA 2018; 9:22. [PMID: 30002735 PMCID: PMC6035798 DOI: 10.1186/s13100-018-0128-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
Retrotransposons are transposable elements (TEs) capable of "jumping" in germ, embryonic and tumor cells and, as is now clearly established, in the neuronal lineage. Mosaic TE insertions form part of a broader landscape of somatic genome variation and hold significant potential to generate phenotypic diversity, in the brain and elsewhere. At present, the LINE-1 (L1) retrotransposon family appears to be the most active autonomous TE in most mammals, based on experimental data obtained from disease-causing L1 mutations, engineered L1 reporter systems tested in cultured cells and transgenic rodents, and single-cell genomic analyses. However, the biological consequences of almost all somatic L1 insertions identified thus far remain unknown. In this review, we briefly summarize the current state-of-the-art in the field, including estimates of L1 retrotransposition rate in neurons. We bring forward the hypothesis that an extensive subset of retrotransposition-competent L1s may be de-repressed and mobile in the soma but largely inactive in the germline. We discuss recent reports of non-canonical L1-associated sequence variants in the brain and propose that the elevated L1 DNA content reported in several neurological disorders may predominantly comprise accumulated, unintegrated L1 nucleic acids, rather than somatic L1 insertions. Finally, we consider the main objectives and obstacles going forward in elucidating the biological impact of somatic retrotransposition.
Collapse
Affiliation(s)
- Geoffrey J. Faulkner
- Mater Research Institute – University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| | - Victor Billon
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 61 Avenue du Président Wilson, 94230 Cachan, France
| |
Collapse
|
86
|
Renner TM, Bélanger K, Goodwin LR, Campbell M, Langlois MA. Characterization of molecular attributes that influence LINE-1 restriction by all seven human APOBEC3 proteins. Virology 2018; 520:127-136. [PMID: 29860216 DOI: 10.1016/j.virol.2018.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022]
Abstract
LINE-1 (L1) is a non-long terminal repeat (LTR) retrotransposon inserted throughout the human genome. APOBEC3 (A3) proteins are part of a network of host intrinsic defenses capable of restricting retroviruses and the replication of L1 retroelements. These enzymes inactivate retroviruses primarily through deamination of single-stranded viral DNA. In contrast, only A3A deaminates L1 DNA, while the other six A3 proteins restrict L1 to varying degrees through yet poorly defined mechanisms. Here we provide further insight into the molecular attributes of L1 restriction by A3 proteins. We specifically investigated the roles of A3 protein oligomerization, interactions with RNA and their binding to the various L1 proteins. Our results show that compromising the ability of A3 proteins to oligomerize or interact with a nucleic acid substrate diminished L1 restriction to varying degrees. However the efficiency of their binding to L1 proteins did not predict restriction or the potency of the restriction.
Collapse
Affiliation(s)
- Tyler Milston Renner
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kasandra Bélanger
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Laura Rose Goodwin
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mark Campbell
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
87
|
Zhao K, Du J, Peng Y, Li P, Wang S, Wang Y, Hou J, Kang J, Zheng W, Hua S, Yu XF. LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways. J Autoimmun 2018; 90:105-115. [PMID: 29525183 DOI: 10.1016/j.jaut.2018.02.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 12/25/2022]
Abstract
Improper host immune activation leads to the development of the autoimmune disease Aicardi-Goutières syndrome (AGS), which is attributed to defined genetic mutations in such proteins as TREX1 and ADAR1. The mechanism of immune activation in AGS patients has not been thoroughly elucidated to date. In this study, we report that endogenous LINE1 components trigger IFNβ production in multiple human cell types, including those defective for cGAS/STING-mediated DNA sensing. In these cells, LINE1 DNA synthesis and retrotransposition were not required for LINE1-triggered immune activation, but RNA sensing pathways were essential. LINE1-triggered immune activation could be suppressed by diverse LINE1 inhibitors, including AGS-associated proteins targeting LINE1 RNA or proteins. However, AGS-associated ADAR1 or TREX1 mutants were defective in suppressing LINE1 retrotransposition or LINE1-triggered immune activation. Therefore, we have revealed a new function for LINE1 as an endogenous trigger of innate immune activation, which is important for understanding the molecular basis of IFN-based autoimmune diseases and may offer new intervention strategies.
Collapse
Affiliation(s)
- Ke Zhao
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China.
| | - Juan Du
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China
| | - Yanfeng Peng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China
| | - Peng Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China
| | - Shaohua Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China
| | - Yu Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China
| | - Jingwei Hou
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China
| | - Jian Kang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China
| | - Wenwen Zheng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China
| | - Shucheng Hua
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China; Department of Internal Medicine, The First Hospital of Jilin University, Changchun, Jilin 130061, China.
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
88
|
Barbieri D, Elvira-Matelot E, Pelinski Y, Genève L, de Laval B, Yogarajah G, Pecquet C, Constantinescu SN, Porteu F. Thrombopoietin protects hematopoietic stem cells from retrotransposon-mediated damage by promoting an antiviral response. J Exp Med 2018; 215:1463-1480. [PMID: 29615469 PMCID: PMC5940259 DOI: 10.1084/jem.20170997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/28/2017] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
Maintenance of genomic integrity is crucial for the preservation of hematopoietic stem cell (HSC) potential. Retrotransposons, spreading in the genome through an RNA intermediate, have been associated with loss of self-renewal, aging, and DNA damage. However, their role in HSCs has not been addressed. Here, we show that mouse HSCs express various retroelements (REs), including long interspersed element-1 (L1) recent family members that further increase upon irradiation. Using mice expressing an engineered human L1 retrotransposition reporter cassette and reverse transcription inhibitors, we demonstrate that L1 retransposition occurs in vivo and is involved in irradiation-induced persistent γH2AX foci and HSC loss of function. Thus, RE represents an important intrinsic HSC threat. Furthermore, we show that RE activity is restrained by thrombopoietin, a critical HSC maintenance factor, through its ability to promote a potent interferon-like, antiviral gene response in HSCs. This uncovers a novel mechanism allowing HSCs to minimize irradiation-induced injury and reinforces the links between DNA damage, REs, and antiviral immunity.
Collapse
Affiliation(s)
- Daniela Barbieri
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| | - Emilie Elvira-Matelot
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| | - Yanis Pelinski
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| | - Laetitia Genève
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| | - Bérengère de Laval
- Centre d'Immunologie Marseille-Luminy, Université Aix-Marseille, Institut National de la Santé et de la Recherche Médicale, U1104, Centre National de la Recherche Scientifique, UMR 7280
| | - Gayathri Yogarajah
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| | - Christian Pecquet
- Ludwig Institute for Cancer Research, Brussels, Belgium
- SIGN Pole, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research, Brussels, Belgium
- SIGN Pole, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Françoise Porteu
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| |
Collapse
|
89
|
Mita P, Boeke JD. Cycling to Maintain and Improve Fitness: Line-1 Modes of Nuclear Entrance and Retrotransposition. SLAS DISCOVERY 2018; 23:491-494. [PMID: 29724131 DOI: 10.1177/2472555218767842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The LINE-1/L1 retrotransposon is a transposable element still active in the human genome. Most retrotransposons in the genome are inactive or repressed by several host mechanisms. In specific contexts, active L1 retrotransposons may evade repression and copy themselves into new genomic loci. Despite a general knowledge of the L1 life cycle, little was known about the dynamics of L1 proteins and function during the different stages of the host cell cycle. Our work highlighted a well-orchestrated localization of L1 proteins and mRNA that take advantage of mitotic nuclear membrane breakdown. Once in the nucleus, L1 ribonucleoproteins (RNPs) are able to retrotranspose during the S phase when L1 retrotransposition peaks. Our conclusions highlight previously unappreciated features of the L1 life cycle, such as the differences between cytoplasmic and nuclear RNPs and the cycling of L1 ORF1 protein and L1 activity during progression through the cell cycle. These new observations are discussed here in light of the evolutionary arms race between L1 retrotransposons and the host cell.
Collapse
Affiliation(s)
- Paolo Mita
- 1 Institute for Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jef D Boeke
- 1 Institute for Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
90
|
Sase S, Takanohashi A, Vanderver A, Almad A. Astrocytes, an active player in Aicardi-Goutières syndrome. Brain Pathol 2018; 28:399-407. [PMID: 29740948 PMCID: PMC8028286 DOI: 10.1111/bpa.12600] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 01/10/2023] Open
Abstract
Aicardi-Goutières syndrome (AGS) is an early-onset, autoimmune and genetically heterogeneous disorder with severe neurologic injury. Molecular studies have established that autosomal recessive mutations in one of the following genes are causative: TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1 and IFIH1/MDA5. The phenotypic presentation and pathophysiology of AGS is associated with over-production of the cytokine Interferon-alpha (IFN-α) and its downstream signaling, characterized as type I interferonopathy. Astrocytes are one of the major source of IFN in the central nervous system (CNS) and it is proposed that they could be key players in AGS pathology. Astrocytes are the most ubiquitous glial cell in the CNS and perform a number of crucial and complex functions ranging from formation of blood-brain barrier, maintaining ionic homeostasis, metabolic support to synapse formation and elimination in healthy CNS. Involvement of astrocytic dysfunction in neurological diseases-Alexander's disease, Epilepsy, Alzheimer's and amyotrophic lateral sclerosis (ALS)-has been well-established. It is now known that compromised astrocytic function can contribute to CNS abnormalities and severe neurodegeneration, nevertheless, its contribution in AGS is unclear. The current review discusses known molecular and cellular pathways for AGS mutations and how it stimulates IFN-α signaling. We shed light on how astrocytes might be key players in the phenotypic presentations of AGS and emphasize the cell-autonomous and non-cell-autonomous role of astrocytes. Understanding the contribution of astrocytes will help reveal mechanisms underlying interferonopathy and develop targeted astrocyte specific therapeutic treatments in AGS.
Collapse
Affiliation(s)
- Sunetra Sase
- Division of NeurologyChildren's Hospital of PhiladelphiaPhiladelphiaPA
| | - Asako Takanohashi
- Division of NeurologyChildren's Hospital of PhiladelphiaPhiladelphiaPA
| | - Adeline Vanderver
- Division of NeurologyChildren's Hospital of PhiladelphiaPhiladelphiaPA
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
| | - Akshata Almad
- Division of NeurologyChildren's Hospital of PhiladelphiaPhiladelphiaPA
| |
Collapse
|
91
|
Mauney CH, Hollis T. SAMHD1: Recurring roles in cell cycle, viral restriction, cancer, and innate immunity. Autoimmunity 2018; 51:96-110. [PMID: 29583030 PMCID: PMC6117824 DOI: 10.1080/08916934.2018.1454912] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1) is a deoxynucleotide triphosphate (dNTP) hydrolase that plays an important role in the homeostatic balance of cellular dNTPs. Its emerging role as an effector of innate immunity is affirmed by mutations in the SAMHD1 gene that cause the severe autoimmune disease, Aicardi-Goutieres syndrome (AGS) and that are linked to cancer. Additionally, SAMHD1 functions as a restriction factor for retroviruses, such as HIV. Here, we review the current biochemical and biological properties of the enzyme including its structure, activity, and regulation by post-translational modifications in the context of its cellular function. We outline open questions regarding the biology of SAMHD1 whose answers will be important for understanding its function as a regulator of cell cycle progression, genomic integrity, and in autoimmunity.
Collapse
Affiliation(s)
- Christopher H Mauney
- a Department of Biochemistry , Center for Structural Biology, Wake Forest School of Medicine , Winston Salem , NC , USA
| | - Thomas Hollis
- a Department of Biochemistry , Center for Structural Biology, Wake Forest School of Medicine , Winston Salem , NC , USA
| |
Collapse
|
92
|
SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature 2018; 557:57-61. [PMID: 29670289 DOI: 10.1038/s41586-018-0050-1] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 03/07/2018] [Indexed: 01/20/2023]
Abstract
SAMHD1 was previously characterized as a dNTPase that protects cells from viral infections. Mutations in SAMHD1 are implicated in cancer development and in a severe congenital inflammatory disease known as Aicardi-Goutières syndrome. The mechanism by which SAMHD1 protects against cancer and chronic inflammation is unknown. Here we show that SAMHD1 promotes degradation of nascent DNA at stalled replication forks in human cell lines by stimulating the exonuclease activity of MRE11. This function activates the ATR-CHK1 checkpoint and allows the forks to restart replication. In SAMHD1-depleted cells, single-stranded DNA fragments are released from stalled forks and accumulate in the cytosol, where they activate the cGAS-STING pathway to induce expression of pro-inflammatory type I interferons. SAMHD1 is thus an important player in the replication stress response, which prevents chronic inflammation by limiting the release of single-stranded DNA from stalled replication forks.
Collapse
|
93
|
Herrmann A, Wittmann S, Thomas D, Shepard CN, Kim B, Ferreirós N, Gramberg T. The SAMHD1-mediated block of LINE-1 retroelements is regulated by phosphorylation. Mob DNA 2018; 9:11. [PMID: 29610582 PMCID: PMC5872582 DOI: 10.1186/s13100-018-0116-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/19/2018] [Indexed: 12/22/2022] Open
Abstract
Background The restriction factor SAMHD1 regulates intracellular nucleotide level by degrading dNTPs and blocks the replication of retroviruses and DNA viruses in non-cycling cells, like macrophages or dendritic cells. In patients, inactivating mutations in samhd1 are associated with the autoimmune disease Aicardi-Goutières Syndrome (AGS). The accumulation of intracellular nucleic acids derived from endogenous retroelements thriving in the absence of SAMHD1 has been discussed as potential trigger of the autoimmune reaction. In vitro, SAMHD1 has been found to restrict endogenous retroelements, like LINE-1 elements (L1). The mechanism, however, by which SAMHD1 blocks endogenous retroelements, is still unclear. Results Here, we show that SAMHD1 inhibits the replication of L1 and other endogenous retroelements in cycling cells. By applying GFP- and neomycin-based reporter assays we found that the anti-L1 activity of SAMHD1 is regulated by phosphorylation at threonine 592 (T592). Similar to the block of HIV, the cofactor binding site and the enzymatic active HD domain of SAMHD1 proofed to be essential for restriction of L1 elements. However, phosphorylation at T592 did not correlate with the dNTP hydrolase activity of SAMHD1 in cycling 293T cells suggesting an alternative mechanism of regulation. Interestingly, we found that SAMHD1 binds to ORF2 protein of L1 and that this interaction is regulated by T592 phosphorylation. Together with the finding that the block is also active in cycling cells, our results suggest that the SAMHD1-mediated inhibition of L1 is similar but not identical to HIV restriction. Conclusion Our findings show conclusively that SAMHD1 restricts the replication of endogenous retroelements in vitro. The results suggest that SAMHD1 is important for maintaining genome integrity and support the idea of an enhanced replication of endogenous retroelements in the absence of SAMHD1 in vivo, potentially triggering autoimmune diseases like AGS. Our analysis also contributes to the better understanding of the activities of SAMHD1 in antiviral defense and nucleotide metabolism. The finding that the phosphorylation of SAMHD1 at T592 regulates its activity against retroelements but not necessarily intracellular dNTP level suggests that the dNTP hydrolase activity might not be the only function of SAMHD1 important for its antiviral activity and for controlling autoimmunity. Electronic supplementary material The online version of this article (10.1186/s13100-018-0116-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Herrmann
- 1Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Sabine Wittmann
- 1Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Dominique Thomas
- 2pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Caitlin N Shepard
- 3Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, Atlanta, GA 30322 USA
| | - Baek Kim
- 3Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, Atlanta, GA 30322 USA.,4College of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Nerea Ferreirós
- 2pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Thomas Gramberg
- 1Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| |
Collapse
|
94
|
Abstract
Monocyte-derived macrophages (MDMs) are an important target for HIV-1 despite SAMHD1, a myeloid restriction factor for which HIV-1 lacks a counteracting accessory protein. The antiviral activity of SAMHD1 is modulated by phosphorylation of T592 by cyclin-dependent kinases (CDK). We show that treatment of MDMs with neocarzinostatin, a compound that introduces double strand breaks (DBS) in genomic DNA, results in the decrease of phosphorylated SAMHD1, activating its antiviral activity and blocking HIV-1 infection. The effect was specific for DSB as DNA damage induced by UV light irradiation did not affect SAMHD1 phosphorylation and did not block infection. The block to infection was at reverse transcription and was counteracted by Vpx, demonstrating that it was caused by SAMHD1. Neocarzinostatin treatment also activated an innate immune response that induced interferon-stimulated genes but this was not involved in the block to HIV-1 infection, as it was not relieved by an interferon-blocking antibody. In response to Neocarzinostatin-induced DNA damage, the level of the CDK inhibitor p21cip1 increased which could account for the decrease of phosphorylated SAMHD1. The results show that the susceptibility of MDMs to HIV-1 infection can be affected by stimuli that alter the phosphorylation state of SAMHD1, one of which is the DNA damage response.
Collapse
Affiliation(s)
- Paula Jáuregui
- Department of Microbiology, NYU School of Medicine, Smilow Research Building, Rm. 1003, 550 First Avenue, New York, 10016, USA
| | - Nathaniel R Landau
- Department of Microbiology, NYU School of Medicine, Smilow Research Building, Rm. 1003, 550 First Avenue, New York, 10016, USA.
| |
Collapse
|
95
|
Bartsch K, Knittler K, Borowski C, Rudnik S, Damme M, Aden K, Spehlmann ME, Frey N, Saftig P, Chalaris A, Rabe B. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum Mol Genet 2018; 26:3960-3972. [PMID: 29016854 DOI: 10.1093/hmg/ddx283] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Hypomorphic mutations in the DNA repair enzyme RNase H2 cause the neuroinflammatory autoimmune disorder Aicardi-Goutières syndrome (AGS). Endogenous nucleic acids are believed to accumulate in patient cells and instigate pathogenic type I interferon expression. However, the underlying nucleic acid species amassing in the absence of RNase H2 has not been established yet. Here, we report that murine RNase H2 knockout cells accumulated cytosolic DNA aggregates virtually indistinguishable from micronuclei. RNase H2-dependent micronuclei were surrounded by nuclear lamina and most of them contained damaged DNA. Importantly, they induced expression of interferon-stimulated genes (ISGs) and co-localized with the nucleic acid sensor cGAS. Moreover, micronuclei associated with RNase H2 deficiency were cleared by autophagy. Consequently, induction of autophagy by pharmacological mTOR inhibition resulted in a significant reduction of cytosolic DNA and the accompanied interferon signature. Autophagy induction might therefore represent a viable therapeutic option for RNase H2-dependent disease. Endogenous retroelements have previously been proposed as a source of self-nucleic acids triggering inappropriate activation of the immune system in AGS. We used human RNase H2-knockout cells generated by CRISPR/Cas9 to investigate the impact of RNase H2 on retroelement propagation. Surprisingly, replication of LINE-1 and Alu elements was blunted in cells lacking RNase H2, establishing RNase H2 as essential host factor for the mobilisation of endogenous retrotransposons.
Collapse
Affiliation(s)
- Kareen Bartsch
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Katharina Knittler
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Christopher Borowski
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Sönke Rudnik
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Markus Damme
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Martina E Spehlmann
- Clinic for Internal Medicine III, Cardiology and Angiology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Norbert Frey
- Clinic for Internal Medicine III, Cardiology and Angiology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Paul Saftig
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Athena Chalaris
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Björn Rabe
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| |
Collapse
|
96
|
Duan L, Hu J, Xiong X, Liu Y, Wang J. The role of DNA methylation in coronary artery disease. Gene 2018; 646:91-97. [DOI: 10.1016/j.gene.2017.12.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/07/2017] [Accepted: 12/18/2017] [Indexed: 01/09/2023]
|
97
|
Orecchini E, Frassinelli L, Galardi S, Ciafrè SA, Michienzi A. Post-transcriptional regulation of LINE-1 retrotransposition by AID/APOBEC and ADAR deaminases. Chromosome Res 2018; 26:45-59. [PMID: 29396793 DOI: 10.1007/s10577-018-9572-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/07/2018] [Indexed: 02/05/2023]
Abstract
Long interspersed element-1 (LINE-1 or L1) retrotransposons represent the only functional family of autonomous transposable elements in humans and formed 17% of our genome. Even though most of the human L1 sequences are inactive, a limited number of copies per individual retain the ability to mobilize by a process termed retrotransposition. The ongoing L1 retrotransposition may result in insertional mutagenesis that could lead to negative consequences such as genetic disease and cancer. For this reason, cells have evolved several mechanisms of defense to restrict L1 activity. Among them, a critical role for cellular deaminases [activation-induced deaminase (AID)/apolipoprotein B mRNA-editing catalytic polypeptide-like (APOBEC) and adenosine deaminases that act on RNA (ADAR) enzymes] has emerged. The majority of the AID/APOBEC family of proteins are responsible for the deamination of cytosine to uracil (C-to-U editing) within DNA and RNA targets. The ADARs convert adenosine bases to inosines (A-to-I editing) within double-stranded RNA (dsRNA) targets. This review will discuss the current understanding of the regulation of LINE-1 retrotransposition mediated by these enzymes.
Collapse
Affiliation(s)
- Elisa Orecchini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Loredana Frassinelli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
98
|
Mita P, Wudzinska A, Sun X, Andrade J, Nayak S, Kahler DJ, Badri S, LaCava J, Ueberheide B, Yun CY, Fenyö D, Boeke JD. LINE-1 protein localization and functional dynamics during the cell cycle. eLife 2018; 7:30058. [PMID: 29309036 PMCID: PMC5821460 DOI: 10.7554/elife.30058] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 01/04/2018] [Indexed: 01/12/2023] Open
Abstract
LINE-1/L1 retrotransposon sequences comprise 17% of the human genome. Among the many classes of mobile genetic elements, L1 is the only autonomous retrotransposon that still drives human genomic plasticity today. Through its co-evolution with the human genome, L1 has intertwined itself with host cell biology. However, a clear understanding of L1’s lifecycle and the processes involved in restricting its insertion and intragenomic spread remains elusive. Here we identify modes of L1 proteins’ entrance into the nucleus, a necessary step for L1 proliferation. Using functional, biochemical, and imaging approaches, we also show a clear cell cycle bias for L1 retrotransposition that peaks during the S phase. Our observations provide a basis for novel interpretations about the nature of nuclear and cytoplasmic L1 ribonucleoproteins (RNPs) and the potential role of DNA replication in L1 retrotransposition. Only two percent of our genetic material or genome are occupied by genes, while between 60-70 percent are made up of hundreds of thousands of copies of very similar DNA sequences. These repetitive sequences evolved from genetic elements called transposons. Transposons are often referred to as ‘jumping genes’, as they can randomly move within the genome and thereby create dangerous mutations that may lead to cancer or other genetic diseases. LINE-1 is the only remaining active transposon in humans, and it expands by copying and pasting itself to new locations via a process called 'retrotransposition'. To do so, it is first transcribed into RNA – the molecules that help to make proteins – and then converted back into identical DNA sequences. Previous research has shown that LINE-1 can form complexes with a series of proteins, including the two encoded by LINE-1 RNA itself: ORF1p and ORF2p. The LINE-1 complexes can enter the nucleus of the cell and insert a new copy of LINE-1 into the genome. However, until now it was not known how they do this. To investigate this further, Mita et al. used human cancer cells grown in the lab and tracked LINE-1 during the different stages of the cell cycle. The results showed that LINE-1 enters the nucleus as the cell starts to divide and the membrane of the nucleus breaks down. The LINE-1 complexes are then retained in the nucleus while the membrane of the nucleus reforms. Later, as the cell duplicates its genetic material, LINE-1 starts to copy and paste itself. Mita et al., together with another group of researchers, also found that during this process, only LINE-1 RNA and ORF2p were found in the nucleus. This shows that the cell cycle dictates both where the LINE-1 complexes gather and when LINE-1 is active. A next step will be to further investigate how the ‘copy and paste’ mechanisms of LINE-1 and the two LINE-1 proteins are regulated during the cell cycle. In future, this may help to identify LINE-1’s role in processes like aging or in diseases such as cancer.
Collapse
Affiliation(s)
- Paolo Mita
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States
| | - Aleksandra Wudzinska
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States
| | - Xiaoji Sun
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States
| | - Joshua Andrade
- Proteomics laboratory, NYU Langone Health, New York, United States
| | - Shruti Nayak
- Proteomics laboratory, NYU Langone Health, New York, United States
| | - David J Kahler
- High Throughput Biology (HTB) Laboratory, NYU Langone Health, New York, United States
| | - Sana Badri
- Department of Pathology, NYU Langone Health, New York, United States
| | - John LaCava
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States.,Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, United States
| | - Beatrix Ueberheide
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States.,Proteomics laboratory, NYU Langone Health, New York, United States
| | - Chi Y Yun
- High Throughput Biology (HTB) Laboratory, NYU Langone Health, New York, United States
| | - David Fenyö
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States
| | - Jef D Boeke
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States
| |
Collapse
|
99
|
Briggs EM, Ha S, Mita P, Brittingham G, Sciamanna I, Spadafora C, Logan SK. Long interspersed nuclear element-1 expression and retrotransposition in prostate cancer cells. Mob DNA 2018; 9:1. [PMID: 29308092 PMCID: PMC5753491 DOI: 10.1186/s13100-017-0106-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/15/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Long Interspersed Nuclear Element-1 (LINE-1) is an autonomous retrotransposon that generates new genomic insertions through the retrotransposition of a RNA intermediate. Expression of LINE-1 is tightly repressed in most somatic tissues to prevent DNA damage and ensure genomic integrity. However, the reactivation of LINE-1 has been documented in cancer and the role of LINE-1 protein expression and retrotransposition has become of interest in the development, progression, and adaptation of many epithelial neoplasms, including prostate cancer. RESULTS Here, we examined endogenous LINE-1 protein expression and localization in a panel of prostate cancer cells and observed a diverse range of LINE-1 expression patterns between cell lines. Subcellular localization of LINE-1 proteins, ORF1p and ORF2p, revealed distinct expression patterns. ORF1p, a nucleic acid chaperone that binds LINE-1 mRNA, was predominantly expressed in the cytoplasm, with minor localization in the nucleus. ORF2p, containing endonuclease and reverse transcriptase domains, exhibited punctate foci in the nucleus and also displayed co-localization with PCNA and γH2AX. Using a retrotransposition reporter assay, we found variations in LINE-1 retrotransposition between cell lines. CONCLUSIONS Overall, our findings reveal new insight into the expression and retrotransposition of LINE-1 in prostate cancer. The prostate cancer cells we investigated provide a unique model for investigating endogenous LINE-1 activity and provide a functional model for studying LINE-1 mechanisms in prostate cancer.
Collapse
Affiliation(s)
- Erica M. Briggs
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016 USA
| | - Susan Ha
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016 USA
- Department of Urology, New York University School of Medicine, New York, NY 10016 USA
| | - Paolo Mita
- Institute for Systems Genetics, New York University School of Medicine, New York, NY 10016 USA
| | - Gregory Brittingham
- Institute for Systems Genetics, New York University School of Medicine, New York, NY 10016 USA
| | | | - Corrado Spadafora
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Susan K. Logan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016 USA
- Department of Urology, New York University School of Medicine, New York, NY 10016 USA
| |
Collapse
|
100
|
Suarez NA, Macia A, Muotri AR. LINE-1 retrotransposons in healthy and diseased human brain. Dev Neurobiol 2017; 78:434-455. [PMID: 29239145 DOI: 10.1002/dneu.22567] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Long interspersed element-1 (LINE-1 or L1) is a transposable element with the ability to self-mobilize throughout the human genome. The L1 elements found in the human brain is hypothesized to date back 56 million years ago and has survived evolution, currently accounting for 17% of the human genome. L1 retrotransposition has been theorized to contribute to somatic mosaicism. This review focuses on the presence of L1 in the healthy and diseased human brain, such as in autism spectrum disorders. Throughout this exploration, we will discuss the impact L1 has on neurological disorders that can occur throughout the human lifetime. With this, we hope to better understand the complex role of L1 in the human brain development and its implications to human cognition. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 434-455, 2018.
Collapse
Affiliation(s)
- Nicole A Suarez
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| | - Angela Macia
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| |
Collapse
|