51
|
Matsushita M, Fujita K, Hatano K, De Velasco MA, Uemura H, Nonomura N. Connecting the Dots Between the Gut-IGF-1-Prostate Axis: A Role of IGF-1 in Prostate Carcinogenesis. Front Endocrinol (Lausanne) 2022; 13:852382. [PMID: 35370981 PMCID: PMC8965097 DOI: 10.3389/fendo.2022.852382] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy in men worldwide, thus developing effective prevention strategies remain a critical challenge. Insulin-like growth factor 1 (IGF-1) is produced mainly in the liver by growth hormone signaling and is necessary for normal physical growth. However, several studies have shown an association between increased levels of circulating IGF-1 and the risk of developing solid malignancies, including PCa. Because the IGF-1 receptor is overexpressed in PCa, IGF-1 can accelerate PCa growth by activating phosphoinositide 3-kinase and mitogen-activated protein kinase, or increasing sex hormone sensitivity. Short-chain fatty acids (SCFAs) are beneficial gut microbial metabolites, mainly because of their anti-inflammatory effects. However, we have demonstrated that gut microbiota-derived SCFAs increase the production of IGF-1 in the liver and prostate. This promotes the progression of PCa by the activation of IGF-1 receptor downstream signaling. In addition, the relative abundance of SCFA-producing bacteria, such as Alistipes, are increased in gut microbiomes of patients with high-grade PCa. IGF-1 production is therefore affected by the gut microbiome, dietary habits, and genetic background, and may play a central role in prostate carcinogenesis. The pro-tumor effects of bacteria and diet-derived metabolites might be potentially countered through dietary regimens and supplements. The specific diets or supplements that are effective are unclear. Further research into the "Gut-IGF-1-Prostate Axis" may help discover optimal diets and nutritional supplements that could be implemented for prevention of PCa.
Collapse
Affiliation(s)
- Makoto Matsushita
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Urology, Faculty of Medicine, Kindai University, Osakasayama, Japan
- *Correspondence: Kazutoshi Fujita,
| | - Koji Hatano
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Marco A. De Velasco
- Department of Urology, Faculty of Medicine, Kindai University, Osakasayama, Japan
- Department of Genome Biology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Hirotsugu Uemura
- Department of Urology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Norio Nonomura
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
52
|
Abstract
Autophagy is an evolutionarily conserved, lysosome-dependent catabolic process whereby cytoplasmic components, including damaged organelles, protein aggregates and lipid droplets, are degraded and their components recycled. Autophagy has an essential role in maintaining cellular homeostasis in response to intracellular stress; however, the efficiency of autophagy declines with age and overnutrition can interfere with the autophagic process. Therefore, conditions such as sarcopenic obesity, insulin resistance and type 2 diabetes mellitus (T2DM) that are characterized by metabolic derangement and intracellular stresses (including oxidative stress, inflammation and endoplasmic reticulum stress) also involve the accumulation of damaged cellular components. These conditions are prevalent in ageing populations. For example, sarcopenia is an age-related loss of skeletal muscle mass and strength that is involved in the pathogenesis of both insulin resistance and T2DM, particularly in elderly people. Impairment of autophagy results in further aggravation of diabetes-related metabolic derangements in insulin target tissues, including the liver, skeletal muscle and adipose tissue, as well as in pancreatic β-cells. This Review summarizes the role of autophagy in the pathogenesis of metabolic diseases associated with or occurring in the context of ageing, including insulin resistance, T2DM and sarcopenic obesity, and describes its potential as a therapeutic target.
Collapse
Affiliation(s)
- Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
- Department of General Internal Medicine, Kusatsu General Hospital, Kusatsu, Shiga, Japan.
| |
Collapse
|
53
|
The aetiology and molecular landscape of insulin resistance. Nat Rev Mol Cell Biol 2021; 22:751-771. [PMID: 34285405 DOI: 10.1038/s41580-021-00390-6] [Citation(s) in RCA: 325] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Insulin resistance, defined as a defect in insulin-mediated control of glucose metabolism in tissues - prominently in muscle, fat and liver - is one of the earliest manifestations of a constellation of human diseases that includes type 2 diabetes and cardiovascular disease. These diseases are typically associated with intertwined metabolic abnormalities, including obesity, hyperinsulinaemia, hyperglycaemia and hyperlipidaemia. Insulin resistance is caused by a combination of genetic and environmental factors. Recent genetic and biochemical studies suggest a key role for adipose tissue in the development of insulin resistance, potentially by releasing lipids and other circulating factors that promote insulin resistance in other organs. These extracellular factors perturb the intracellular concentration of a range of intermediates, including ceramide and other lipids, leading to defects in responsiveness of cells to insulin. Such intermediates may cause insulin resistance by inhibiting one or more of the proximal components in the signalling cascade downstream of insulin (insulin receptor, insulin receptor substrate (IRS) proteins or AKT). However, there is now evidence to support the view that insulin resistance is a heterogeneous disorder that may variably arise in a range of metabolic tissues and that the mechanism for this effect likely involves a unified insulin resistance pathway that affects a distal step in the insulin action pathway that is more closely linked to the terminal biological response. Identifying these targets is of major importance, as it will reveal potential new targets for treatments of diseases associated with insulin resistance.
Collapse
|
54
|
Yuan S, Larsson SC. Genetically predicted insulin-like growth factor-I in relation to muscle mass and strength. Clin Endocrinol (Oxf) 2021; 95:800-805. [PMID: 34293202 DOI: 10.1111/cen.14561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Insulin-like growth factor I (IGF-I) has been associated with muscle status in animal- and population-based studies. We conducted a Mendelian randomisation study to assess the causality of the associations of IGF-I with muscle strength and mass. DESIGN AND PATIENTS Genetic variants associated with serum IGF-I at genome-wide significance in the UK Biobank study (358,072 individuals of European descent) were selected as instrumental variables. Summary-level data on the associations of those variants with muscle weakness (low-grip strength) and muscle mass (fat-free body mass) were available from a meta-analysis of 22 genome-wide association studies including 46,596 cases and 209,927 noncases and genome-wide association analysis in 155,961 individuals from the UK Biobank study, respectively. The univariable and multivariable inverse-variance weighted methods were used. RESULTS Higher genetically predicted IGF-I levels were associated with a reduced risk of muscle weakness and increased muscle mass. For one standard deviation increase in genetically predicted IGF-I levels, the odds ratio was 0.92 (95% confidence interval [CI], 0.88, 0.97; p = .001) for muscle weakness and the change was 0.53 (95% CI: 0.28, 0.79; p < .001) kg for muscle mass. In the multivariable model with adjustment for genetically predicted height, the associations were attenuated but persisted for both muscle weakness (odds ratio: 0.95, 95% CI: 0.91, 0.99; p = .015) and muscle mass (change: 0.25, 95% CI: 0.10, 0.40; p = .001). CONCLUSION This study suggests that high IGF-I levels may decrease the risk of muscle weakness and loss.
Collapse
Affiliation(s)
- Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
55
|
Homan EP, Brandão BB, Softic S, El Ouaamari A, O’Neill BT, Kulkarni RN, Kim JK, Kahn CR. Differential roles of FOXO transcription factors on insulin action in brown and white adipose tissue. J Clin Invest 2021; 131:e143328. [PMID: 34428182 PMCID: PMC8483763 DOI: 10.1172/jci143328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Abstract
Insulin and IGF-1 are essential for adipocyte differentiation and function. Mice lacking insulin and IGF-1 receptors in fat (FIGIR-KO, fat-specific IGF-1 receptor and insulin receptor-KO) exhibit complete loss of white and brown adipose tissue (WAT and BAT), glucose intolerance, insulin resistance, hepatosteatosis, and cold intolerance. To determine the role of FOXO transcription factors in the altered adipose phenotype, we generated FIGIR-KO mice with fat-specific KO of fat-expressed Foxos [Foxo1, Foxo3, Foxo4] (F-Quint-KO). Unlike FIGIR-KO mice, F-Quint-KO mice had normal BAT, glucose tolerance, insulin-regulated hepatic glucose production, and cold tolerance. However, loss of FOXOs only partially rescued subcutaneous WAT and hepatosteatosis, did not rescue perigonadal WAT or systemic insulin resistance, and led to even more marked hyperinsulinemia. Thus, FOXOs play different roles in insulin/IGF-1 action in different adipose depots, being most important in BAT, followed by subcutaneous WAT and then by visceral WAT. Disruption of FOXOs in fat also led to a reversal of insulin resistance in liver, but not in skeletal muscle, and an exacerbation of hyperinsulinemia. Thus, adipose FOXOs play a unique role in regulating crosstalk between adipose depots, liver, and β cells.
Collapse
Affiliation(s)
- Erica P. Homan
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Biology Department, Northeastern University, Boston, Massachusetts, USA
| | - Bruna B. Brandão
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, and Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Abdelfattah El Ouaamari
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, and
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Brian T. O’Neill
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rohit N. Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason K. Kim
- Program in Molecular Medicine and
- Division of Endocrinology and Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
56
|
Towards Understanding the Direct and Indirect Actions of Growth Hormone in Controlling Hepatocyte Carbohydrate and Lipid Metabolism. Cells 2021; 10:cells10102532. [PMID: 34685512 PMCID: PMC8533955 DOI: 10.3390/cells10102532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Growth hormone (GH) is critical for achieving normal structural growth. In addition, GH plays an important role in regulating metabolic function. GH acts through its GH receptor (GHR) to modulate the production and function of insulin-like growth factor 1 (IGF1) and insulin. GH, IGF1, and insulin act on multiple tissues to coordinate metabolic control in a context-specific manner. This review will specifically focus on our current understanding of the direct and indirect actions of GH to control liver (hepatocyte) carbohydrate and lipid metabolism in the context of normal fasting (sleep) and feeding (wake) cycles and in response to prolonged nutrient deprivation and excess. Caveats and challenges related to the model systems used and areas that require further investigation towards a clearer understanding of the role GH plays in metabolic health and disease are discussed.
Collapse
|
57
|
Bhardwaj G, Penniman CM, Jena J, Suarez Beltran PA, Foster C, Poro K, Junck TL, Hinton AO, Souvenir R, Fuqua JD, Morales PE, Bravo-Sagua R, Sivitz WI, Lira VA, Abel ED, O'Neill BT. Insulin and IGF-1 receptors regulate complex-I dependent mitochondrial bioenergetics and supercomplexes via FoxOs in muscle. J Clin Invest 2021; 131:e146415. [PMID: 34343133 DOI: 10.1172/jci146415] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
Decreased skeletal muscle strength and mitochondrial dysfunction are characteristic of diabetes. Action of insulin and IGF-1 through insulin receptor (IR) and IGF-1 receptor (IGF1R) maintain muscle mass via suppression of FoxOs, but whether FoxO activation coordinates atrophy in concert with mitochondrial dysfunction is unknown. We show that mitochondrial respiration and complex-I activity were decreased in streptozotocin (STZ) diabetic muscle, but these defects were reversed following muscle-specific FoxO1/3/4 triple knockout in STZ-FoxO TKO. In the absence of systemic glucose or lipid abnormalities, muscle-specific IR knockout (M-IR-/-) or combined IR/IGF1R knockout (MIGIRKO) impaired mitochondrial respiration, decreased ATP production, and increased ROS. These mitochondrial abnormalities were not present in muscle-specific IR/IGF1R and FoxO1/3/4 quintuple knockout mice (M-QKO). Acute tamoxifen-inducible deletion of IR/IGF1R also decreased muscle pyruvate respiration, complex-I activity, and supercomplex assembly. Although autophagy was increased when IR/IGF1R were deleted in muscle, mitophagy was not increased. Mechanistically, RNA-seq revealed that complex-I core subunits were decreased in STZ-diabetic and MIGIRKO muscle, and these changes were not present with FoxO knockout in STZ-FoxO TKO and M-QKO. Thus, insulin-deficient diabetes or loss of insulin/IGF-1 action in muscle decreases complex-I driven mitochondrial respiration and supercomplex assembly, in part by FoxO-mediated repression of Complex-I subunit expression.
Collapse
Affiliation(s)
- Gourav Bhardwaj
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Christie M Penniman
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Jayashree Jena
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Pablo A Suarez Beltran
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Collin Foster
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Kennedy Poro
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Taylor L Junck
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Antentor O Hinton
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Rhonda Souvenir
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Jordan D Fuqua
- Department of Health and Human Physiology, University of Iowa, Iowa City, United States of America
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - William I Sivitz
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Vitor A Lira
- Department of Health and Human Physiology, University of Iowa, Iowa City, United States of America
| | - E Dale Abel
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Brian T O'Neill
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| |
Collapse
|
58
|
Hayashi T, Kubota T, Mariko I, Takamoto I, Aihara M, Sakurai Y, Wada N, Miki T, Yamauchi T, Kubota N, Kadowaki T. Lack of Brain Insulin Receptor Substrate-1 Causes Growth Retardation, With Decreased Expression of Growth Hormone-Releasing Hormone in the Hypothalamus. Diabetes 2021; 70:1640-1653. [PMID: 33980693 DOI: 10.2337/db20-0482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/07/2021] [Indexed: 11/13/2022]
Abstract
Insulin receptor substrate-1 (Irs1) is one of the major substrates for insulin receptor and insulin-like growth factor-1 (IGF-1) receptor tyrosine kinases. Systemic Irs1-deficient mice show growth retardation, with resistance to insulin and IGF-1, although the underlying mechanisms remain poorly understood. For this study, we generated mice with brain-specific deletion of Irs1 (NIrs1KO mice). The NIrs1KO mice exhibited lower body weights, shorter bodies and bone lengths, and decreased bone density. Moreover, the NIrs1KO mice exhibited increased insulin sensitivity and glucose utilization in the skeletal muscle. Although the ability of the pituitary to secrete growth hormone (GH) remained intact, the amount of hypothalamic growth hormone-releasing hormone (GHRH) was significantly decreased and, accordingly, the pituitary GH mRNA expression levels were impaired in these mice. Plasma GH and IGF-1 levels were also lower in the NIrs1KO mice. The expression levels of GHRH protein in the median eminence, where Irs1 antibody staining is observed, were markedly decreased in the NIrs1KO mice. In vitro, neurite elongation after IGF-1 stimulation was significantly impaired by Irs1 downregulation in the cultured N-38 hypothalamic neurons. In conclusion, brain Irs1 plays important roles in the regulation of neurite outgrowth of GHRH neurons, somatic growth, and glucose homeostasis.
Collapse
Affiliation(s)
- Takanori Hayashi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Clinical Nutrition, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Tokyo, Japan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Clinical Nutrition, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Tokyo, Japan
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
- Division of Cardiovascular Medicine, Toho University, Ohashi Hospital, Tokyo, Japan
| | - Inoue Mariko
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Clinical Nutrition, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Tokyo, Japan
| | - Iseki Takamoto
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masakazu Aihara
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Sakurai
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuhiro Wada
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Clinical Nutrition, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Tokyo, Japan
| | - Takashi Miki
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Clinical Nutrition, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Tokyo, Japan
- Department of Clinical Nutrition Therapy, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
59
|
White MF, Kahn CR. Insulin action at a molecular level - 100 years of progress. Mol Metab 2021; 52:101304. [PMID: 34274528 PMCID: PMC8551477 DOI: 10.1016/j.molmet.2021.101304] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
The discovery of insulin 100 years ago and its application to the treatment of human disease in the years since have marked a major turning point in the history of medicine. The availability of purified insulin allowed for the establishment of its physiological role in the regulation of blood glucose and ketones, the determination of its amino acid sequence, and the solving of its structure. Over the last 50 years, the function of insulin has been applied into the discovery of the insulin receptor and its signaling cascade to reveal the role of impaired insulin signaling-or resistance-in the progression of type 2 diabetes. It has also become clear that insulin signaling can impact not only classical insulin-sensitive tissues, but all tissues of the body, and that in many of these tissues the insulin signaling cascade regulates unexpected physiological functions. Despite these remarkable advances, much remains to be learned about both insulin signaling and how to use this molecular knowledge to advance the treatment of type 2 diabetes and other insulin-resistant states.
Collapse
Affiliation(s)
- Morris F White
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02215, USA.
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
60
|
The Roles of the IGF Axis in the Regulation of the Metabolism: Interaction and Difference between Insulin Receptor Signaling and IGF-I Receptor Signaling. Int J Mol Sci 2021; 22:ijms22136817. [PMID: 34202916 PMCID: PMC8268872 DOI: 10.3390/ijms22136817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
It has been well established that insulin-like growth factors (IGFs) mainly mediate long-term actions in cell fates, whereas insulin predominantly exerts its role on metabolic activity. Indeed, insulin mediates multiple anabolic biological activities in glucose and amino acid transport, lipid and protein synthesis, the induction of glycogen, the inhibition of gluconeogenesis, lipolysis, and protein degradation. The interactions and differences between insulin receptor signaling and IGF-I receptor signaling in the metabolism and the cell fates are quite complicated. Because of the overlapping actions of IGF-I singling with insulin signaling, it has been difficult to distinguish the role of both signaling mechanisms on the metabolism. Furthermore, comprehensive information on the IGF-I function in respective tissues remains insufficient. Therefore, we need to clarify the precise roles of IGF-I signaling on the metabolism separate from those of insulin signaling. This review focuses on the metabolic roles of IGFs in the respective tissues, especially in terms of comparison with those of insulin, by overviewing the metabolic phenotypes of tissue-specific IGF-I and insulin receptor knockout mice, as well as those in mice treated with the dual insulin receptor/IGF-I receptor inhibitor OSI-906.
Collapse
|
61
|
SINE Insertion in the Intron of Pig GHR May Decrease Its Expression by Acting as a Repressor. Animals (Basel) 2021; 11:ani11071871. [PMID: 34201672 PMCID: PMC8300111 DOI: 10.3390/ani11071871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary GH/IGF axis genes play a central role in the regulation of skeletal accretion during development and growth, and thus represent candidate genes for growth traits. Retrotransposon insertion polymorphisms are major contributors to structural variations. They tend to generate large effect mutations resulting in variations in target gene activity and phenotype due to the fact that they carry functional elements, such as enhancers, insulators, or promoters. In the present study, RIPs in four GH/IGF axis genes (GH, GHR, IGF1, and IGF1R) were investigated by comparative genomics and PCR. Four RIPs in the GHR gene and one RIP in the IGF1 gene were identified. Further analysis revealed that one RIP in the first intron of GHR might play a role in the regulation of GHR expression by acting as a repressor. These findings contribute to the understanding of the role of RIPs in the genetic variation of GH/IGF axis genes and phenotypic variation in pigs. Abstract The genetic diversity of the GH/IGF axis genes and their association with the variation of gene expression and phenotypic traits, principally represented by SNPs, have been extensively reported. Nevertheless, the impact of retrotransposon insertion polymorphisms (RIPs) on the GH/IGF axis gene activity has not been reported. In the present study, bioinformatic prediction and PCR verification were performed to screen RIPs in four GH/IGF axis genes (GH, GHR, IGF1 and IGF1R). In total, five RIPs, including one SINE RIP in intron 3 of IGF1, one L1 RIP in intron 7 of GHR, and three SINE RIPs in intron 1, intron 5 and intron 9 of GHR, were confirmed by PCR, displaying polymorphisms in diverse breeds. Dual luciferase reporter assay revealed that the SINE insertion in intron 1 of GHR significantly repressed the GHR promoter activity in PK15, Hela, C2C12 and 3T3-L1 cells. Furthermore, qPCR results confirmed that this SINE insertion was associated with a decreased expression of GHR in the leg muscle and longissimus dorsi, indicating that it may act as a repressor involved in the regulation of GHR expression. In summary, our data revealed that RIPs contribute to the genetic variation of GH/IGF axis genes, whereby one SINE RIP in the intron 1 of GHR may decrease the expression of GHR by acting as a repressor.
Collapse
|
62
|
Shandilya A, Mehan S. Dysregulation of IGF-1/GLP-1 signaling in the progression of ALS: potential target activators and influences on neurological dysfunctions. Neurol Sci 2021; 42:3145-3166. [PMID: 34018075 DOI: 10.1007/s10072-021-05328-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022]
Abstract
The prominent causes for motor neuron diseases like ALS are demyelination, immune dysregulation, and neuroinflammation. Numerous research studies indicate that the downregulation of IGF-1 and GLP-1 signaling pathways plays a significant role in the progression of ALS pathogenesis and other neurological disorders. In the current review, we discussed the dysregulation of IGF-1/GLP-1 signaling in neurodegenerative manifestations of ALS like a genetic anomaly, oligodendrocyte degradation, demyelination, glial overactivation, immune deregulation, and neuroexcitation. In addition, the current review reveals the IGF-1 and GLP-1 activators based on the premise that the restoration of abnormal IGF-1/GLP-1 signaling could result in neuroprotection and neurotrophic effects for the clinical-pathological presentation of ALS and other brain diseases. Thus, the potential benefits of IGF-1/GLP-1 signal upregulation in the development of disease-modifying therapeutic strategies may prevent ALS and associated neurocomplications.
Collapse
Affiliation(s)
- Ambika Shandilya
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
63
|
Zhu C, Xu Z, Yuan Y, Wang T, Xu C, Yin C, Xie P, Xu P, Ye H, Patel N, Schaul S, Wang L, Zhu X, Wang S, Gao P, Xi Q, Zhang Y, Shu G, Jiang Q. Heparin impairs skeletal muscle glucose uptake by inhibiting insulin binding to insulin receptor. ENDOCRINOLOGY DIABETES & METABOLISM 2021; 4:e00253. [PMID: 34277977 PMCID: PMC8279624 DOI: 10.1002/edm2.253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/24/2022]
Abstract
Aim Heparin, a widely used antithrombotic drug has many other anticoagulant-independent physiological functions. Here, we elucidate a novel role of heparin in glucose homeostasis, suggesting an approach for developing heparin-targeted therapies for diabetes. Methods For serum heparin levels and correlation analysis, 122 volunteer's plasma, DIO (4 weeks HFD) and db/db mice serums were collected and used for spectrophotometric determination. OGTT, ITT, 2-NBDG uptake and muscle GLUT4 immunofluorescence were detected in chronic intraperitoneal injection of heparin or heparinase (16 days) and muscle-specific loss-of-function mice. In 293T cells, the binding of insulin to its receptor was detected by fluorescence resonance energy transfer (FRET), Myc-GLUT4-mCherry plasmid was used in GLUT4 translocation. In vitro, C2C12 cells as mouse myoblast cells were further verified the effects of heparin on glucose homeostasis through 2-NBDG uptake, Western blot and co-immunoprecipitation. Results Serum concentrations of heparin are positively associated with blood glucose levels in humans and are significantly increased in diet-induced and db/db obesity mouse models. Consistently, a chronic intraperitoneal injection of heparin results in hyperglycaemia, glucose intolerance and insulin resistance. These effects are independent of heparin's anticoagulant function and associated with decreases in glucose uptake and translocation of glucose transporter type 4 (GLUT4) in skeletal muscle. By using a muscle-specific loss-of-function mouse model, we further demonstrated that muscle GLUT4 is required for the detrimental effects of heparin on glucose homeostasis. Conclusions Heparin reduced insulin binding to its receptor by interacting with insulin and inhibited insulin-mediated activation of the PI3K/Akt signalling pathway in skeletal muscle, which leads to impaired glucose uptake and hyperglycaemia.
Collapse
Affiliation(s)
- Canjun Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | | | - Yexian Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Tao Wang
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Chang Xu
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Cong Yin
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Peipei Xie
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Pingwen Xu
- Division of Endocrinology, Diabetes and Metabolism Department of Medicine The University of Illinois at Chicago Chicago IL USA
| | - Hui Ye
- Division of Endocrinology, Diabetes and Metabolism Department of Medicine The University of Illinois at Chicago Chicago IL USA
| | - Nirali Patel
- Division of Endocrinology, Diabetes and Metabolism Department of Medicine The University of Illinois at Chicago Chicago IL USA
| | - Sarah Schaul
- Division of Endocrinology, Diabetes and Metabolism Department of Medicine The University of Illinois at Chicago Chicago IL USA
| | - Lina Wang
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Xiaotong Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Songbo Wang
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Ping Gao
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Qianyun Xi
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Yongliang Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| |
Collapse
|
64
|
Kok HJ, Barton ER. Actions and interactions of IGF-I and MMPs during muscle regeneration. Semin Cell Dev Biol 2021; 119:11-22. [PMID: 33962867 DOI: 10.1016/j.semcdb.2021.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Muscle regeneration requires the coordination of several factors to mobilize satellite cells and macrophages, remodel the extracellular matrix surrounding muscle fibers, and repair existing and/or form new muscle fibers. In this review, we focus on insulin-like growth factor I and the matrix metalloproteinases, which are secreted proteins that act on cells and the matrix to resolve damage. While their actions appear independent, their interactions occur at the transcriptional and post-translational levels to promote feed-forward activation of each other. Together, these proteins assist at virtually every step of the repair process, and contribute significantly to muscle regenerative capacity.
Collapse
Affiliation(s)
- Hui Jean Kok
- Applied Physiology & Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Road, Gainesville, FL 32611, USA
| | - Elisabeth R Barton
- Applied Physiology & Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Road, Gainesville, FL 32611, USA.
| |
Collapse
|
65
|
Wei X, Yang B, Chen X, Wen L, Kan J. Zanthoxylum alkylamides ameliorate protein metabolism in type 2 diabetes mellitus rats by regulating multiple signaling pathways. Food Funct 2021; 12:3740-3753. [PMID: 33900301 DOI: 10.1039/d0fo02695f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes mellitus (T2DM) can easily induce insulin resistance (IR) in skeletal muscle, causing protein metabolism disorder and inflammation. The present study aimed to investigate whether Zanthoxylum alkylamides (ZA) could ameliorate T2DM through regulating protein metabolism disorder by using a rat model of T2DM. The predominant bioactive constituents found in ZA were hydroxyl-α-sanshool, hydroxyl-β-sanshool and hydroxyl-γ-sanshool. The results showed that ZA improved a series of biochemical indices associated with protein metabolism and inflammation in T2DM rats. Our mechanistic finding indicated that ZA promoted protein anabolism in T2DM rats by up-regulating the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. ZA also promoted glucose transportation in skeletal muscle to ameliorate skeletal muscle IR and energy metabolism through regulating the AMP-activated protein kinase (AMPK) signaling pathway. Moreover, ZA inhibited protein degradation and improved protein catabolism disorder in T2DM rats by down-regulating the PI3K/Akt/forkhead box O (FoxO) signaling pathway, and ZA further ameliorated inflammation to inhibit protein catabolism via regulating the tumor necrosis factor α (TNF-α)/nuclear factor κB (NF-κB) pathway in the skeletal muscle of T2DM rats. Collectively, the ameliorating effect of ZA on protein metabolism disorder in T2DM rats was the common result of regulating multiple signaling pathways. ZA decreased skeletal muscle IR to promote protein anabolism and inhibit protein catabolism for improving protein metabolism disorder, thus ultimately ameliorating T2DM. In sum, our findings demonstrated that ZA treatment could effectively ameliorate T2DM through improving protein metabolism, providing a new treatment target for T2DM.
Collapse
Affiliation(s)
- Xunyu Wei
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China.
| | | | | | | | | |
Collapse
|
66
|
Kuramoto N, Nomura K, Kohno D, Kitamura T, Karsenty G, Hosooka T, Ogawa W. Role of PDK1 in skeletal muscle hypertrophy induced by mechanical load. Sci Rep 2021; 11:3447. [PMID: 33568757 PMCID: PMC7876046 DOI: 10.1038/s41598-021-83098-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) plays an important role in protein metabolism and cell growth. We here show that mice (M-PDK1KO mice) with skeletal muscle-specific deficiency of 3'-phosphoinositide-dependent kinase 1 (PDK1), a key component of PI3K signaling pathway, manifest a reduced skeletal muscle mass under the static condition as well as impairment of mechanical load-induced muscle hypertrophy. Whereas mechanical load-induced changes in gene expression were not affected, the phosphorylation of ribosomal protein S6 kinase (S6K) and S6 induced by mechanical load was attenuated in skeletal muscle of M-PDK1KO mice, suggesting that PDK1 regulates muscle hypertrophy not through changes in gene expression but through stimulation of kinase cascades such as the S6K-S6 axis, which plays a key role in protein synthesis. Administration of the β2-adrenergic receptor (AR) agonist clenbuterol activated the S6K-S6 axis in skeletal muscle and induced muscle hypertrophy in mice. These effects of clenbuterol were attenuated in M-PDK1KO mice, and mechanical load-induced activation of the S6K-S6 axis and muscle hypertrophy were inhibited in mice with skeletal muscle-specific deficiency of β2-AR. Our results suggest that PDK1 regulates skeletal muscle mass under the static condition and that it contributes to mechanical load-induced muscle hypertrophy, at least in part by mediating signaling from β2-AR.
Collapse
Affiliation(s)
- Naoki Kuramoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kazuhiro Nomura
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Daisuke Kohno
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Tetsuya Hosooka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
- Division of Development of Advanced Therapy for Metabolic Diseases, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
67
|
Ichhaporia VP, Hendershot LM. Role of the HSP70 Co-Chaperone SIL1 in Health and Disease. Int J Mol Sci 2021; 22:ijms22041564. [PMID: 33557244 PMCID: PMC7913895 DOI: 10.3390/ijms22041564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 12/04/2022] Open
Abstract
Cell surface and secreted proteins provide essential functions for multicellular life. They enter the endoplasmic reticulum (ER) lumen co-translationally, where they mature and fold into their complex three-dimensional structures. The ER is populated with a host of molecular chaperones, associated co-factors, and enzymes that assist and stabilize folded states. Together, they ensure that nascent proteins mature properly or, if this process fails, target them for degradation. BiP, the ER HSP70 chaperone, interacts with unfolded client proteins in a nucleotide-dependent manner, which is tightly regulated by eight DnaJ-type proteins and two nucleotide exchange factors (NEFs), SIL1 and GRP170. Loss of SIL1′s function is the leading cause of Marinesco-Sjögren syndrome (MSS), an autosomal recessive, multisystem disorder. The development of animal models has provided insights into SIL1′s functions and MSS-associated pathologies. This review provides an in-depth update on the current understanding of the molecular mechanisms underlying SIL1′s NEF activity and its role in maintaining ER homeostasis and normal physiology. A precise understanding of the underlying molecular mechanisms associated with the loss of SIL1 may allow for the development of new pharmacological approaches to treat MSS.
Collapse
|
68
|
Gharahdaghi N, Phillips BE, Szewczyk NJ, Smith K, Wilkinson DJ, Atherton PJ. Links Between Testosterone, Oestrogen, and the Growth Hormone/Insulin-Like Growth Factor Axis and Resistance Exercise Muscle Adaptations. Front Physiol 2021; 11:621226. [PMID: 33519525 PMCID: PMC7844366 DOI: 10.3389/fphys.2020.621226] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of skeletal muscle mass throughout the life course is key for the regulation of health, with physical activity a critical component of this, in part, due to its influence upon key hormones such as testosterone, estrogen, growth hormone (GH), and insulin-like growth factor (IGF). Despite the importance of these hormones for the regulation of skeletal muscle mass in response to different types of exercise, their interaction with the processes controlling muscle mass remain unclear. This review presents evidence on the importance of these hormones in the regulation of skeletal muscle mass and their responses, and involvement in muscle adaptation to resistance exercise. Highlighting the key role testosterone plays as a primary anabolic hormone in muscle adaptation following exercise training, through its interaction with anabolic signaling pathways and other hormones via the androgen receptor (AR), this review also describes the potential importance of fluctuations in other hormones such as GH and IGF-1 in concert with dietary amino acid availability; and the role of estrogen, under the influence of the menstrual cycle and menopause, being especially important in adaptive exercise responses in women. Finally, the downstream mechanisms by which these hormones impact regulation of muscle protein turnover (synthesis and breakdown), and thus muscle mass are discussed. Advances in our understanding of hormones that impact protein turnover throughout life offers great relevance, not just for athletes, but also for the general and clinical populations alike.
Collapse
Affiliation(s)
| | | | | | | | - Daniel J. Wilkinson
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Philip J. Atherton
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
69
|
Geng T, Wang M, Li X, Zhou T, Ma H, Fonseca VA, Koh WP, Huang T, Heianza Y, Qi L. Birth weight modifies the relation between adulthood levels of insulin-like growth factor-1 and type 2 diabetes: a prospective cohort study. BMJ Open Diabetes Res Care 2021; 9:9/1/e001885. [PMID: 33648986 PMCID: PMC7925240 DOI: 10.1136/bmjdrc-2020-001885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Insulin-like growth factor-1 (IGF-1) has been implicated in fetal and early-life growth and development of type 2 diabetes (T2D). We aimed to examine the interaction between circulating IGF-1 and birth weight in relation to risk of T2D. RESEARCH DESIGN AND METHODS We included 181 090 adults, aged 39-70 years in the UK Biobank Study, who were free of diabetes or major cardiovascular diseases at baseline. Serum IGF-1 levels were determined using chemiluminescent immunoassay method. Birth weight was self-reported; a Genetic Risk Score (GRS) was calculated to define the genetically determined birth weight. The outcome was the incidence of T2D. RESULTS We identified 3299 incident T2D cases over an average of 9.9 years of follow-up. Among the participants with birth weight of ≥2.5 kg, IGF-1 levels were inversely associated with T2D risk in a dose-dependent manner (p-trend<0.001). In contrast, the association was not significant among those with birth weight of <2.5 kg (p-interaction=0.001). The GRS of birth weight did not interact with IGF-1 levels on T2D risk. CONCLUSIONS Our results indicate that birth weight significantly modifies the relation between adulthood levels of circulating IGF-1 and the risk of T2D. Our findings highlight the importance of early-life risk factors in the development of the lifecourse prevention strategies targeting IGF-1 and T2D.
Collapse
Affiliation(s)
- Tingting Geng
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Department of Epidemiology, School of Public Health and Tropical Medicine,Tulane University, New Orleans, Louisiana, USA
| | - Mengying Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine,Tulane University, New Orleans, Louisiana, USA
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine,Tulane University, New Orleans, Louisiana, USA
| | - Tao Zhou
- Department of Epidemiology, School of Public Health and Tropical Medicine,Tulane University, New Orleans, Louisiana, USA
| | - Hao Ma
- Department of Epidemiology, School of Public Health and Tropical Medicine,Tulane University, New Orleans, Louisiana, USA
| | - Vivian A Fonseca
- Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Beijing, China
- Center for Intelligent Public Health, Academy for Artificial Intelligence, Beijing, China
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine,Tulane University, New Orleans, Louisiana, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine,Tulane University, New Orleans, Louisiana, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
70
|
Vav2 catalysis-dependent pathways contribute to skeletal muscle growth and metabolic homeostasis. Nat Commun 2020; 11:5808. [PMID: 33199701 PMCID: PMC7669868 DOI: 10.1038/s41467-020-19489-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle promotes metabolic balance by regulating glucose uptake and the stimulation of multiple interorgan crosstalk. We show here that the catalytic activity of Vav2, a Rho GTPase activator, modulates the signaling output of the IGF1- and insulin-stimulated phosphatidylinositol 3-kinase pathway in that tissue. Consistent with this, mice bearing a Vav2 protein with decreased catalytic activity exhibit reduced muscle mass, lack of proper insulin responsiveness and, at much later times, a metabolic syndrome-like condition. Conversely, mice expressing a catalytically hyperactive Vav2 develop muscle hypertrophy and increased insulin responsiveness. Of note, while hypoactive Vav2 predisposes to, hyperactive Vav2 protects against high fat diet-induced metabolic imbalance. These data unveil a regulatory layer affecting the signaling output of insulin family factors in muscle. Skeletal muscle plays a key role in regulating systemic glucose and metabolic homeostasis. Here, the authors show that the catalytic activity of Vav2, an activator of Rho GTPases, modulates those processes by favoring the responsiveness of this tissue to insulin and related factors.
Collapse
|
71
|
Wang G, Yu Y, Cai W, Batista TM, Suk S, Noh HL, Hirshman M, Nigro P, Li ME, Softic S, Goodyear L, Kim JK, Kahn CR. Muscle-Specific Insulin Receptor Overexpression Protects Mice From Diet-Induced Glucose Intolerance but Leads to Postreceptor Insulin Resistance. Diabetes 2020; 69:2294-2309. [PMID: 32868340 PMCID: PMC7576573 DOI: 10.2337/db20-0439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
Abstract
Skeletal muscle insulin resistance is a prominent early feature in the pathogenesis of type 2 diabetes. In attempt to overcome this defect, we generated mice overexpressing insulin receptors (IR) specifically in skeletal muscle (IRMOE). On normal chow, IRMOE mice have body weight similar to that of controls but an increase in lean mass and glycolytic muscle fibers and reduced fat mass. IRMOE mice also show higher basal phosphorylation of IR, IRS-1, and Akt in muscle and improved glucose tolerance compared with controls. When challenged with high-fat diet (HFD), IRMOE mice are protected from diet-induced obesity. This is associated with reduced inflammation in fat and liver, improved glucose tolerance, and improved systemic insulin sensitivity. Surprisingly, however, in both chow and HFD-fed mice, insulin-stimulated Akt phosphorylation is significantly reduced in muscle of IRMOE mice, indicating postreceptor insulin resistance. RNA sequencing reveals downregulation of several postreceptor signaling proteins that contribute to this resistance. Thus, enhancing early insulin signaling in muscle by overexpression of the IR protects mice from diet-induced obesity and its effects on glucose metabolism. However, chronic overstimulation of this pathway leads to postreceptor desensitization, indicating the critical balance between normal signaling and hyperstimulation of the insulin signaling pathway.
Collapse
Affiliation(s)
- Guoxiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Yingying Yu
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Weikang Cai
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY
| | - Thiago M Batista
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Sujin Suk
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Hye Lim Noh
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Michael Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Mengyao Ella Li
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Divisions of Pediatric Gastroenterology and Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY
| | - Laurie Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Jason K Kim
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
72
|
Yan XM, Zhang Z, Liu JB, Li N, Yang GW, Luo D, Zhang Y, Yuan B, Jiang H, Zhang JB. Genome-wide identification and analysis of long noncoding RNAs in longissimus muscle tissue from Kazakh cattle and Xinjiang brown cattle. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 34:1739-1748. [PMID: 33152223 PMCID: PMC8563250 DOI: 10.5713/ajas.20.0317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/20/2020] [Indexed: 11/27/2022]
Abstract
Objective In recent years, lncRNAs have been identified in many species, and some of them have been shown to play important roles in muscle development and myogenesis. However, the differences in lncRNAs between Kazakh cattle and Xinjiang brown cattle remain undefined; therefore, we aimed to confirm whether lncRNAs are differentially expressed in the longissimus dorsi between these two types of cattle and whether differentially expressed lncRNAs regulate muscle differentiation. Methods We used RNA-seq technology to identify lncRNAs in longissimus muscles from these cattle. The expression of lncRNAs were analyzed using StringTie (1.3.1) in terms of the FPKM values of the encoding genes. The differential expression of the transcripts in the two samples were analyzed using the DESeq R software package. The resulting FDR was controlled by the Benjamini and Hochberg's approach. KOBAS software was utilized to measure the expression of different genes in KEGG pathways. We randomly selected eight lncRNA genes and validated them by RT-qPCR. Results We found that 182 lncRNA transcripts, including 102 upregulated and 80 downregulated transcripts, were differentially expressed between Kazakh cattle and Xinjiang brown cattle. The results of RT-qPCR were consistent with the sequencing results. Enrichment analysis and functional annotation of the target genes revealed that the differentially expressed lncRNAs were associated with the MAPK, Ras and PI3k/Akt signaling pathways. We also constructed a lncRNA/mRNA coexpression network for the PI3k/Akt signaling pathway. Conclusion Our study provides insights into cattle muscle-associated lncRNAs and will contribute to a more thorough understanding of the molecular mechanism underlying muscle growth and development in cattle.
Collapse
Affiliation(s)
- Xiang-Min Yan
- College of Animal Sciences, Jilin University, Changchun (130012), Jilin, China.,Institute of Animal Husbandry,Xinjiang Academy of Animal Husbandry, Urumqi (830057), Xinjiang, China
| | - Zhe Zhang
- College of Animal Sciences, Jilin University, Changchun (130012), Jilin, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, (712100), Shanxi, China
| | - Jian-Bo Liu
- College of Animal Sciences, Jilin University, Changchun (130012), Jilin, China
| | - Na Li
- Institute of Animal Husbandry,Xinjiang Academy of Animal Husbandry, Urumqi (830057), Xinjiang, China
| | - Guang-Wei Yang
- Yili State Animal Husbandry General Station, Yili (835000), Xinjiang, China
| | - Dan Luo
- College of Animal Sciences, Jilin University, Changchun (130012), Jilin, China
| | - Yang Zhang
- Institute of Animal Husbandry,Xinjiang Academy of Animal Husbandry, Urumqi (830057), Xinjiang, China
| | - Bao Yuan
- College of Animal Sciences, Jilin University, Changchun (130012), Jilin, China
| | - Hao Jiang
- College of Animal Sciences, Jilin University, Changchun (130012), Jilin, China
| | - Jia-Bao Zhang
- College of Animal Sciences, Jilin University, Changchun (130012), Jilin, China
| |
Collapse
|
73
|
Okazaki Y, Murray J, Ehsani A, Clark J, Whitson RH, Hirose L, Yanaka N, Itakura K. Increased glucose metabolism in Arid5b -/- skeletal muscle is associated with the down-regulation of TBC1 domain family member 1 (TBC1D1). Biol Res 2020; 53:45. [PMID: 33023658 PMCID: PMC7542134 DOI: 10.1186/s40659-020-00313-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/22/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Skeletal muscle has an important role in regulating whole-body energy homeostasis, and energy production depends on the efficient function of mitochondria. We demonstrated previously that AT-rich interactive domain 5b (Arid5b) knockout (Arid5b-/-) mice were lean and resistant to high-fat diet (HFD)-induced obesity. While a potential role of Arid5b in energy metabolism has been suggested in adipocytes and hepatocytes, the role of Arid5b in skeletal muscle metabolism has not been studied. Therefore, we investigated whether energy metabolism is altered in Arid5b-/- skeletal muscle. RESULTS Arid5b-/- skeletal muscles showed increased basal glucose uptake, glycogen content, glucose oxidation and ATP content. Additionally, glucose clearance and oxygen consumption were upregulated in Arid5b-/- mice. The expression of glucose transporter 1 (GLUT1) and 4 (GLUT4) in the gastrocnemius (GC) muscle remained unchanged. Intriguingly, the expression of TBC domain family member 1 (TBC1D1), which negatively regulates GLUT4 translocation to the plasma membrane, was suppressed in Arid5b-/- skeletal muscle. Coimmunofluorescence staining of the GC muscle sections for GLUT4 and dystrophin revealed increased GLUT4 localization at the plasma membrane in Arid5b-/- muscle. CONCLUSIONS The current study showed that the knockout of Arid5b enhanced glucose metabolism through the downregulation of TBC1D1 and increased GLUT4 membrane translocation in skeletal muscle.
Collapse
Affiliation(s)
- Yuri Okazaki
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
- Department of Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima, Japan.
| | - Jennifer Murray
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ali Ehsani
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jessica Clark
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Robert H Whitson
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Lisa Hirose
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Noriyuki Yanaka
- Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Keiichi Itakura
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| |
Collapse
|
74
|
Minnock D, Annibalini G, Le Roux CW, Contarelli S, Krause M, Saltarelli R, Valli G, Stocchi V, Barbieri E, De Vito G. Effects of acute aerobic, resistance and combined exercises on 24-h glucose variability and skeletal muscle signalling responses in type 1 diabetics. Eur J Appl Physiol 2020; 120:2677-2691. [PMID: 32909059 DOI: 10.1007/s00421-020-04491-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE To compare the effect of high-intensity aerobic (AER), resistance (RES), and combined (COMB: RES + AER) exercise, on interstitial glucose (IG) variability and skeletal muscle signalling pathways in type 1 diabetes (T1D). METHODS T1D participants (6 M/6F) wore a flash glucose monitoring system in four randomized sessions: one control (CONT), and one AER, RES and COMB (40 min each). Mean amplitude of glycemic excursions (MAGE), standard deviation (SD) and coefficient variation (CV) of IG were used to compare the 24 h post-exercise IG variability. Blood and muscle samples were collected to compare exercise-induced systemic and muscle signalling responses related to metabolic, growth and inflammatory adaptations. RESULTS Both RES and COMB decreased the 24 h MAGE compared to CONT; additionally, COMB decreased the 24 h SD and CV. In the 6-12 h post-exercise, all exercise modalities reduced the IG CV while SD decreased only after COMB. Both AER and COMB stimulated the PGC-1α mRNA expression and promoted the splicing of IGF-1Ea variant, while Akt and p38MAPK phosphorylation increased only after RES and COMB. Additionally, COMB enhanced eEF2 activation and RES increased myogenin and MRF4 mRNA expression. Blood lactate and glycerol levels and muscle IL-6, TNF-α, and MCP-1 mRNAs increased after all exercise sessions, while serum CK and LDH level did not change. CONCLUSION COMB is more effective in reducing IG fluctuations compared to single-mode AER or RES exercise. Moreover, COMB simultaneously activates muscle signalling pathways involved in substrate metabolism and anabolic adaptations, which can help to improve glycaemic control and maintain muscle health in T1D.
Collapse
Affiliation(s)
- Dean Minnock
- Institute for Sport and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Carel W Le Roux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Serena Contarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism, and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giacomo Valli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Vilberto Stocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.,Interuniversitary Institute of Myology (IIM) Perugia, Perugia, Italy
| | - Giuseppe De Vito
- Institute for Sport and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
75
|
Yoshida T, Delafontaine P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020; 9:cells9091970. [PMID: 32858949 PMCID: PMC7564605 DOI: 10.3390/cells9091970] [Citation(s) in RCA: 345] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is a key growth factor that regulates both anabolic and catabolic pathways in skeletal muscle. IGF-1 increases skeletal muscle protein synthesis via PI3K/Akt/mTOR and PI3K/Akt/GSK3β pathways. PI3K/Akt can also inhibit FoxOs and suppress transcription of E3 ubiquitin ligases that regulate ubiquitin proteasome system (UPS)-mediated protein degradation. Autophagy is likely inhibited by IGF-1 via mTOR and FoxO signaling, although the contribution of autophagy regulation in IGF-1-mediated inhibition of skeletal muscle atrophy remains to be determined. Evidence has suggested that IGF-1/Akt can inhibit muscle atrophy-inducing cytokine and myostatin signaling via inhibition of the NF-κΒ and Smad pathways, respectively. Several miRNAs have been found to regulate IGF-1 signaling in skeletal muscle, and these miRs are likely regulated in different pathological conditions and contribute to the development of muscle atrophy. IGF-1 also potentiates skeletal muscle regeneration via activation of skeletal muscle stem (satellite) cells, which may contribute to muscle hypertrophy and/or inhibit atrophy. Importantly, IGF-1 levels and IGF-1R downstream signaling are suppressed in many chronic disease conditions and likely result in muscle atrophy via the combined effects of altered protein synthesis, UPS activity, autophagy, and muscle regeneration.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Heart and Vascular Institute, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-48, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (T.Y.); (P.D.)
| | - Patrice Delafontaine
- Heart and Vascular Institute, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-48, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (T.Y.); (P.D.)
| |
Collapse
|
76
|
Romagnoli C, Zonefrati R, Sharma P, Innocenti M, Cianferotti L, Brandi ML. Characterization of Skeletal Muscle Endocrine Control in an In Vitro Model of Myogenesis. Calcif Tissue Int 2020; 107:18-30. [PMID: 32107602 PMCID: PMC7271047 DOI: 10.1007/s00223-020-00678-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
Abstract
Skeletal muscle has remarkable regenerative abilities regulated by a highly orchestrated process involving the activation of cellular and molecular responses, which are dependent on satellite cells. These cells maintain the stem cell population and provide numerous myogenic cells that proliferate, differentiate, fuse and lead to new myofiber formation for a functional contractile tissue. We have isolated and characterized satellite cells obtained from human biopsies and established an in vitro model of myogenesis, evaluating muscle regeneration, monitoring the dynamic increases of the specific myogenic regulatory factors and the final formation of multinucleated myofibers. As the skeletal muscle is an endocrine tissue able of producing many substances that can act on distant organs, and it can be physiologically modulated by a variety of hormones, we embarked in a project of characterization of muscle cell endocrinology machinery. The expression of a large array of hormone receptors was quantified during the process of myogenesis. The results obtained showed a significant and generalized increase of all the tested hormone receptors along the process of differentiation of human cultured cells from myoblasts to myocytes. Interestingly, also the production of the myokine irisin increased in a parallel manner. These findings point to the human cultured myoblasts as an ideal model to characterize the skeletal muscle endocrine machinery and its hormonal regulation.
Collapse
Affiliation(s)
- Cecilia Romagnoli
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Palagi 1, 50139 Florence, Italy
| | - Roberto Zonefrati
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Palagi 1, 50139 Florence, Italy
| | - Preeti Sharma
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Palagi 1, 50139 Florence, Italy
| | - Marco Innocenti
- grid.8404.80000 0004 1757 2304Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Luisella Cianferotti
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Palagi 1, 50139 Florence, Italy
| | - Maria Luisa Brandi
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Palagi 1, 50139 Florence, Italy
| |
Collapse
|
77
|
Zeng J, Feng Y, Feng J, Chen X. The effect of soy intervention on insulin-like growth factor 1 levels: A meta-analysis of clinical trials. Phytother Res 2020; 34:1570-1577. [PMID: 32072706 DOI: 10.1002/ptr.6630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022]
Abstract
A low insulin-like growth factor 1 (IGF-1) level is known to be associated with many disorders. Several studies have shown that soy consumption may influence IGF-1, but the findings remain inconclusive. In this work, we conducted a systematic review and meta-analysis to provide a more accurate estimation of the effect of soy consumption on plasma IGF-1. A comprehensive systematic search was performed in Scopus, Embase, Web of Science, and PubMed/MEDLINE databases from inception until October 2019. Eight studies fulfilled the eligibility criteria. The pooled weighted mean difference (WMD) of the eligible studies was calculated with random-effects approach. Overall, a significant increment in plasma IGF-1 was observed following soy intervention (WMD: 13.5 ng/ml, 95% CI: 5.2, 21.8, I2 = 97%). Subgroup analyses demonstrated a significantly greater increase in IGF-1, when soy was administered at a dosage of ≤40 g/day (WMD: 11.7 ng/ml, 95% CI: 10.9 to 12.6, I2 = 98%), and when the intervention duration was <12 weeks (WMD: 26.6 ng/ml, 95% CI: 9.1 to 44.1, I2 = 0.0%). In addition, soy intervention resulted in a greater increase in IGF-1 among non-healthy subjects (WMD: 36 ng/ml, 95% CI: 32.7 to 39.4, I2 = 84%) than healthy subjects (WMD: 9.8 ng/ml, 95% CI: 8.9 to 10.7, I2 = 90%). In conclusion, this study provided the first meta-analytical evidence that soy intake may increase IGF-1 levels, but the magnitude of the increase is dependent on the intervention dosage, duration, and health status of the participants.
Collapse
Affiliation(s)
- Jiawei Zeng
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Yue Feng
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Jiafu Feng
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Xi Chen
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
78
|
Nair VD, Ge Y, Li S, Pincas H, Jain N, Seenarine N, Amper MAS, Goodpaster BH, Walsh MJ, Coen PM, Sealfon SC. Sedentary and Trained Older Men Have Distinct Circulating Exosomal microRNA Profiles at Baseline and in Response to Acute Exercise. Front Physiol 2020; 11:605. [PMID: 32587527 PMCID: PMC7298138 DOI: 10.3389/fphys.2020.00605] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
Exercise has multi-systemic benefits and attenuates the physiological impairments associated with aging. Emerging evidence suggests that circulating exosomes mediate some of the beneficial effects of exercise via the transfer of microRNAs between tissues. However, the impact of regular exercise and acute exercise on circulating exosomal microRNAs (exomiRs) in older populations remains unknown. In the present study, we analyzed circulating exomiR expression in endurance-trained elderly men (n = 5) and age-matched sedentary males (n = 5) at baseline (Pre), immediately after a forty minute bout of aerobic exercise on a cycle ergometer (Post), and three hours after this acute exercise (3hPost). Following the isolation and enrichment of exosomes from plasma, exosome-enriched preparations were characterized and exomiR levels were determined by sequencing. The effect of regular exercise on circulating exomiRs was assessed by comparing the baseline expression levels in the trained and sedentary groups. The effect of acute exercise was determined by comparing baseline and post-training expression levels in each group. Regular exercise resulted in significantly increased baseline expression of three exomiRs (miR-486-5p, miR-215-5p, miR-941) and decreased expression of one exomiR (miR-151b). Acute exercise altered circulating exomiR expression in both groups. However, exomiRs regulated by acute exercise in the trained group (7 miRNAs at Post and 8 at 3hPost) were distinct from those in the sedentary group (9 at Post and 4 at 3hPost). Pathway analysis prediction and reported target validation experiments revealed that the majority of exercise-regulated exomiRs are targeting genes that are related to IGF-1 signaling, a pathway involved in exercise-induced muscle and cardiac hypertrophy. The immediately post-acute exercise exomiR signature in the trained group correlates with activation of IGF-1 signaling, whereas in the sedentary group it is associated with inhibition of IGF-1 signaling. While further validation is needed, including measurements of IGF-1/IGF-1 signaling in blood or skeletal muscle, our results suggest that training status may counteract age-related anabolic resistance by modulating circulating exomiR profiles both at baseline and in response to acute exercise.
Collapse
Affiliation(s)
- Venugopalan D. Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Side Li
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nimisha Jain
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nitish Seenarine
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mary Anne S. Amper
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bret H. Goodpaster
- Translational Research Institute, AdventHealth, Orlando, FL, United States
| | - Martin J. Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Paul M. Coen
- Translational Research Institute, AdventHealth, Orlando, FL, United States
| | - Stuart C. Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
79
|
Gharaboghaz MNZ, Farahpour MR, Saghaie S. Topical co-administration of Teucrium polium hydroethanolic extract and Aloe vera gel triggered wound healing by accelerating cell proliferation in diabetic mouse model. Biomed Pharmacother 2020; 127:110189. [PMID: 32388242 DOI: 10.1016/j.biopha.2020.110189] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 11/18/2022] Open
Abstract
Diabetic wounds are major issues in patients with diabetes. Medicinal plants of Teucrium polium and Aloe vera have antioxidant and anti-inflammatory properties that may be profitable for diabetic patients. This study was conducted to evaluate the effect of co-administration of ointments prepared from Teucrium polium hydroethanolic extract (TPEO) and Aloe vera gel (AVGO) on excisional wound healing in a diabetic mouse model. Following the induction of diabetes and circular excisional wound (7 mm), the mice were divided into six groups, namely (Ⅰ) control mice treated with mupirocin (as a standard drug), (Ⅱ and Ⅲ) the mice treated with 5 and 10 % TPEO, (Ⅳ and Ⅴ) the mice treated with 5 and 10 % AVGO, and (Ⅵ) the mice treated with a combination of 5% TPEO and 5% AVGO (TPEO+AVGO). To investigate the wound area, we further evaluated the wound area ratio, histological analysis and the serum levels of tissue antioxidant capacity (TAC) and malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), immunohistochemistry staining for vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF-1), glucose transporter-1(GLUT-1) and collagen type 1 and mRNA expression levels for VEGF, IGF-1, GLUT-1 and fibroblast growth factor-2 (FGF-2). The results showed that administration of the ointments, especially in combination form, shortened the inflammatory phase and reduced the levels of tissue MDA, TNF-α and IL-1β compared to mupirocin group (P < 0.05). Moreover, fibroblasts proliferation, collagen deposition, VEGF, IGF-1, GLUT-1-positive cells and level of TAC, and expressions of VEGF, IGF-1, GLUT-1 and FGF-2 were significantly (P < 0.05) increased in TPEO and AVGO, and especially in the mice treated with the mixed form. Therefore, topical co-administration of TPEO + AVGO accelerated open diabetic wound healing through shortening the inflammatory phase and increasing cell proliferation and collagen deposition.
Collapse
Affiliation(s)
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, 57159-44867, Iran.
| | - Shahram Saghaie
- Department of Pharmacology, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| |
Collapse
|
80
|
Batista TM, Garcia-Martin R, Cai W, Konishi M, O'Neill BT, Sakaguchi M, Kim JH, Jung DY, Kim JK, Kahn CR. Multi-dimensional Transcriptional Remodeling by Physiological Insulin In Vivo. Cell Rep 2020; 26:3429-3443.e3. [PMID: 30893613 DOI: 10.1016/j.celrep.2019.02.081] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/11/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of gene expression is an important aspect of insulin action but in vivo is intertwined with changing levels of glucose and counter-regulatory hormones. Here we demonstrate that under euglycemic clamp conditions, physiological levels of insulin regulate interrelated networks of more than 1,000 transcripts in muscle and liver. These include expected pathways related to glucose and lipid utilization, mitochondrial function, and autophagy, as well as unexpected pathways, such as chromatin remodeling, mRNA splicing, and Notch signaling. These acutely regulated pathways extend beyond those dysregulated in mice with chronic insulin deficiency or insulin resistance and involve a broad network of transcription factors. More than 150 non-coding RNAs were regulated by insulin, many of which also responded to fasting and refeeding. Pathway analysis and RNAi knockdown revealed a role for lncRNA Gm15441 in regulating fatty acid oxidation in hepatocytes. Altogether, these changes in coding and non-coding RNAs provide an integrated transcriptional network underlying the complexity of insulin action.
Collapse
Affiliation(s)
- Thiago M Batista
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ruben Garcia-Martin
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Masahiro Konishi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian T O'Neill
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Masaji Sakaguchi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Metabolic Medicine, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto 860-8556, Japan
| | - Jong Hun Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Food Science and Biotechnology, Sungshin University, Seoul 01133, Republic of Korea
| | - Dae Young Jung
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jason K Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
81
|
Seo JA, Kang MC, Yang WM, Hwang WM, Kim SS, Hong SH, Heo JI, Vijyakumar A, Pereira de Moura L, Uner A, Huang H, Lee SH, Lima IS, Park KS, Kim MS, Dagon Y, Willnow TE, Aroda V, Ciaraldi TP, Henry RR, Kim YB. Apolipoprotein J is a hepatokine regulating muscle glucose metabolism and insulin sensitivity. Nat Commun 2020; 11:2024. [PMID: 32332780 PMCID: PMC7181874 DOI: 10.1038/s41467-020-15963-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
Crosstalk between liver and skeletal muscle is vital for glucose homeostasis. Hepatokines, liver-derived proteins that play an important role in regulating muscle metabolism, are important to this communication. Here we identify apolipoprotein J (ApoJ) as a novel hepatokine targeting muscle glucose metabolism and insulin sensitivity through a low-density lipoprotein receptor-related protein-2 (LRP2)-dependent mechanism, coupled with the insulin receptor (IR) signaling cascade. In muscle, LRP2 is necessary for insulin-dependent IR internalization, an initial trigger for insulin signaling, that is crucial in regulating downstream signaling and glucose uptake. Of physiologic significance, deletion of hepatic ApoJ or muscle LRP2 causes insulin resistance and glucose intolerance. In patients with polycystic ovary syndrome and insulin resistance, pioglitazone-induced improvement of insulin action is associated with an increase in muscle ApoJ and LRP2 expression. Thus, the ApoJ-LRP2 axis is a novel endocrine circuit that is central to the maintenance of normal glucose homeostasis and insulin sensitivity. Hepatokines are proteins secreted by the liver that can regulate whole body metabolism. Here the authors identify apolipoprotein J as a hepatokine that regulates muscle glucose metabolism and insulin resistance through a low-density lipoprotein receptor-related protein−2 mediated mechanism in mice.
Collapse
Affiliation(s)
- Ji A Seo
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Division of Endocrinology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Min-Cheol Kang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Won-Mo Yang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Won Min Hwang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Division of Nephrology, Department of Internal Medicine, College of Medicine, Konyang University, Daejeon, Korea
| | - Sang Soo Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Soo Hyun Hong
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Columbia University, New York, NY, USA
| | - Jee-In Heo
- Division of Endocrinology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Achana Vijyakumar
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Leandro Pereira de Moura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,School of Applied Science, University of Campinas, Limeira, Brazil
| | - Aykut Uner
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Hu Huang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,East Carolina University, East Carolina Diabetes and Obesity Institute, Greenville, NC, USA
| | - Seung Hwan Lee
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Inês S Lima
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Universidade Nova de Lisboa, Lisboa, Portugal
| | - Kyong Soo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Min Seon Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Yossi Dagon
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Thomas E Willnow
- Molecular Cardiovascular Research, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Vanita Aroda
- Veterans Affairs San Diego Healthcare System (9111 G), San Diego, CA, 92161, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.,Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Theodore P Ciaraldi
- Veterans Affairs San Diego Healthcare System (9111 G), San Diego, CA, 92161, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Robert R Henry
- Veterans Affairs San Diego Healthcare System (9111 G), San Diego, CA, 92161, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
82
|
Hong SH, Choi KM. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. Int J Mol Sci 2020; 21:ijms21020494. [PMID: 31941015 PMCID: PMC7013734 DOI: 10.3390/ijms21020494] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
The prevalence of sarcopenic obesity is increasing worldwide, particularly amongst aging populations. Insulin resistance is the core mechanism of sarcopenic obesity and is also associated with variable cardiometabolic diseases such as cardiovascular disease, type 2 diabetes mellitus, and non-alcoholic fatty liver disease. Fat accumulation in muscle tissue promotes a proinflammatory cascade and oxidative stress, leading to mitochondrial dysfunction, impaired insulin signaling, and muscle atrophy. To compound the problem, decreased muscle mass aggravates insulin resistance. In addition, the crosstalk between myokines and adipokines leads to negative feedback, which in turn aggravates sarcopenic obesity and insulin resistance. In this review, we focus on the molecular mechanisms linking sarcopenic obesity and insulin resistance with various biological pathways. We also discuss the impact and mechanism of sarcopenic obesity and insulin resistance on cardiometabolic disease.
Collapse
|
83
|
Kyei B, Li L, Yang L, Zhan S, Zhang H. CDR1as/miRNAs-related regulatory mechanisms in muscle development and diseases. Gene 2020; 730:144315. [PMID: 31904497 DOI: 10.1016/j.gene.2019.144315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Muscles are critical tissues for mammals due to their close association with movement and physiology. Myogenesis involves proliferation, differentiation, and fusion of myoblast, in which many well-known protein-coding genes, as well as linear non-coding RNAs such as microRNAs (miRNAs), are involved. Recently, circular RNAs (circRNAs) have attracted much attention since several circRNAs are known to play significant roles in muscle development and diseases through limited mechanisms, particularly through sponging miRNAs. Through advanced researches, increasing evidence suggests that Cerebellar Degeneration-Related protein 1 antisense (CDR1as) is an important circRNA that regulates the levels of mRNAs expression via competitively sponged miRNAs. Here, we reviewed the robust expression and base pairing relationships of CDR1as and several myogenic miRNAs, as well as these miRNAs and their targeted genes in muscles or some muscle-related diseases. These potential CDR1as/miRNAs/mRNA pathways will provide the basis for further research on the function of CDR1as in muscle development, and eventually extend the versatile roles of CDR1as in mammals.
Collapse
Affiliation(s)
- Bismark Kyei
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Liu Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyuan Zhan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
84
|
Barclay RD, Beals JW, Drnevich J, Imai BS, Yau PM, Ulanov AV, Tillin NA, Villegas-Montes M, Paluska SA, Watt PW, De Lisio M, Burd NA, Mackenzie RW. Ingestion of lean meat elevates muscle inositol hexakisphosphate kinase 1 protein content independent of a distinct post-prandial circulating proteome in young adults with obesity. Metabolism 2020; 102:153996. [PMID: 31678069 PMCID: PMC7268923 DOI: 10.1016/j.metabol.2019.153996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/25/2019] [Accepted: 10/06/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND We have recently shown that a novel signalling kinase, inositol hexakisphosphate kinase 1 (IP6K1), is implicated in whole-body insulin resistance via its inhibitory action on Akt. Insulin and insulin like growth factor 1 (IGF-1) share many intracellular processes with both known to play a key role in glucose and protein metabolism in skeletal muscle. AIMS We aimed to compare IGF/IP6K1/Akt signalling and the plasma proteomic signature in individuals with a range of BMIs after ingestion of lean meat. METHODS Ten lean [Body mass index (BMI) (in kg/m2): 22.7 ± 0.4; Homeostatic model assessment of insulin resistance (HOMAIR): 1.36 ± 0.17], 10 overweight (BMI: 27.1 ± 0.5; HOMAIR: 1.25 ± 0.11), and 10 obese (BMI: 35.9 ± 1.3; HOMAIR: 5.82 ± 0.81) adults received primed continuous L-[ring-13C6]phenylalanine infusions. Blood and muscle biopsy samples were collected at 0 min (post-absorptive), 120 min and 300 min relative to the ingestion of 170 g pork loin (36 g protein and 5 g fat) to examine skeletal muscle protein signalling, plasma proteomic signatures, and whole-body phenylalanine disappearance rates (Rd). RESULTS Phenylalanine Rd was not different in obese compared to lean individuals at all time points and was not responsive to a pork ingestion (basal, P = 0.056; 120 & 300 min, P > 0.05). IP6K1 was elevated in obese individuals at 120 min post-prandial vs basal (P < 0.05). There were no acute differences plasma proteomic profiles between groups in the post-prandial state (P > 0.05). CONCLUSIONS These data demonstrate, for the first time that muscle IP6K1 protein content is elevated after lean meat ingestion in obese adults, suggesting that IP6K1 may be contributing to the dysregulation of nutrient uptake in skeletal muscle. In addition, proteomic analysis showed no differences in proteomic signatures between obese, overweight or lean individuals.
Collapse
Affiliation(s)
- Richie D Barclay
- Department of Life Sciences, University of Roehampton, London, UK
| | - Joseph W Beals
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Jenny Drnevich
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL, United States
| | - Brian S Imai
- Protein Sciences Facility, Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL, United States
| | - Peter M Yau
- Metabolomics Facility, Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL, United States
| | - Alexander V Ulanov
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, United States
| | - Neale A Tillin
- Department of Life Sciences, University of Roehampton, London, UK
| | | | - Scott A Paluska
- Department of Family Medicine, University of Illinois, Urbana, IL, United States
| | - Peter W Watt
- University of Brighton, Welkin Laboratories, Eastbourne, UK
| | - Michael De Lisio
- School of Human Kinetics, Brain and Mind Institute, Center on Neuromuscular Disease, Regenerative Medicine Program, University of Ottawa, Ottawa, ON, Canada
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States; Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, United States
| | | |
Collapse
|
85
|
Lv C, Niu S, Yan S, Bai C, Yu X, Hou J, Gao W, Zhang J, Zhao Z, Yang C, Zhang Y. Low-density lipoprotein receptor-related protein 1 regulates muscle fiber development in cooperation with related genes to affect meat quality. Poult Sci 2019; 98:3418-3425. [PMID: 30982888 DOI: 10.3382/ps/pez168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is an important signal protein that is widely involved in physiological processes, such as lipid metabolism, cell movement, and disease processes. However, the relationship between LRP1 and meat quality remains unknown in chickens. The present study aimed to investigate the correlation between LRP1 and meat quality that builds on our preliminary research, as well as to reveal the underlying molecular mechanism of LRP1 on meat-quality traits. The results showed that LRP1 was significantly correlated with shear force (P < 0.05). Several key genes involved in muscle growth and development, including IGF-1, IGFBP-5, IGF-1R, IGF-2, and MyoD, were down-regulated significantly (P < 0.05 or P < 0.01), and MSTN was up-regulated significantly (P < 0.01) in the presence of LRP1 interference. Cell proliferation- or apoptosis-related genes, including PMP22, CDKN2C, and p53, increased significantly (P < 0.05 or P < 0.01), whereas Bcl-x decreased significantly (P < 0.05) in the RNAi group. We conclude that LRP1 regulates muscle fiber development in cooperation with related genes that affect myoblast proliferation and apoptosis, thereby impacting shear force in chickens. This study will provide a valuable resource for biological investigations of muscle growth and meat-quality-related genes in chickens. The results could be useful in identifying candidate genes that could be used for selective breeding to improve meat quality.
Collapse
Affiliation(s)
- Chao Lv
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Shuling Niu
- College of Animal Science, Jilin University, Changchun 130062, P. R. China.,Department of Animal Science and Technology, Changchun Sci-Tech University, Changchun 130600, P. R. China
| | - Shouqing Yan
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Chunyan Bai
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Xi Yu
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Jiani Hou
- Department of Animal Science and Technology, Changchun Sci-Tech University, Changchun 130600, P. R. China
| | - Wenjing Gao
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Jinyu Zhang
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Zhihui Zhao
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Caini Yang
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Yonghong Zhang
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
86
|
Daemi A, Lotfi M, Farahpour MR, Oryan A, Ghayour SJ, Sonboli A. Topical application of Cinnamomum hydroethanolic extract improves wound healing by enhancing re-epithelialization and keratin biosynthesis in streptozotocin-induced diabetic mice. PHARMACEUTICAL BIOLOGY 2019; 57:799-806. [PMID: 31760838 PMCID: PMC6882457 DOI: 10.1080/13880209.2019.1687525] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/30/2019] [Accepted: 10/27/2019] [Indexed: 05/19/2023]
Abstract
Context: Cinnamomum verum J. Presl. (Lauraceae) has a high number of polyphenols with insulin-like activity, increases glucose utilization in animal muscle, and might be beneficial for diabetic patients.Objective: This study evaluated the effectiveness of an ointment prepared from Cinnamomum verum hydroethanolic extract on wound healing in diabetic mice.Materials and methods: A total of 54 male BALB/c mice were divided into three groups: (1) diabetic non-treated group mice that were treated with soft yellow paraffin, (2 and 3) mice that were treated with 5 and 10% C. verum. Two circular full-thickness excisional wounds were created in each mouse, and the trial lasted for 16 d following induction of the wound. Further evaluation was made on the wound contraction ratio, histopathology parameters and mRNA levels of cyclin D1, insulin-like growth factor 1 (IGF-1), glucose transporter-1 (GLUT-1), total antioxidant capacity, and malondialdehyde of granulation tissue contents. HPLC apparatus was utilized to identify the compounds.Results: The HPLC data for cinnamon hydroethanolic extract identified cinnamaldehyde (11.26%) and 2-hydroxyl cinnamaldehyde (6.7%) as the major components. A significant increase was observed in wound contraction ratio, fibroblast proliferation, collagen deposition, re-epithelialization and keratin biosynthesis in the C. verum-treated groups in comparison to the diabetic non-treated group (p < 0.05). The expression level of cyclin D1, IGF1, GLUT 1 and antioxidant capacity increased in the C. verum-treated groups in comparison to the diabetic non-treated group (p < 0.05).Conclusions: Topical administration of C. verum accelerated wound healing and can possibly be employed in treating the wounds of diabetic patients.
Collapse
Affiliation(s)
- Amin Daemi
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Mahsa Lotfi
- Faculty of Pharmacy, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
- CONTACT Mohammad Reza Farahpour Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, 57159-44867, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sina Jangkhahe Ghayour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Ali Sonboli
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C. Evin, Tehran
| |
Collapse
|
87
|
Guo X, Zhang W, Li M, Gao P, Hei W, He Z, Wu Y, Liu J, Cai C, Li B, Cao G. Transcriptome profile of skeletal muscle at different developmental stages in Large White and Mashen pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2019-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
From the perspectives of promoting individual growth and development, increasing pork yield, and improving feed utilization, it is desirable to screen candidate genes underlying pig muscle growth and regulation. In this study, we investigated transcriptome differences at 1, 90, and 180 d of age in Large White and Mashen pigs, characterized differentially expressed genes (DEGs), and screened candidate genes affecting skeletal muscle growth and development. RNA-seq was applied to analyze the transcriptome of the longissimus dorsi (LD) in the two breeds. In LD samples from the two breeds at three growth stages, 7215, 6332, 237, 3935, 3404, and 846 DEGs were obtained for L01 vs. L90, L01 vs. L180, L90 vs. L180, MS01 vs. MS90, MS01 vs. MS180, and MS90 vs. MS180, respectively. Significant tendencies in DEG expression could be grouped into eight profiles. Based on the functional analysis of DEGs, 16 candidate genes related to skeletal muscle growth and development were identified, including PCK2, GNAS, ADCY2, PRKAB1, PRKAB2, PRKAG1, PRKAG2, PHKA1, PHKA2, PHKG1, PHKG2, ITPR3, IGF1R, FGFR4, FGF1, and FGF18. The results of this study thus provide a theoretical basis for the mechanisms and candidate genes underlying skeletal muscle development in pigs.
Collapse
Affiliation(s)
- Xiaohong Guo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Wanfeng Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Meng Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Pengfei Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Wei Hei
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Zhiqiang He
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Yiqi Wu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Juan Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Chunbo Cai
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Bugao Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Guoqing Cao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| |
Collapse
|
88
|
Penniman CM, Suarez Beltran PA, Bhardwaj G, Junck TL, Jena J, Poro K, Hirshman MF, Goodyear LJ, O'Neill BT. Loss of FoxOs in muscle reveals sex-based differences in insulin sensitivity but mitigates diet-induced obesity. Mol Metab 2019; 30:203-220. [PMID: 31767172 PMCID: PMC6819874 DOI: 10.1016/j.molmet.2019.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Gender influences obesity-related complications, including diabetes. Females are more protected from insulin resistance after diet-induced obesity, which may be related to fat accumulation and muscle insulin sensitivity. FoxOs regulate muscle atrophy and are targets of insulin action, but their role in muscle insulin sensitivity and mitochondrial metabolism is unknown. METHODS We measured muscle insulin signaling, mitochondrial energetics, and metabolic responses to a high-fat diet (HFD) in male and female muscle-specific FoxO1/3/4 triple knock-out (TKO) mice. RESULTS In male TKO muscle, insulin-stimulated AKT activation was decreased. AKT2 protein and mRNA levels were reduced and insulin receptor protein and IRS-2 mRNA decreased. These changes contributed to decreased insulin-stimulated glucose uptake in glycolytic muscle in males. In contrast, female TKOs maintain normal insulin-mediated AKT phosphorylation, normal AKT2 levels, and normal glucose uptake in glycolytic muscle. When challenged with a HFD, fat gain was attenuated in both male and female TKO mice, and associated with decreased glucose levels, improved glucose homeostasis, and reduced muscle triglyceride accumulation. Furthermore, female TKO mice showed increased energy expenditure, relative to controls, due to increased lean mass and maintenance of mitochondrial function in muscle. CONCLUSIONS FoxO deletion in muscle uncovers sexually dimorphic regulation of AKT2, which impairs insulin signaling in male mice, but not females. However, loss of FoxOs in muscle from both males and females also leads to muscle hypertrophy and increases in metabolic rate. These factors mitigate fat gain and attenuate metabolic abnormalities in response to a HFD.
Collapse
Affiliation(s)
- Christie M Penniman
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Pablo A Suarez Beltran
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Gourav Bhardwaj
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Taylor L Junck
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jayashree Jena
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kennedy Poro
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian T O'Neill
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
89
|
Pharaoh G, Owen D, Yeganeh A, Premkumar P, Farley J, Bhaskaran S, Ashpole N, Kinter M, Van Remmen H, Logan S. Disparate Central and Peripheral Effects of Circulating IGF-1 Deficiency on Tissue Mitochondrial Function. Mol Neurobiol 2019; 57:1317-1331. [PMID: 31732912 PMCID: PMC7060968 DOI: 10.1007/s12035-019-01821-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
Abstract
Age-related decline in circulating levels of insulin-like growth factor (IGF)-1 is associated with reduced cognitive function, neuronal aging, and neurodegeneration. Decreased mitochondrial function along with increased reactive oxygen species (ROS) and accumulation of damaged macromolecules are hallmarks of cellular aging. Based on numerous studies indicating pleiotropic effects of IGF-1 during aging, we compared the central and peripheral effects of circulating IGF-1 deficiency on tissue mitochondrial function using an inducible liver IGF-1 knockout (LID). Circulating levels of IGF-1 (~ 75%) were depleted in adult male Igf1f/f mice via AAV-mediated knockdown of hepatic IGF-1 at 5 months of age. Cognitive function was evaluated at 18 months using the radial arm water maze and glucose and insulin tolerance assessed. Mitochondrial function was analyzed in hippocampus, muscle, and visceral fat tissues using high-resolution respirometry O2K as well as redox status and oxidative stress in the cortex. Peripherally, IGF-1 deficiency did not significantly impact muscle mass or mitochondrial function. Aged LID mice were insulin resistant and exhibited ~ 60% less adipose tissue but increased fat mitochondrial respiration (20%). The effects on fat metabolism were attributed to increases in growth hormone. Centrally, IGF-1 deficiency impaired hippocampal-dependent spatial acquisition as well as reversal learning in male mice. Hippocampal mitochondrial OXPHOS coupling efficiency and cortex ATP levels (~ 50%) were decreased and hippocampal oxidative stress (protein carbonylation and F2-isoprostanes) was increased. These data suggest that IGF-1 is critical for regulating mitochondrial function, redox status, and spatial learning in the central nervous system but has limited impact on peripheral (liver and muscle) metabolism with age. Therefore, IGF-1 deficiency with age may increase sensitivity to damage in the brain and propensity for cognitive deficits. Targeting mitochondrial function in the brain may be an avenue for therapy of age-related impairment of cognitive function. Regulation of mitochondrial function and redox status by IGF-1 is essential to maintain brain function and coordinate hippocampal-dependent spatial learning. While a decline in IGF-1 in the periphery may be beneficial to avert cancer progression, diminished central IGF-1 signaling may mediate, in part, age-related cognitive dysfunction and cognitive pathologies potentially by decreasing mitochondrial function.
Collapse
Affiliation(s)
- Gavin Pharaoh
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel Owen
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Alexander Yeganeh
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Pavithra Premkumar
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Julie Farley
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shylesh Bhaskaran
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicole Ashpole
- Department of Biomolecular Sciences, University of Mississippi, Oxford, MS, USA
| | - Michael Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sreemathi Logan
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
90
|
Abudupataer M, Zou W, Zhang W, Ding S, Zhou Z, Chen J, Li H, Zhang Z, Wang C, Ge J, Hong T, Yang X. Histamine deficiency delays ischaemic skeletal muscle regeneration via inducing aberrant inflammatory responses and repressing myoblast proliferation. J Cell Mol Med 2019; 23:8392-8409. [PMID: 31600036 PMCID: PMC6850925 DOI: 10.1111/jcmm.14720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/01/2019] [Accepted: 09/08/2019] [Indexed: 01/27/2023] Open
Abstract
Histidine decarboxylase (HDC) catalyses the formation of histamine from L‐histidine. Histamine is a biogenic amine involved in many physiological and pathological processes, but its role in the regeneration of skeletal muscles has not been thoroughly clarified. Here, using a murine model of hindlimb ischaemia, we show that histamine deficiency in Hdc knockout (Hdc−/−) mice significantly reduces blood perfusion and impairs muscle regeneration. Using Hdc‐EGFP transgenic mice, we demonstrate that HDC is expressed predominately in CD11b+Gr‐1+ myeloid cells but not in skeletal muscles and endothelial cells. Large amounts of HDC‐expressing CD11b+ myeloid cells are rapidly recruited to injured and inflamed muscles. Hdc−/− enhances inflammatory responses and inhibits macrophage differentiation. Mechanically, we demonstrate that histamine deficiency decreases IGF‐1 (insulin‐like growth factor 1) levels and diminishes myoblast proliferation via H3R/PI3K/AKT‐dependent signalling. These results indicate a novel role for HDC‐expressing CD11b+ myeloid cells and histamine in myoblast proliferation and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Mieradilijiang Abudupataer
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weihong Zou
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Weiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheliang Zhou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinmiao Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiwei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chunsheng Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tao Hong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
91
|
Barclay RD, Burd NA, Tyler C, Tillin NA, Mackenzie RW. The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. Front Nutr 2019; 6:146. [PMID: 31552262 PMCID: PMC6746962 DOI: 10.3389/fnut.2019.00146] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is defined as the combined loss of skeletal muscle strength, function, and/or mass with aging. This degenerative loss of muscle mass is associated with poor quality of life and early mortality humans. The loss of muscle mass occurs due to acute changes in daily muscle net protein balance (NPB). It is generally believed a poor NPB occurs due to reduced muscle protein synthetic responses to exercise, dietary amino acid availability, or an insensitivity of insulin to suppress breakdown. Hence, aging muscles appear to be resistant to the anabolic action of exercise and protein (amino acids or hormonal) when compared to their younger counterparts. The mechanisms that underpin anabolic resistance to anabolic stimuli (protein and resistance exercise) are multifactorial and may be partly driven by poor lifestyle choices (increased sedentary time and reduced dietary protein intake) as well as an inherent dysregulated mechanism in old muscles irrespective of the environmental stimuli. The insulin like growth factor 1 (IGF-1), Akt /Protein Kinase B and mechanistic target of rapamycin (mTOR) pathway is the primary driver between mechanical contraction and protein synthesis and may be a site of dysregulation between old and younger people. Therefore, our review aims to describe and summarize the differences seen in older muscle in this pathway in response to resistance exercise (RE) and describe approaches that researchers have sought out to maximize the response in muscle. Furthermore, this review will present the hypothesis that inositol hexakisphosphate kinase 1 (IP6K1) may be implicated in IGF-1 signaling and thus sarcopenia, based on recent evidence that IGF-1 and insulin share some intracellular bound signaling events and that IP6K1 has been implicated in skeletal muscle insulin resistance.
Collapse
Affiliation(s)
- Richie D Barclay
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| | - Nicholas A Burd
- Division of Nutritional Sciences, Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, United States
| | - Christopher Tyler
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| | - Neale A Tillin
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| | - Richard W Mackenzie
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| |
Collapse
|
92
|
Huang Q, Kahn CR, Altindis E. Viral Hormones: Expanding Dimensions in Endocrinology. Endocrinology 2019; 160:2165-2179. [PMID: 31310273 PMCID: PMC6736053 DOI: 10.1210/en.2019-00271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
Viruses have developed different mechanisms to manipulate their hosts, including the process of viral mimicry in which viruses express important host proteins. Until recently, examples of viral mimicry were limited to mimics of growth factors and immunomodulatory proteins. Using a comprehensive bioinformatics approach, we have shown that viruses possess the DNA/RNA with potential to encode 16 different peptides with high sequence similarity to human peptide hormones and metabolically important regulatory proteins. We have characterized one of these families, the viral insulin/IGF-1-like peptides (VILPs), which we identified in four members of the Iridoviridae family. VILPs can bind to human insulin and IGF-1 receptors and stimulate classic postreceptor signaling pathways. Moreover, VILPs can stimulate glucose uptake in vitro and in vivo and stimulate DNA synthesis. DNA sequences of some VILP-carrying viruses have been identified in the human enteric virome. In addition to VILPs, sequences with homology to 15 other peptide hormones or cytokines can be identified in viral DNA/RNA sequences, some with a very high identity to hormones. Recent data by others has identified a peptide that resembles and mimics α-melanocyte-stimulating hormone's anti-inflammatory effects in in vitro and in vivo models. Taken together, these studies reveal novel mechanisms of viral and bacterial pathogenesis in which the microbe can directly target or mimic the host endocrine system. These findings also introduce the concept of a system of microbial hormones that provides new insights into the evolution of peptide hormones, as well as potential new roles of microbial hormones in health and disease.
Collapse
Affiliation(s)
- Qian Huang
- Boston College Biology Department, Chestnut Hill, Massachusetts
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, Massachusetts
- Correspondence: Emrah Altindis, PhD, Boston College Biology Department, Higgins Hall 515, 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467. E-mail:
| |
Collapse
|
93
|
Seyed Ahmadi SG, Farahpour MR, Hamishehkar H. Topical application ofCinnamon verumessential oil accelerates infected wound healing process by increasing tissue antioxidant capacity and keratin biosynthesis. Kaohsiung J Med Sci 2019; 35:686-694. [DOI: 10.1002/kjm2.12120] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Seyed Gharani Seyed Ahmadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia BranchIslamic Azad University Urmia Iran
| | - Mohammad R. Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia BranchIslamic Azad University Urmia Iran
| | - Hamed Hamishehkar
- Drug Applied Research CenterTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
94
|
Jaiswal N, Gavin MG, Quinn WJ, Luongo TS, Gelfer RG, Baur JA, Titchenell PM. The role of skeletal muscle Akt in the regulation of muscle mass and glucose homeostasis. Mol Metab 2019; 28:1-13. [PMID: 31444134 PMCID: PMC6822261 DOI: 10.1016/j.molmet.2019.08.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Skeletal muscle insulin signaling is a major determinant of muscle growth and glucose homeostasis. Protein kinase B/Akt plays a prominent role in mediating many of the metabolic effects of insulin. Mice and humans harboring systemic loss-of-function mutations in Akt2, the most abundant Akt isoform in metabolic tissues, are glucose intolerant and insulin resistant. Since the skeletal muscle accounts for a significant amount of postprandial glucose disposal, a popular hypothesis in the diabetes field suggests that a reduction in Akt, specifically in skeletal muscle, leads to systemic glucose intolerance and insulin resistance. Despite this common belief, the specific role of skeletal muscle Akt in muscle growth and insulin sensitivity remains undefined. METHODS We generated multiple mouse models of skeletal muscle Akt deficiency to evaluate the role of muscle Akt signaling in vivo. The effects of these genetic perturbations on muscle mass, glucose homeostasis and insulin sensitivity were assessed using both in vivo and ex vivo assays. RESULTS Surprisingly, mice lacking Akt2 alone in skeletal muscle displayed normal skeletal muscle insulin signaling, glucose tolerance, and insulin sensitivity despite a dramatic reduction in phosphorylated Akt. In contrast, deletion of both Akt isoforms (M-AktDKO) prevented downstream signaling and resulted in muscle atrophy. Despite the absence of Akt signaling, in vivo and ex vivo insulin-stimulated glucose uptake were normal in M-AktDKO mice. Similar effects on insulin sensitivity were observed in mice with prolonged deletion (4 weeks) of both skeletal muscle Akt isoforms selectively in adulthood. Conversely, short term deletion (2 weeks) of skeletal muscle specific Akt in adult muscles impaired insulin tolerance paralleling the effect observed by acute pharmacological inhibition of Akt in vitro. Mechanistically, chronic ablation of Akt induced mitochondrial dysfunction and activation of AMPK, which was required for insulin-stimulated glucose uptake in the absence of Akt. CONCLUSIONS Together, these data indicate that chronic reduction in Akt activity alone in skeletal muscle is not sufficient to induce insulin resistance or prevent glucose uptake in all conditions. Therefore, since insulin-stimulated glucose disposal in skeletal muscle is markedly impaired in insulin-resistant states, we hypothesize that alterations in signaling molecules in addition to skeletal muscle Akt are necessary to perturb glucose tolerance and insulin sensitivity in vivo.
Collapse
Affiliation(s)
- N Jaiswal
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - M G Gavin
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - W J Quinn
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - T S Luongo
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - R G Gelfer
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - J A Baur
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - P M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
95
|
Role of p110a subunit of PI3-kinase in skeletal muscle mitochondrial homeostasis and metabolism. Nat Commun 2019; 10:3412. [PMID: 31363081 PMCID: PMC6667496 DOI: 10.1038/s41467-019-11265-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle insulin resistance, decreased phosphatidylinositol 3-kinase (PI3K) activation and altered mitochondrial function are hallmarks of type 2 diabetes. To determine the relationship between these abnormalities, we created mice with muscle-specific knockout of the p110α or p110β catalytic subunits of PI3K. We find that mice with muscle-specific knockout of p110α, but not p110β, display impaired insulin signaling and reduced muscle size due to enhanced proteasomal and autophagic activity. Despite insulin resistance and muscle atrophy, M-p110αKO mice show decreased serum myostatin, increased mitochondrial mass, increased mitochondrial fusion, and increased PGC1α expression, especially PCG1α2 and PCG1α3. This leads to enhanced mitochondrial oxidative capacity, increased muscle NADH content, and higher muscle free radical release measured in vivo using pMitoTimer reporter. Thus, p110α is the dominant catalytic isoform of PI3K in muscle in control of insulin sensitivity and muscle mass, and has a unique role in mitochondrial homeostasis in skeletal muscle. Diabetes is associated with decreased PI3K activation in skeletal muscle. Here, the authors show that p110a is the predominant PI3K subunit in muscle, and show that its ablation in muscle, but not ablation of p110beta, leads to insulin resistance, increased proteosomal and autophagic activity, and altered mitochondria homeostasis in mice.
Collapse
|
96
|
Razaghi M, Djekic-Ivankovic M, Agellon S, Mak I, Lavery P, Weiler HA. Lean body mass accretion is elevated in response to dietary vitamin D: A dose-response study in female weanling rats. Nutr Res 2019; 68:92-100. [PMID: 31446331 DOI: 10.1016/j.nutres.2019.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 11/27/2022]
Abstract
Vitamin D status positively relates to lean body mass in infants. This study tested the effect of vitamin D on body composition and growth-related hormones. It was hypothesized that low vitamin D status programs for higher fat mass accretion. Female weanling Sprague-Dawley rats (4 weeks; n = 6/diet) were randomized to AIN-93G diets with modified vitamin D contents for 8 weeks: group 1 (1 IU vitamin D3/g diet), group 2 (2 IU vitamin D3/g diet), and group 3 (4 IU vitamin D3/g diet). At week 0, 4, and 8 of study, measurements included: serum 25(OH)D3, IGF-1, IGFBP3, leptin, and whole body composition assessed with DXA. Differences among groups were tested using mixed model ANOVA with Tukey's post hoc t-tests. No differences were observed in baseline body composition and biomarkers, nor did body weight and food intake differ over the study. At week 8, serum 25(OH)D3 in group 3 was higher (P < .0001) compared to groups 1 and 2. At 8 weeks, lean mass (P < .05) and lean mass accretion (P < .05) were significantly higher in groups 2 and 3 compared to group 1. Serum IGF-1 concentration declined over time (P < .001) with smaller declines at week 8 in group 3 (P < .05). Serum IGFBP3 concentration was lower at week 4 in group 2 compared to groups 1 and 3. Serum leptin concentration and fat mass were not affected by diet. These results suggested that the achievement of higher vitamin D status may support a lean body phenotype without altering weight gain.
Collapse
Affiliation(s)
- Maryam Razaghi
- School of Human Nutrition, McGill University, Macdonald-Stewart Building, Macdonald Campus, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada, H9X 3V9
| | - Marija Djekic-Ivankovic
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, H4A 3S5
| | - Sherry Agellon
- School of Human Nutrition, McGill University, Macdonald-Stewart Building, Macdonald Campus, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada, H9X 3V9
| | - Ivy Mak
- School of Human Nutrition, McGill University, Macdonald-Stewart Building, Macdonald Campus, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada, H9X 3V9
| | - Paula Lavery
- School of Human Nutrition, McGill University, Macdonald-Stewart Building, Macdonald Campus, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada, H9X 3V9
| | - Hope A Weiler
- School of Human Nutrition, McGill University, Macdonald-Stewart Building, Macdonald Campus, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada, H9X 3V9.
| |
Collapse
|
97
|
Hendley MA, Murphy KP, Isely C, Struckman HL, Annamalai P, Gower RM. The host response to poly(lactide-co-glycolide) scaffolds protects mice from diet induced obesity and glucose intolerance. Biomaterials 2019; 217:119281. [PMID: 31260882 DOI: 10.1016/j.biomaterials.2019.119281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
Abstract
Underlying metabolic disease is poor adipose tissue function characterized by impaired glucose tolerance and low expression of health promoting adipokines. Currently, no treatments specifically target the adipose tissue and we are investigating polymer scaffolds for localized drug delivery as a therapeutic platform. In this work we implanted porous poly(lactide-co-glycolide) scaffolds into the epididymal fat of mice. Surprisingly, "empty" scaffolds decreased blood glucose levels in healthy mice as well as epididymal fat pad size. By injecting a fluorescent glucose tracer into mice, we determined that glucose uptake increases by 60% in epididymal fat pads with scaffolds; in contrast, glucose uptake was not elevated in other major metabolic organs, suggesting the enhanced glucose uptake at the scaffold implant site was responsible for decreased blood glucose levels. Histology indicated increased cellularity and tissue remodeling around the scaffold and we found increased expression of glucose transporter 1 and insulin-like growth factor 1, which are proteins involved in wound healing that can also modulate blood glucose levels through their promotion of glucose uptake. Regarding clinical translation, "empty" scaffolds decreased obesity and improved glucose tolerance in mice fed a high fat diet. These findings demonstrate increased cellular activity in the adipose tissue, such as that associated with the host response to biomaterial implant, is beneficial in mice suffering from metabolic complications of over nutrition, possibly because it mitigates the positive energy balance that leads to the obese, diabetic state. More broadly, this work reaffirms that in addition to the local host response typically investigated, biomaterial implant has systemic physiological effects and suggests that there may be implications for therapy.
Collapse
Affiliation(s)
- Michael A Hendley
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
| | - Kendall P Murphy
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Christopher Isely
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Heather L Struckman
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
| | - Prakasam Annamalai
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - R Michael Gower
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA; Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
98
|
Abstract
Non-communicable diseases, such as cardiovascular diseases, are the leading cause of mortality worldwide. For this reason, a tremendous effort is being made worldwide to effectively circumvent these afflictions, where insulin-like growth factor 1 (IGF1) is being proposed both as a marker and as a central cornerstone in these diseases, making it an interesting molecule to focus on. Firstly, at the initiation of metabolic deregulation by overfeeding, IGF1 is decreased/inhibited. Secondly, such deficiency seems to be intimately related to the onset of MetS and establishment of vascular derangements leading to atherosclerosis and finally playing a definitive part in cerebrovascular and myocardial accidents, where IGF1 deficiency seems to render these organs vulnerable to oxidative and apoptotic/necrotic damage. Several human cohort correlations together with basic/translational experimental data seem to confirm deep IGF1 implication, albeit with controversy, which might, in part, be given by experimental design leading to blurred result interpretation.
Collapse
|
99
|
Sakaguchi M, Cai W, Wang CH, Cederquist CT, Damasio M, Homan EP, Batista T, Ramirez AK, Gupta MK, Steger M, Wewer Albrechtsen NJ, Singh SK, Araki E, Mann M, Enerbäck S, Kahn CR. FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism. Nat Commun 2019; 10:1582. [PMID: 30952843 PMCID: PMC6450906 DOI: 10.1038/s41467-019-09418-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 02/26/2019] [Indexed: 01/07/2023] Open
Abstract
A major target of insulin signaling is the FoxO family of Forkhead transcription factors, which translocate from the nucleus to the cytoplasm following insulin-stimulated phosphorylation. Here we show that the Forkhead transcription factors FoxK1 and FoxK2 are also downstream targets of insulin action, but that following insulin stimulation, they translocate from the cytoplasm to nucleus, reciprocal to the translocation of FoxO1. FoxK1/FoxK2 translocation to the nucleus is dependent on the Akt-mTOR pathway, while its localization to the cytoplasm in the basal state is dependent on GSK3. Knockdown of FoxK1 and FoxK2 in liver cells results in upregulation of genes related to apoptosis and down-regulation of genes involved in cell cycle and lipid metabolism. This is associated with decreased cell proliferation and altered mitochondrial fatty acid metabolism. Thus, FoxK1/K2 are reciprocally regulated to FoxO1 following insulin stimulation and play a critical role in the control of apoptosis, metabolism and mitochondrial function. Insulin signaling represses Forkhead transcription factor FoxO activity, which contributes to organismal metabolism. Here, the authors use proteomics to identify positively regulated insulin signaling targets FoxK1/K2 and demonstrate their role in lipid metabolism and mitochondrial regulation.
Collapse
Affiliation(s)
- Masaji Sakaguchi
- Sections of Integrative Physiology and Metabolism and Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA.,Department of Metabolic Medicine, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Weikang Cai
- Sections of Integrative Physiology and Metabolism and Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Chih-Hao Wang
- Sections of Integrative Physiology and Metabolism and Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Carly T Cederquist
- Sections of Integrative Physiology and Metabolism and Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Marcos Damasio
- Sections of Integrative Physiology and Metabolism and Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Erica P Homan
- Sections of Integrative Physiology and Metabolism and Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Thiago Batista
- Sections of Integrative Physiology and Metabolism and Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Alfred K Ramirez
- Sections of Integrative Physiology and Metabolism and Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Manoj K Gupta
- Sections of Integrative Physiology and Metabolism and Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Martin Steger
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Nicolai J Wewer Albrechtsen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.,Department of Biomedical Sciences and NNF Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Department of Clinical Proteomics, NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Shailendra Kumar Singh
- Department of Host Defense, The World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka, 565-0871, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Sven Enerbäck
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, PO. Box. 440, 405 30, Göteborg, Sweden
| | - C Ronald Kahn
- Sections of Integrative Physiology and Metabolism and Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Boston, MA, 02215, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
100
|
Gonçalves DA, Silveira WA, Manfredi LH, Graça FA, Armani A, Bertaggia E, O Neill BT, Lautherbach N, Machado J, Nogara L, Pereira MG, Arcidiacono D, Realdon S, Kahn CR, Sandri M, Kettelhut IC, Navegantes LCC. Insulin/IGF1 signalling mediates the effects of β 2 -adrenergic agonist on muscle proteostasis and growth. J Cachexia Sarcopenia Muscle 2019; 10:455-475. [PMID: 30932373 PMCID: PMC6463755 DOI: 10.1002/jcsm.12395] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Stimulation of β2 -adrenoceptors can promote muscle hypertrophy and fibre type shift, and it can counteract atrophy and weakness. The underlying mechanisms remain elusive. METHODS Fed wild type (WT), 2-day fasted WT, muscle-specific insulin (INS) receptor (IR) knockout (M-IR-/- ), and MKR mice were studied with regard to acute effects of the β2 -agonist formoterol (FOR) on protein metabolism and signalling events. MKR mice express a dominant negative IGF1 receptor, which blocks both INS/IGF1 signalling. All received one injection of FOR (300 μg kg-1 subcutaneously) or saline. Skeletal muscles and serum samples were analysed from 30 to 240 min. For the study of chronic effects of FOR on muscle plasticity and function as well as intracellular signalling pathways, fed WT and MKR mice were treated with formoterol (300 μg kg-1 day-1 ) for 30 days. RESULTS In fed and fasted mice, one injection of FOR inhibited autophagosome formation (LC3-II content, 65%, P ≤ 0.05) that was paralleled by an increase in serum INS levels (4-fold to 25-fold, P ≤ 0.05) and the phosphorylation of Akt (4.4-fold to 6.5-fold, P ≤ 0.05) and ERK1/2 (50% to two-fold, P ≤ 0.05). This led to the suppression (40-70%, P ≤ 0.05) of the master regulators of atrophy, FoxOs, and the mRNA levels of their target genes. FOR enhanced (41%, P ≤ 0.05) protein synthesis only in fed condition and stimulated (4.4-fold to 35-fold, P ≤ 0.05) the prosynthetic Akt/mTOR/p70S6K pathway in both fed and fasted states. FOR effects on Akt signalling during fasting were blunted in both M-IR-/- and MKR mice. Inhibition of proteolysis markers by FOR was prevented only in MKR mice. Blockade of PI3K/Akt axis and mTORC1, but not ERK1/2, in fasted mice also suppressed the acute FOR effects on proteolysis and autophagy. Chronic stimulation of β2 -adrenoceptors in fed WT mice increased body (11%, P ≤ 0.05) and muscle (15%, P ≤ 0.05) growth and downregulated atrophy-related genes (30-40%, P ≤ 0.05), but these effects were abolished in MKR mice. Increases in muscle force caused by FOR (WT, 24%, P ≤ 0.05) were only partially impaired in MKR mice (12%, P ≤ 0.05), and FOR-induced slow-to-fast fibre type shift was not blocked at all in these animals. In MKR mice, FOR also restored the lower levels of muscle SDH activity to basal WT values and caused a marked reduction (57%, P ≤ 0.05) in the number of centrally nucleated fibers. CONCLUSIONS NS/IGF1 signalling is necessary for the anti-proteolytic and hypertrophic effects of in vivo β2 -adrenergic stimulation and appears to mediate FOR-induced enhancement of protein synthesis. INS/IGF1 signalling only partially contributes to gain in strength and does not mediate fibre type transition induced by FOR.
Collapse
Affiliation(s)
- Dawit A Gonçalves
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Biochemistry/Immunology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Wilian A Silveira
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leandro H Manfredi
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávia A Graça
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andrea Armani
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Enrico Bertaggia
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Brian T O Neill
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Natalia Lautherbach
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliano Machado
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Marcelo G Pereira
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Diletta Arcidiacono
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Stefano Realdon
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy.,Myology Center, University of Padova, Padova, Italy
| | - Isis C Kettelhut
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Biochemistry/Immunology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz Carlos C Navegantes
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|