51
|
Polanco JC, Akimov Y, Fernandes A, Briner A, Hand GR, van Roijen M, Balistreri G, Götz J. CRISPRi screening reveals regulators of tau pathology shared between exosomal and vesicle-free tau. Life Sci Alliance 2023; 6:6/1/e202201689. [PMID: 36316035 PMCID: PMC9622425 DOI: 10.26508/lsa.202201689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
The aggregation of the microtubule-associated protein tau is a defining feature of Alzheimer's disease and other tauopathies. Tau pathology is believed to be driven by free tau aggregates and tau carried within exosome-like extracellular vesicles, both of which propagate trans-synaptically and induce tau pathology in recipient neurons by a corrupting process of seeding. Here, we performed a genome-wide CRISPRi screen in tau biosensor cells and identified cellular regulators shared by both mechanisms of tau seeding. We identified ANKLE2, BANF1, NUSAP1, EIF1AD, and VPS18 as the top validated regulators that restrict tau aggregation initiated by both exosomal and vesicle-free tau seeds. None of our validated hits affected the uptake of either form of tau seeds, supporting the notion that they operate through a cell-autonomous mechanism downstream of the seed uptake. Lastly, validation studies with human brain tissue also revealed that several of the identified protein hits are down-regulated in the brains of Alzheimer's patients, suggesting that their decreased activity may be required for the emergence or progression of tau pathology in the human brain.
Collapse
Affiliation(s)
- Juan Carlos Polanco
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Yevhen Akimov
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Avinash Fernandes
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Adam Briner
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Gabriel Rhys Hand
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | - Giuseppe Balistreri
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
52
|
Davies C, Tulloch J, Yip E, Currie L, Colom-Cadena M, Wegmann S, Hyman BT, Wilkins L, Hooley M, Tzioras M, Spires-Jones TL. Apolipoprotein E isoform does not influence trans-synaptic spread of tau pathology in a mouse model. Brain Neurosci Adv 2023; 7:23982128231191046. [PMID: 37600228 PMCID: PMC10433884 DOI: 10.1177/23982128231191046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/23/2023] [Indexed: 08/22/2023] Open
Abstract
A key hallmark of Alzheimer's disease (AD) is the accumulation of hyperphosphorylated tau in neurofibrillary tangles. This occurs alongside neuroinflammation and neurodegeneration. Pathological tau propagates through the AD brain in a defined manner, which correlates with neuron and synapse loss and cognitive decline. One proposed mechanism of tau spread is through synaptically connected brain structures. Apolipoprotein E4 (APOE4) genotype is the strongest genetic risk factor for late-onset AD and is associated with increased tau burden. Whether the apolipoprotein E (APOE) genotype influences neurodegeneration via tau spread is currently unknown. Here, we demonstrate that virally expressed human tau (with the P301L mutation) injected into mouse entorhinal cortex at 5-6 months or 15-16 months of age spreads trans-synaptically to the hippocampus by 14 weeks post-injection. Injections of tau in mice expressing human APOE2, APOE3 or APOE4, as well as APOE knock-outs, showed that tau can spread trans-synaptically in all genotypes and that APOE genotype and age do not affect the spread of tau. These data suggest that APOE genotype is not directly linked to synaptic spread of tau in our model, but other mechanisms involving non-cell autonomous manners of tau spread are still possible.
Collapse
Affiliation(s)
- Caitlin Davies
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jane Tulloch
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Ellie Yip
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lydia Currie
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Marti Colom-Cadena
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lewis Wilkins
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Monique Hooley
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Makis Tzioras
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
53
|
Kaniyappan S, Balaji V, Wang Y, Mandelkow E. Microfluidic Chamber Technology to Study Missorting and Spreading of Tau Protein in Alzheimer's Disease. Methods Mol Biol 2023; 2551:111-123. [PMID: 36310200 DOI: 10.1007/978-1-0716-2597-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tau is a microtubule-associated protein found mainly in the axons of neurons in the brain. Abnormal changes in Tau (e.g., aggregation, hyperphosphorylation) are hallmarks of Alzheimer's disease. Two processes of relocalization of Tau may be related to early states of the pathology and have received much attention: (1) the redistribution of Tau within cells (termed "somatodendritic missorting") and (2) the release and reuptake of Tau from donor to acceptor cells (termed "spreading"). Because of the tripartite nature of neurons (cell body, dendrites, axons), these changes can be studied by microfluidic chambers (MFCs) which allow separation and observation of Tau in neuronal compartments. In this chapter, we present some methods and research results obtained by using microfluidic devices.
Collapse
Affiliation(s)
| | - Varun Balaji
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Yipeng Wang
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
- Shanghai Qiangrui Biotech Co. Ltd., Shanghai, China
| | - Eckhard Mandelkow
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
- CAESAR Research Center, Bonn, Germany
| |
Collapse
|
54
|
Steward A, Biel D, Brendel M, Dewenter A, Roemer S, Rubinski A, Luan Y, Dichgans M, Ewers M, Franzmeier N, for the Alzheimer's Disease Neuroimaging Initiative (ADNI). Functional network segregation is associated with attenuated tau spreading in Alzheimer's disease. Alzheimers Dement 2022; 19:2034-2046. [PMID: 36433865 DOI: 10.1002/alz.12867] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/01/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Lower network segregation is associated with accelerated cognitive decline in Alzheimer's disease (AD), yet it is unclear whether less segregated brain networks facilitate connectivity-mediated tau spreading. METHODS We combined resting state functional magnetic resonance imaging (fMRI) with longitudinal tau positron emission tomography (PET) in 42 betamyloid-negative controls and 81 amyloid beta positive individuals across the AD spectrum. Network segregation was determined using resting-state fMRI-assessed connectivity among 400 cortical regions belonging to seven networks. RESULTS AD subjects with higher network segregation exhibited slower brain-wide tau accumulation relative to their baseline entorhinal tau PET burden (typical onset site of tau pathology). Second, by identifying patient-specific tau epicenters with highest baseline tau PET we found that stronger epicenter segregation was associated with a slower rate of tau accumulation in the rest of the brain in relation to baseline epicenter tau burden. DISCUSSION Our results indicate that tau spreading is facilitated by a more diffusely organized connectome, suggesting that brain network topology modulates tau spreading in AD. HIGHLIGHTS Higher brain network segregation is associated with attenuated tau pathology accumulation in Alzheimer's disease (AD). A patient-tailored approach allows for the more precise localization of tau epicenters. The functional segregation of subject-specific tau epicenters predicts the rate of future tau accumulation.
Collapse
Affiliation(s)
- Anna Steward
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
| | - Davina Biel
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
| | - Matthias Brendel
- Department of Nuclear Medicine University Hospital LMU Munich Munich Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
| | - Sebastian Roemer
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
- Department of Neurology University Hospital LMU Munich Munich Germany
| | - Anna Rubinski
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
| | - Ying Luan
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich Germany
| | | |
Collapse
|
55
|
The central role of tau in Alzheimer’s disease: From neurofibrillary tangle maturation to the induction of cell death. Brain Res Bull 2022; 190:204-217. [DOI: 10.1016/j.brainresbull.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
|
56
|
Polanco JC, Götz J. Exosomal and vesicle-free tau seeds-propagation and convergence in endolysosomal permeabilization. FEBS J 2022; 289:6891-6907. [PMID: 34092031 DOI: 10.1111/febs.16055] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
In Alzheimer's disease (AD), β-amyloid peptides aggregate to form amyloid plaques, and the microtubule-associated protein tau forms neurofibrillary tangles. However, severity and duration of AD correlate with the stereotypical emergence of tau tangles throughout the brain, suggestive of a gradual region-to-region spreading of pathological tau. The current notion in the field is that misfolded tau seeds propagate transsynaptically and corrupt the proper folding of soluble tau in recipient neurons. This is supported by accumulating evidence showing that in AD, functional connectivity and not proximity predicts the spreading of tau pathology. Tau seeds can be found in two flavors, vesicle-free, that is, naked as in oligomers and fibrils, or encapsulated by membranes of secreted vesicles known as exosomes. Both types of seeds have been shown to propagate between interconnected neurons. Here, we describe potential ways of how their propagation can be controlled in several subcellular compartments by manipulating mechanisms affecting production, neuron-to-neuron transmission, internalization, endosomal escape, and autophagy. We emphasize that although vesicle-free tau seeds and exosomes differ, they share the ability to trigger endolysosomal permeabilization. Such a mechanistic convergence in endolysosomal permeabilization presents itself as a unique opportunity to target both types of tau seeding. We discuss the cellular response to endolysosomal damage that might be key to control permeabilization, and the significant overlap in the seeding mechanism of proteopathic agents other than tau, which suggests that targeting the endolysosomal pathway could pave the way toward developing broad-spectrum treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan Carlos Polanco
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
57
|
Li X, Ospitalieri S, Robberechts T, Hofmann L, Schmid C, Rijal Upadhaya A, Koper MJ, von Arnim CAF, Kumar S, Willem M, Gnoth K, Ramakers M, Schymkowitz J, Rousseau F, Walter J, Ronisz A, Balakrishnan K, Thal DR. Seeding, maturation and propagation of amyloid β-peptide aggregates in Alzheimer’s disease. Brain 2022; 145:3558-3570. [PMID: 36270003 DOI: 10.1093/brain/awac202] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Alzheimer’s disease is neuropathologically characterized by the deposition of the amyloid β-peptide (Aβ) as amyloid plaques. Aβ plaque pathology starts in the neocortex before it propagates into further brain regions. Moreover, Aβ aggregates undergo maturation indicated by the occurrence of post-translational modifications. Here, we show that propagation of Aβ plaques is led by presumably non-modified Aβ followed by Aβ aggregate maturation. This sequence was seen neuropathologically in human brains and in amyloid precursor protein transgenic mice receiving intracerebral injections of human brain homogenates from cases varying in Aβ phase, Aβ load and Aβ maturation stage. The speed of propagation after seeding in mice was best related to the Aβ phase of the donor, the progression speed of maturation to the stage of Aβ aggregate maturation. Thus, different forms of Aβ can trigger propagation/maturation of Aβ aggregates, which may explain the lack of success when therapeutically targeting only specific forms of Aβ.
Collapse
Affiliation(s)
- Xiaohang Li
- Department of Imaging and Pathology, Laboratory of Neuropathology, Leuven Brain Institute, KU-Leuven , Leuven , Belgium
| | - Simona Ospitalieri
- Department of Imaging and Pathology, Laboratory of Neuropathology, Leuven Brain Institute, KU-Leuven , Leuven , Belgium
| | - Tessa Robberechts
- Department of Imaging and Pathology, Laboratory of Neuropathology, Leuven Brain Institute, KU-Leuven , Leuven , Belgium
| | - Linda Hofmann
- Institute of Pathology, Laboratory of Neuropathology, Ulm University , Ulm , Germany
| | - Christina Schmid
- Institute of Pathology, Laboratory of Neuropathology, Ulm University , Ulm , Germany
| | - Ajeet Rijal Upadhaya
- Institute of Pathology, Laboratory of Neuropathology, Ulm University , Ulm , Germany
| | - Marta J Koper
- Department of Imaging and Pathology, Laboratory of Neuropathology, Leuven Brain Institute, KU-Leuven , Leuven , Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU-Leuven (University of Leuven), Leuven Brain Institute , Leuven , Belgium
- Center for Brain and Disease Research, VIB , Leuven , Belgium
| | - Christine A F von Arnim
- Department of Neurology, Ulm University , Ulm , Germany
- Division of Geriatrics, University Medical Center Göttingen , Göttingen , Germany
| | - Sathish Kumar
- Department of Neurology, University of Bonn , Bonn , Germany
| | - Michael Willem
- Chair of Metabolic Biochemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Kathrin Gnoth
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology , Halle , Germany
| | - Meine Ramakers
- Center for Brain and Disease Research, VIB , Leuven , Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU-Leuven , Leuven , Belgium
| | - Joost Schymkowitz
- Center for Brain and Disease Research, VIB , Leuven , Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU-Leuven , Leuven , Belgium
| | - Frederic Rousseau
- Center for Brain and Disease Research, VIB , Leuven , Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU-Leuven , Leuven , Belgium
| | - Jochen Walter
- Department of Neurology, University of Bonn , Bonn , Germany
| | - Alicja Ronisz
- Department of Imaging and Pathology, Laboratory of Neuropathology, Leuven Brain Institute, KU-Leuven , Leuven , Belgium
| | - Karthikeyan Balakrishnan
- Institute of Pathology, Laboratory of Neuropathology, Ulm University , Ulm , Germany
- Department of Gene Therapy, Ulm University , Ulm , Germany
| | - Dietmar Rudolf Thal
- Department of Imaging and Pathology, Laboratory of Neuropathology, Leuven Brain Institute, KU-Leuven , Leuven , Belgium
- Institute of Pathology, Laboratory of Neuropathology, Ulm University , Ulm , Germany
- Department of Pathology, UZ-Leuven , Leuven , Belgium
| |
Collapse
|
58
|
Towards a Mechanistic Model of Tau-Mediated Pathology in Tauopathies: What Can We Learn from Cell-Based In Vitro Assays? Int J Mol Sci 2022; 23:ijms231911527. [PMID: 36232835 PMCID: PMC9570106 DOI: 10.3390/ijms231911527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the hyperphosphorylation and deposition of tau proteins in the brain. In Alzheimer’s disease, and other related tauopathies, the pattern of tau deposition follows a stereotypical progression between anatomically connected brain regions. Increasing evidence suggests that tau behaves in a “prion-like” manner, and that seeding and spreading of pathological tau drive progressive neurodegeneration. Although several advances have been made in recent years, the exact cellular and molecular mechanisms involved remain largely unknown. Since there are no effective therapies for any tauopathy, there is a growing need for reliable experimental models that would provide us with better knowledge and understanding of their etiology and identify novel molecular targets. In this review, we will summarize the development of cellular models for modeling tau pathology. We will discuss their different applications and contributions to our current understanding of the “prion-like” nature of pathological tau.
Collapse
|
59
|
Lee WJ, Cho H, Baek MS, Kim HK, Lee JH, Ryu YH, Lyoo CH, Seong JK. Dynamic network model reveals distinct tau spreading patterns in early- and late-onset Alzheimer disease. Alzheimers Res Ther 2022; 14:121. [PMID: 36056405 PMCID: PMC9438183 DOI: 10.1186/s13195-022-01061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/09/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND The clinical features of Alzheimer's disease (AD) vary substantially depending on whether the onset of cognitive deficits is early or late. The amount and distribution patterns of tau pathology are thought to play a key role in the clinical characteristics of AD, which spreads throughout the large-scale brain network. Here, we describe the differences between tau-spreading processes in early- and late-onset symptomatic individuals on the AD spectrum. METHODS We divided 74 cognitively unimpaired (CU) and 68 cognitively impaired (CI) patients receiving 18F-flortaucipir positron emission tomography scans into two groups by age and age at onset. Members of each group were arranged in a pseudo-longitudinal order based on baseline tau pathology severity, and potential interregional tau-spreading pathways were defined following the order using longitudinal tau uptake. We detected a multilayer community structure through consecutive tau-spreading networks to identify spatio-temporal changes in the propagation hubs. RESULTS In each group, ordered tau-spreading networks revealed the stage-dependent dynamics of tau propagation, supporting distinct tau accumulation patterns. In the young CU/early-onset CI group, tau appears to spread through a combination of three independent communities with partially overlapped territories, whose specific driving regions were the basal temporal regions, left medial and lateral temporal regions, and left parietal regions. For the old CU/late-onset CI group, however, continuation of major communities occurs in line with the appearance of hub regions in the order of bilateral entorhinal cortices, parahippocampal and fusiform gyri, and lateral temporal regions. CONCLUSION Longitudinal tau propagation depicts distinct spreading pathways of the early- and late-onset AD spectrum characterized by the specific location and appearance period of several hub regions that dominantly provide tau.
Collapse
Affiliation(s)
- Wha Jin Lee
- School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, South Korea
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, South Korea
| | - Min Seok Baek
- Department of Neurology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, South Korea
| | - Han-Kyeol Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, South Korea
| | - Jae Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, South Korea.
| | - Joon-Kyung Seong
- School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, South Korea.
- Department of Artificial Intelligence, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, South Korea.
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, South Korea.
| |
Collapse
|
60
|
Yang H, Li J, Li X, Ma L, Hou M, Zhou H, Zhou R. Based on molecular structures: Amyloid-β generation, clearance, toxicity and therapeutic strategies. Front Mol Neurosci 2022; 15:927530. [PMID: 36117918 PMCID: PMC9470852 DOI: 10.3389/fnmol.2022.927530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Amyloid-β (Aβ) has long been considered as one of the most important pathogenic factors in Alzheimer’s disease (AD), but the specific pathogenic mechanism of Aβ is still not completely understood. In recent years, the development of structural biology technology has led to new understandings about Aβ molecular structures, Aβ generation and clearance from the brain and peripheral tissues, and its pathological toxicity. The purpose of the review is to discuss Aβ metabolism and toxicity, and the therapeutic strategy of AD based on the latest progress in molecular structures of Aβ. The Aβ structure at the atomic level has been analyzed, which provides a new and refined perspective to comprehend the role of Aβ in AD and to formulate therapeutic strategies of AD.
Collapse
Affiliation(s)
- Hai Yang
- Department of Neurology, Army Medical Center of PLA, Chongqing, China
| | - Jinping Li
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaoxiong Li
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Linqiu Ma
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mingliang Hou
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huadong Zhou
- Department of Neurology, Army Medical Center of PLA, Chongqing, China
| | - Rui Zhou
- Southwest Hospital, Army Medical University, Chongqing, China
- *Correspondence: Rui Zhou,
| |
Collapse
|
61
|
Korde DS, Humpel C. Spreading of P301S Aggregated Tau Investigated in Organotypic Mouse Brain Slice Cultures. Biomolecules 2022; 12:1164. [PMID: 36139003 PMCID: PMC9496515 DOI: 10.3390/biom12091164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Tau pathology extends throughout the brain in a prion-like fashion through connected brain regions. However, the details of the underlying mechanisms are incompletely understood. The present study aims to examine the spreading of P301S aggregated tau, a mutation that is implicated in tauopathies, using organotypic slice cultures. Coronal hippocampal organotypic brain slices (170 µm) were prepared from postnatal (day 8-10) C57BL6 wild-type mice. Collagen hydrogels loaded with P301S aggregated tau were applied to slices and the spread of tau was assessed by immunohistochemistry after 8 weeks in culture. Collagen hydrogels prove to be an effective protein delivery system subject to natural degradation in 14 days and they release tau proteins up to 8 weeks. Slices with un- and hyperphosphorylated P301S aggregated tau demonstrate significant spreading to the ventral parts of the hippocampal slices compared to empty collagen hydrogels after 8 weeks. Moreover, the spread of P301S aggregated tau occurs in a time-dependent manner, which was interrupted when the neuroanatomical pathways are lesioned. We illustrate that the spreading of tau can be investigated in organotypic slice cultures using collagen hydrogels to achieve a localized application and slow release of tau proteins. P301S aggregated tau significantly spreads to the ventral areas of the slices, suggesting that the disease-relevant aggregated tau form possesses spreading potential. Thus, the results offer a novel experimental approach to investigate tau pathology.
Collapse
Affiliation(s)
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
62
|
Frontzkowski L, Ewers M, Brendel M, Biel D, Ossenkoppele R, Hager P, Steward A, Dewenter A, Römer S, Rubinski A, Buerger K, Janowitz D, Binette AP, Smith R, Strandberg O, Carlgren NM, Dichgans M, Hansson O, Franzmeier N. Earlier Alzheimer’s disease onset is associated with tau pathology in brain hub regions and facilitated tau spreading. Nat Commun 2022; 13:4899. [PMID: 35987901 PMCID: PMC9392750 DOI: 10.1038/s41467-022-32592-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 08/08/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractIn Alzheimer’s disease (AD), younger symptom onset is associated with accelerated disease progression and tau spreading, yet the mechanisms underlying faster disease manifestation are unknown. To address this, we combined resting-state fMRI and longitudinal tau-PET in two independent samples of controls and biomarker-confirmed AD patients (ADNI/BioFINDER, n = 240/57). Consistent across both samples, we found that younger symptomatic AD patients showed stronger tau-PET in globally connected fronto-parietal hubs, i.e., regions that are critical for maintaining cognition in AD. Stronger tau-PET in hubs predicted faster subsequent tau accumulation, suggesting that tau in globally connected regions facilitates connectivity-mediated tau spreading. Further, stronger tau-PET in hubs mediated the association between younger age and faster tau accumulation in symptomatic AD patients, which predicted faster cognitive decline. These independently validated findings suggest that younger AD symptom onset is associated with stronger tau pathology in brain hubs, and accelerated tau spreading throughout connected brain regions and cognitive decline.
Collapse
|
63
|
Bilgel M, Wong DF, Moghekar AR, Ferrucci L, Resnick SM, the Alzheimer’s Disease Neuroimaging Initiative. Causal links among amyloid, tau, and neurodegeneration. Brain Commun 2022; 4:fcac193. [PMID: 35938073 PMCID: PMC9345312 DOI: 10.1093/braincomms/fcac193] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 07/27/2023] Open
Abstract
Amyloid-β pathology is associated with greater tau pathology and facilitates tau propagation from the medial temporal lobe to the neocortex, where tau is closely associated with local neurodegeneration. The degree of the involvement of amyloid-β versus existing tau pathology in tau propagation and neurodegeneration has not been fully elucidated in human studies. Careful quantification of these effects can inform the development and timing of therapeutic interventions. We conducted causal mediation analyses to investigate the relative contributions of amyloid-β and existing tau to tau propagation and neurodegeneration in two longitudinal studies of individuals without dementia: the Baltimore Longitudinal Study of Aging (N = 103, age range 57-96) and the Alzheimer's Disease Neuroimaging Initiative (N = 122, age range 56-92). As proxies of neurodegeneration, we investigated cerebral blood flow, glucose metabolism, and regional volume. We first confirmed that amyloid-β moderates the association between tau in the entorhinal cortex and in the inferior temporal gyrus, a neocortical region exhibiting early tau pathology (amyloid group × entorhinal tau interaction term β = 0.488, standard error [SE] = 0.126, P < 0.001 in the Baltimore Longitudinal Study of Aging; β = 0.619, SE = 0.145, P < 0.001 in the Alzheimer's Disease Neuroimaging Initiative). In causal mediation analyses accounting for this facilitating effect of amyloid, amyloid positivity had a statistically significant direct effect on inferior temporal tau as well as an indirect effect via entorhinal tau (average direct effect =0.47, P < 0.001 and average causal mediation effect =0.44, P = 0.0028 in Baltimore Longitudinal Study of Aging; average direct effect =0.43, P = 0.004 and average causal mediation effect =0.267, P = 0.0088 in Alzheimer's Disease Neuroimaging Initiative). Entorhinal tau mediated up to 48% of the total effect of amyloid on inferior temporal tau. Higher inferior temporal tau was associated with lower colocalized cerebral blood flow, glucose metabolism, and regional volume, whereas amyloid had only an indirect effect on these measures via tau, implying tau as the primary driver of neurodegeneration (amyloid-cerebral blood flow average causal mediation effect =-0.28, P = 0.021 in Baltimore Longitudinal Study of Aging; amyloid-volume average causal mediation effect =-0.24, P < 0.001 in Alzheimer's Disease Neuroimaging Initiative). Our findings suggest targeting amyloid or medial temporal lobe tau might slow down neocortical spread of tau and subsequent neurodegeneration, but a combination therapy may yield better outcomes.
Collapse
Affiliation(s)
- Murat Bilgel
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | - Dean F Wong
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abhay R Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | | |
Collapse
|
64
|
Miny L, Maisonneuve BGC, Quadrio I, Honegger T. Modeling Neurodegenerative Diseases Using In Vitro Compartmentalized Microfluidic Devices. Front Bioeng Biotechnol 2022; 10:919646. [PMID: 35813998 PMCID: PMC9263267 DOI: 10.3389/fbioe.2022.919646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
The human brain is a complex organ composed of many different types of cells interconnected to create an organized system able to efficiently process information. Dysregulation of this delicately balanced system can lead to the development of neurological disorders, such as neurodegenerative diseases (NDD). To investigate the functionality of human brain physiology and pathophysiology, the scientific community has been generated various research models, from genetically modified animals to two- and three-dimensional cell culture for several decades. These models have, however, certain limitations that impede the precise study of pathophysiological features of neurodegeneration, thus hindering therapeutical research and drug development. Compartmentalized microfluidic devices provide in vitro minimalistic environments to accurately reproduce neural circuits allowing the characterization of the human central nervous system. Brain-on-chip (BoC) is allowing our capability to improve neurodegeneration models on the molecular and cellular mechanism aspects behind the progression of these troubles. This review aims to summarize and discuss the latest advancements of microfluidic models for the investigations of common neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Louise Miny
- NETRI, Lyon, France
- BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
| | | | - Isabelle Quadrio
- BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France
| | | |
Collapse
|
65
|
Zwierzchowski-Zarate AN, Mendoza-Oliva A, Kashmer OM, Collazo-Lopez JE, White CL, Diamond MI. RNA induces unique tau strains and stabilizes Alzheimer's disease seeds. J Biol Chem 2022; 298:102132. [PMID: 35700826 PMCID: PMC9364032 DOI: 10.1016/j.jbc.2022.102132] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Tau aggregation underlies neurodegenerative tauopathies, and trans-cellular propagation of tau assemblies of unique structure, i.e. strains, may underlie the diversity of these disorders. Polyanions have been reported to induce tau aggregation in vitro, but the precise trigger to convert tau from an inert to a seed-competent form in disease states is unknown. RNA triggers tau fibril formation in vitro and has been observed to associate with neurofibrillary tangles in human brain. Here we have tested whether RNA exerts sequence-specific effects on tau assembly and strain formation. We found that three RNA homopolymers, polyA, polyU, and polyC, all bound tau, but only polyA RNA triggered seed and fibril formation. In addition, polyA:tau seeds and fibrils were sensitive to RNase. We also observed that the origin of the RNA influenced the ability of tau to adopt a structure that would form stable strains. Human RNA potently induced tau seed formation and created tau conformations that preferentially formed stable strains in a HEK293T cell model, whereas RNA from other sources, or heparin, produced strains that were not stably maintained in cultured cells. Finally, we found that soluble, but not insoluble seeds from Alzheimer's disease (AD) brain were also sensitive to RNase. We conclude that human RNA specifically induces formation of stable tau strains, and may trigger the formation of dominant pathological assemblies that propagate in AD, and possibly other tauopathies.
Collapse
Affiliation(s)
- Amy N Zwierzchowski-Zarate
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Aydé Mendoza-Oliva
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Omar M Kashmer
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Josue E Collazo-Lopez
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Charles L White
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA.
| |
Collapse
|
66
|
Lopez-Cuina M, Meissner WG. Targeting alpha-synuclein or tau for treating neurodegenerative movement disorders. Rev Neurol (Paris) 2022; 178:460-471. [PMID: 35562199 DOI: 10.1016/j.neurol.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/31/2022]
Abstract
The two commonest groups of neurodegenerative disorders causing movement disorders are synucleinopathies and tauopathies. These disorders are characterised by the accumulation of abnormally misfolded forms of α-synuclein and tau proteins. Our current understanding of their pathogenesis suggests that extracellular forms of these proteins are of major relevance to the mechanism of pathology propagation throughout the brain and disease progression. The most novel approaches to find disease-modifying therapies aim to reduce or block these forms of tau and α-synuclein. This article reviews therapeutic strategies targeting α-synuclein and tau protein which have entered clinical development.
Collapse
Affiliation(s)
- M Lopez-Cuina
- Department of Neurology, Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | - W G Meissner
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France; CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, 33000 Bordeaux, France; Department of Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, Christchurch, New Zealand.
| |
Collapse
|
67
|
Tuck BJ, Miller LVC, Katsinelos T, Smith AE, Wilson EL, Keeling S, Cheng S, Vaysburd MJ, Knox C, Tredgett L, Metzakopian E, James LC, McEwan WA. Cholesterol determines the cytosolic entry and seeded aggregation of tau. Cell Rep 2022; 39:110776. [PMID: 35508140 PMCID: PMC9108550 DOI: 10.1016/j.celrep.2022.110776] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/03/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022] Open
Abstract
Assemblies of tau can transit between neurons, seeding aggregation in a prion-like manner. To accomplish this, tau must cross cell-limiting membranes, a process that is poorly understood. Here, we establish assays for the study of tau entry into the cytosol as a phenomenon distinct from uptake, in real time, and at physiological concentrations. The entry pathway of tau is cell type specific and, in neurons, highly sensitive to cholesterol. Depletion of the cholesterol transporter Niemann-Pick type C1 or extraction of membrane cholesterol renders neurons highly permissive to tau entry and potentiates seeding even at low levels of exogenous tau assemblies. Conversely, cholesterol supplementation reduces entry and almost completely blocks seeded aggregation. Our findings establish entry as a rate-limiting step to seeded aggregation and demonstrate that dysregulated cholesterol, a feature of several neurodegenerative diseases, potentiates tau aggregation by promoting entry of tau assemblies into the cell interior.
Collapse
Affiliation(s)
- Benjamin J Tuck
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK.
| | - Lauren V C Miller
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Taxiarchis Katsinelos
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Annabel E Smith
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Emma L Wilson
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Sophie Keeling
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Shi Cheng
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Marina J Vaysburd
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Claire Knox
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Lucy Tredgett
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK.
| |
Collapse
|
68
|
Candia RF, Cohen LS, Morozova V, Corbo C, Alonso AD. Importin-Mediated Pathological Tau Nuclear Translocation Causes Disruption of the Nuclear Lamina, TDP-43 Mislocalization and Cell Death. Front Mol Neurosci 2022; 15:888420. [PMID: 35592115 PMCID: PMC9113199 DOI: 10.3389/fnmol.2022.888420] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Tau is a cytosolic protein that has also been observed in the nucleus, where it has multiple proposed functions that are regulated by phosphorylation. However, the mechanism underlying the nuclear import of tau is unclear, as is the contribution of nuclear tau to the pathology of tauopathies. We have previously generated a pathological form of tau, PH-tau (pseudophosphorylation mutants S199E, T212E, T231E, and S262E) that mimics AD pathological behavior in cells, Drosophila, and a mouse model. Here, we demonstrated that PH-tau translocates into the nucleus of transiently transfected HEK-293 cells, but wildtype tau does not. We identified a putative importin binding site in the tau sequence, and showed that disruption of this site prevents tau from entering the nucleus. We further showed that this nuclear translocation is prevented by inhibitors of both importin-α and importin-β. In addition, expression of PH-tau resulted in an enlarged population of dying cells, which is prevented by blocking its entry into the nucleus. PH-tau-expressing cells also exhibited disruption of the nuclear lamina and mislocalization of TDP-43 to the cytoplasm. We found that PH-tau does not bundle microtubules, and this effect is independent of nuclear translocation. These results demonstrate that tau translocates into the nucleus through the importin-α/β pathway, and that PH-tau exhibits toxicity after its nuclear translocation. We propose a model where hyperphosphorylated tau not only disrupts the microtubule network, but also translocates into the nucleus and interferes with cellular functions, such as nucleocytoplasmic transport, inducing mislocalization of proteins like TDP-43 and, ultimately, cell death.
Collapse
Affiliation(s)
- Robert F. Candia
- Department of Biology, Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, United States,Biology Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Leah S. Cohen
- Department of Chemistry, College of Staten Island, The City University of New York, Staten Island, NY, United States
| | - Viktoriya Morozova
- Department of Biology, Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, United States,Biology Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Christopher Corbo
- Department of Biological Sciences, Wagner College, Staten Island, NY, United States
| | - Alejandra D. Alonso
- Department of Biology, Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, United States,Biology Program, The Graduate Center, The City University of New York, New York, NY, United States,*Correspondence: Alejandra D. Alonso,
| |
Collapse
|
69
|
Guzmán-Vélez E, Diez I, Schoemaker D, Pardilla-Delgado E, Vila-Castelar C, Fox-Fuller JT, Baena A, Sperling RA, Johnson KA, Lopera F, Sepulcre J, Quiroz YT. Amyloid-β and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer's disease. Proc Natl Acad Sci U S A 2022; 119:e2113641119. [PMID: 35380901 PMCID: PMC9169643 DOI: 10.1073/pnas.2113641119] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
The human brain is composed of functional networks that have a modular topology, where brain regions are organized into communities that form internally dense (segregated) and externally sparse (integrated) subnetworks that underlie higher-order cognitive functioning. It is hypothesized that amyloid-β and tau pathology in preclinical Alzheimer’s disease (AD) spread through functional networks, disrupting neural communication that results in cognitive dysfunction. We used high-resolution (voxel-level) graph-based network analyses to test whether in vivo amyloid-β and tau burden was associated with the segregation and integration of brain functional connections, and episodic memory, in cognitively unimpaired Presenilin-1 E280A carriers who are expected to develop early-onset AD dementia in ∼13 y on average. Compared to noncarriers, mutation carriers exhibited less functional segregation and integration in posterior default-mode network (DMN) regions, particularly the precuneus, and in the retrospenial cortex, which has been shown to link medial temporal regions and cortical regions of the DMN. Mutation carriers also showed greater functional segregation and integration in regions connected to the salience network, including the striatum and thalamus. Greater tau burden was associated with lower segregated and integrated functional connectivity of DMN regions, particularly the precuneus and medial prefrontal cortex. In turn, greater tau pathology was related to higher segregated and integrated functional connectivity in the retrospenial cortex and the anterior cingulate cortex, a hub of the salience network. These findings enlighten our understanding of how AD-related pathology distinctly alters the brain’s functional architecture in the preclinical stage, possibly contributing to pathology propagation and ultimately resulting in dementia.
Collapse
Affiliation(s)
- Edmarie Guzmán-Vélez
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Dorothee Schoemaker
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Enmanuelle Pardilla-Delgado
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Clara Vila-Castelar
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Joshua T. Fox-Fuller
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215
| | - Ana Baena
- Grupo de Neurociencias, Universidad de Antioquia, 050010 Medellín, Antioquia, Colombia
| | - Reisa A. Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115
| | - Keith A. Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115
| | - Francisco Lopera
- Grupo de Neurociencias, Universidad de Antioquia, 050010 Medellín, Antioquia, Colombia
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Yakeel T. Quiroz
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
- Grupo de Neurociencias, Universidad de Antioquia, 050010 Medellín, Antioquia, Colombia
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
70
|
Lopes DM, Llewellyn SK, Harrison IF. Propagation of tau and α-synuclein in the brain: therapeutic potential of the glymphatic system. Transl Neurodegener 2022; 11:19. [PMID: 35314000 PMCID: PMC8935752 DOI: 10.1186/s40035-022-00293-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Many neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease, are characterised by the accumulation of misfolded protein deposits in the brain, leading to a progressive destabilisation of the neuronal network and neuronal death. Among the proteins that can abnormally accumulate are tau and α-synuclein, which can propagate in a prion-like manner and which upon aggregation, represent the most common intracellular proteinaceous lesions associated with neurodegeneration. For years it was thought that these intracellular proteins and their accumulation had no immediate relationship with extracellular homeostasis pathways such as the glymphatic clearance system; however, mounting evidence has now suggested that this is not the case. The involvement of the glymphatic system in neurodegenerative disease is yet to be fully defined; however, it is becoming increasingly clear that this pathway contributes to parenchymal solute clearance. Importantly, recent data show that proteins prone to intracellular accumulation are subject to glymphatic clearance, suggesting that this system plays a key role in many neurological disorders. In this review, we provide a background on the biology of tau and α-synuclein and discuss the latest findings on the cell-to-cell propagation mechanisms of these proteins. Importantly, we discuss recent data demonstrating that manipulation of the glymphatic system may have the potential to alleviate and reduce pathogenic accumulation of propagation-prone intracellular cytotoxic proteins. Furthermore, we will allude to the latest potential therapeutic opportunities targeting the glymphatic system that might have an impact as disease modifiers in neurodegenerative diseases.
Collapse
|
71
|
Tau deposition patterns are associated with functional connectivity in primary tauopathies. Nat Commun 2022; 13:1362. [PMID: 35292638 PMCID: PMC8924216 DOI: 10.1038/s41467-022-28896-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022] Open
Abstract
Tau pathology is the main driver of neuronal dysfunction in 4-repeat tauopathies, including cortico-basal degeneration and progressive supranuclear palsy. Tau is assumed to spread prion-like across connected neurons, but the mechanisms of tau propagation are largely elusive in 4-repeat tauopathies, characterized not only by neuronal but also by astroglial and oligodendroglial tau accumulation. Here, we assess whether connectivity is associated with 4R-tau deposition patterns by combining resting-state fMRI connectomics with both 2nd generation 18F-PI-2620 tau-PET in 46 patients with clinically diagnosed 4-repeat tauopathies and post-mortem cell-type-specific regional tau assessments from two independent progressive supranuclear palsy patient samples (n = 97 and n = 96). We find that inter-regional connectivity is associated with higher inter-regional correlation of both tau-PET and post-mortem tau levels in 4-repeat tauopathies. In regional cell-type specific post-mortem tau assessments, this association is stronger for neuronal than for astroglial or oligodendroglial tau, suggesting that connectivity is primarily associated with neuronal tau accumulation. Using tau-PET we find further that patient-level tau patterns are associated with the connectivity of subcortical tau epicenters. Together, the current study provides combined in vivo tau-PET and histopathological evidence that brain connectivity is associated with tau deposition patterns in 4-repeat tauopathies.
Collapse
|
72
|
Impact of Partial Volume Correction on [18F]GE-180 PET Quantification in Subcortical Brain Regions of Patients with Corticobasal Syndrome. Brain Sci 2022; 12:brainsci12020204. [PMID: 35203967 PMCID: PMC8870519 DOI: 10.3390/brainsci12020204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
Corticobasal syndrome (CBS) is a rare neurodegenerative condition characterized by four-repeat tau aggregation in the cortical and subcortical brain regions and accompanied by severe atrophy. The aim of this study was to evaluate partial volume effect correction (PVEC) in patients with CBS compared to a control cohort imaged with the 18-kDa translocator protein (TSPO) positron emission tomography (PET) tracer [18F]GE-180. Eighteen patients with CBS and 12 age- and sex-matched healthy controls underwent [18F]GE-180 PET. The cortical and subcortical regions were delineated by deep nuclei parcellation (DNP) of a 3D-T1 MRI. Region-specific subcortical volumes and standardized uptake values and ratios (SUV and SUVr) were extracted before and after region-based voxel-wise PVEC. Regional volumes were compared between patients with CBS and controls. The % group differences and effect sizes (CBS vs. controls) of uncorrected and PVE-corrected SUVr data were compared. Single-region positivity in patients with CBS was assessed by a >2 SD threshold vs. controls and compared between uncorrected and PVE-corrected data. Smaller regional volumes were detected in patients with CBS compared to controls in the right ventral striatum (p = 0.041), the left putamen (p = 0.005), the right putamen (p = 0.038) and the left pallidum (p = 0.015). After applying PVEC, the % group differences were distinctly higher, but the effect sizes of TSPO uptake were only slightly stronger due to the higher variance after PVEC. The single-region positivity of TSPO PET increased in patients with CBS after PVEC (100 vs. 83 regions). PVEC in the cortical and subcortical regions is valuable for TSPO imaging of patients with CBS, leading to the improved detection of elevated [18F]GE-180 uptake, although the effect sizes in the comparison against the controls did not improve strongly.
Collapse
|
73
|
Gowda P, Reddy PH, Kumar S. Deregulated mitochondrial microRNAs in Alzheimer's disease: Focus on synapse and mitochondria. Ageing Res Rev 2022; 73:101529. [PMID: 34813976 PMCID: PMC8692431 DOI: 10.1016/j.arr.2021.101529] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/17/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is currently one of the biggest public health concerns in the world. Mitochondrial dysfunction in neurons is one of the major hallmarks of AD. Emerging evidence suggests that mitochondrial miRNAs potentially play important roles in the mitochondrial dysfunctions, focusing on synapse in AD progression. In this meta-analysis paper, a comprehensive literature review was conducted to identify and discuss the (1) role of mitochondrial miRNAs that regulate mitochondrial and synaptic functions; (2) the role of various factors such as mitochondrial dynamics, biogenesis, calcium signaling, biological sex, and aging on synapse and mitochondrial function; (3) how synapse damage and mitochondrial dysfunctions contribute to AD; (4) the structure and function of synapse and mitochondria in the disease process; (5) latest research developments in synapse and mitochondria in healthy and disease states; and (6) therapeutic strategies that improve synaptic and mitochondrial functions in AD. Specifically, we discussed how differences in the expression of mitochondrial miRNAs affect ATP production, oxidative stress, mitophagy, bioenergetics, mitochondrial dynamics, synaptic activity, synaptic plasticity, neurotransmission, and synaptotoxicity in neurons observed during AD. However, more research is needed to confirm the locations and roles of individual mitochondrial miRNAs in the development of AD.
Collapse
Affiliation(s)
- Prashanth Gowda
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
74
|
Abstract
In 1959, E. G. Gray described two different types of synapses in the brain for the first time: symmetric and asymmetric. Later on, symmetric synapses were associated with inhibitory terminals, and asymmetric synapses to excitatory signaling. The balance between these two systems is critical to maintain a correct brain function. Likewise, the modulation of both types of synapses is also important to maintain a healthy equilibrium. Cerebral circuitry responds differently depending on the type of damage and the timeline of the injury. For example, promoting symmetric signaling following ischemic damage is beneficial only during the acute phase; afterwards, it further increases the initial damage. Synapses can be also altered by players not directly related to them; the chronic and long-term neurodegeneration mediated by tau proteins primarily targets asymmetric synapses by decreasing neuronal plasticity and functionality. Dopamine represents the main modulating system within the central nervous system. Indeed, the death of midbrain dopaminergic neurons impairs locomotion, underlying the devastating Parkinson’s disease. Herein, we will review studies on symmetric and asymmetric synapses plasticity after three different stressors: symmetric signaling under acute damage—ischemic stroke; asymmetric signaling under chronic and long-term neurodegeneration—Alzheimer’s disease; symmetric and asymmetric synapses without modulation—Parkinson’s disease.
Collapse
|
75
|
Super-resolution microscopy: a closer look at synaptic dysfunction in Alzheimer disease. Nat Rev Neurosci 2021; 22:723-740. [PMID: 34725519 DOI: 10.1038/s41583-021-00531-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 11/08/2022]
Abstract
The synapse has emerged as a critical neuronal structure in the degenerative process of Alzheimer disease (AD), in which the pathogenic signals of two key players - amyloid-β (Aβ) and tau - converge, thereby causing synaptic dysfunction and cognitive deficits. The synapse presents a dynamic, confined microenvironment in which to explore how key molecules travel, localize, interact and assume different levels of organizational complexity, thereby affecting neuronal function. However, owing to their small size and the diffraction-limited resolution of conventional light microscopic approaches, investigating synaptic structure and dynamics has been challenging. Super-resolution microscopy (SRM) techniques have overcome the resolution barrier and are revolutionizing our quantitative understanding of biological systems in unprecedented spatio-temporal detail. Here we review critical new insights provided by SRM into the molecular architecture and dynamic organization of the synapse and, in particular, the interactions between Aβ and tau in this compartment. We further highlight how SRM can transform our understanding of the molecular pathological mechanisms that underlie AD. The application of SRM for understanding the roles of synapses in AD pathology will provide a stepping stone towards a broader understanding of dysfunction in other subcellular compartments and at cellular and circuit levels in this disease.
Collapse
|
76
|
Malhis M, Kaniyappan S, Aillaud I, Chandupatla RR, Ramirez LM, Zweckstetter M, Horn AHC, Mandelkow E, Sticht H, Funke SA. Potent Tau Aggregation Inhibitor D-Peptides Selected against Tau-Repeat 2 Using Mirror Image Phage Display. Chembiochem 2021; 22:3049-3059. [PMID: 34375027 PMCID: PMC8596876 DOI: 10.1002/cbic.202100287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/07/2021] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease and other Tauopathies are associated with neurofibrillary tangles composed of Tau protein, as well as toxic Tau oligomers. Therefore, inhibitors of pathological Tau aggregation are potentially useful candidates for future therapies targeting Tauopathies. Two hexapeptides within Tau, designated PHF6* (275-VQIINK-280) and PHF6 (306-VQIVYK-311), are known to promote Tau aggregation. Recently, the PHF6* segment has been described as the more potent driver of Tau aggregation. We therefore employed mirror-image phage display with a large peptide library to identify PHF6* fibril binding peptides consisting of D-enantiomeric amino acids. The suitability of D-enantiomeric peptides for in vivo applications, which are protease stable and less immunogenic than L-peptides, has already been demonstrated. The identified D-enantiomeric peptide MMD3 and its retro-inverso form, designated MMD3rev, inhibited in vitro fibrillization of the PHF6* peptide, the repeat domain of Tau as well as full-length Tau. Dynamic light scattering, pelleting assays and atomic force microscopy demonstrated that MMD3 prevents the formation of tau β-sheet-rich fibrils by diverting Tau into large amorphous aggregates. NMR data suggest that the D-enantiomeric peptides bound to Tau monomers with rather low affinity, but ELISA (enzyme-linked immunosorbent assay) data demonstrated binding to PHF6* and full length Tau fibrils. In addition, molecular insight into the binding mode of MMD3 to PHF6* fibrils were gained by in silico modelling. The identified PHF6*-targeting peptides were able to penetrate cells. The study establishes PHF6* fibril binding peptides consisting of D-enantiomeric amino acids as potential molecules for therapeutic and diagnostic applications in AD research.
Collapse
Affiliation(s)
- Marwa Malhis
- Institut für BioanalytikHochschule für angewandte WissenschaftenCoburgGermany
| | - Senthilvelrajan Kaniyappan
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
- Department of Neurodegenerative Diseases and Geriatric PsychiatryUniversity of BonnBonnGermany
| | - Isabelle Aillaud
- Institut für BioanalytikHochschule für angewandte WissenschaftenCoburgGermany
| | | | - Lisa Marie Ramirez
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)GöttingenGermany
| | | | - Anselm H. C. Horn
- Institut für BiochemieFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
- Institut für Medizinische GenetikUniversität Zürich SchlierenZürichSwitzerland
| | - Eckhard Mandelkow
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
- Department of Neurodegenerative Diseases and Geriatric PsychiatryUniversity of BonnBonnGermany
- CAESAR Research CenterBonnGermany
| | - Heinrich Sticht
- Institut für BiochemieFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
| | | |
Collapse
|
77
|
Blaudin de Thé FX, Lassus B, Schaler AW, Fowler SL, Goulbourne CN, Jeggo R, Mannoury la Cour C, Millan MJ, Duff KE. P62 accumulates through neuroanatomical circuits in response to tauopathy propagation. Acta Neuropathol Commun 2021; 9:177. [PMID: 34727983 PMCID: PMC8561893 DOI: 10.1186/s40478-021-01280-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/17/2021] [Indexed: 12/26/2022] Open
Abstract
In Alzheimer's disease and related tauopathies, trans-synaptic transfer and accumulation of pathological tau from donor to recipient neurons is thought to contribute to disease progression, but the underlying mechanisms are poorly understood. Using complementary in vivo and in vitro models, we examined the relationship between these two processes and neuronal clearance. Accumulation of p62 (a marker of defective protein clearance) correlated with pathological tau accumulation in two mouse models of tauopathy spread; Entorhinal Cortex-tau (EC-Tau) mice where tau pathology progresses in time from EC to other brain regions, and PS19 mice injected with tau seeds. In both models and in several brain regions, p62 colocalized with human tau in a pathological conformation (MC1 antibody). In EC-Tau mice, p62 accumulated before overt tau pathology had developed and was associated with the presence of aggregation-competent tau seeds identified using a FRET-based assay. Furthermore, p62 accumulated in the cytoplasm of neurons in the dentate gyrus of EC-Tau mice prior to the appearance of MC1 positive tauopathy. However, MC1 positive tau was shown to be present at the synapse and to colocalize with p62 as shown by immuno electron microscopy. In vitro, p62 colocalized with tau inclusions in two primary cortical neuron models of tau pathology. In a three-chamber microfluidic device containing neurons overexpressing fluorescent tau, seeding of tau in the donor chamber led to tau pathology spread and p62 accumulation in both the donor and the recipient chamber. Overall, these data are in accordance with the hypothesis that the accumulation and trans-synaptic spread of pathological tau disrupts clearance mechanisms, preceding the appearance of obvious tau aggregation. A vicious cycle of tau accumulation and clearance deficit would be expected to feed-forward and exacerbate disease progression across neuronal circuits in human tauopathies.
Collapse
Affiliation(s)
- François-Xavier Blaudin de Thé
- Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, 630 W 168th St, NY 10032 New York, USA
- Neuroscience and Immunoinflammation Therapeutic Area, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Benjamin Lassus
- Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, 630 W 168th St, NY 10032 New York, USA
- HiFiBiO Therapeutics Pépinière Paris Santé Cochin, 29 Rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Ari W. Schaler
- Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, 630 W 168th St, NY 10032 New York, USA
- UCLA – Physiology Department, 10833 Le Conte Ave, CHS76200, CA 90095 Los Angeles, USA
| | - Stephanie L. Fowler
- Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, 630 W 168th St, NY 10032 New York, USA
- UK Dementia Research Institute at UCL, University College London, 90 Gower St, W1T 7NF London, UK
| | - Chris N. Goulbourne
- Nathan Kline Institute: Center for Dementia Research, 140 Old Orangeburg Road, NY 10962 Orangeburg, USA
| | - Ross Jeggo
- Neuroscience and Immunoinflammation Therapeutic Area, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Clotilde Mannoury la Cour
- Neuroscience and Immunoinflammation Therapeutic Area, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Mark J. Millan
- Neuroscience and Immunoinflammation Therapeutic Area, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
- Present Address: Institute of Neuroscience and Psychology, College of Medicine, Vet and Life Science, Glasgow University, Glasgow, G12 8QQ United Kingdom
| | - Karen E. Duff
- Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, 630 W 168th St, NY 10032 New York, USA
- UK Dementia Research Institute at UCL, University College London, 90 Gower St, W1T 7NF London, UK
| |
Collapse
|
78
|
Stopschinski BE, Del Tredici K, Estill-Terpack SJ, Ghebremedhin E, Yu FF, Braak H, Diamond MI. Anatomic survey of seeding in Alzheimer's disease brains reveals unexpected patterns. Acta Neuropathol Commun 2021; 9:164. [PMID: 34635189 PMCID: PMC8507321 DOI: 10.1186/s40478-021-01255-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022] Open
Abstract
Tauopathies are heterogeneous neurodegenerative diseases defined by progressive brain accumulation of tau aggregates. The most common tauopathy, sporadic Alzheimer's disease (AD), involves progressive tau deposition that can be divided into specific stages of neurofibrillary tangle pathology. This classification is consistent with experimental data which suggests that network-based propagation is mediated by cell-cell transfer of tau "seeds", or assemblies, that serve as templates for their own replication. Until now, seeding assays of AD brain have largely been limited to areas previously defined by NFT pathology. We now expand this work to additional regions. We selected 20 individuals with AD pathology of NFT stages I, III, and V. We stained and classified 25 brain regions in each using the anti-phospho-tau monoclonal antibody AT8. We measured tau seeding in each of the 500 samples using a cell-based tau "biosensor" assay in which induction of intracellular tau aggregation is mediated by exogenous tau assemblies. We observed a progressive increase in tau seeding according to NFT stage. Seeding frequently preceded NFT pathology, e.g., in the basolateral subnucleus of the amygdala and the substantia nigra, pars compacta. We observed seeding in brain regions not previously known to develop tau pathology, e.g., the globus pallidus and internal capsule, where AT8 staining revealed mainly axonal accumulation of tau. AT8 staining in brain regions identified because of tau seeding also revealed pathology in a previously undescribed cell type: Bergmann glia of the cerebellar cortex. We also detected tau seeding in brain regions not previously examined, e.g., the intermediate reticular zone, dorsal raphe nucleus, amygdala, basal nucleus of Meynert, and olfactory bulb. In conclusion, tau histopathology and seeding are complementary analytical tools. Tau seeding assays reveal pathology in the absence of AT8 signal in some instances, and previously unrecognized sites of tau deposition. The variation in sites of seeding between individuals could underlie differences in the clinical presentation and course of AD.
Collapse
Affiliation(s)
- Barbara E Stopschinski
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Sandi-Jo Estill-Terpack
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | | | - Fang F Yu
- Department for Radiology, Neuroradiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heiko Braak
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA.
| |
Collapse
|
79
|
Amro Z, Yool AJ, Collins-Praino LE. The potential role of glial cells in driving the prion-like transcellular propagation of tau in tauopathies. Brain Behav Immun Health 2021; 14:100242. [PMID: 34589757 PMCID: PMC8474563 DOI: 10.1016/j.bbih.2021.100242] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Dementia is one of the leading causes of death worldwide, with tauopathies, a class of diseases defined by pathology associated with the microtubule-enriched protein, tau, as the major contributor. Although tauopathies, such as Alzheimer's disease and Frontotemporal dementia, are common amongst the ageing population, current effective treatment options are scarce, primarily due to the incomplete understanding of disease pathogenesis. The mechanisms via which aggregated forms of tau are able to propagate from one anatomical area to another to cause disease spread and progression is yet unknown. The prion-like hypothesis of tau propagation proposes that tau can propagate along neighbouring anatomical areas in a similar manner to prion proteins in prion diseases, such as Creutzfeldt-Jacob disease. This hypothesis has been supported by a plethora of studies that note the ability of tau to be actively secreted by neurons, propagated and internalised by neighbouring neuronal cells, causing disease spread. Surfacing research suggests a role of reactive astrocytes and microglia in early pre-clinical stages of tauopathy through their inflammatory actions. Furthermore, both glial types are able to internalise and secrete tau from the extracellular space, suggesting a potential role in tau propagation; although understanding the physiological mechanisms by which this can occur remains poorly understood. This review will discuss the current literature around the prion-like propagation of tau, with particular emphasis on glial-mediated neuroinflammation and the contribution it may play in this propagation process.
Collapse
Affiliation(s)
- Zein Amro
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | | |
Collapse
|
80
|
Bang S, Hwang KS, Jeong S, Cho IJ, Choi N, Kim J, Kim HN. Engineered neural circuits for modeling brain physiology and neuropathology. Acta Biomater 2021; 132:379-400. [PMID: 34157452 DOI: 10.1016/j.actbio.2021.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
The neural circuits of the central nervous system are the regulatory pathways for feeling, motion control, learning, and memory, and their dysfunction is closely related to various neurodegenerative diseases. Despite the growing demand for the unraveling of the physiology and functional connectivity of the neural circuits, their fundamental investigation is hampered because of the inability to access the components of neural circuits and the complex microenvironment. As an alternative approach, in vitro human neural circuits show principles of in vivo human neuronal circuit function. They allow access to the cellular compartment and permit real-time monitoring of neural circuits. In this review, we summarize recent advances in reconstituted in vitro neural circuits using engineering techniques. To this end, we provide an overview of the fabrication techniques and methods for stimulation and measurement of in vitro neural circuits. Subsequently, representative examples of in vitro neural circuits are reviewed with a particular focus on the recapitulation of structures and functions observed in vivo, and we summarize their application in the study of various brain diseases. We believe that the in vitro neural circuits can help neuroscience and the neuropharmacology. STATEMENT OF SIGNIFICANCE: Despite the growing demand to unravel the physiology and functional connectivity of the neural circuits, the studies on the in vivo neural circuits are frequently limited due to the poor accessibility. Furthermore, single neuron-based analysis has an inherent limitation in that it does not reflect the full spectrum of the neural circuit physiology. As an alternative approach, in vitro engineered neural circuit models have arisen because they can recapitulate the structural and functional characteristics of in vivo neural circuits. These in vitro neural circuits allow the mimicking of dysregulation of the neural circuits, including neurodegenerative diseases and traumatic brain injury. Emerging in vitro engineered neural circuits will provide a better understanding of the (patho-)physiology of neural circuits.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyeong Seob Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sohyeon Jeong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Il-Joo Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; School of Electrical and Electronics Engineering, Yonsei University, Seoul 03722, Republic of Korea; Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
81
|
Zhang H, Cao Y, Ma L, Wei Y, Li H. Possible Mechanisms of Tau Spread and Toxicity in Alzheimer's Disease. Front Cell Dev Biol 2021; 9:707268. [PMID: 34395435 PMCID: PMC8355602 DOI: 10.3389/fcell.2021.707268] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Tau is a protein that associates with microtubules (MTs) and promotes their assembly and stability. The protein loses its ability to bind MTs in tauopathies, and detached tau can misfold and induce the pathological changes that characterize Alzheimer’s disease (AD). A growing body of evidence indicates that tauopathies can spread between cells or connected regions. Pathological tau transmission in the brain of patients with AD and other tauopathies is due to the spread of various tau species along neuroanatomically connected regions in a “prion-like” manner. This complex process involves multiple steps of secretion, cellular uptake, transcellular transfer, and/or seeding, but the precise mechanisms of tau pathology propagation remain unclear. This review summarizes the current evidence on the nature of propagative tau species and the possible steps involved in the process of tau pathology spread, including detachment from MTs, degradations, and secretion, and discusses the different mechanisms underlying the spread of tau pathology.
Collapse
Affiliation(s)
- Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Wei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
82
|
Bang S, Lee S, Choi N, Kim HN. Emerging Brain-Pathophysiology-Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brains-on-a-Chip. Adv Healthc Mater 2021; 10:e2002119. [PMID: 34028201 DOI: 10.1002/adhm.202002119] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of the structural and functional integrity of the central and peripheral nervous systems. Millions of people suffer from degenerative brain diseases worldwide, and the mortality continues to increase every year, causing a growing demand for knowledge of the underlying mechanisms and development of therapeutic targets. Conventional 2D-based cell culture platforms and animal models cannot fully recapitulate the pathophysiology, and this has limited the capability for estimating drug efficacy. Recently, engineered platforms, including brain organoids and brain-on-a-chip, have emerged. They mimic the physiology of brain tissue and reflect the fundamental pathophysiological signatures of neurodegenerative diseases, such as the accumulation of neurotoxic proteins, structural abnormalities, and functional loss. In this paper, recent advances in brain-mimetic platforms and their potential for modeling features of neurodegenerative diseases in vitro are reviewed. The development of a physiologically relevant model should help overcome unresolved neurodegenerative diseases.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Songhyun Lee
- Department of Medical Engineering Yonsei University College of Medicine Seoul 03722 Republic of Korea
| | - Nakwon Choi
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| | - Hong Nam Kim
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology KIST School Korea University of Science and Technology (UST) Seoul 02792 Republic of Korea
| |
Collapse
|
83
|
Franzmeier N, Ossenkoppele R, Brendel M, Rubinski A, Smith R, Kumar A, Mattsson-Carlgren N, Strandberg O, Duering M, Buerger K, Dichgans M, Hansson O, Ewers M. The BIN1 rs744373 Alzheimer's disease risk SNP is associated with faster Aβ-associated tau accumulation and cognitive decline. Alzheimers Dement 2021; 18:103-115. [PMID: 34060233 DOI: 10.1002/alz.12371] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/16/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The BIN1 rs744373 single nucleotide polymorphism (SNP) is a key genetic risk locus for Alzheimer's disease (AD) associated with tau pathology. Because tau typically accumulates in response to amyloid beta (Aβ), we tested whether BIN1 rs744373 accelerates Aβ-related tau accumulation. METHODS We included two samples (Alzheimer's Disease Neuroimaging Initiative [ADNI], n = 153; Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably [BioFINDER], n = 63) with longitudinal 18 F-Flortaucipir positron emission tomography (PET), Aβ biomarkers, and longitudinal cognitive assessments. We assessed whether BIN1 rs744373 was associated with faster tau-PET accumulation at a given level of Aβ and whether faster BIN1 rs744373-associated tau-PET accumulation mediated cognitive decline. RESULTS BIN1 rs744373 risk-allele carriers showed faster global tau-PET accumulation (ADNI/BioFINDER, P < .001/P < .001). We found significant Aβ by rs744373 interactions on global tau-PET change (ADNI: β/standard error [SE] = 0.42/0.14, P = 0.002; BioFINDER: β/SE = -0.35/0.15, P = .021), BIN1 risk-allele carriers showed accelerated tau-PET accumulation at higher Aβ levels. In ADNI, rs744373 effects on cognitive decline were mediated by faster global tau-PET accumulation (β/SE = 0.20/0.07, P = .005). DISCUSSION BIN1-associated AD risk is potentially driven by accelerated tau accumulation in the face of Aβ.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anna Rubinski
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Atul Kumar
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Marco Duering
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,Medical Image Analysis Center (MIAC AG), Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | |
Collapse
|
84
|
Zhang H, Wei W, Zhao M, Ma L, Jiang X, Pei H, Cao Y, Li H. Interaction between Aβ and Tau in the Pathogenesis of Alzheimer's Disease. Int J Biol Sci 2021; 17:2181-2192. [PMID: 34239348 PMCID: PMC8241728 DOI: 10.7150/ijbs.57078] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular neuritic plaques composed of amyloid‑β (Aβ) protein and intracellular neurofibrillary tangles containing phosphorylated tau protein are the two hallmark proteins of Alzheimer's disease (AD), and the separate neurotoxicity of these proteins in AD has been extensively studied. However, interventions that target Aβ or tau individually have not yielded substantial breakthroughs. The interest in the interactions between Aβ and tau in AD is increasing, but related drug investigations are in their infancy. This review discusses how Aβ accelerates tau phosphorylation and the possible mechanisms and pathways by which tau mediates Aβ toxicity. This review also describes the possible synergistic effects between Aβ and tau on microglial cells and astrocytes. Studies suggest that the coexistence of Aβ plaques and phosphorylated tau is related to the mechanism by which Aβ facilitates the propagation of tau aggregation in neuritic plaques. The interactions between Aβ and tau mediate cognitive dysfunction in patients with AD. In summary, this review summarizes recent data on the interplay between Aβ and tau to promote a better understanding of the roles of these proteins in the pathological process of AD and provide new insights into interventions against AD.
Collapse
Affiliation(s)
- Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Wei Wei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Ming Zhao
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xuefan Jiang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Pei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hao Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
85
|
Annadurai N, De Sanctis JB, Hajdúch M, Das V. Tau secretion and propagation: Perspectives for potential preventive interventions in Alzheimer's disease and other tauopathies. Exp Neurol 2021; 343:113756. [PMID: 33989658 DOI: 10.1016/j.expneurol.2021.113756] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is characterised by the accumulation of intracytoplasmic aggregates of tau protein, which are suggested to spread in a prion-like manner between interconnected brain regions. This spreading is mediated by the secretion and uptake of tau from the extracellular space or direct cell-to-cell transmission through cellular protrusions. The prion-like tau then converts the endogenous, normal tau into pathological forms, resulting in neurodegeneration. The endoplasmic reticulum/Golgi-independent tau secretion through unconventional secretory pathways involves delivering misfolded and aggregated tau to the plasma membrane and its release into the extracellular space by non-vesicular and vesicular mechanisms. Although cytoplasmic tau was thought to be released only from degenerating cells, studies now show that cells constitutively secrete tau at low levels under physiological conditions. The mechanisms of secretion of tau under physiological and pathological conditions remain unclear. Therefore, a better understanding of these pathways is essential for developing therapeutic approaches that can target prion-like tau forms to prevent neurodegeneration progression in AD. This review focuses on unconventional secretion pathways involved in the spread of tau pathology in AD and presents these pathways as prospective areas for future AD drug discovery and development.
Collapse
Affiliation(s)
- Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic.
| |
Collapse
|
86
|
Beeg M, Battocchio E, De Luigi A, Colombo L, Natale C, Cagnotto A, Corbelli A, Fiordaliso F, Diomede L, Salmona M, Gobbi M. Nonphosphorylated tau slows down Aβ 1-42 aggregation, binds to Aβ 1-42 oligomers, and reduces Aβ 1-42 toxicity. J Biol Chem 2021; 296:100664. [PMID: 33865852 PMCID: PMC8113980 DOI: 10.1016/j.jbc.2021.100664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 11/27/2022] Open
Abstract
The formation of neurofibrillary tangles and amyloid plaques accompanies the progression of Alzheimer's disease. Tangles are made of fibrillar aggregates formed by the microtubule-associated protein tau, whereas plaques comprise fibrillar forms of amyloid-beta (Aβ). Both form toxic oligomers during aggregation and are thought to interact synergistically to each promote the accumulation of the other. Recent in vitro studies have suggested that the monomeric nonphosphorylated full-length tau protein hinders the aggregation of Aβ1–40 peptide, but whether the same is true for the more aggregation-prone Aβ1–42 was not determined. We used in vitro and in vivo techniques to explore this question. We have monitored the aggregation kinetics of Aβ1–42 by thioflavine T fluorescence in the presence or the absence of different concentrations of nonphosphorylated tau. We observed that elongation of Aβ1–42 fibrils was inhibited by tau in a dose-dependent manner. Interestingly, the fibrils were structurally different in the presence of tau but did not incorporate tau. Surface plasmon resonance indicated that tau monomers bound to Aβ1–42 oligomers (but not monomers) and hindered their interaction with the anti-Aβ antibody 4G8, suggesting that tau binds to the hydrophobic central core of Aβ recognized by 4G8. Tau monomers also antagonized the toxic effects of Aβ oligomers in Caenorhabditis elegans. This suggests that nonphosphorylated tau might have a neuroprotective effect by binding Aβ1–42 oligomers formed during the aggregation and shielding their hydrophobic patches.
Collapse
Affiliation(s)
- Marten Beeg
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisabetta Battocchio
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ada De Luigi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carmina Natale
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alfredo Cagnotto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandro Corbelli
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Fabio Fiordaliso
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
87
|
Soares AC, Ferreira A, Mariën J, Delay C, Lee E, Trojanowski JQ, Moechars D, Annaert W, De Muynck L. PIKfyve activity is required for lysosomal trafficking of tau aggregates and tau seeding. J Biol Chem 2021; 296:100636. [PMID: 33831417 PMCID: PMC8134070 DOI: 10.1016/j.jbc.2021.100636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/01/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Tauopathies, such as Alzheimer's disease (AD), are neurodegenerative disorders characterized by the deposition of hyperphosphorylated tau aggregates. Proteopathic tau seeds spread through the brain in a temporospatial pattern, indicative of transsynaptic propagation. It is hypothesized that reducing the uptake of tau seeds and subsequent induction of tau aggregation could be a potential approach for abrogating disease progression in AD. Here, we studied to what extent different endosomal routes play a role in the neuronal uptake of preformed tau seeds. Using pharmacological and genetic tools, we identified dynamin-1, actin, and Rac1 as key players. Furthermore, inhibition of PIKfyve, a protein downstream of Rac1, reduced both the trafficking of tau seeds into lysosomes and the induction of tau aggregation. Our work shows that tau aggregates are internalized by a specific endocytic mechanism and that their fate once internalized can be pharmacologically modulated to reduce tau seeding in neurons.
Collapse
Affiliation(s)
- Alberto Carpinteiro Soares
- Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium; VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Andreia Ferreira
- Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium; VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Jonas Mariën
- Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Charlotte Delay
- Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Edward Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dieder Moechars
- Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wim Annaert
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium.
| | - Louis De Muynck
- Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium.
| |
Collapse
|
88
|
Song L, Wells EA, Robinson AS. Critical Molecular and Cellular Contributors to Tau Pathology. Biomedicines 2021; 9:190. [PMID: 33672982 PMCID: PMC7918468 DOI: 10.3390/biomedicines9020190] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Tauopathies represent a group of neurodegenerative diseases including Alzheimer's disease (AD) that are characterized by the deposition of filamentous tau aggregates in the brain. The pathogenesis of tauopathies starts from the formation of toxic 'tau seeds' from hyperphosphorylated tau monomers. The presence of specific phosphorylation sites and heat shock protein 90 facilitates soluble tau protein aggregation. Transcellular propagation of pathogenic tau into synaptically connected neuronal cells or adjacent glial cells via receptor-mediated endocytosis facilitate disease spread through the brain. While neuroprotective effects of glial cells-including phagocytotic microglial and astroglial phenotypes-have been observed at the early stage of neurodegeneration, dysfunctional neuronal-glial cellular communication results in a series of further pathological consequences as the disease progresses, including abnormal axonal transport, synaptic degeneration, and neuronal loss, accompanied by a pro-inflammatory microenvironment. Additionally, the discovery of microtubule-associated protein tau (MAPT) gene mutations and the strongest genetic risk factor of tauopathies-an increase in the presence of the ε2 allele of apolipoprotein E (ApoE)-provide important clues to understanding tau pathology progression. In this review, we describe the crucial signaling pathways and diverse cellular contributors to the progression of tauopathies. A systematic understanding of disease pathogenesis provides novel insights into therapeutic targets within altered signaling pathways and is of great significance for discovering effective treatments for tauopathies.
Collapse
Affiliation(s)
| | | | - Anne Skaja Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (L.S.); (E.A.W.)
| |
Collapse
|
89
|
Holloway PM, Willaime-Morawek S, Siow R, Barber M, Owens RM, Sharma AD, Rowan W, Hill E, Zagnoni M. Advances in microfluidic in vitro systems for neurological disease modeling. J Neurosci Res 2021; 99:1276-1307. [PMID: 33583054 DOI: 10.1002/jnr.24794] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/21/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022]
Abstract
Neurological disorders are the leading cause of disability and the second largest cause of death worldwide. Despite significant research efforts, neurology remains one of the most failure-prone areas of drug development. The complexity of the human brain, boundaries to examining the brain directly in vivo, and the significant evolutionary gap between animal models and humans, all serve to hamper translational success. Recent advances in microfluidic in vitro models have provided new opportunities to study human cells with enhanced physiological relevance. The ability to precisely micro-engineer cell-scale architecture, tailoring form and function, has allowed for detailed dissection of cell biology using microphysiological systems (MPS) of varying complexities from single cell systems to "Organ-on-chip" models. Simplified neuronal networks have allowed for unique insights into neuronal transport and neurogenesis, while more complex 3D heterotypic cellular models such as neurovascular unit mimetics and "Organ-on-chip" systems have enabled new understanding of metabolic coupling and blood-brain barrier transport. These systems are now being developed beyond MPS toward disease specific micro-pathophysiological systems, moving from "Organ-on-chip" to "Disease-on-chip." This review gives an outline of current state of the art in microfluidic technologies for neurological disease research, discussing the challenges and limitations while highlighting the benefits and potential of integrating technologies. We provide examples of where such toolsets have enabled novel insights and how these technologies may empower future investigation into neurological diseases.
Collapse
Affiliation(s)
- Paul M Holloway
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Richard Siow
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Melissa Barber
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Róisín M Owens
- Department Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Anup D Sharma
- New Orleans BioInnovation Center, AxoSim Inc., New Orleans, LA, USA
| | - Wendy Rowan
- Novel Human Genetics Research Unit, GSK R&D, Stevenage, UK
| | - Eric Hill
- School of Life and Health sciences, Aston University, Birmingham, UK
| | - Michele Zagnoni
- Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
90
|
Yan M, Zheng T. Role of the endolysosomal pathway and exosome release in tau propagation. Neurochem Int 2021; 145:104988. [PMID: 33582164 DOI: 10.1016/j.neuint.2021.104988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 02/08/2023]
Abstract
The progressive deposition of misfolded and aggregated forms of Tau protein in the brain is a pathological hallmark of tauopathies, such as Alzheimer's disease (AD) and frontotemporal degeneration (FTD). The misfolded Tau can be released into the extracellular space and internalized by neighboring cells, acting as seeds to trigger the robust conversion of soluble Tau into insoluble filamentous aggregates in a prion-like manner, ultimately contributing to the progression of the disease. However, molecular mechanisms accountable for the propagation of Tau pathology are poorly defined. We reviewed the Tau processing imbalance in endosomal, lysosomal, and exosomal pathways in AD. Increased exosome release counteracts the endosomal-lysosomal dysfunction of Tau processing but increases the number of aggregates and the propagation of Tau. This review summarizes our current understanding of the underlying tauopathy mechanisms with an emphasis on the emerging role of the endosomal-lysosomal-exosome pathways in this process. The components CHMP6, TSG101, and other components of the ESCRT complex, as well as Rab GTPase such as Rab35 and Rab7A, regulate vesicle cargoes routing from endosome to lysosome and affect Tau traffic, degradation, or secretion. Thus, the significant molecular pathways that should be potential therapeutic targets for treating tauopathies are determined.
Collapse
Affiliation(s)
- Minli Yan
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, 310009, China
| | - Tingting Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, 310009, China.
| |
Collapse
|
91
|
Exosomes induce endolysosomal permeabilization as a gateway by which exosomal tau seeds escape into the cytosol. Acta Neuropathol 2021; 141:235-256. [PMID: 33417012 PMCID: PMC7847444 DOI: 10.1007/s00401-020-02254-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
The microtubule-associated protein tau has a critical role in Alzheimer's disease and other tauopathies. A proposed pathomechanism in the progression of tauopathies is the trans-synaptic spreading of tau seeds, with a role for exosomes which are secretory nanovesicles generated by late endosomes. Our previous work demonstrated that brain-derived exosomes isolated from tau transgenic rTg4510 mice encapsulate tau seeds with the ability to induce tau aggregation in recipient cells. We had also shown that exosomes can hijack the endosomal pathway to spread through interconnected neurons. Here, we reveal how tau seeds contained within internalized exosomes exploit mechanisms of lysosomal degradation to escape the endosome and induce tau aggregation in the cytosol of HEK293T-derived 'tau biosensor cells'. We found that the majority of the exosome-containing endosomes fused with lysosomes to form endolysosomes. Exosomes induced their permeabilization, irrespective of the presence of tau seeds, or whether the exosomal preparations originated from mouse brains or HEK293T cells. We also found that permeabilization is a conserved mechanism, operating in both non-neuronal tau biosensor cells and primary neurons. However, permeabilization of endolysosomes only occurred in a small fraction of cells, which supports the notion that permeabilization occurs by a thresholded mechanism. Interestingly, tau aggregation was only induced in cells that exhibited permeabilization, presenting this as an escape route of exosomal tau seeds into the cytosol. Overexpression of RAB7, which is required for the formation of endolysosomes, strongly increased tau aggregation. Conversely, inhibition of lysosomal function with alkalinizing agents, or by knocking-down RAB7, decreased tau aggregation. Together, we conclude that the enzymatic activities of lysosomes permeabilize exosomal and endosomal membranes, thereby facilitating access of exosomal tau seeds to cytosolic tau to induce its aggregation. Our data underscore the importance of endosomal membrane integrity in mechanisms of cellular invasion by misfolded proteins that are resistant to lysosomal degradation.
Collapse
|
92
|
Veys L, Van Houcke J, Aerts J, Van Pottelberge S, Mahieu M, Coens A, Melki R, Moechars D, De Muynck L, De Groef L. Absence of Uptake and Prion-Like Spreading of Alpha-Synuclein and Tau After Intravitreal Injection of Preformed Fibrils. Front Aging Neurosci 2021; 12:614587. [PMID: 33519421 PMCID: PMC7843377 DOI: 10.3389/fnagi.2020.614587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/24/2020] [Indexed: 12/26/2022] Open
Abstract
Although very different in etiology and symptoms, numerous neurodegenerative diseases can be classified as proteinopathies. More so, evidence indicates that the key misfolded proteins at the basis of different neuropathies might share common mechanisms of propagation. As such, the prion-like spreading of protein aggregates through the neural network is subject of intensive research focus and requires adequate models. Here, we made use of the well-defined architecture and large accessibility of the visual system, of which the retinotopic connections represent a simple route of anterograde signaling and an elegant model to investigate transsynaptic, prion-like spreading. In two independent studies, uptake and seeding of alpha-synuclein and tau were examined after intravitreal injection of preformed fibrils. However, extracellular matrix components in the vitreous space and at the vitreoretinal surface appeared to act as a barrier for the entry of both fibrils into the retina. These results show that further experimental refinement is needed to fully realize the potential of the visual system as a model for studying the molecular and cellular mechanisms of anterograde, transsynaptic spreading of prion-like proteins.
Collapse
Affiliation(s)
- Lien Veys
- Laboratory Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jessie Van Houcke
- Department of Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jeroen Aerts
- Department of Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Sophie Van Pottelberge
- Department of Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Michel Mahieu
- Department of Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Audrey Coens
- Laboratory of Neurodegenerative Disease, Institute François Jacob, MIRCen, CEA-CNRS, Fontenay aux Roses, France
| | - Ronald Melki
- Laboratory of Neurodegenerative Disease, Institute François Jacob, MIRCen, CEA-CNRS, Fontenay aux Roses, France
| | - Dieder Moechars
- Department of Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Louis De Muynck
- Department of Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Lies De Groef
- Laboratory Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
93
|
Current and future applications of induced pluripotent stem cell-based models to study pathological proteins in neurodegenerative disorders. Mol Psychiatry 2021; 26:2685-2706. [PMID: 33495544 PMCID: PMC8505258 DOI: 10.1038/s41380-020-00999-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders emerge from the failure of intricate cellular mechanisms, which ultimately lead to the loss of vulnerable neuronal populations. Research conducted across several laboratories has now provided compelling evidence that pathogenic proteins can also contribute to non-cell autonomous toxicity in several neurodegenerative contexts, including Alzheimer's, Parkinson's, and Huntington's diseases as well as Amyotrophic Lateral Sclerosis. Given the nearly ubiquitous nature of abnormal protein accumulation in such disorders, elucidating the mechanisms and routes underlying these processes is essential to the development of effective treatments. To this end, physiologically relevant human in vitro models are critical to understand the processes surrounding uptake, release and nucleation under physiological or pathological conditions. This review explores the use of human-induced pluripotent stem cells (iPSCs) to study prion-like protein propagation in neurodegenerative diseases, discusses advantages and limitations of this model, and presents emerging technologies that, combined with the use of iPSC-based models, will provide powerful model systems to propel fundamental research forward.
Collapse
|
94
|
Abstract
Engineered human mini-brains, made possible by knowledge from the convergence of precision microengineering and cell biology, permit systematic studies of complex neurological processes and of pathogenesis beyond what can be done with animal models. By culturing human brain cells with physiological microenvironmental cues, human mini-brain models reconstitute the arrangement of structural tissues and some of the complex biological functions of the human brain. In this Review, we highlight the most significant developments that have led to microphysiological human mini-brain models. We introduce the history of mini-brain development, review methods for creating mini-brain models in static conditions, and discuss relevant state-of-the-art dynamic cell-culture systems. We also review human mini-brain models that reconstruct aspects of major neurological disorders under static or dynamic conditions. Engineered human mini-brains will contribute to advancing the study of the physiology and aetiology of neurological disorders, and to the development of personalized medicines for them.
Collapse
|
95
|
Chastagner P, Loria F, Vargas JY, Tois J, I Diamond M, Okafo G, Brou C, Zurzolo C. Fate and propagation of endogenously formed Tau aggregates in neuronal cells. EMBO Mol Med 2020; 12:e12025. [PMID: 33179866 PMCID: PMC7721367 DOI: 10.15252/emmm.202012025] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Tau accumulation in the form of neurofibrillary tangles in the brain is a hallmark of tauopathies such as Alzheimer's disease (AD). Tau aggregates accumulate in brain regions in a defined spatiotemporal pattern and may induce the aggregation of native Tau in a prion-like manner. However, the underlying mechanisms of cell-to-cell spreading of Tau pathology are unknown and could involve encapsulation within exosomes, trans-synaptic passage, and tunneling nanotubes (TNTs). We have established a neuronal cell model to monitor both internalization of externally added fibrils, synthetic (K18) or Tau from AD brain extracts, and real-time conversion of microtubule-binding domain of Tau fused to a fluorescent marker into aggregates. We found that these endogenously formed deposits colabel with ubiquitin and p62 but are not recruited to macroautophagosomes, eventually escaping clearance. Furthermore, endogenous K18-seeded Tau aggregates spread to neighboring cells where they seed new deposits. Transfer of Tau aggregates depends on direct cell contact, and they are found inside TNTs connecting neuronal cells. We further demonstrate that contact-dependent transfer occurs in primary neurons and between neurons and astrocytes in organotypic cultures.
Collapse
Affiliation(s)
| | - Frida Loria
- Unité de Trafic Membranaire et PathogenèseInstitut PasteurParisFrance
- Present address:
Laboratorio de Apoyo a la InvestigaciónHospital Universitario Fundación AlcorcónMadridSpain
| | - Jessica Y Vargas
- Unité de Trafic Membranaire et PathogenèseInstitut PasteurParisFrance
| | - Josh Tois
- Unité de Trafic Membranaire et PathogenèseInstitut PasteurParisFrance
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative DiseasesPeter O'Donnell Jr. Brain InstituteUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | | | - Christel Brou
- Unité de Trafic Membranaire et PathogenèseInstitut PasteurParisFrance
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et PathogenèseInstitut PasteurParisFrance
| |
Collapse
|
96
|
Masnata M, Salem S, de Rus Jacquet A, Anwer M, Cicchetti F. Targeting Tau to Treat Clinical Features of Huntington's Disease. Front Neurol 2020; 11:580732. [PMID: 33329322 PMCID: PMC7710872 DOI: 10.3389/fneur.2020.580732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by severe motor, cognitive and psychiatric impairments. While motor deficits often confirm diagnosis, cognitive dysfunctions usually manifest early in the disease process and are consistently ranked among the leading factors that impact the patients' quality of life. The genetic component of HD, a mutation in the huntingtin (HTT) gene, is traditionally presented as the main contributor to disease pathology. However, accumulating evidence suggests the implication of the microtubule-associated tau protein to the pathogenesis and therefore, proposes an alternative conceptual framework where tau and mutant huntingtin (mHTT) act conjointly to drive neurodegeneration and cognitive dysfunction. This perspective on disease etiology offers new avenues to design therapeutic interventions and could leverage decades of research on Alzheimer's disease (AD) and other tauopathies to rapidly advance drug discovery. In this mini review, we examine the breadth of tau-targeting treatments currently tested in the preclinical and clinical settings for AD and other tauopathies, and discuss the potential application of these strategies to HD.
Collapse
Affiliation(s)
- Maria Masnata
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Shireen Salem
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | - Aurelie de Rus Jacquet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Mehwish Anwer
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| |
Collapse
|
97
|
Dominguez-Meijide A, Vasili E, Outeiro TF. Pharmacological Modulators of Tau Aggregation and Spreading. Brain Sci 2020; 10:E858. [PMID: 33203009 PMCID: PMC7696562 DOI: 10.3390/brainsci10110858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates composed of abnormal tau protein in the brain. Additionally, misfolded forms of tau can propagate from cell to cell and throughout the brain. This process is thought to lead to the templated misfolding of the native forms of tau, and thereby, to the formation of newer toxic aggregates, thereby propagating the disease. Therefore, modulation of the processes that lead to tau aggregation and spreading is of utmost importance in the fight against tauopathies. In recent years, several molecules have been developed for the modulation of tau aggregation and spreading. In this review, we discuss the processes of tau aggregation and spreading and highlight selected chemicals developed for the modulation of these processes, their usefulness, and putative mechanisms of action. Ultimately, a stronger understanding of the molecular mechanisms involved, and the properties of the substances developed to modulate them, will lead to the development of safer and better strategies for the treatment of tauopathies.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
98
|
Oakley SS, Maina MB, Marshall KE, Al-Hilaly YK, Harrington CR, Wischik CM, Serpell LC. Tau Filament Self-Assembly and Structure: Tau as a Therapeutic Target. Front Neurol 2020; 11:590754. [PMID: 33281730 PMCID: PMC7688747 DOI: 10.3389/fneur.2020.590754] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Tau plays an important pathological role in a group of neurodegenerative diseases called tauopathies, including Alzheimer's disease, Pick's disease, chronic traumatic encephalopathy and corticobasal degeneration. In each disease, tau self-assembles abnormally to form filaments that deposit in the brain. Tau is a natively unfolded protein that can adopt distinct structures in different pathological disorders. Cryo-electron microscopy has recently provided a series of structures for the core of the filaments purified from brain tissue from patients with different tauopathies and revealed that they share a common core region, while differing in their specific conformation. This structurally resolvable part of the core is contained within a proteolytically stable core region from the repeat domain initially isolated from AD tau filaments. Tau has recently become an important target for therapy. Recent work has suggested that the prevention of tau self-assembly may be effective in slowing the progression of Alzheimer's disease and other tauopathies. Here we review the work that explores the importance of tau filament structures and tau self-assembly mechanisms, as well as examining model systems that permit the exploration of the mode of action of potential inhibitors.
Collapse
Affiliation(s)
- Sebastian S. Oakley
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mahmoud B. Maina
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- College of Medical Sciences, Yobe State University, Damaturu, Nigeria
| | - Karen E. Marshall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Youssra K. Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Charlie R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Claude M. Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Louise C. Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
99
|
Kang SG, Eskandari-Sedighi G, Hromadkova L, Safar JG, Westaway D. Cellular Biology of Tau Diversity and Pathogenic Conformers. Front Neurol 2020; 11:590199. [PMID: 33304310 PMCID: PMC7693435 DOI: 10.3389/fneur.2020.590199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Tau accumulation is a prominent feature in a variety of neurodegenerative disorders and remarkable effort has been expended working out the biochemistry and cell biology of this cytoplasmic protein. Tau's wayward properties may derive from germline mutations in the case of frontotemporal lobar degeneration (FTLD-MAPT) but may also be prompted by less understood cues—perhaps environmental or from molecular damage as a consequence of chronological aging—in the case of idiopathic tauopathies. Tau properties are undoubtedly affected by its covalent structure and in this respect tau protein is not only subject to changes in length produced by alternative splicing and endoproteolysis, but different types of posttranslational modifications that affect different amino acid residues. Another layer of complexity concerns alternate conformations—“conformers”—of the same covalent structures; in vivo conformers can encompass soluble oligomeric species, ramified fibrillar structures evident by light and electron microscopy and other forms of the protein that have undergone liquid-liquid phase separation to make demixed liquid droplets. Biological concepts based upon conformers have been charted previously for templated replication mechanisms for prion proteins built of the PrP polypeptide; these are now providing useful explanations to feature tau pathobiology, including how this protein accumulates within cells and how it can exhibit predictable patterns of spread across different neuroanatomical regions of an affected brain. In sum, the documented, intrinsic heterogeneity of tau forms and conformers now begins to speak to a fundamental basis for diversity in clinical presentation of tauopathy sub-types. In terms of interventions, emphasis upon subclinical events may be worthwhile, noting that irrevocable cell loss and ramified protein assemblies feature at end-stage tauopathy, whereas earlier events may offer better opportunities for diverting pathogenic processes. Nonetheless, the complexity of tau sub-types, which may be present even within intermediate disease stages, likely mitigates against one-size-fits-all therapeutic strategies and may require a suite of interventions. We consider the extent to which animal models of tauopathy can be reasonably enrolled in the campaign to produce such interventions and to slow the otherwise inexorable march of disease progression.
Collapse
Affiliation(s)
- Sang-Gyun Kang
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | | | - Lenka Hromadkova
- Department of Neurology and Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Jiri G Safar
- Department of Neurology and Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - David Westaway
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
100
|
Bell BJ, Malvankar MM, Tallon C, Slusher BS. Sowing the Seeds of Discovery: Tau-Propagation Models of Alzheimer's Disease. ACS Chem Neurosci 2020; 11:3499-3509. [PMID: 33050700 DOI: 10.1021/acschemneuro.0c00531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The propagation of pathological proteins throughout the brain is the primary physiological hallmark of the progression of Alzheimer's Disease (AD). A growing body of evidence indicates that hyperphosphorylated Tau proteins are spread transcellularly between neurons in a prionlike fashion, inducing misfolding and aggregation into neurofibrillary tangles which accumulate along specific connectivity pathways. Earlier transgenic rodent AD models did not capture this disease-relevant spread, and therefore, seeded Tau-propagation models have been developed. Here, mutant human Tau (as isolated protein or packaged into an adeno-associated virus (AAV) viral vector) is stereotaxically injected into select brain regions and its histopathological propagation to downstream neurons quantified. These models offer a faster and more direct mechanism to evaluate genetic components and therapeutic approaches which attenuate Tau spreading in vivo. Recently, these Tau-seeding models have revealed several new targets for AD drug discovery, including nSMase2, SIRT1, p300/CBP, LRP1, and TYROBP, as well as the potential therapeutics based on melatonin and chondroitinase ABC. Importantly, these Tau-propagation rodent models more closely phenocopy the progression of AD in humans and are therefore likely to improve preclinical studies and derisk future moves into clinical trials.
Collapse
Affiliation(s)
- Benjamin J. Bell
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Medhinee M. Malvankar
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|