51
|
Cho SB. Comorbidity Genes of Alzheimer's Disease and Type 2 Diabetes Associated with Memory and Cognitive Function. Int J Mol Sci 2024; 25:2211. [PMID: 38396891 PMCID: PMC10889845 DOI: 10.3390/ijms25042211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are comorbidities that result from the sharing of common genes. The molecular background of comorbidities can provide clues for the development of treatment and management strategies. Here, the common genes involved in the development of the two diseases and in memory and cognitive function are reviewed. Network clustering based on protein-protein interaction network identified tightly connected gene clusters that have an impact on memory and cognition among the comorbidity genes of AD and T2DM. Genes with functional implications were intensively reviewed and relevant evidence summarized. Gene information will be useful in the discovery of biomarkers and the identification of tentative therapeutic targets for AD and T2DM.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, 38-13, Dokgeom-ro 3 Street, Namdon-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
52
|
Chen J, Chen JS, Li S, Zhang F, Deng J, Zeng LH, Tan J. Amyloid Precursor Protein: A Regulatory Hub in Alzheimer's Disease. Aging Dis 2024; 15:201-225. [PMID: 37307834 PMCID: PMC10796103 DOI: 10.14336/ad.2023.0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/08/2023] [Indexed: 06/14/2023] Open
Abstract
Decades of research have demonstrated an incontrovertible role of amyloid-β (Aβ) in the etiology of Alzheimer's disease (AD). However, the overemphasis on the pathological impacts of Aβ may obscure the role of its metabolic precursor, amyloid precursor protein (APP), as a significant hub in the occurrence and progression of AD. The complicated enzymatic processing, ubiquitous receptor-like properties, and abundant expression of APP in the brain, as well as its close links with systemic metabolism, mitochondrial function and neuroinflammation, imply that APP plays multifaceted roles in AD. In this review, we briefly describe the evolutionarily conserved biological characteristics of APP, including its structure, functions and enzymatic processing. We also discuss the possible involvement of APP and its enzymatic metabolites in AD, both detrimental and beneficial. Finally, we describe pharmacological agents or genetic approaches with the capability to reduce APP expression or inhibit its cellular internalization, which can ameliorate multiple aspects of AD pathologies and halt disease progression. These approaches provide a basis for further drug development to combat this terrible disease.
Collapse
Affiliation(s)
- Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jun-Sheng Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Song Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Fengning Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|
53
|
Qian Z, Li B, Meng X, Liao J, Wang G, Li Y, Luo Q, Ye K. Inhibition of asparagine endopeptidase (AEP) effectively treats sporadic Alzheimer's disease in mice. Neuropsychopharmacology 2024; 49:620-630. [PMID: 38030711 PMCID: PMC10789813 DOI: 10.1038/s41386-023-01774-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with cognitive dysfunction as its major clinical symptom. However, there is no disease-modifying small molecular medicine to effectively slow down progression of the disease. Here, we show an optimized asparagine endopeptidase (AEP, also known as δ-secretase) inhibitor, #11 A, that displays an orderly in vivo pharmacokinetics/pharmacodynamics (PK/PD) relationship and robustly attenuates AD pathologies in a sporadic AD mouse model. #11 A is brain permeable with great oral bioavailability. It blocks AEP cleavage of APP and Tau dose-dependently, and significantly decreases Aβ40 and Aβ42 and p-Tau levels in APP/PS1 and Tau P301S mice after oral administration. Notably, #11 A strongly inhibits AEP and prevents mouse APP and Tau fragmentation by AEP, leading to reduction of mouse Aβ42 (mAβ42), mAβ40 and mouse p-Tau181 levels in Thy1-ApoE4/C/EBPβ transgenic mice in a dose-dependent manner. Repeated oral administration of #11 A substantially decreases mAβ aggregation as validated by Aβ PET assay, Tau pathology, neurodegeneration and brain volume reduction, resulting in alleviation of cognitive impairment. Therefore, our results support that #11 A is a disease-modifying preclinical candidate for pharmacologically treating AD.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Bowei Li
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Xin Meng
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Jianming Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Guangxing Wang
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yanjiao Li
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Qian Luo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
54
|
Wei M, Wu T, Chen N. Bridging neurotrophic factors and bioactive peptides to Alzheimer's disease. Ageing Res Rev 2024; 94:102177. [PMID: 38142891 DOI: 10.1016/j.arr.2023.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. As the demographic shifting towards an aging population, AD has emerged as a prominent public health concern. The pathogenesis of AD is complex, and there are no effective treatment methods for AD until now. In recent years, neurotrophic factors and bioactive peptides including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), irisin, melatonin, have been discovered to exert neuroprotective functions for AD. Bioactive peptides can be divided into two categories based on their sources: endogenous and exogenous. This review briefly elaborates on the pathogenesis of AD and analyzes the regulatory effects of endogenous and exogenous peptides on the pathogenesis of AD, thereby providing new therapeutic targets for AD and a theoretical basis for the application of bioactive peptides as adjunctive therapies for AD.
Collapse
Affiliation(s)
- Minhui Wei
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
55
|
Sun Y, Islam S, Michikawa M, Zou K. Presenilin: A Multi-Functional Molecule in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases. Int J Mol Sci 2024; 25:1757. [PMID: 38339035 PMCID: PMC10855926 DOI: 10.3390/ijms25031757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Presenilin, a transmembrane protein primarily known for its role in Alzheimer's disease (AD) as part of the γ-secretase complex, has garnered increased attention due to its multifaceted functions in various cellular processes. Recent investigations have unveiled a plethora of functions beyond its amyloidogenic role. This review aims to provide a comprehensive overview of presenilin's diverse roles in AD and other neurodegenerative disorders. It includes a summary of well-known substrates of presenilin, such as its involvement in amyloid precursor protein (APP) processing and Notch signaling, along with other functions. Additionally, it highlights newly discovered functions, such as trafficking function, regulation of ferritin expression, apolipoprotein E (ApoE) secretion, the interaction of ApoE and presenilin, and the Aβ42-to-Aβ40-converting activity of ACE. This updated perspective underscores the evolving landscape of presenilin research, emphasizing its broader impact beyond established pathways. The incorporation of these novel findings accentuates the dynamic nature of presenilin's involvement in cellular processes, further advancing our comprehension of its multifaceted roles in neurodegenerative disorders. By synthesizing evidence from a range of studies, this review sheds light on the intricate web of presenilin functions and their implications in health and disease.
Collapse
Affiliation(s)
- Yang Sun
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.S.); (S.I.)
| | - Sadequl Islam
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.S.); (S.I.)
| | - Makoto Michikawa
- Department of Geriatric Medicine, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan;
| | - Kun Zou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.S.); (S.I.)
| |
Collapse
|
56
|
Dadkhah M, Baziar M, Rezaei N. The regulatory role of BDNF in neuroimmune axis function and neuroinflammation induced by chronic stress: A new therapeutic strategies for neurodegenerative disorders. Cytokine 2024; 174:156477. [PMID: 38147741 DOI: 10.1016/j.cyto.2023.156477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/14/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Neurodegenerative disorders account for a high proportion of neurological diseases that significantly threaten public health worldwide. Various factors are involved in the pathophysiology of such diseases which can lead to neurodegeneration and neural damage. Furthermore, neuroinflammation is a well-known factor in predisposing factors of neurological and especially neurodegenerative disorders which can be strongly suppressed by "anti-inflammatory" actions of brain-derived neurotrophic factor (BDNF). Stress has has also been identified as a risk factor in developing neurodegenerative disorders potentially leading to increased neuroinflammation in the brain and progressive loss in neuronal structures and impaired functions in the CNS. Recently, more studies have increasingly been focused on the role of neuroimmune system in regulating the neurobiology of stress. Emerging evidence indicate that exposure to chronic stress might alter the susceptibility to neurodegeneration via influencing the microglia function. Microglia is considered as the first responding group of cells in suppressing neuroinflammation, leading to an increased inflammatory cytokine signaling that promote the synaptic plasticity deficiencies, impairment in neurogenesis, and development of neurodegenerative disorders. In this review we discuss how exposure to chronic stress might alter the neuroimmune response potentially leading to progress of neurodegenerative disorders. We also emphasize on the role of BDNF in regulating the neuroimmune axis function and microglia modulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Milad Baziar
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| |
Collapse
|
57
|
Bi X, Liu S, Liu D, Li C. Elucidating the role of Brain-Derived Neurotrophic Factor (BDNF) and its receptor Tyrosine Receptor Kinase B (TrkB) in the development and symptoms of endometriosis. Int J Neurosci 2024:1-7. [PMID: 38287513 DOI: 10.1080/00207454.2023.2285709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 01/31/2024]
Abstract
Endometriosis (EMs) is a common disease among women of reproductive age, and as of now, the clinical understanding of the etiology of this disease remains unclear. The occurrence of EMs has a profound impact on the reproductive health of women, making early diagnosis and treatment of this disease a pressing challenge in clinical practice. Recent studies have found that Brain-Derived Neurotrophic Factor (BDNF), in combination with its high-affinity receptor Tyrosine Receptor Kinase B (TrkB), participates in the development of EMs and the appearance of clinically relevant symptoms by activating the Mitogen-Activated Protein Kinase (MAPK) pathway, the Phosphatidylinositol 3-Kinase/Protein Kinase B (PI3K/AKT) pathway, and the Phospholipase C-gamma (PLCγ) signaling pathway, or by interacting with other factors. In order to gain a deeper understanding of the pathogenesis related to EMs, this article reviews the roles of BDNF and TrkB in EMs, particularly in terms of aberrant apoptosis and autophagy, cell invasion, proliferation, angiogenesis, oxidative stress, and inflammatory reactions, as well as their relationship with the symptoms associated with EMs.
Collapse
Affiliation(s)
- Xinyi Bi
- Department of Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Shulan Liu
- Department of Gynaecology, Gaomi Traditional Chinese Medicine Hospital, Gaomi, P.R. China
| | - Degao Liu
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, P.R. China
| | - Changzhong Li
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, P.R. China
- Department of Gynaecology, Shandong provincial hospital affiliated to Shandong first medical university, Jinan, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, P.R. China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, P.R. China
| |
Collapse
|
58
|
Qiao Y, Liu H, He C, Ma Y. ApoE Mimic Peptide COG1410 Reduces Aβ Deposition and Improves Cognitive Function by Inducing the Transformation of A1/A2 Reactive Astrocytes and Increasing the BDNF Concentration in Brain of APP/PS1 Double Transgenic Mice. Neuroscience 2024; 537:116-125. [PMID: 38006963 DOI: 10.1016/j.neuroscience.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
The main clinical manifestation of Alzheimer's disease is progressive cognitive decline, and its pathological features are β-amyloid (Aβ) deposition, neurofibrillary tangles, synaptic dysfunction and neuron death. Neuroinflammation is an important reason for the occurrence and development of AD, which is mainly manifested by the accumulation of activated microglia and reactive astrocytes. Apolipoprotein E (ApoE) is one of the most important apolipoprotein in the brain, which is related to metabolism, aggregation and toxicity of Aβ. However, the underlying mechanism needs to be further explored. In this study, we studied the effect of ApoE mimetic peptide COG1410 on spatial learning and memory functions, deposition of Aβ in the dentate gyrus (DG) of APP/PS1 transgenic mice, and the different effects of A1 and A2 subtypes of reactive astrocytes. Administration of COG1410 effectively improved performance in spatial learning and memory of APP/PS1 mice, reduced Aβ deposition and significantly reverted the ratio of A1/A2 reactive astrocytes, which could be associated with BDNF/TrkB signaling pathway. On the whole, the present findings suggest new possibility of using apolipoprotein E mimetic peptide to treat AD with potential effectiveness.
Collapse
Affiliation(s)
- Yue Qiao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hang Liu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chaoying He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Ma
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
59
|
Rodriguez LA, Tran MN, Garcia-Flores R, Oh S, Phillips RA, Pattie EA, Divecha HR, Kim SH, Shin JH, Lee YK, Montoya C, Jaffe AE, Collado-Torres L, Page SC, Martinowich K. TrkB-dependent regulation of molecular signaling across septal cell types. Transl Psychiatry 2024; 14:52. [PMID: 38263132 PMCID: PMC10805920 DOI: 10.1038/s41398-024-02758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
The lateral septum (LS), a GABAergic structure located in the basal forebrain, is implicated in social behavior, learning, and memory. We previously demonstrated that expression of tropomyosin kinase receptor B (TrkB) in LS neurons is required for social novelty recognition. To better understand molecular mechanisms by which TrkB signaling controls behavior, we locally knocked down TrkB in LS and used bulk RNA-sequencing to identify changes in gene expression downstream of TrkB. TrkB knockdown induces upregulation of genes associated with inflammation and immune responses, and downregulation of genes associated with synaptic signaling and plasticity. Next, we generated one of the first atlases of molecular profiles for LS cell types using single nucleus RNA-sequencing (snRNA-seq). We identified markers for the septum broadly, and the LS specifically, as well as for all neuronal cell types. We then investigated whether the differentially expressed genes (DEGs) induced by TrkB knockdown map to specific LS cell types. Enrichment testing identified that downregulated DEGs are broadly expressed across neuronal clusters. Enrichment analyses of these DEGs demonstrated that downregulated genes are uniquely expressed in the LS, and associated with either synaptic plasticity or neurodevelopmental disorders. Upregulated genes are enriched in LS microglia, associated with immune response and inflammation, and linked to both neurodegenerative disease and neuropsychiatric disorders. In addition, many of these genes are implicated in regulating social behaviors. In summary, the findings implicate TrkB signaling in the LS as a critical regulator of gene networks associated with psychiatric disorders that display social deficits, including schizophrenia and autism, and with neurodegenerative diseases, including Alzheimer's.
Collapse
Affiliation(s)
- Lionel A Rodriguez
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Matthew Nguyen Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Renee Garcia-Flores
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Seyun Oh
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Robert A Phillips
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Elizabeth A Pattie
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Heena R Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Sun Hong Kim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Carly Montoya
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Andrew E Jaffe
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
| | - Keri Martinowich
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
60
|
Asadi MR, Gharesouran J, Sabaie H, Zaboli Mahdiabadi M, Mazhari SA, Sharifi-Bonab M, Shirvani-Farsani Z, Taheri M, Sayad A, Rezazadeh M. Neurotrophin growth factors and their receptors as promising blood biomarkers for Alzheimer's Disease: a gene expression analysis study. Mol Biol Rep 2024; 51:49. [PMID: 38165481 DOI: 10.1007/s11033-023-08959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/25/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a multifaceted neurological ailment affecting more than 50 million individuals globally, distinguished by a deterioration in memory and cognitive abilities. Investigating neurotrophin growth factors could offer significant contributions to understanding AD progression and prospective therapeutic interventions. METHODS AND RESULTS The present investigation collected blood samples from 50 patients diagnosed with AD and 50 healthy individuals serving as controls. The mRNA expression levels of neurotrophin growth factors and their receptors were measured using quantitative PCR. A Bayesian regression model was used in the research to assess the relationship between gene expression levels and demographic characteristics such as age and gender. The correlations between variables were analyzed using Spearman correlation coefficients, and the diagnostic potential was assessed using a Receiver Operating Characteristic curve. NTRK2, TrkA, TrkC, and BDNF expression levels were found to be considerably lower (p-value < 0.05) in the blood samples of AD patients compared to the control group. The expression of BDNF exhibited the most substantial decrease in comparison to other neurotrophin growth factors. Correlation analysis indicates a statistically significant positive association between the genes. The ROC analysis showed that BDNF exhibited the greatest Area Under the Curve (AUC) value of 0.76, accompanied by a sensitivity of 70% and specificity of 66%. TrkC, TrkA, and NTRK2 demonstrated considerable diagnostic potential in distinguishing between cases and controls. CONCLUSION The observed decrease in the expression levels of NTRK2, TrkA, TrkC, and BDNF in AD patients, along with the identified associations between specific genes and their diagnostic capacity, indicate that these expressions have the potential to function as biomarkers for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Gharesouran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arezou Sayad
- Department of Medical Genetics, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
61
|
Koyya P, Manthari RK, Pandrangi SL. Brain-Derived Neurotrophic Factor - The Protective Agent Against Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:353-366. [PMID: 37287291 PMCID: PMC11348470 DOI: 10.2174/1871527322666230607110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
The burden of neurological illnesses on global health is significant. Our perception of the molecular and biological mechanisms underlying intellectual processing and behavior has significantly advanced over the last few decades, laying the groundwork for potential therapies for various neurodegenerative diseases. A growing body of literature reveals that most neurodegenerative diseases could be due to the gradual failure of neurons in the brain's neocortex, hippocampus, and various subcortical areas. Research on various experimental models has uncovered several gene components to understand the pathogenesis of neurodegenerative disorders. One among them is the brain-derived neurotrophic factor (BDNF), which performs several vital functions, enhancing synaptic plasticity and assisting in the emergence of long-term thoughts. The pathophysiology of some neurodegenerative diseases, including Alzheimer's, Parkinson's, Schizophrenia, and Huntington's, has been linked to BDNF. According to numerous research, high levels of BDNF are connected to a lower risk of developing a neurodegenerative disease. As a result, we want to concentrate on BDNF in this article and outline its protective role against neurological disorders.
Collapse
Affiliation(s)
- Prathyusha Koyya
- Department of Biotechnology, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Santhi Latha Pandrangi
- Department of Biochemistry and Bioinformatics, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
62
|
Deng C, Chen H. Brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling in spinal muscular atrophy and amyotrophic lateral sclerosis. Neurobiol Dis 2024; 190:106377. [PMID: 38092270 DOI: 10.1016/j.nbd.2023.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Tropomyosin receptor kinase B (TrkB) and its primary ligand brain-derived neurotrophic factor (BDNF) are expressed in the neuromuscular system, where they affect neuronal survival, differentiation, and functions. Changes in BDNF levels and full-length TrkB (TrkB-FL) signaling have been revealed in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), two common forms of motor neuron diseases that are characterized by defective neuromuscular junctions in early disease stages and subsequently progressive muscle weakness. This review summarizes the current understanding of BDNF/TrkB-FL-related research in SMA and ALS, with an emphasis on their alterations in the neuromuscular system and possible BDNF/TrkB-FL-targeting therapeutic strategies. The limitations of current studies and future directions are also discussed, giving the hope of discovering novel and effective treatments.
Collapse
Affiliation(s)
- Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
63
|
Zhang Z, Deng S, Shi Q. Isoliquiritigenin attenuates high glucose-induced proliferation, inflammation, and extracellular matrix deposition in glomerular mesangial cells by suppressing JAK2/STAT3 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:123-131. [PMID: 37368032 DOI: 10.1007/s00210-023-02598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
To investigate the effect of isoliquiritigenin (ISL) on high glucose (HG)-induced glomerular mesangial cells (GMCs) proliferation, extracellular matrix (ECM) deposition and inflammation, and the underlying mechanisms. Mouse GMCs (SV40-MES-13) were cultured in HG medium, with or without ISL. The proliferation of GMCs was determined by MTT assay. The production of proinflammatory cytokines was detected by qRT-PCR and ELISA. The expression of connective tissue growth factor (CTGF), TGF-β1, collagen IV, and fibronectin was measured by qRT-PCR and western blot. The phosphorylation of JAK2 and STAT3 was examined by western blot. Next, JAK2 inhibitor AG490 was applied to HG-exposed GMCs. The levels of JAK2/STAT3 phosphorylation and pro-fibrotic markers were analyzed by western blot, and the secretion of TNF-α and IL-1β was evaluated by ELISA. GMCs were treated with HG, HG plus ISL or HG plus ISL, and recombinant IL-6 (rIL-6) which is a JAK2 activator. The levels of JAK2/STAT3 activation, ECM formation, and proinflammatory cytokines secretion were determined by western blot and ELISA, respectively. In mouse GMCs, ISL successfully repressed HG-induced hyperproliferation; production of TNF-α and IL-1β; expression of CTGF, TGF-β1, collagen IV, and fibronectin; and activation of JAK2/STAT3. Similar to ISL, AG490 was able to reverse the inflammation and ECM generation caused by HG. Moreover, rIL-6 impeded the amelioration of ISL on HG-induced adverse effects. Our study demonstrated that ISL displayed preventive effects on HG-exposed GMCs through inhibiting JAK2/STAT3 pathway and provided an insight into the application of ISL for diabetic nephropathy (DN) treatment.
Collapse
Affiliation(s)
- Ziyuan Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Shufen Deng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| |
Collapse
|
64
|
Zagrebelsky M, Korte M. Are TrkB receptor agonists the right tool to fulfill the promises for a therapeutic value of the brain-derived neurotrophic factor? Neural Regen Res 2024; 19:29-34. [PMID: 37488840 PMCID: PMC10479861 DOI: 10.4103/1673-5374.374138] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 03/27/2023] [Indexed: 07/26/2023] Open
Abstract
Brain-derived neurotrophic factor signaling via its receptor tropomyosin receptor kinase B regulates several crucial physiological processes. It has been shown to act in the brain, promoting neuronal survival, growth, and plasticity as well as in the rest of the body where it is involved in regulating for instance aspects of the metabolism. Due to its crucial and very pleiotropic activity, reduction of brain-derived neurotrophic factor levels and alterations in the brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling have been found to be associated with a wide spectrum of neurological diseases. However, because of its poor bioavailability and pharmacological properties, brain-derived neurotrophic factor itself has a very low therapeutic value. Moreover, the concomitant binding of exogenous brain-derived neurotrophic factor to the p75 neurotrophin receptor has the potential to elicit several unwanted and deleterious side effects. Therefore, developing tools and approaches to specifically promote tropomyosin receptor kinase B signaling has become an important goal of translational research. Among the newly developed tools are different categories of tropomyosin receptor kinase B receptor agonist molecules. In this review, we give a comprehensive description of the different tropomyosin receptor kinase B receptor agonist drugs developed so far and of the results of their application in animal models of several neurological diseases. Moreover, we discuss the main benefits of tropomyosin receptor kinase B receptor agonists, concentrating especially on the new tropomyosin receptor kinase B agonist antibodies. The benefits observed both in vitro and in vivo upon application of tropomyosin receptor kinase B receptor agonist drugs seem to predominantly depend on their general neuroprotective activity and their ability to promote neuronal plasticity. Moreover, tropomyosin receptor kinase B agonist antibodies have been shown to specifically bind the tropomyosin receptor kinase B receptor and not p75 neurotrophin receptor. Therefore, while, based on the current knowledge, the tropomyosin receptor kinase B receptor agonists do not seem to have the potential to reverse the disease pathology per se, promoting brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling still has a very high therapeutic relevance.
Collapse
Affiliation(s)
- Marta Zagrebelsky
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany
| |
Collapse
|
65
|
Xia L, Li P, Bi W, Yang R, Zhang Y. CDK5R1 promotes Schwann cell proliferation, migration, and production of neurotrophic factors via CDK5/BDNF/TrkB after sciatic nerve injury. Neurosci Lett 2023; 817:137514. [PMID: 37848102 DOI: 10.1016/j.neulet.2023.137514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/25/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023]
Abstract
Cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) is necessary for central nervous system development and neuronal migration. At present, there are few reports about the role of CDK5R1 in peripheral nerve injury, and these need to be further explored. The CCK-8 and EdU assay was performed to examine cell proliferation. The migration ability of Schwann cells was tested by the cell scratch test. The apoptosis of Schwann cells was detected by flow cytometry. Sciatic nerve injury model in rats was established by crush injury. The sciatic function index (SFI) and the paw withdrawal mechanical threshold (PWMT) were measured at different time points. The results revealed that overexpression of CDK5R1 promoted the proliferation and migration of Schwann cells, and inhibited the apoptosis. Further studies found that pcDNA3.1-CDK5R1 significantly upregulated the expression of CDK5, BDNF and TrkB. More importantly, CDK5R1 promoted the recovery of nerve injury in rats. In addition, the CDK5 mediated BDNF/TrkB pathway was involved in the molecular mechanism of CDK5R1 on Schwann cells. It is suggested that the mechanism by which CDK5R1 promotes functional recovery after sciatic nerve injury is by CDK5 mediated activation of BDNF/TrkB signaling pathways.
Collapse
Affiliation(s)
- Lei Xia
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Hand Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Peng Li
- Department of Hand Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Wenchao Bi
- Department of Hand Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Ruize Yang
- Department of Hand Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Yuelin Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
66
|
Alexander C, Parsaee A, Vasefi M. Polyherbal and Multimodal Treatments: Kaempferol- and Quercetin-Rich Herbs Alleviate Symptoms of Alzheimer's Disease. BIOLOGY 2023; 12:1453. [PMID: 37998052 PMCID: PMC10669725 DOI: 10.3390/biology12111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder impairing cognition and memory in the elderly. This disorder has a complex etiology, including senile plaque and neurofibrillary tangle formation, neuroinflammation, oxidative stress, and damaged neuroplasticity. Current treatment options are limited, so alternative treatments such as herbal medicine could suppress symptoms while slowing cognitive decline. We followed PRISMA guidelines to identify potential herbal treatments, their associated medicinal phytochemicals, and the potential mechanisms of these treatments. Common herbs, including Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis, Cyperus rotundus, and Buplerum falcatum, produced promising pre-clinical results. These herbs are rich in kaempferol and quercetin, flavonoids with a polyphenolic structure that facilitate multiple mechanisms of action. These mechanisms include the inhibition of Aβ plaque formation, a reduction in tau hyperphosphorylation, the suppression of oxidative stress, and the modulation of BDNF and PI3K/AKT pathways. Using pre-clinical findings from quercetin research and the comparatively limited data on kaempferol, we proposed that kaempferol ameliorates the neuroinflammatory state, maintains proper cellular function, and restores pro-neuroplastic signaling. In this review, we discuss the anti-AD mechanisms of quercetin and kaempferol and their limitations, and we suggest a potential alternative treatment for AD. Our findings lead us to conclude that a polyherbal kaempferol- and quercetin-rich cocktail could treat AD-related brain damage.
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| | - Ali Parsaee
- Biological Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| |
Collapse
|
67
|
Jaberi S, Fahnestock M. Mechanisms of the Beneficial Effects of Exercise on Brain-Derived Neurotrophic Factor Expression in Alzheimer's Disease. Biomolecules 2023; 13:1577. [PMID: 38002258 PMCID: PMC10669442 DOI: 10.3390/biom13111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a key molecule in promoting neurogenesis, dendritic and synaptic health, neuronal survival, plasticity, and excitability, all of which are disrupted in neurological and cognitive disorders such as Alzheimer's disease (AD). Extracellular aggregates of amyloid-β (Aβ) in the form of plaques and intracellular aggregates of hyperphosphorylated tau protein have been identified as major pathological insults in the AD brain, along with immune dysfunction, oxidative stress, and other toxic stressors. Although aggregated Aβ and tau lead to decreased brain BDNF expression, early losses in BDNF prior to plaque and tangle formation may be due to other insults such as oxidative stress and contribute to early synaptic dysfunction. Physical exercise, on the other hand, protects synaptic and neuronal structure and function, with increased BDNF as a major mediator of exercise-induced enhancements in cognitive function. Here, we review recent literature on the mechanisms behind exercise-induced BDNF upregulation and its effects on improving learning and memory and on Alzheimer's disease pathology. Exercise releases into the circulation a host of hormones and factors from a variety of peripheral tissues. Mechanisms of BDNF induction discussed here are osteocalcin, FNDC5/irisin, and lactate. The fundamental mechanisms of how exercise impacts BDNF and cognition are not yet fully understood but are a prerequisite to developing new biomarkers and therapies to delay or prevent cognitive decline.
Collapse
Affiliation(s)
- Sama Jaberi
- Graduate Program in Neuroscience, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
68
|
Prevost R, Chretien B, Minoc EM, Dolladille C, Da-Silva A, Nehme A, Joly F, Lelong-Boulouard V, Bastien E. Neurocognitive impairment in females with breast cancer treated with endocrine therapy and CDK4/6 inhibitors: a pharmacovigilance study using the World Health Organization's database. Front Pharmacol 2023; 14:1278682. [PMID: 37927591 PMCID: PMC10622981 DOI: 10.3389/fphar.2023.1278682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Importance: Endocrine therapies (ETs) and inhibitors of cyclin-dependent kinases-4/6 (iCDK4/6s) are a standard treatment in breast cancer. However, data on potential neurocognitive impacts remain inconsistent for ET and are scarce for iCDK4/6s. Objective: To evaluate whether ET and iCDK4/6s are associated with neurocognitive impairment (NCI). Methods: We used observational, real-world cases of NCI from the World Health Organization's database VigiBase® to perform disproportionality analysis. Cases were defined as any symptom of NCI in females treated with ETs or iCDK4/6s. The study period was from the date of the first adverse event reported in VigiBase® with iCDK4/6s (1 January 2014) until the date of data extraction (16 March 2022). In our primary analysis, we calculated the reporting odds ratio (ROR) adjusted for age to identify a potential association between NCI and individual ETs in isolation or in combination with iCDK4/6s. We also performed subgroup analyses by the NCI class. Results: We identified 2.582 and 1.943 reports of NCI associated with ETs and iCDK4/6s, respectively. NCI was significantly associated with each ET [anastrozole: n = 405, aROR = 1.52 (95% CI: 1.37-1.67); letrozole: n = 741, aROR = 1.37 (95% CI: 1.27-1.47); exemestane: n = 316, aROR = 1.37 (95% CI: 1.22-1.53); tamoxifen: n = 311, aROR = 1.25 (95% CI: 1.12-1.40); and fulvestrant: n = 319, aROR = 1.19 (95% CI: 1.06-1.33)] and only with palbociclib for iCDK4/6s [n = 1,542, aROR = 1.41 (95% CI: 1.34-1.48)]. Conclusion: These findings suggest that in females treated for breast cancer, all ETs may be associated with NCI. However, amongst iCDK4/6s, NCI may be specific to palbociclib. NCI most frequently involved learning and memory as well as language. Neurocognitive impact of treatments requires better consideration and management.
Collapse
Affiliation(s)
- Rachel Prevost
- Department of Pharmacology, University Teaching Hospital of Caen-Normandie, Caen, France
| | - Basile Chretien
- Department of Pharmacology, University Teaching Hospital of Caen-Normandie, Caen, France
| | - Elise-Marie Minoc
- Department of Pharmacology, University Teaching Hospital of Caen-Normandie, Caen, France
- Normandie University, UNICAEN, INSERM COMETE, U1075, Caen, France
| | - Charles Dolladille
- Department of Pharmacology, University Teaching Hospital of Caen-Normandie, Caen, France
- Normandie University, UNICAEN, INSERM U1086 “Interdisciplinary Research Unit for Cancers Prevention and Treatment” (ANTICIPE), Caen, France
| | - Angélique Da-Silva
- Department of Pharmacology, University Teaching Hospital of Caen-Normandie, Caen, France
| | - Ahmad Nehme
- Department of Neurology, University Teaching Hospital of Caen-Normandie, Caen, France
| | - Florence Joly
- Normandie University, UNICAEN, INSERM U1086 “Interdisciplinary Research Unit for Cancers Prevention and Treatment” (ANTICIPE), Caen, France
- Comprehensive Cancer Center Baclesse, Unicancer, Caen, France
| | - Véronique Lelong-Boulouard
- Department of Pharmacology, University Teaching Hospital of Caen-Normandie, Caen, France
- Normandie University, UNICAEN, INSERM COMETE, U1075, Caen, France
| | - Etienne Bastien
- Department of Pharmacology, University Teaching Hospital of Caen-Normandie, Caen, France
- Comprehensive Cancer Center Baclesse, Unicancer, Caen, France
| |
Collapse
|
69
|
Zhang QQ, Qu Y. Brain-derived neurotrophic factor in degenerative retinal diseases: Update and novel perspective. J Neurosci Res 2023; 101:1624-1632. [PMID: 37334646 DOI: 10.1002/jnr.25226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
Dysfunction and death of neuronal cells are cardinal features of degenerative retinal diseases that are known to arise as the disease progresses. Increasingly evidence suggests that abnormal expression of brain-derived neurotrophic factor (BDNF) may serve as an obligatory relay of the dysfunction and death of neuronal cells in degenerative retinal diseases. Although disorder of BDNF, whether depletion or augmentation, has been connected with neuronal apoptosis and neuroinflammation, the exact mechanisms underlying the effect of impaired BDNF expression on degenerative retinal diseases remain unclear. Here, we present an overview of how BDNF is linked to pathological mechanism of retinal degenerative diseases, summarize BDNF-based treatment strategies, and discuss possible research perspectives in the future.
Collapse
Affiliation(s)
- Qing-Qing Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Qu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
70
|
Kim MS, Lee WS, Jin W. TrkB inhibition of DJ-1 degradation promotes the growth and maintenance of cancer stem cell characteristics in hepatocellular carcinoma. Cell Mol Life Sci 2023; 80:303. [PMID: 37749450 PMCID: PMC10520132 DOI: 10.1007/s00018-023-04960-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
Although TrkB may be associated with the pathogenesis of various cancer by upregulation, how upregulation of TrkB led to tumor progression in hepatocellular carcinoma (HCC) and the signaling mechanisms by which TrkB induces motility, invasion, metastasis, drug resistance, and acquisition of self-renewal traits has remained unclear. Here, we demonstrated that TrkB was significantly upregulated in highly metastatic HCC cells and HCC patients. Also, the increased TrkB levels were significantly correlated with tumor stages and poor survival of HCC patients. Furthermore, the upregulated TrkB expression enhances the metastatic ability of HCC cells through reduced anoikis sensitivity, induced migration, and colony formation. Most strikingly, TrkB markedly enhances the activation of STAT3 by preventing DJ-1 degradation through the formation of the TrkB/DJ-1 complex. This signaling mechanism is responsible for triggering cellular traits of highly aggressive HCC. The activation of the EMT program of HCC via increasing DJ-1 stability by TrkB induces the gain of cancer stem cell states and chemoresistance via the upregulation of stem cells cell markers and ABC transporters. Also, TrkB-mediated inhibition of DJ-1 degradation promotes tumor formation and metastasizes to other organs in vivo. Our observations illustrate that TrkB is a prognostic and therapeutic targeting in promoting aggressiveness and metastasis of HCC.
Collapse
Affiliation(s)
- Min Soo Kim
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Won Sung Lee
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Korea
| | - Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
71
|
Shu L, Du C, Zuo Y. Abnormal phosphorylation of protein tyrosine in neurodegenerative diseases. J Neuropathol Exp Neurol 2023; 82:826-835. [PMID: 37589710 DOI: 10.1093/jnen/nlad066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis, are chronic disorders of the CNS that are characterized by progressive neuronal dysfunction. These diseases have diverse clinical and pathological features and their pathogenetic mechanisms are not yet fully understood. Currently, widely accepted hypotheses include the accumulation of misfolded proteins, oxidative stress from reactive oxygen species, mitochondrial dysfunction, DNA damage, neurotrophin dysfunction, and neuroinflammatory processes. In the CNS of patients with neurodegenerative diseases, a variety of abnormally phosphorylated proteins play important roles in pathological processes such as neuroinflammation and intracellular accumulation of β-amyloid plaques and tau. In recent years, the roles of abnormal tyrosine phosphorylation of intracellular signaling molecules regulated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) in neurodegenerative diseases have attracted increasing attention. Here, we summarize the roles of signaling pathways related to protein tyrosine phosphorylation in the pathogenesis of neurodegenerative diseases and the progress of therapeutic studies targeting PTKs and PTPs that provide theoretical support for future studies on therapeutic strategies for these devastating and important neurodegenerative diseases.
Collapse
Affiliation(s)
- Lijuan Shu
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology Intensive Care Unit, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chunfu Du
- Department of Neurosurgery, Ya'an People's Hospital, Ya'an, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
72
|
Latif-Hernandez A, Yang T, Raymond-Butler R, Losada PM, Minhas P, White H, Tran KC, Liu H, Simmons DA, Langness V, Andreasson K, Wyss-Coray T, Longo FM. A TrkB and TrkC partial agonist restores deficits in synaptic function and promotes activity-dependent synaptic and microglial transcriptomic changes in a late-stage Alzheimer's mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558138. [PMID: 37781573 PMCID: PMC10541128 DOI: 10.1101/2023.09.18.558138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Introduction TrkB and TrkC receptor signaling promotes synaptic plasticity and interacts with pathways affected by amyloid-β (Aβ)-toxicity. Upregulating TrkB/C signaling could reduce Alzheimer's disease (AD)-related degenerative signaling, memory loss, and synaptic dysfunction. Methods PTX-BD10-2 (BD10-2), a small molecule TrkB/C receptor partial agonist, was orally administered to aged London/Swedish-APP mutant mice (APP L/S ) and wild-type controls (WT). Effects on memory and hippocampal long-term potentiation (LTP) were assessed using electrophysiology, behavioral studies, immunoblotting, immunofluorescence staining, and RNA-sequencing. Results Memory and LTP deficits in APP L/S mice were attenuated by treatment with BD10-2. BD10-2 prevented aberrant AKT, CaMKII, and GLUA1 phosphorylation, and enhanced activity-dependent recruitment of synaptic proteins. BD10-2 also had potentially favorable effects on LTP-dependent complement pathway and synaptic gene transcription. Conclusions BD10-2 prevented APP L/S /Aβ-associated memory and LTP deficits, reduced abnormalities in synapse-related signaling and activity-dependent transcription of synaptic genes, and bolstered transcriptional changes associated with microglial immune response.
Collapse
|
73
|
Numakawa T, Kajihara R. Involvement of brain-derived neurotrophic factor signaling in the pathogenesis of stress-related brain diseases. Front Mol Neurosci 2023; 16:1247422. [PMID: 37781095 PMCID: PMC10537938 DOI: 10.3389/fnmol.2023.1247422] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Neurotrophins including brain-derived neurotrophic factor, BDNF, have critical roles in neuronal differentiation, cell survival, and synaptic function in the peripheral and central nervous system. It is well known that a variety of intracellular signaling stimulated by TrkB, a high-affinity receptor for BDNF, is involved in the physiological and pathological neuronal aspects via affecting cell viability, synaptic function, neurogenesis, and cognitive function. As expected, an alteration of the BDNF/TrkB system is suspected to be one of the molecular mechanisms underlying cognitive decline in cognitive diseases and mental disorders. Recent evidence has also highlighted a possible link between the alteration of TrkB signaling and chronic stress. Furthermore, it has been demonstrated that downregulation of the BDNF/TrkB system and chronic stress have a role in the pathogenesis of Alzheimer's disease (AD) and mental disorders. In this review, we introduce current evidence showing a close relationship between the BDNF/TrkB system and the development of cognition impairment in stress-related disorders, and the possible contribution of the upregulation of the BDNF/TrkB system in a therapeutic approach against these brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryutaro Kajihara
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
74
|
Das SS, Gopal PM, Thomas JV, Mohan MC, Thomas SC, Maliakel BP, Krishnakumar IM, Pulikkaparambil Sasidharan BC. Influence of CurQfen ®-curcumin on cognitive impairment: a randomized, double-blinded, placebo-controlled, 3-arm, 3-sequence comparative study. FRONTIERS IN DEMENTIA 2023; 2:1222708. [PMID: 39081970 PMCID: PMC11285547 DOI: 10.3389/frdem.2023.1222708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2024]
Abstract
Background Although curcumin is a blood-brain-barrier permeable molecule with the ability to bind and segregate β-amyloid plaques and neurofibrillary tangles of hyperphosphorylated tau proteins, its poor oral bioavailability, rapid biotransformation to inactive metabolites, fast elimination from the systemic circulation, and hence the poor neuronal uptake has been limiting its clinical efficacy under neurodegenerative conditions. Objective We hypothesized that the highly bioavailable CurQfen-curcumin (CGM), which has been shown to possess significant blood-brain-barrier permeability and brain bioavailability, would ameliorate dementia in neurodegenerative conditions. Methods In the present double-blinded placebo-controlled 3-arm 3-sequence comparative study, 48 subjects characterized with moderate dementia due to the onset of Alzheimer's disease were randomized into three groups (N = 16/group) and supplemented with 400 mg × 2/day of either placebo (MCC), unformulated standard curcumin complex with 95% purity (USC), or CGM as a sachet for six months. The relative changes in cognitive and locomotor functions and biochemical markers were compared. Results Supplementation with CGM produced significant (P < 0.05) improvement in the Mini-Mental State Examination (MMSE) and the Geriatric Locomotive Function Scale (GLFS) scores in both intra- and inter-group comparison by 2 × 2 repeated measures (RM) ANOVA. Further, analysis of the serum levels of specific biomarkers (BDNF, Aβ42, tau protein, IL-6, and TNF-α) also revealed a significant (P < 0.05) improvement among CGM subjects as compared to placebo and the USC groups. Conclusion Supplementation with CGM as sachet was found to offer significant delay in the progress of Alzheimer's disease, as evident from the improvements in locomotive and cognitive functions related to dementia. Clinical trial registration http://ctri.nic.in, identifier: CTRI/2018/03/012410.
Collapse
Affiliation(s)
- S. Syam Das
- Akay Natural Ingredients, Kochi, Kerala, India
| | - Prasad M. Gopal
- Alzheimer's and Related Disorders Society of India, Kochi, Kerala, India
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Jestin V. Thomas
- Leads Clinical Research & Bio Services Private Limited, Bengaluru, India
| | - Mohind C. Mohan
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Siju C. Thomas
- Alzheimer's and Related Disorders Society of India, Kochi, Kerala, India
| | | | | | - Baby Chakrapani Pulikkaparambil Sasidharan
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
- Centre for Excellence in Neurodegeneration and Brain Health, Kochi, Kerala, India
| |
Collapse
|
75
|
Kwon H, Lee EH, Park SY, Park JY, Hong JH, Kim EK, Shin TS, Kim YK, Han PL. Lactobacillus-derived extracellular vesicles counteract Aβ42-induced abnormal transcriptional changes through the upregulation of MeCP2 and Sirt1 and improve Aβ pathology in Tg-APP/PS1 mice. Exp Mol Med 2023; 55:2067-2082. [PMID: 37704750 PMCID: PMC10545704 DOI: 10.1038/s12276-023-01084-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 09/15/2023] Open
Abstract
Mounting evidence suggests that probiotics are beneficial for treating Alzheimer's disease (AD). However, the mechanisms by which specific probiotics modify AD pathophysiology are not clearly understood. In this study, we investigated whether Lactobacillus paracasei-derived extracellular vesicles (Lpc-EV) can directly act on neuronal cells to modify amyloid-beta (Aβ)-induced transcriptional changes and Aβ pathology in the brains of Tg-APP/PS1 mice. Lpc-EV treatment in HT22 neuronal cells counteracts Aβ-induced downregulation of Brain-derived neurotrophic factor (Bdnf), Neurotrophin 3 (Nt3), Nt4/5, and TrkB receptor, and reverses Aβ-induced altered expression of diverse nuclear factors, including the downregulation of Methyl-CpG binding protein 2 (Mecp2) and Sirtuin 1 (Sirt1). Systematic siRNA-mediated knockdown experiments indicate that the upregulation of Bdnf, Nt3, Nt4/5, and TrkB by Lpc-EV is mediated via multiple epigenetic factors whose activation converges on Mecp2 and Sirt1. In addition, Lpc-EV reverses Aβ-induced downregulation of the Aβ-degrading proteases Matrix metalloproteinase 2 (Mmp-2), Mmp-9, and Neprilysin (Nep), whose upregulation is also controlled by MeCP2 and Sirt1. Lpc-EV treatment restores the downregulated expression of Bdnf, Nt4/5, TrkB, Mmp-2, Mmp-9, and Nep; induces the upregulation of MeCP2 and Sirt1 in the hippocampus; alleviates Aβ accumulation and neuroinflammatory responses in the brain; and mitigates cognitive decline in Tg-APP/PS1 mice. These results suggest that Lpc-EV cargo contains a neuroactive component that upregulates the expression of neurotrophic factors and Aβ-degrading proteases (Mmp-2, Mmp-9, and Nep) through the upregulation of MeCP2 and Sirt1, and ameliorates Aβ pathology and cognitive deficits in Tg-APP/PS1 mice.
Collapse
Affiliation(s)
- Hyejin Kwon
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - So-Young Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jin-Young Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jin-Hwan Hong
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun-Kyung Kim
- MD Healthcare Inc., Rm 1403 Woori Technology Bldg, World Cup Buk-Ro 56-Gil, Mapo-Gu, Seoul, 03923, Republic of Korea
| | - Tae-Seop Shin
- MD Healthcare Inc., Rm 1403 Woori Technology Bldg, World Cup Buk-Ro 56-Gil, Mapo-Gu, Seoul, 03923, Republic of Korea
| | - Yoon-Keun Kim
- MD Healthcare Inc., Rm 1403 Woori Technology Bldg, World Cup Buk-Ro 56-Gil, Mapo-Gu, Seoul, 03923, Republic of Korea.
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
76
|
Nelson ML, Pfeifer JA, Hickey JP, Collins AE, Kalisch BE. Exploring Rosiglitazone's Potential to Treat Alzheimer's Disease through the Modulation of Brain-Derived Neurotrophic Factor. BIOLOGY 2023; 12:1042. [PMID: 37508471 PMCID: PMC10376118 DOI: 10.3390/biology12071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/24/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that debilitates over 55 million individuals worldwide. Currently, treatments manage and alleviate its symptoms; however, there is still a need to find a therapy that prevents or halts disease progression. Since AD has been labeled as "type 3 diabetes" due to its similarity in pathological hallmarks, molecular pathways, and comorbidity with type 2 diabetes mellitus (T2DM), there is growing interest in using anti-diabetic drugs for its treatment. Rosiglitazone (RSG) is a peroxisome proliferator-activated receptor-gamma agonist that reduces hyperglycemia and hyperinsulinemia and improves insulin signaling. In cellular and rodent models of T2DM-associated cognitive decline and AD, RSG has been reported to improve cognitive impairment and reverse AD-like pathology; however, results from human clinical trials remain consistently unsuccessful. RSG has also been reported to modulate the expression of brain-derived neurotrophic factor (BDNF), a protein that regulates neuroplasticity and energy homeostasis and is implicated in both AD and T2DM. The present review investigates RSG's limitations and potential therapeutic benefits in pre-clinical models of AD through its modulation of BDNF expression.
Collapse
Affiliation(s)
- Mackayla L Nelson
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Julia A Pfeifer
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jordan P Hickey
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andrila E Collins
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bettina E Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
77
|
Rodriguez LA, Tran MN, Garcia-Flores R, Pattie EA, Divecha HR, Kim SH, Shin JH, Lee YK, Montoya C, Jaffe AE, Collado-Torres L, Page SC, Martinowich K. TrkB-dependent regulation of molecular signaling across septal cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547069. [PMID: 37425939 PMCID: PMC10327212 DOI: 10.1101/2023.06.29.547069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The lateral septum (LS), a GABAergic structure located in the basal forebrain, is implicated in social behavior, learning and memory. We previously demonstrated that expression of tropomyosin kinase receptor B (TrkB) in LS neurons is required for social novelty recognition. To better understand molecular mechanisms by which TrkB signaling controls behavior, we locally knocked down TrkB in LS and used bulk RNA-sequencing to identify changes in gene expression downstream of TrkB. TrkB knockdown induces upregulation of genes associated with inflammation and immune responses, and downregulation of genes associated with synaptic signaling and plasticity. Next, we generated one of the first atlases of molecular profiles for LS cell types using single nucleus RNA-sequencing (snRNA-seq). We identified markers for the septum broadly, and the LS specifically, as well as for all neuronal cell types. We then investigated whether the differentially expressed genes (DEGs) induced by TrkB knockdown map to specific LS cell types. Enrichment testing identified that downregulated DEGs are broadly expressed across neuronal clusters. Enrichment analyses of these DEGs demonstrated that downregulated genes are uniquely expressed in the LS, and associated with either synaptic plasticity or neurodevelopmental disorders. Upregulated genes are enriched in LS microglia, associated with immune response and inflammation, and linked to both neurodegenerative disease and neuropsychiatric disorders. In addition, many of these genes are implicated in regulating social behaviors. In summary, the findings implicate TrkB signaling in the LS as a critical regulator of gene networks associated with psychiatric disorders that display social deficits, including schizophrenia and autism, and with neurodegenerative diseases, including Alzheimer's.
Collapse
Affiliation(s)
- Lionel A. Rodriguez
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Matthew Nguyen Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Renee Garcia-Flores
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Elizabeth A. Pattie
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Heena R. Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Sun Hong Kim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Carly Montoya
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Andrew E. Jaffe
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stephanie C. Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Keri Martinowich
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
78
|
Xiong J, Zhang Z, Ye K. C/EBPβ/AEP Signaling Drives Alzheimer's Disease Pathogenesis. Neurosci Bull 2023; 39:1173-1185. [PMID: 36735152 PMCID: PMC10313643 DOI: 10.1007/s12264-023-01025-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Almost two-thirds of patients with AD are female. The reason for the higher susceptibility to AD onset in women is unclear. However, hormone changes during the menopausal transition are known to be associated with AD. Most recently, we reported that follicle-stimulating hormone (FSH) promotes AD pathology and enhances cognitive dysfunctions via activating the CCAAT-enhancer-binding protein (C/EBPβ)/asparagine endopeptidase (AEP) pathway. This review summarizes our current understanding of the crucial role of the C/EBPβ/AEP pathway in driving AD pathogenesis by cleaving multiple critical AD players, including APP and Tau, explaining the roles and the mechanisms of FSH in increasing the susceptibility to AD in postmenopausal females. The FSH-C/EBPβ/AEP pathway may serve as a novel therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology (SIAT), Shenzhen, 518034, China.
| |
Collapse
|
79
|
Hashemi P, Ahmadi S. Alpha-pinene moderates memory impairment induced by kainic acid via improving the BDNF/TrkB/CREB signaling pathway in rat hippocampus. Front Mol Neurosci 2023; 16:1202232. [PMID: 37456525 PMCID: PMC10347414 DOI: 10.3389/fnmol.2023.1202232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The potential benefits of natural ingredients in the alleviation of neurodegenerative disorders are of great interest. Alpha-pinene (APN) is an essential oil belonging to monoterpenes with multiple beneficial effects. In this study, the possible improving effects of alpha-pinene on memory impairment induced by kainic acid and the underlying molecular mechanisms were examined. Methods Memory impairment was induced by i.c.v. injection of kainic acid (KA) in male Wistar rats. Alpha-pinene (50 mg/kg/day, i.p.) was injected for 21 days, including 14 days before the KA injection and seven days afterward. Spatial working memory and inhibitory avoidance (IA) memory performance were assessed five and even days following KA injection, respectively. The hippocampal protein levels of brain-derived neurotrophic factor (BDNF), tropomyosin-like receptor kinase B (TrkB), cAMP response element binding protein (CREB), and neuronal loss in the CA1 region were also examined. Results Results revealed that the i.c.v. injection of KA triggered memory impairment, which was notably diminished by alpha-pinene pre-and post-treatment. Histopathological evaluation revealed that alpha-pinene significantly moderated the attenuation in CA1 alive neurons induced by KA injection. Western blotting analysis confirmed that alpha-pinene pre-and post-treatment significantly reversed the KA-induced decreases in the hippocampal levels of BDNF, TrkB, phosphorylated TrkB, CREB, and phosphorylated CREB. Discussion These findings suggest that alpha-pinene pre-and post-treatment moderate memory impairment induced by KA by restoring the BDNF/TrkB/CREB signaling pathway in the rat hippocampus.
Collapse
|
80
|
Doroszkiewicz J, Mroczko J, Rutkowski P, Mroczko B. Molecular Aspects of a Diet as a New Pathway in the Prevention and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:10751. [PMID: 37445928 PMCID: PMC10341644 DOI: 10.3390/ijms241310751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease is the most common cause of dementia in the world. Lack of an established pathology makes it difficult to develop suitable approaches and treatment for the disease. Besides known hallmarks, including amyloid β peptides cumulating in plaques and hyperphosphorylated tau forming NFTs, inflammation also plays an important role, with known connections to the diet. In AD, adhering to reasonable nutrition according to age-related principles is recommended. The diet should be high in neuroprotective foods, such as polyunsaturated fatty acids, antioxidants, and B vitamins. In addition, foods capable of rising BDNF should be considered because of the known profitable results of this molecule in AD. Adhering to beneficial diets might result in improvements in memory, cognition, and biomarkers and might even reduce the risk of developing AD. In this review, we discuss the effects of various diets, foods, and nutrients on brain health and possible connections to Alzheimer's disease.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-089 Bialystok, Poland; (J.M.); (B.M.)
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-089 Bialystok, Poland; (J.M.); (B.M.)
| | | | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-089 Bialystok, Poland; (J.M.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-089 Bialystok, Poland
| |
Collapse
|
81
|
Yang SJ, Wang JJ, Cheng P, Chen LX, Hu JM, Zhu GQ. Ginsenoside Rg1 in neurological diseases: From bench to bedside. Acta Pharmacol Sin 2023; 44:913-930. [PMID: 36380226 PMCID: PMC10104881 DOI: 10.1038/s41401-022-01022-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Ginseng has been used in China as a superior medicinal material for thousands of years that can nourish the five internal organs, calm the mind and benefit wisdom. Due to its anti-inflammatory, antioxidant and neuroprotective activities, one of the active components of ginseng, ginsenoside Rg1, has been extensively investigated in the remedy of brain disorders, especially dementia and depression. In this review, we summarized the research progress on the action mechanisms of Rg1 ameliorating depression-like behaviors, including inhibition of hyperfunction of hypothalamic-pituitary-adrenal (HPA) axis, regulation of synaptic plasticity and gut flora. Rg1 may alleviate Alzheimer's disease in the early phase, as well as in the middle-late phases through repairing dendrite, axon and microglia- and astrocyte-related inflammations. We also proposed that Rg1 could regulate memory state (the imbalance of working and aversive memory) caused by distinct stimuli. These laboratory studies would further the clinical trials on Rg1. From the prospective of drug development, we discussed the limitations of the present investigations and proposed our ideas to increase permeability and bioavailability of Rg1. Taken together, Rg1 has the potential to treat neuropsychiatric disorders, but a future in-depth investigation of the mechanisms is still required. In addition, drug development will benefit from the clinical trials in one specific neuropsychiatric disorder.
Collapse
Affiliation(s)
- Shao-Jie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing-Ji Wang
- The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China.
| | - Ping Cheng
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Li-Xia Chen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jia-Min Hu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guo-Qi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
82
|
Islam J, Shila TT, Islam Z, Kabir E, Haque N, Khatun M, Khan S, Jubayar AM, Islam F, Nikkon F, Hossain K, Saud ZA. Clerodendrum viscosum leaves attenuate lead-induced neurotoxicity through upregulation of BDNF-Akt-Nrf2 pathway in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116024. [PMID: 36549369 DOI: 10.1016/j.jep.2022.116024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/20/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clerodendrum viscosum is an important medicinal plant in Ayurveda in Bangladesh and its leaves are used as a remedy for various diseases such as anti-inflammatory, antibacterial, hyperglycemic, hepatoprotective effects. AIM OF THE STUDY The present study aimed to evaluate the protective effect of aqueous extract of C. viscosum leaves against Pb-induced neurobehavioral and biochemical changes in mice. MATERIALS AND METHODS Swiss albino mice were divided as a) control, b) lead treated (Pb) and c) C. viscosum leaves (Cle) d) Pb plus Cle groups. Pb-acetate (10 mg/kg body weight) was given to Pb and Pb + Cle groups mice, and water extract of leaves (50 mg/kg body weight) was provided as supplementation to Cle and Pb + Cle groups mice for 30 days. Elevated plus maze and Morris water maze tests were used for evaluating anxiety, spatial memory and learning, respectively. Status of cholinesterase, SOD, GSH enzyme activity and neurotoxicity markers such BDNF and Nrf2 levels were analyzed in the brain tissue of experimental mice. RESULTS Poorer learning, inferior spatial memory, and increased anxiety-like behavior in Pb-exposure mice were noted when compared to control mice in Morris water maze and elevated plus maze test, respectively. In addition, expression of BDNF and Nrf2, cholinesterase activity along with antioxidant activity were significantly reduced compared to control group (p < 0.01). Interestingly, C. viscosum leaves' aqueous extract supplementation in Pb-exposed mice provide a significant improved neurochemical and antioxidant properties through the augmentation of activity of cholinergic enzymes, and upregulation of BDNF and Nrf2 levels in the brain tissue compared to Pb-exposed mice. CONCLUSIONS This study suggested that C. viscosum leaves restore the cognitive dysfunction and reduce anxiety-like behavior through upregulation of BDNF mediated Akt-Nrf2 pathway in Pb-exposure mice.
Collapse
Affiliation(s)
- Jahidul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Tasnim Tabassum Shila
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Zohurul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Ehsanul Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Nazmul Haque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Moriom Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Shuchismita Khan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Ahsanul Mahbub Jubayar
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Farjana Nikkon
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
83
|
Nikolac Perkovic M, Borovecki F, Filipcic I, Vuic B, Milos T, Nedic Erjavec G, Konjevod M, Tudor L, Mimica N, Uzun S, Kozumplik O, Svob Strac D, Pivac N. Relationship between Brain-Derived Neurotrophic Factor and Cognitive Decline in Patients with Mild Cognitive Impairment and Dementia. Biomolecules 2023; 13:biom13030570. [PMID: 36979505 PMCID: PMC10046678 DOI: 10.3390/biom13030570] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
In the last decade, increasing evidence has emerged linking alterations in the brain-derived neurotrophic factor (BDNF) expression with the development of Alzheimer's disease (AD). Because of the important role of BDNF in cognition and its association with AD pathogenesis, the aim of this study was to evaluate the potential difference in plasma BDNF concentrations between subjects with mild cognitive impairment (MCI; N = 209) and AD patients (N = 295) and to determine the possible association between BDNF plasma levels and the degree of cognitive decline in these individuals. The results showed a significantly higher (p < 0.001) concentration of plasma BDNF in subjects with AD (1.16; 0.13-21.34) compared with individuals with MCI (0.68; 0.02-19.14). The results of the present study additionally indicated a negative correlation between cognitive functions and BDNF plasma concentrations, suggesting higher BDNF levels in subjects with more pronounced cognitive decline. The correlation analysis revealed a significant negative correlation between BDNF plasma levels and both Mini-Mental State Examination (p < 0.001) and Clock Drawing test (p < 0.001) scores. In conclusion, the results of our study point towards elevated plasma BDNF levels in AD patients compared with MCI subjects, which may be due to the body's attempt to counteract the early and middle stages of neurodegeneration.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Fran Borovecki
- Department of Neurology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Igor Filipcic
- Psychiatric Hospital "Sveti Ivan", 10090 Zagreb, Croatia
| | - Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Suzana Uzun
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, 49000 Krapina, Croatia
| |
Collapse
|
84
|
Holzner C, Böttinger K, Blöchl C, Huber CG, Dahms SO, Dall E, Brandstetter H. Legumain Functions as a Transient TrkB Sheddase. Int J Mol Sci 2023; 24:ijms24065394. [PMID: 36982466 PMCID: PMC10049731 DOI: 10.3390/ijms24065394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
While primarily found in endo-lysosomal compartments, the cysteine protease legumain can also translocate to the cell surface if stabilized by the interaction with the RGD-dependent integrin receptor αVβ3. Previously, it has been shown that legumain expression is inversely related to BDNF-TrkB activity. Here we show that legumain can conversely act on TrkB-BDNF by processing the C-terminal linker region of the TrkB ectodomain in vitro. Importantly, when in complex with BDNF, TrkB was not cleaved by legumain. Legumain-processed TrkB was still able to bind BDNF, suggesting a potential scavenger function of soluble TrkB towards BDNF. The work thus presents another mechanistic link explaining the reciprocal TrkB signaling and δ-secretase activity of legumain, with relevance for neurodegeneration.
Collapse
|
85
|
Choi GY, Kim HB, Hwang ES, Park HS, Cho JM, Ham YK, Kim JH, Mun MK, Maeng S, Park JH. Naringin enhances long-term potentiation and recovers learning and memory deficits of amyloid-beta induced Alzheimer's disease-like behavioral rat model. Neurotoxicology 2023; 95:35-45. [PMID: 36549596 DOI: 10.1016/j.neuro.2022.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD), as the most typical type of dementia, is a chronic neurodegenerative disorder characterized by progressive learning and memory impairment. It is known that the main causes of AD are the accumulation of β-amyloid (Aβ) plaques and neurofibrillary tangles (NFT) containing hyperphosphorylated tau protein. Naringin is a flavonoid from citrus fruits, especially in grapefruit, which has anti-inflammatory, antioxidant, anti-apoptotic, and neuroprotective activities. However, the effect of naringin in AD caused by Aβ has not been clearly studied, and there are few studies on the electrophysiological aspect. Thus, we investigated the ex vivo neuroprotective effect of naringin through the long-term potentiation (LTP) on organotypic hippocampal slice cultures. We evaluated the in vivo effects of naringin (100 mg/kg/day) orally treated for 20 days on learning, memory, and cognition which was impaired by bilateral CA1 subregion injection of Aβ. Cognitive behaviors were measured 2 weeks after Aβ injection using behavioral tests and the hippocampal expression of apoptotic and neurotrophic regulators were measured by immunoblotting. In hippocampal tissue slices, naringin dose-dependently increased the field excitatory postsynaptic potential (fEPSP) after theta burst stimulation and attenuated Aβ-induced blockade of fEPSP in the hippocampal CA1 area. In Aβ injected rats, naringin improved object recognition memory in the novel object test, avoidance memory in the passive avoidance test and spatial recognition memory in the Morris water maze test. In the hippocampus, naringin attenuated the Aβ-induced cyclooxygenase-2, Bax activation and Bcl-2, CREB, BDNF and TrkB inhibition. These results suggest that naringin has therapeutic potential to reduce neuronal inflammation and apoptosis induced by Aβ related with the BDNF/TrkB/CREB signaling.
Collapse
Affiliation(s)
- Ga-Young Choi
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Hyun-Bum Kim
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eun-Sang Hwang
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ho-Sub Park
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jae-Min Cho
- Graduate School of Biotechnology, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Young-Ki Ham
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jin-Hee Kim
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Mi-Kyung Mun
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Sungho Maeng
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Ji-Ho Park
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
86
|
Numakawa T, Kajihara R. Neurotrophins and Other Growth Factors in the Pathogenesis of Alzheimer’s Disease. Life (Basel) 2023; 13:life13030647. [PMID: 36983803 PMCID: PMC10051261 DOI: 10.3390/life13030647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The involvement of the changed expression/function of neurotrophic factors in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD), has been suggested. AD is one of the age-related dementias, and is characterized by cognitive impairment with decreased memory function. Developing evidence demonstrates that decreased cell survival, synaptic dysfunction, and reduced neurogenesis are involved in the pathogenesis of AD. On the other hand, it is well known that neurotrophic factors, especially brain-derived neurotrophic factor (BDNF) and its high-affinity receptor TrkB, have multiple roles in the central nervous system (CNS), including neuronal maintenance, synaptic plasticity, and neurogenesis, which are closely linked to learning and memory function. Thus, many investigations regarding therapeutic approaches to AD, and/or the screening of novel drug candidates for its treatment, focus on upregulation of the BDNF/TrkB system. Furthermore, current studies also demonstrate that GDNF, IGF1, and bFGF, which play roles in neuroprotection, are associated with AD. In this review, we introduce data demonstrating close relationships between the pathogenesis of AD, neurotrophic factors, and drug candidates, including natural compounds that upregulate the BDNF-mediated neurotrophic system.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Correspondence:
| | - Ryutaro Kajihara
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
87
|
Hauser KF, Ohene-Nyako M, Knapp PE. Accelerated brain aging with opioid misuse and HIV: New insights on the role of glially derived pro-inflammation mediators and neuronal chloride homeostasis. Curr Opin Neurobiol 2023; 78:102653. [PMID: 36584655 PMCID: PMC9933139 DOI: 10.1016/j.conb.2022.102653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 12/29/2022]
Abstract
Opioid use disorder (OUD) has become a national crisis and contributes to the spread of human immunodeficiency virus (HIV) infection. Emerging evidence and advances in experimental models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal that opioids per se can directly exacerbate the pathophysiology of neuroHIV. Despite substantial inroads, the impact of OUD on the severity, development, and prognosis of neuroHIV and HIV-associated neurocognitive disorders is not fully understood. In this review, we explore current evidence that OUD and neuroHIV interact to accelerate cognitive deficits and enhance the neurodegenerative changes typically seen with aging, through their effects on neuroinflammation. We suggest new thoughts on the processes that may underlie accelerated brain aging, including dysregulation of neuronal inhibition, and highlight findings suggesting that opioids, through actions at the μ-opioid receptor, interact with HIV in the central nervous system to promote unique structural and functional comorbid deficits not seen in either OUD or neuroHIV alone.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0709, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, Virginia 23298-0059, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0709, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, Virginia 23298-0059, USA.
| |
Collapse
|
88
|
Kouter K, Nikolac Perkovic M, Nedic Erjavec G, Milos T, Tudor L, Uzun S, Mimica N, Pivac N, Videtic Paska A. Difference in Methylation and Expression of Brain-Derived Neurotrophic Factor in Alzheimer's Disease and Mild Cognitive Impairment. Biomedicines 2023; 11:235. [PMID: 36830773 PMCID: PMC9953261 DOI: 10.3390/biomedicines11020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Due to the increasing number of progressive dementias in the population, numerous studies are being conducted that seek to determine risk factors, biomarkers and pathological mechanisms that could help to differentiate between normal symptoms of aging, mild cognitive impairment (MCI) and dementia. The aim of this study was to investigate the possible association of levels of BDNF and COMT gene expression and methylation in peripheral blood cells with the development of Alzheimer's disease (AD). Our results revealed higher expression levels of BDNF (p < 0.001) in MCI subjects compared to individuals diagnosed with AD. However, no difference in COMT gene expression (p = 0.366) was detected. DNA methylation of the CpG islands and other sequences with potential effects on gene expression regulation revealed just one region (BDNF_9) in the BDNF gene (p = 0.078) with marginally lower levels of methylation in the AD compared to MCI subjects. Here, we show that the level of BDNF expression in the periphery is decreased in subjects with AD compared to individuals with MCI. The combined results from the gene expression analysis and DNA methylation analysis point to the potential of BDNF as a marker that could help distinguish between MCI and AD patients.
Collapse
Affiliation(s)
- Katarina Kouter
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Alja Videtic Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
89
|
Golzari-Sorkheh M, Weaver DF, Reed MA. COVID-19 as a Risk Factor for Alzheimer's Disease. J Alzheimers Dis 2023; 91:1-23. [PMID: 36314211 DOI: 10.3233/jad-220800] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Severe acute respiratory disease coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although a primarily respiratory disease, recent reports indicate that it also affects the central nervous system (CNS). Over 25% of COVID-19 patients report neurological symptoms such as memory loss, anosmia, hyposmia, confusion, and headaches. The neurological outcomes may be a result of viral entry into the CNS and/or resulting neuroinflammation, both of which underlie an elevated risk for Alzheimer's disease (AD). Herein, we ask: Is COVID-19 a risk factor for AD? To answer, we identify the literature and review mechanisms by which COVID-19-mediated neuroinflammation can contribute to the development of AD, evaluate the effects of acute versus chronic phases of infection, and lastly, discuss potential therapeutics to address the rising rates of COVID-19 neurological sequelae.
Collapse
Affiliation(s)
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Chemistry, University of Toronto, Toronto, ON, Canada.,Department of Pharmaceutical Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
90
|
Farid MF, Abouelela YS, Yasin NAE, Al-Mokaddem AK, Prince A, Ibrahim MA, Rizk H. Laser-activated autologous adipose tissue-derived stromal vascular fraction restores spinal cord architecture and function in multiple sclerosis cat model. Stem Cell Res Ther 2023; 14:6. [PMID: 36627662 PMCID: PMC9832640 DOI: 10.1186/s13287-022-03222-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is the most frequent non-traumatic neurological debilitating disease among young adults with no cure. Over recent decades, efforts to treat neurodegenerative diseases have shifted to regenerative cell therapy. Adipose tissue-derived stromal vascular fraction (SVF) comprises a heterogeneous cell population, considered an easily accessible source of MSCs with therapeutic potential in autoimmune diseases. This study aimed to assess the regenerative capacity of low-level laser-activated SVF in an MS cat model. METHODS Fifteen adult Persian cats were used in this study: Group I (control negative group, normal cats), Group II (EB-treated group, induced for MS by ethidium bromide (EB) intrathecal injection), and Group III (SVF co-treated group, induced for MS then treated with SVF on day 14 post-induction). The SVF was obtained after digesting the adipose tissue with collagenase type I and injecting it intrathecal through the foramen magnum. RESULTS The results showed that the pelvic limb's weight-bearing locomotion activity was significantly (P ≤ 0.05) recovered in Group III, and the Basso, Beattie, and Bresnahan (BBB) scores of hindlimb locomotion were significantly higher in Group III (14 ± 0.44) than Group II (4 ± 0.31). The lesion's extent and intensity were reduced in the magnetic resonance imaging (MRI) of Group III. Besides, the same group showed a significant increase in the expression of neurotrophic factors: BDNF, SDF and NGF (0.61 ± 0.01, 0.51 ± 0.01 and 0.67 ± 0.01, respectively) compared with Group II (0.33 ± 0.01, 0.36 ± 0.006 and 0.2 ± 0.01, respectively). Furthermore, SVF co-treated group revealed a significant (P ≤ 0.05) increase in oligodendrocyte transcription factor (Olig2) and myelin basic protein (4 ± 0.35 and 6 ± 0.45, respectively) that was decreased in group II (1.8 ± 0.22 and 2.9 ± 0.20, respectively). Moreover, group III showed a significant (P ≤ 0.05) reduction in Bax and glial fibrillary acidic protein (4 ± 0.53 and 3.8 ± 0.52, respectively) as compared with group II (10.7 ± 0.49 and 8.7 ± 0.78, respectively). The transmission electron microscopy demonstrated regular more compact, and markedly (P ≤ 0.05) thicker myelin sheaths (mm) in Group III (0.3 ± 0.006) as compared with group II (0.1 ± 0.004). Based on our results, the SVF co-treated group revealed remyelination and regeneration capacity with a reduction in apoptosis and axonal degeneration. CONCLUSION SVF is considered an easy, valuable, and promising therapeutic approach for treating spinal cord injuries, particularly MS.
Collapse
Affiliation(s)
- Mariam F. Farid
- grid.7776.10000 0004 0639 9286Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Yara S. Abouelela
- grid.7776.10000 0004 0639 9286Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Noha A. E. Yasin
- grid.7776.10000 0004 0639 9286Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Asmaa K. Al-Mokaddem
- grid.7776.10000 0004 0639 9286Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdelbary Prince
- grid.7776.10000 0004 0639 9286Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt ,grid.511523.10000 0004 7532 2290Department of Biomedical Research, Armed Forces College of Medicine, Cairo, 12211 Egypt
| | - Marwa A. Ibrahim
- grid.7776.10000 0004 0639 9286Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hamdy Rizk
- grid.7776.10000 0004 0639 9286Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| |
Collapse
|
91
|
Lee YJ, Jeong YJ, Kang EJ, Kang BS, Lee SH, Kim YJ, Kang SS, Suh SW, Ahn EH. GAP-43 closely interacts with BDNF in hippocampal neurons and is associated with Alzheimer's disease progression. Front Mol Neurosci 2023; 16:1150399. [PMID: 37143467 PMCID: PMC10152972 DOI: 10.3389/fnmol.2023.1150399] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/17/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Growth-associated protein 43 (GAP-43) is known as a neuronal plasticity protein because it is widely expressed at high levels in neuronal growth cones during axonal regeneration. GAP-43 expressed in mature adult neurons is functionally important for the neuronal communication of synapses in learning and memory. Brain-derived neurotrophic factor (BDNF) is closely related to neurodegeneration and synaptic plasticity during the aging process. However, the molecular mechanisms regulating neurodegeneration and synaptic plasticity underlying the pathogenesis and progression of Alzheimer's disease (AD) still remain incompletely understood. Methods Remarkably, the expressions of GAP-43 and BDNF perfectly match in various neurons in the Human Brain Atlas database. Moreover, GAP-43 and BDNF are highly expressed in a healthy adults' hippocampus brain region and are inversely correlated with the amyloid beta (Aβ), which is the pathological peptide of amyloid plaques found in the brains of patients with AD. Results These data led us to investigate the impact of the direct molecular interaction between GAP-43 and BDNF in hippocampal neuron fate. In this study, we show that GAP-43 and BDNF are inversely associated with pathological molecules for AD (Tau and Aβ). In addition, we define the three-dimensional protein structure for GAP-43 and BDNF, including the predictive direct binding sites via analysis using ClusPro 2.0, and demonstrate that the deprivation of GAP-43 and BDNF triggers hippocampal neuronal death and memory dysfunction, employing the GAP-43 or BDNF knock-down cellular models and 5XFAD mice. Conclusion These results show that GAP-43 and BDNF are direct binding partners in hippocampal neurons and that their molecular signaling might be potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Ye Ji Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - Ye Ji Jeong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - Eun Ji Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - You Jin Kim
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
- Sang Won Suh
| | - Eun Hee Ahn
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
- *Correspondence: Eun Hee Ahn
| |
Collapse
|
92
|
Chen S, Huang W, He T, Zhang M, Jin X, Jiang L, Xu H, Chen K. Exploring the Causality Between Plasma Brain-Derived Neurotrophic Factor and Neurological Diseases: A Mendelian Randomization Study. J Alzheimers Dis 2023; 96:135-148. [PMID: 37742652 DOI: 10.3233/jad-230693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is a protein synthesized in the brain and widely expressed in the nervous system. Previous studies have demonstrated a controversial role of BDNF in neurological diseases. OBJECTIVE In this study, we aimed to assess the association between BDNF levels and the risk of neurological diseases by Mendelian randomization analysis. METHODS From a genome-wide association analysis of plasma proteins comprising 3,301 European participants, we isolated 25 genetic variations as instrumental variables for BDNF levels. Summary statistics data on six common neurological diseases as outcome variables. Two-sample Mendelian randomization (MR) analysis was used to assess whether plasma BDNF is causally related to neurological diseases. We also performed sensitivity analysis to ensure the robustness of the results and reverse MR to exclude potential reverse causality. RESULTS We confirmed the significant causal relationship between BDNF levels and the risk of Alzheimer's disease (AD) (OR, 0.92; 95% CI, 0.85, 0.98; p = 0.013). Other methods have also shown similar results. We infer that BDNF also reduces the risk of epilepsy (OR, 0.94; 95% CI, 0.90, 0.98; p = 0.004). In reverse MR analysis, we also found that AD can affect the level of BDNF. CONCLUSIONS Our study suggests higher plasma BDNF was associated with the reduced risk of AD. Moreover, higher plasma BDNF is a protective factor on AD and focal epilepsy. The results provide credence to the idea that BDNF may play a significant role in the development of focal epilepsy and AD.
Collapse
Affiliation(s)
- Shihao Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenting Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mulan Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing Jin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Huiqin Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keyang Chen
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
93
|
Zhao X, Li X, Guo H, Liu P, Ma M, Wang Y. Resolvin D1 attenuates mechanical allodynia after burn injury: Involvement of spinal glia, p38 mitogen-activated protein kinase, and brain-derived neurotrophic factor/tropomyosin-related kinase B signaling. Mol Pain 2023; 19:17448069231159970. [PMID: 36765459 PMCID: PMC9986910 DOI: 10.1177/17448069231159970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Resolvin D1 (RvD1) suppresses inflammatory, postoperative, and neuropathic pain. The present study assessed the roles and mechanisms of RvD1 in mechanical allodynia after burn injury. A rat model of burn injury was established for analyses, and RvD1 was injected intraperitoneally. Pain behavior and the expression levels of spinal dorsal horn Iba-1 (microglia marker), GFAP (astrocyte marker), p-p38 mitogen-activated protein kinase (MAPK), brain-derived neurotrophic factor (BDNF), and tropomyosin-related kinase B (TrkB) were detected by behavioral and immunocytochemical assays. The results showed that RvD1 attenuated mechanical allodynia after burn injury, prevented microglial and astroglial activation, and downregulated p-p38 MAPK in microglia and BDNF/TrkB following burn injury. Similarly, inhibition of p38 MAPK and BDNF/TrkB signaling attenuated mechanical allodynia after burn injury. In addition, inhibition of p38 MAPK prevented spinal microglial activation and downregulated BDNF/TrkB following burn injury. Furthermore, inhibition of BDNF/TrkB signaling prevented spinal microglial activation and downregulated p-p38 MAPK within spinal microglia. Taken together, this study demonstrated that RvD1 might attenuate mechanical allodynia after burn injury by inhibiting spinal cord glial activation, microglial p38 MAPK, and BDNF/TrkB signaling in the spinal dorsal horn.
Collapse
Affiliation(s)
- Xiaona Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Li
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiling Guo
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panmei Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minyu Ma
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanping Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, 191599The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
94
|
Azevedo CV, Hashiguchi D, Campos HC, Figueiredo EV, Otaviano SFSD, Penitente AR, Arida RM, Longo BM. The effects of resistance exercise on cognitive function, amyloidogenesis, and neuroinflammation in Alzheimer's disease. Front Neurosci 2023; 17:1131214. [PMID: 36937673 PMCID: PMC10017453 DOI: 10.3389/fnins.2023.1131214] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
With the increasing prevalence of Alzheimer's disease (AD) and difficulties in finding effective treatments, it is essential to discover alternative therapies through new approaches. In this regard, non-pharmacological therapies, such as physical exercise, have been proposed and explored for the treatment of AD. Recent studies have suggested that resistance exercise (RE) is an effective strategy for promoting benefits in memory and cognitive function, producing neuroprotective and anti-inflammatory effects, and reducing amyloid load and plaques, thereby reducing the risk, and alleviating the neurodegeneration process of AD and other types of dementia in the elderly. In addition, RE is the exercise recommended by the World Health Organization for the elderly due to its benefits in improving muscle strength and balance, and increasing autonomy and functional capacity, favoring improvements in the quality of life of the elderly population, who is more likely to develop AD and other types of dementia. In this mini-review, we discuss the impact of RE on humans affected by MCI and AD, and animal models of AD, and summarize the main findings regarding the effects of RE program on memory and cognitive functions, neurotrophic factors, Aβ deposition and plaque formation, as well as on neuroinflammation. Overall, the present review provides clinical and preclinical evidence that RE plays a role in alleviating AD symptoms and may help to understand the therapeutic potential of RE, thereby continuing the advances in AD therapies.
Collapse
Affiliation(s)
| | - Debora Hashiguchi
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | | | | | | | - Arlete Rita Penitente
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
- Escola de Medicina, Departamento de Ginecologia Obstetrícia e Propedêutica da, Universidade Federal de Ouro Preto (UFOP), Minas Gerais, Brazil
| | - Ricardo Mario Arida
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz Monteiro Longo
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Beatriz Monteiro Longo,
| |
Collapse
|
95
|
Jakaria M, Belaidi AA, Southon A, Dent KA, Lane DJR, Bush AI, Ayton S. Receptor-Independent Anti-Ferroptotic Activity of TrkB Modulators. Int J Mol Sci 2022; 23:ijms232416205. [PMID: 36555849 PMCID: PMC9784883 DOI: 10.3390/ijms232416205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Dysregulated brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signalling is implicated in several neurodegenerative diseases, including Alzheimer's disease. A failure of neurotrophic support may participate in neurodegenerative mechanisms, such as ferroptosis, which has likewise been implicated in this disease class. The current study investigated whether modulators of TrkB signalling affect ferroptosis. Cell viability, C11 BODIPY, and cell-free oxidation assays were used to observe the impact of TrkB modulators, and an immunoblot assay was used to detect TrkB expression. TrkB modulators such as agonist BDNF, antagonist ANA-12, and inhibitor K252a did not affect RSL3-induced ferroptosis sensitivity in primary cortical neurons expressing detectable TrkB receptors. Several other modulators of the TrkB receptor, including agonist 7,8-DHF, activator phenelzine sulphate, and inhibitor GNF-5837, conferred protection against a range of ferroptosis inducers in several immortalised neuronal and non-neuronal cell lines, such as N27 and HT-1080 cells. We found these immortalised cell lines lack detectable TrkB receptor expression, so the anti-ferroptotic activity of these TrkB modulators was most likely due to their inherent radical-trapping antioxidant properties, which should be considered when interpreting their experimental findings. These modulators or their variants could be potential anti-ferroptotic therapeutics for various diseases.
Collapse
|
96
|
Mi L, Fan M, Liu T, Wu D, Wang Y, Li F, Cai Y, Qiu Z, Liu D, Cao L. Ginsenoside Rd protects transgenic Caenorhabditis elegans from β-amyloid toxicity by activating oxidative resistant. Front Pharmacol 2022; 13:1074397. [PMID: 36588689 PMCID: PMC9797510 DOI: 10.3389/fphar.2022.1074397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is a serious public health issue but few drugs are currently available for the disease, and these only target the symptoms. It is well established that oxidative stress plays a crucial role in AD, and there is compelling evidence linking oxidative stress to β-amyloid (Aβ). An exciting source of potential new AD therapeutic medication possibilities is medicinal plants. Ginsenoside Rd (GS-Rd) is one of the main bioactive substances in ginseng extracts. In our study, we used a network pharmacology analysis to identify overlapping GS-Rd (therapeutic) and AD (disease)-relevant protein targets, gene ontology (GO) and bio-process annotation, and the KEGG pathway analysis data predicted that GS-Rd impacts multiple targets and pathways, such as the MAPK signal pathway and the JAT-STAT3 signaling pathway. We then assessed the role of GS-Rd in C. elegans and found that GS-Rd prolongs lifespan, improves resistance to heat stress, delays physical paralysis and increases oxidative stress responses. Overall, these results suggest that GS-Rd protects against the toxicity of Aβ. The RNA-seq analysis revealed that GS-Rd achieves its effects by regulating gene expressions like daf-16 and skn-1, as well as by participating in many AD-related pathways like the MAPK signaling pathway. In addition, in CL4176 worms, GS-Rd decreased reactive oxygen species (ROS) levels and increased SOD activity. Additional research with transgenic worms showed that GS-Rd aided in the movement of DAF-16 from the cytoplasm to the nucleus. Taken together, the results indicate that GS-Rd significantly reduces Aβ aggregation by targeting the MAPK signal pathway, induces nuclear translocation of DAF-16 to activate downstream signaling pathways and increases resistance to oxidative stress in C. elegans to protect against Aβ-induced toxicity.
Collapse
Affiliation(s)
- Lihan Mi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Meiling Fan
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Tianjia Liu
- Scientific Research Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Wang
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Fuqiang Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun, China
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,*Correspondence: Lingling Cao, ; Da Liu, ; Zhidong Qiu,
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,*Correspondence: Lingling Cao, ; Da Liu, ; Zhidong Qiu,
| | - Lingling Cao
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Lingling Cao, ; Da Liu, ; Zhidong Qiu,
| |
Collapse
|
97
|
朱 栋, 颜 红, 岳 健, 刘 剑, 李 增, 宋 静. [Effect of inhibiting miR-204 expression on the learning and memory abilities of neonatal rats with intrauterine growth restriction and related mechanism]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:1376-1383. [PMID: 36544422 PMCID: PMC9785090 DOI: 10.7499/j.issn.1008-8830.2205140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To investigate the effect of inhibiting miR-204 expression on the learning and memory abilities of neonatal rats with intrauterine growth restriction (IUGR) and related mechanism. METHODS A rat model of IUGR was prepared by low-protein diet. The 3-day-old IUGR rats were divided into three groups: model, miRNA antagonist control and miR-204 antagonist, with 10 rats in each group. Ten normal neonatal rats served as the control group. Morris water maze test was used to measure the learning and memory abilities of the rats. Quantitative real-time PCR was used to measure the mRNA expression levels of miR-204 and brain-derived neurotrophic factor (BDNF) in the hippocampus. Nissl staining and TUNEL staining were used to observe the number of Nissl bodies and the apoptosis of cells in the hippocampus. Western blot was used to measure the expression levels of BDNF/TrkB signaling pathway-related proteins in the hippocampus. RESULTS Compared with the control group, the model group had a significant increase in the escape latency and a significant reduction in the number of platform crossings (P<0.001). The model group also had significant increases in the apoptosis rate of cells and the expression level of miR-204 in hippocampal tissue (P<0.001), while the number of Nissl bodies, the mRNA expression level of BDNF, and the protein expression levels of BDNF, p-TrkB, and p-CREB in the model group were significantly reduced compared with the control group (P<0.001). After inhibition of the expression of miR-204, the number of Nissl bodies, the mRNA expression level of BDNF, and the protein expression levels of BDNF, p-TrkB, and p-CREB significantly increased, while the cell apoptosis rate and the expression level of miR-204 in the hippocampus significantly decreased. The escape latency was also reduced, while the number of platform crossings increased after inhibition of the expression of miR-204 (P<0.001). CONCLUSIONS Inhibiting miR-204 can improve the learning and memory functions of neonatal rats with IUGR, possibly by targeted activation of the BDNF/TrkB signaling pathway.
Collapse
|
98
|
Li Y, Chen H, Wang J, Wang J, Niu X, Wang C, Qin D, Li F, Wang Y, Xiong J, Liu S, Huang L, Zhang X, Gao F, Gao D, Fan M, Xiao X, Wang ZH. Inflammation-activated C/EBPβ mediates high-fat diet-induced depression-like behaviors in mice. Front Mol Neurosci 2022; 15:1068164. [PMID: 36578534 PMCID: PMC9790918 DOI: 10.3389/fnmol.2022.1068164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Depression, one of the most common causes of disability, has a high prevalence rate in patients with metabolic syndrome. Type 2 diabetes patients are at an increased risk for depression. However, the molecular mechanism coupling diabetes to depressive disorder remains largely unknown. Here we found that the neuroinflammation, associated with high-fat diet (HFD)-induced diabetes and obesity, activated the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) in hippocampal neurons. This factor repressed brain-derived neurotrophic factor (BDNF) expression and caused depression-like behaviors in male mice. Besides, the loss of C/EBPβ expression in C/EBPβ heterozygous knockout male mice attenuated HFD-induced depression-like behaviors, whereas Thy1-C/EBPβ transgenic male mice (overexpressing C/EBPβ) showed depressive behaviors after a short-term HFD. Furthermore, HFD impaired synaptic plasticity and decreased surface expression of glutamate receptors in the hippocampus of wild-type (WT) mice, but not in C/EBPβ heterozygous knockout mice. Remarkably, the anti-inflammatory drug aspirin strongly alleviated HFD-elicited depression-like behaviors in neuronal C/EBPβ transgenic mice. Finally, the genetic delivery of BDNF or the pharmacological activation of the BDNF/TrkB signaling pathway by 7,8-dihydroxyflavone reversed anhedonia in a series of behavioral tests on HFD-fed C/EBPβ transgenic mice. Therefore, our findings aim to demonstrate that the inflammation-activated neuronal C/EBPβ promotes HFD-induced depression by diminishing BDNF expression.
Collapse
Affiliation(s)
- Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liqin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xi Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingxia Fan
- Animal Experiment Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Xiao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
99
|
Salasova A, Monti G, Andersen OM, Nykjaer A. Finding memo: versatile interactions of the VPS10p-Domain receptors in Alzheimer’s disease. Mol Neurodegener 2022; 17:74. [PMID: 36397124 PMCID: PMC9673319 DOI: 10.1186/s13024-022-00576-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
The family of VPS10p-Domain (D) receptors comprises five members named SorLA, Sortilin, SorCS1, SorCS2 and SorCS3. While their physiological roles remain incompletely resolved, they have been recognized for their signaling engagements and trafficking abilities, navigating a number of molecules between endosome, Golgi compartments, and the cell surface. Strikingly, recent studies connected all the VPS10p-D receptors to Alzheimer’s disease (AD) development. In addition, they have been also associated with diseases comorbid with AD such as diabetes mellitus and major depressive disorder. This systematic review elaborates on genetic, functional, and mechanistic insights into how dysfunction in VPS10p-D receptors may contribute to AD etiology, AD onset diversity, and AD comorbidities. Starting with their functions in controlling cellular trafficking of amyloid precursor protein and the metabolism of the amyloid beta peptide, we present and exemplify how these receptors, despite being structurally similar, regulate various and distinct cellular events involved in AD. This includes a plethora of signaling crosstalks that impact on neuronal survival, neuronal wiring, neuronal polarity, and synaptic plasticity. Signaling activities of the VPS10p-D receptors are especially linked, but not limited to, the regulation of neuronal fitness and apoptosis via their physical interaction with pro- and mature neurotrophins and their receptors. By compiling the functional versatility of VPS10p-D receptors and their interactions with AD-related pathways, we aim to further propel the AD research towards VPS10p-D receptor family, knowledge that may lead to new diagnostic markers and therapeutic strategies for AD patients.
Collapse
|
100
|
Hassan K, Matio Kemkuignou B, Kirchenwitz M, Wittstein K, Rascher-Albaghdadi M, Chepkirui C, Matasyoh JC, Decock C, Köster RW, Stradal TEB, Stadler M. Neurotrophic and Immunomodulatory Lanostane Triterpenoids from Wood-Inhabiting Basidiomycota. Int J Mol Sci 2022; 23:13593. [PMID: 36362380 PMCID: PMC9657622 DOI: 10.3390/ijms232113593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/05/2023] Open
Abstract
Neurotrophins such as nerve growth factor (ngf) and brain-derived neurotrophic factor (bdnf) play important roles in the central nervous system. They are potential therapeutic drugs for the treatment of neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. In this study, we investigated the neurotrophic properties of triterpenes isolated from fruiting bodies of Laetiporus sulphureus and a mycelial culture of Antrodia sp. MUCL 56049. The structures of the isolated compounds were elucidated based on nuclear magnetic resonance (NMR) spectroscopy in combination with high-resolution electrospray mass spectrometry (HR-ESIMS). The secondary metabolites were tested for neurotrophin (ngf and bdnf) expression levels on human astrocytoma 1321N1 cells. Neurite outgrowth activity using rat pheochromocytoma (PC-12) cells was also determined. Twelve triterpenoids were isolated, of which several potently stimulated the expression of neurotrophic factors, namely, ngf (sulphurenic acid, 15α-dehydroxytrametenolic acid, fomefficinic acid D, and 16α-hydroxyeburicoic acid) and bdnf (sulphurenic acid and 15α-dehydroxytrametenolic acid), respectively. The triterpenes also potentiated ngf-induced neurite outgrowth in PC-12 cells. This is, to the best of our knowledge, the first report on the compound class of lanostanes in direct relation to bdnf and ngf enhancement. These compounds are widespread in medicinal mushrooms; hence, they appear promising as a starting point for the development of drugs and mycopharmaceuticals to combat neurodegenerative diseases. Interestingly, they do not show any pronounced cytotoxicity and may, therefore, be better suited for therapy than many other neurotrophic compounds that were previously reported.
Collapse
Affiliation(s)
- Khadija Hassan
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Marco Kirchenwitz
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Kathrin Wittstein
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Monique Rascher-Albaghdadi
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Clara Chepkirui
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Josphat C. Matasyoh
- Department of Chemistry, Egerton University, P.O. Box 536, Njoro 20115, Kenya
| | - Cony Decock
- Mycothéque de l’Université Catholique de Louvain (BCCM/MUCL), Place Croix du Sud 3, B-1348 Louvain-la-Neuve, Belgium
| | - Reinhard W. Köster
- Department of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Theresia E. B. Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|