51
|
|
52
|
Trojan Genes or Transparent Genomes? Sexual Selection and Potential Impacts of Genetically Modified Animals in Natural Ecosystems. Evol Biol 2013. [DOI: 10.1007/s11692-013-9268-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
53
|
Demontis F, Piccirillo R, Goldberg AL, Perrimon N. The influence of skeletal muscle on systemic aging and lifespan. Aging Cell 2013; 12:943-9. [PMID: 23802635 DOI: 10.1111/acel.12126] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 01/02/2023] Open
Abstract
Epidemiological studies in humans suggest that skeletal muscle aging is a risk factor for the development of several age-related diseases such as metabolic syndrome, cancer, Alzheimer's and Parkinson's disease. Here, we review recent studies in mammals and Drosophila highlighting how nutrient- and stress-sensing in skeletal muscle can influence lifespan and overall aging of the organism. In addition to exercise and indirect effects of muscle metabolism, growing evidence suggests that muscle-derived growth factors and cytokines, known as myokines, modulate systemic physiology. Myokines may influence the progression of age-related diseases and contribute to the intertissue communication that underlies systemic aging.
Collapse
Affiliation(s)
- Fabio Demontis
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
- Division of Developmental Biology; Department of Developmental Neurobiology; St. Jude Children's Research Hospital; Memphis TN 38105 USA
| | - Rosanna Piccirillo
- Department of Cell Biology; Harvard Medical School; Boston MA 02115 USA
- Department of Oncology; IRCCS - Mario Negri Institute for Pharmacological Research; Milano Italy
| | | | - Norbert Perrimon
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
- Howard Hughes Medical Institute; Harvard Medical School; Boston MA 02115 USA
| |
Collapse
|
54
|
Stier A, Bize P, Habold C, Bouillaud F, Massemin S, Criscuolo F. Mitochondrial uncoupling prevents cold-induced oxidative stress: a case study using UCP1 knockout mice. ACTA ACUST UNITED AC 2013; 217:624-30. [PMID: 24265420 DOI: 10.1242/jeb.092700] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The relationship between metabolism and reactive oxygen species (ROS) production by the mitochondria has often been (wrongly) viewed as straightforward, with increased metabolism leading to higher generation of pro-oxidants. Insights into mitochondrial functioning show that oxygen consumption is principally coupled with either energy conversion as ATP or as heat, depending on whether the ATP-synthase or the mitochondrial uncoupling protein 1 (UCP1) is driving respiration. However, these two processes might greatly differ in terms of oxidative costs. We used a cold challenge to investigate the oxidative stress consequences of an increased metabolism achieved either by the activation of an uncoupled mechanism (i.e. UCP1 activity) in the brown adipose tissue (BAT) of wild-type mice or by ATP-dependent muscular shivering thermogenesis in mice deficient for UCP1. Although both mouse strains increased their metabolism by more than twofold when acclimatised for 4 weeks to moderate cold (12°C), only mice deficient for UCP1 suffered from elevated levels of oxidative stress. When exposed to cold, mice deficient for UCP1 showed an increase of 20.2% in plasmatic reactive oxygen metabolites, 81.8% in muscular oxidized glutathione and 47.1% in muscular protein carbonyls. In contrast, there was no evidence of elevated levels of oxidative stress in the plasma, muscles or BAT of wild-type mice exposed to cold despite a drastic increase in BAT activity. Our study demonstrates differing oxidative costs linked to the functioning of two highly metabolically active organs during thermogenesis, and advises careful consideration of mitochondrial functioning when investigating the links between metabolism and oxidative stress.
Collapse
Affiliation(s)
- Antoine Stier
- University of Strasbourg, Institut Pluridisciplinaire Hubert Curien, Strasbourg 67037, France
| | | | | | | | | | | |
Collapse
|
55
|
Beyond retrograde and anterograde signalling: mitochondrial-nuclear interactions as a means for evolutionary adaptation and contemporary disease susceptibility. Biochem Soc Trans 2013; 41:111-7. [PMID: 23356268 DOI: 10.1042/bst20120227] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although there is general agreement that most forms of common disease develop as a consequence of a combination of factors, including genetic, environmental and behavioural contributors, the actual mechanistic basis of how these factors initiate or promote diabetes, cancer, neurodegenerative and cardiovascular diseases in some individuals but not in others with seemingly identical risk factor profiles, is not clearly understood. In this respect, consideration of the potential role for mitochondrial genetics, damage and function in influencing common disease susceptibility seems merited, given that the prehistoric challenges were the original factors that moulded cellular function, and these were based upon the mitochondrial-nuclear relationships that were established during evolutionary history. These interactions were probably refined during prehistoric environmental selection events that, at present, are largely absent. Contemporary risk factors such as diet, sedentary lifestyle and increased longevity, which influence our susceptibility to a variety of chronic diseases were not part of the dynamics that defined the processes of mitochondrial-nuclear interaction, and thus cell function. Consequently, the prehistoric challenges that contributed to cell functionality and evolution should be considered when interpreting and designing experimental data and strategies. Although several molecular epidemiological studies have generally supported this notion, studies that probe beyond these associations are required. Such investigation will mark the initial steps for mechanistically addressing the provocative concept that contemporary human disease susceptibility is the result of prehistoric selection events for mitochondrial-nuclear function, which increased the probability for survival and reproductive success during evolution.
Collapse
|
56
|
Martin-Montalvo A, de Cabo R. Mitochondrial metabolic reprogramming induced by calorie restriction. Antioxid Redox Signal 2013; 19:310-20. [PMID: 22901095 PMCID: PMC3691909 DOI: 10.1089/ars.2012.4866] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Calorie restriction (CR) is a known intervention that delays most aging processes. Most of the beneficial effects of CR are mediated by improved maintenance of mitochondrial performance in aged individuals. The control of mitochondrial biogenesis, apoptosis, and protein turnover is required for healthy aging. CR is able to induce molecular mechanisms that preserve oxidative capacity and decrease oxidative damage. RECENT ADVANCES AND CRITICAL ISSUES Published data indicate that peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is activated in old animals under CR conditions compared to ad libitum counterparts, enhancing mitochondrial biogenesis. Molecular regulation of PGC-1α has recently attracted significant research interest. We discuss the master regulators of energy metabolism such as AMP-activated protein kinase and sirtuin 1 among others that have been demonstrated to activate mitochondrial biogenesis through increased PGC-1α activity at transcriptional and post-translational levels. Additionally, we describe the latest findings that explain how CR promotes mitochondrial efficiency and decreases mitochondrial-derived oxidative damage. FUTURE DIRECTIONS Understanding the beneficial mitochondrial changes conferred by CR will aid design of therapies for age-related diseases and help slow the aging process. Given the difficulty for humans to adhere to CR, we also explore new molecules that have been proposed during the last years to mimic the CR phenotype and their potential as future therapeutics.
Collapse
Affiliation(s)
- Alejandro Martin-Montalvo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
57
|
de Lange P, Cioffi F, Silvestri E, Moreno M, Goglia F, Lanni A. (Healthy) ageing: focus on iodothyronines. Int J Mol Sci 2013; 14:13873-92. [PMID: 23880847 PMCID: PMC3742223 DOI: 10.3390/ijms140713873] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 12/29/2022] Open
Abstract
The activity of the thyroid gland diminishes during ageing, but a certain tissue reserve of T3 and its metabolites is maintained. This reserve is thought to play a regulatory role in energy homeostasis during ageing. This review critically assesses this notion. T3 was thought to act predominantly through pathways that require transcriptional regulation by thyroid hormone receptors (TRs). However, in recent years, it has emerged that T3 and its metabolites can also act through non-genomic mechanisms, including cytosolic signaling. Interestingly, differences may exist in the non-genomic pathways utilized by thyroid hormone metabolites and T3. For instance, one particular thyroid hormone metabolite, namely 3,5-diiodo-l-thyronine (T2), increases the activity of the redox-sensitive protein deacetylase SIRT1, which has been associated with improvements in healthy ageing, whereas evidence exists that T3 may have the opposite effect. Findings suggesting that T3, T2, and their signaling pathways, such as those involving SIRT1 and AMP-activated protein kinase (AMPK), are associated with improvements in diet-induced obesity and insulin resistance emphasize the potential importance of the thyroid during ageing and in ageing-associated metabolic diseases.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Via Vivaldi 43, Caserta 81100, Italy; E-Mail:
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port’Arsa 11, Benevento 82100, Italy; E-Mails: (F.C.); (E.S.); (M.M.); (F.G.)
| | - Elena Silvestri
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port’Arsa 11, Benevento 82100, Italy; E-Mails: (F.C.); (E.S.); (M.M.); (F.G.)
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port’Arsa 11, Benevento 82100, Italy; E-Mails: (F.C.); (E.S.); (M.M.); (F.G.)
| | - Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port’Arsa 11, Benevento 82100, Italy; E-Mails: (F.C.); (E.S.); (M.M.); (F.G.)
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Via Vivaldi 43, Caserta 81100, Italy; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-082-327-4580; Fax: +39-082-327-4571
| |
Collapse
|
58
|
Abstract
Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Manuel Serrano
- Tumor Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guido Kroemer
- INSERM, U848, Villejuif, France
- Metabolomics Platform, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
59
|
Keipert S, Ost M, Chadt A, Voigt A, Ayala V, Portero-Otin M, Pamplona R, Al-Hasani H, Klaus S. Skeletal muscle uncoupling-induced longevity in mice is linked to increased substrate metabolism and induction of the endogenous antioxidant defense system. Am J Physiol Endocrinol Metab 2013; 304:E495-506. [PMID: 23277187 DOI: 10.1152/ajpendo.00518.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ectopic expression of uncoupling protein 1 (UCP1) in skeletal muscle (SM) mitochondria increases lifespan considerably in high-fat diet-fed UCP1 Tg mice compared with wild types (WT). To clarify the underlying mechanisms, we investigated substrate metabolism as well as oxidative stress damage and antioxidant defense in SM of low-fat- and high-fat-fed mice. Tg mice showed an increased protein expression of phosphorylated AMP-activated protein kinase, markers of lipid turnover (p-ACC, FAT/CD36), and an increased SM ex vivo fatty acid oxidation. Surprisingly, UCP1 Tg mice showed elevated lipid peroxidative protein modifications with no changes in glycoxidation or direct protein oxidation. This was paralleled by an induction of catalase and superoxide dismutase activity, an increased redox signaling (MAPK signaling pathway), and increased expression of stress-protective heat shock protein 25. We conclude that increased skeletal muscle mitochondrial uncoupling in vivo does not reduce the oxidative stress status in the muscle cell. Moreover, it increases lipid metabolism and reactive lipid-derived carbonyls. This stress induction in turn increases the endogenous antioxidant defense system and redox signaling. Altogether, our data argue for an adaptive role of reactive species as essential signaling molecules for health and longevity.
Collapse
Affiliation(s)
- S Keipert
- German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 2012; 31:563-92. [PMID: 23022622 DOI: 10.1016/j.biotechadv.2012.09.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 02/07/2023]
Abstract
Populations in many nations today are rapidly ageing. This unprecedented demographic change represents one of the main challenges of our time. A defining property of the ageing process is a marked increase in the risk of mortality and morbidity with age. The incidence of cancer, cardiovascular and neurodegenerative diseases increases non-linearly, sometimes exponentially with age. One of the most important tasks in biogerontology is to develop interventions leading to an increase in healthy lifespan (health span), and a better understanding of basic mechanisms underlying the ageing process itself may lead to interventions able to delay or prevent many or even all age-dependent conditions. One of the putative basic mechanisms of ageing is age-dependent mitochondrial deterioration, closely associated with damage mediated by reactive oxygen species (ROS). Given the central role that mitochondria and mitochondrial dysfunction play not only in ageing but also in apoptosis, cancer, neurodegeneration and other age-related diseases there is great interest in approaches to protect mitochondria from ROS-mediated damage. In this review, we explore strategies of targeting mitochondria to reduce mitochondrial oxidative damage with the aim of preventing or delaying age-dependent decline in mitochondrial function and some of the resulting pathologies. We discuss mitochondria-targeted and -localized antioxidants (e.g.: MitoQ, SkQ, ergothioneine), mitochondrial metabolic modulators (e.g. dichloroacetic acid), and uncouplers (e.g.: uncoupling proteins, dinitrophenol) as well as some alternative future approaches for targeting compounds to the mitochondria, including advances from nanotechnology.
Collapse
|
61
|
Karasik D, Cohen-Zinder M. The genetic pleiotropy of musculoskeletal aging. Front Physiol 2012; 3:303. [PMID: 22934054 PMCID: PMC3429074 DOI: 10.3389/fphys.2012.00303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/11/2012] [Indexed: 12/30/2022] Open
Abstract
Musculoskeletal aging is detrimental to multiple bodily functions and starts early, probably in the fourth decade of an individual's life. Sarcopenia is a health problem that is expected to only increase as a greater portion of the population lives longer; prevalence of the related musculoskeletal diseases is similarly expected to increase. Unraveling the biological and biomechanical associations and molecular mechanisms underlying these diseases represents a formidable challenge. There are two major problems making disentangling the biological complexity of musculoskeletal aging difficult: (a) it is a systemic, rather than "compartmental," problem, which should be approached accordingly, and (b) the aging per se is neither well defined nor reliably measurable. A unique challenge of studying any age-related condition is a need of distinguishing between the "norm" and "pathology," which are interwoven throughout the aging organism. We argue that detecting genes with pleiotropic functions in musculoskeletal aging is needed to provide insights into the potential biological mechanisms underlying inter-individual differences insusceptibility to the musculoskeletal diseases. However, exploring pleiotropic relationships among the system's components is challenging both methodologically and conceptually. We aimed to focus on genetic aspects of the cross-talk between muscle and its "neighboring" tissues and organs (tendon, bone, and cartilage), and to explore the role of genetics to find the new molecular links between skeletal muscle and other parts of the "musculoskeleton." Identification of significant genetic variants underlying the musculoskeletal system's aging is now possible more than ever due to the currently available advanced genomic technologies. In summary, a "holistic" genetic approach is needed to study the systems's normal functioning and the disease predisposition in order to improve musculoskeletal health.
Collapse
Affiliation(s)
- David Karasik
- Faculty of Medicine in the Galilee, Bar-Ilan University Safed, Israel
| | | |
Collapse
|
62
|
Boudina S, Sena S, Sloan C, Tebbi A, Han YH, O'Neill BT, Cooksey RC, Jones D, Holland WL, McClain DA, Abel ED. Early mitochondrial adaptations in skeletal muscle to diet-induced obesity are strain dependent and determine oxidative stress and energy expenditure but not insulin sensitivity. Endocrinology 2012; 153:2677-88. [PMID: 22510273 PMCID: PMC3359615 DOI: 10.1210/en.2011-2147] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study sought to elucidate the relationship between skeletal muscle mitochondrial dysfunction, oxidative stress, and insulin resistance in two mouse models with differential susceptibility to diet-induced obesity. We examined the time course of mitochondrial dysfunction and insulin resistance in obesity-prone C57B and obesity-resistant FVB mouse strains in response to high-fat feeding. After 5 wk, impaired insulin-mediated glucose uptake in skeletal muscle developed in both strains in the absence of any impairment in proximal insulin signaling. Impaired mitochondrial oxidative capacity preceded the development of insulin resistant glucose uptake in C57B mice in concert with increased oxidative stress in skeletal muscle. By contrast, mitochondrial uncoupling in FVB mice, which prevented oxidative stress and increased energy expenditure, did not prevent insulin resistant glucose uptake in skeletal muscle. Preventing oxidative stress in C57B mice treated systemically with an antioxidant normalized skeletal muscle mitochondrial function but failed to normalize glucose tolerance and insulin sensitivity. Furthermore, high fat-fed uncoupling protein 3 knockout mice developed increased oxidative stress that did not worsen glucose tolerance. In the evolution of diet-induced obesity and insulin resistance, initial but divergent strain-dependent mitochondrial adaptations modulate oxidative stress and energy expenditure without influencing the onset of impaired insulin-mediated glucose uptake.
Collapse
Affiliation(s)
- Sihem Boudina
- Division of Endocrinology, Metabolism, and Diabetes, Salt Lake City, Utah 84112, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Ortega-Molina A, Efeyan A, Lopez-Guadamillas E, Muñoz-Martin M, Gómez-López G, Cañamero M, Mulero F, Pastor J, Martinez S, Romanos E, Mar Gonzalez-Barroso M, Rial E, Valverde AM, Bischoff JR, Serrano M. Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab 2012; 15:382-94. [PMID: 22405073 DOI: 10.1016/j.cmet.2012.02.001] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/16/2011] [Accepted: 01/20/2012] [Indexed: 01/15/2023]
Abstract
Aging in worms and flies is regulated by the PI3K/Akt/Foxo pathway. Here we extend this paradigm to mammals. Pten(tg) mice carrying additional genomic copies of Pten are protected from cancer and present a significant extension of life span that is independent of their lower cancer incidence. Interestingly, Pten(tg) mice have an increased energy expenditure and protection from metabolic pathologies. The brown adipose tissue (BAT) of Pten(tg) mice is hyperactive and presents high levels of the uncoupling protein Ucp1, which we show is a target of Foxo1. Importantly, a synthetic PI3K inhibitor also increases energy expenditure and hyperactivates the BAT in mice. These effects can be recapitulated in isolated brown adipocytes and, moreover, implants of Pten(tg) fibroblasts programmed with Prdm16 and Cebpβ form subcutaneous brown adipose pads more efficiently than wild-type fibroblasts. These observations uncover a role of Pten in promoting energy expenditure, thus decreasing nutrient storage and its associated damage.
Collapse
Affiliation(s)
- Ana Ortega-Molina
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), Madrid E28029, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Estey C, Seifert EL, Aguer C, Moffat C, Harper ME. Calorie restriction in mice overexpressing UCP3: evidence that prior mitochondrial uncoupling alters response. Exp Gerontol 2012; 47:361-71. [PMID: 22406134 DOI: 10.1016/j.exger.2012.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/04/2012] [Accepted: 02/23/2012] [Indexed: 01/25/2023]
Abstract
Calorie restriction (CR) without malnutrition is the only intervention to consistently increase lifespan in all species tested, and lower age-related pathologies in mammals including humans. It has been suggested that uncoupling of mitochondrial oxidative phosphorylation, using chemical uncouplers, mimics CR, and that overlapping mechanisms underlie the phenotypic changes induced by uncoupling and CR. We aimed to critically assess this using a unique mouse model of skeletal muscle-targeted UCP3-induced uncoupling (UCP3Tg), and focused our studies mainly on skeletal muscle mitochondria. Compared to ad libitum fed Wt mice, skeletal muscle mitochondria from ad libitum fed UCP3Tg mice showed higher basal uncoupling and lower H(2)O(2) emission, with unchanged maximal oxidative phosphorylation, and mitochondrial content. UCP3Tg CR mice showed some tendency for differential adaptation to CR, with lowered H(+) leak conductance and evidence for higher H(2)O(2) emission from skeletal muscle mitochondria following 2 weeks CR, and failure to lower H(2)O(2) emission after 1 month CR. Differential adaptation was also apparent at the whole body level: while UCP3Tg CR mice lost as much weight as Wt CR mice, the proportion of muscle lost was higher in UCP3Tg mice. However, a striking outcome of our studies was the absence of change with CR in many of the parameters of mitochondrial function and content that we measured in mice of either genotype. Overall, our study raises the question of whether CR can consistently modify skeletal muscle mitochondria; alterations with CR may only be apparent under certain conditions such as during the 2 wk CR intervention in the UCP3Tg mice.
Collapse
Affiliation(s)
- Carmen Estey
- Dept. Biochem Microbiol Immunol, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | |
Collapse
|
65
|
Lago CU, Nowinski SM, Rundhaug JE, Pfeiffer ME, Kiguchi K, Hirasaka K, Yang X, Abramson EM, Bratton SB, Rho O, Colavitti R, Kenaston MA, Nikawa T, Trempus C, Digiovanni J, Fischer SM, Mills EM. Mitochondrial respiratory uncoupling promotes keratinocyte differentiation and blocks skin carcinogenesis. Oncogene 2012; 31:4725-31. [PMID: 22266853 DOI: 10.1038/onc.2011.630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Decreased mitochondrial oxidative metabolism is a hallmark bioenergetic characteristic of malignancy that may have an adaptive role in carcinogenesis. By stimulating proton leak, mitochondrial uncoupling proteins (UCP1-3) increase mitochondrial respiration and may thereby oppose cancer development. To test this idea, we generated a mouse model that expresses an epidermal-targeted keratin-5-UCP3 (K5-UCP3) transgene and exhibits significantly increased cutaneous mitochondrial respiration compared with wild type (FVB/N). Remarkably, we observed that mitochondrial uncoupling drove keratinocyte/epidermal differentiation both in vitro and in vivo. This increase in epidermal differentiation corresponded to the loss of markers of the quiescent bulge stem cell population, and an increase in epidermal turnover measured using a bromodeoxyuridine (BrdU)-based transit assay. Interestingly, these changes in K5-UCP3 skin were associated with a nearly complete resistance to chemically-mediated multistage skin carcinogenesis. These data suggest that targeting mitochondrial respiration is a promising novel avenue for cancer prevention and treatment.
Collapse
Affiliation(s)
- C U Lago
- College of Pharmacy, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Klaus S, Keipert S, Rossmeisl M, Kopecky J. Augmenting energy expenditure by mitochondrial uncoupling: a role of AMP-activated protein kinase. GENES AND NUTRITION 2011; 7:369-86. [PMID: 22139637 DOI: 10.1007/s12263-011-0260-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/18/2011] [Indexed: 11/28/2022]
Abstract
Strategies to prevent and treat obesity aim to decrease energy intake and/or increase energy expenditure. Regarding the increase of energy expenditure, two key intracellular targets may be considered (1) mitochondrial oxidative phosphorylation, the major site of ATP production, and (2) AMP-activated protein kinase (AMPK), the master regulator of cellular energy homeostasis. Experiments performed mainly in transgenic mice revealed a possibility to ameliorate obesity and associated disorders by mitochondrial uncoupling in metabolically relevant tissues, especially in white adipose tissue (WAT), skeletal muscle (SM), and liver. Thus, ectopic expression of brown fat-specific mitochondrial uncoupling protein 1 (UCP1) elicited major metabolic effects both at the cellular/tissue level and at the whole-body level. In addition to expected increases in energy expenditure, surprisingly complex phenotypic effects were detected. The consequences of mitochondrial uncoupling in WAT and SM are not identical, showing robust and stable obesity resistance accompanied by improvement of lipid metabolism in the case of ectopic UCP1 in WAT, while preservation of insulin sensitivity in the context of high-fat feeding represents the major outcome of muscle UCP1 expression. These complex responses could be largely explained by tissue-specific activation of AMPK, triggered by a depression of cellular energy charge. Experimental data support the idea that (1) while being always activated in response to mitochondrial uncoupling and compromised intracellular energy status in general, AMPK could augment energy expenditure and mediate local as well as whole-body effects; and (2) activation of AMPK alone does not lead to induction of energy expenditure and weight reduction.
Collapse
Affiliation(s)
- Susanne Klaus
- German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | | | | | | |
Collapse
|
67
|
Dong C, Della-Morte D, Wang L, Cabral D, Beecham A, McClendon MS, Luca CC, Blanton SH, Sacco RL, Rundek T. Association of the sirtuin and mitochondrial uncoupling protein genes with carotid plaque. PLoS One 2011; 6:e27157. [PMID: 22087257 PMCID: PMC3210138 DOI: 10.1371/journal.pone.0027157] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 10/11/2011] [Indexed: 01/12/2023] Open
Abstract
Objective Sirtuins (SIRTs) and mitochondrial uncoupling proteins (UCPs) have been implicated in cardiovascular diseases through the control of reactive oxygen species production. This study sought to investigate the association between genetic variants in the SIRT and UCP genes and carotid plaque. Methods In a group of 1018 stroke-free subjects from the Northern Manhattan Study with high-definition carotid ultrasonography and genotyping, we investigated the associations of 85 single nucleotide polymorphisms (SNPs) in the 11 SIRT and UCP genes with the presence and number of carotid plaques, and evaluated interactions of SNPs with sex, smoking, diabetes and hypertension as well as interactions between SNPs significantly associated with carotid plaque. Results Overall, 60% of subjects had carotid plaques. After adjustment for demographic and vascular risk factors, T-carriers of the SIRT6 SNP rs107251 had an increased risk for carotid plaque (odds ratio, OR = 1.71, 95% CI = 1.23–2.37, Bonferroni-corrected p = 0.03) and for a number of plaques (rate ratio, RR = 1.31, 1.18–1.45, Bonferroni-corrected p = 1.4×10−5), whereas T-carriers of the UCP5 SNP rs5977238 had an decreased risk for carotid plaque (OR = 0.49, 95% CI = 0.32–0.74, Bonferroni-corrected p = 0.02) and plaque number (RR = 0.64, 95% CI = 0.52–0.78, Bonferroni-corrected p = 4.9×10−4). Some interactions with a nominal p≤0.01 were found between sex and SNPs in the UCP1 and UCP3 gene; between smoking, diabetes, hypertension and SNPs in UCP5 and SIRT5; and between SNPs in the UCP5 gene and the UCP1, SIRT1, SIRT3, SIRT5, and SIRT6 genes in association with plaque phenotypes. Conclusion We observed significant associations between genetic variants in the SIRT6 and UCP5 genes and atherosclerotic plaque. We also found potential effect modifications by sex, smoking and vascular risk factors of the SIRT/UCP genes in the associations with atherosclerotic plaque. Further studies are needed to validate our observations.
Collapse
Affiliation(s)
- Chuanhui Dong
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - David Della-Morte
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS San Raffaele Pisana, Rome, Italy
| | - Liyong Wang
- John T. McDonald Department of Human Genetics, John P. Hussman Institute for Human Genomics Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Digna Cabral
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Ashley Beecham
- John T. McDonald Department of Human Genetics, John P. Hussman Institute for Human Genomics Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Mark S. McClendon
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Corneliu C. Luca
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Susan H. Blanton
- John T. McDonald Department of Human Genetics, John P. Hussman Institute for Human Genomics Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Ralph L. Sacco
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- John T. McDonald Department of Human Genetics, John P. Hussman Institute for Human Genomics Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Department of Epidemiology and Public Health, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Department of Epidemiology and Public Health, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
68
|
Hughes BG, Hekimi S. A mild impairment of mitochondrial electron transport has sex-specific effects on lifespan and aging in mice. PLoS One 2011; 6:e26116. [PMID: 22028811 PMCID: PMC3189954 DOI: 10.1371/journal.pone.0026116] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/19/2011] [Indexed: 11/29/2022] Open
Abstract
Impairments of various aspects of mitochondrial function have been associated with increased lifespan in various model organisms ranging from Caenorhabditis elegans to mice. For example, disruption of the function of the 'Rieske' iron-sulfur protein (RISP) of complex III of the mitochondrial electron transport chain can result in increased lifespan in the nematode worm C. elegans. However, the mechanisms by which impaired mitochondrial function affects aging remain under investigation, including whether or not they require decreased electron transport. We have generated knock-in mice with a loss-of-function Risp mutation that is homozygous lethal. However, heterozygotes (Risp(+/P224S)) were viable and had decreased levels of RISP protein and complex III enzymatic activity. This decrease was sufficient to impair mitochondrial respiration and to decrease overall metabolic rate in males, but not females. These defects did not appear to exert an overtly deleterious effect on the health of the mutants, since young Risp(+/P224S) mice are outwardly normal, with unaffected performance and fertility. Furthermore, biomarkers of oxidative stress were unaffected in both young and aged animals. Despite this, the average lifespan of male Risp(+/P224S) mice was shortened and aged Risp(+/P224S) males showed signs of more rapidly deteriorating health. In spite of these differences, analysis of Gompertz mortality parameters showed that Risp heterozygosity decreased the rate of increase of mortality with age and increased the intrinsic vulnerability to death in both sexes. However, the intrinsic vulnerability was increased more dramatically in males, which resulted in their shortened lifespan. For females, the slower acceleration of age-dependent mortality results in significantly increased survival of Risp(+/P224S) mice in the second half of lifespan. These results demonstrate that even relatively small perturbations of the mitochondrial electron transport chain can have significant physiological effects in mammals, and that the severity of those effects can be sex-dependent.
Collapse
|
69
|
Krzywanski DM, Moellering DR, Fetterman JL, Dunham-Snary KJ, Sammy MJ, Ballinger SW. The mitochondrial paradigm for cardiovascular disease susceptibility and cellular function: a complementary concept to Mendelian genetics. J Transl Med 2011; 91:1122-35. [PMID: 21647091 PMCID: PMC3654682 DOI: 10.1038/labinvest.2011.95] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While there is general agreement that cardiovascular disease (CVD) development is influenced by a combination of genetic, environmental, and behavioral contributors, the actual mechanistic basis of how these factors initiate or promote CVD development in some individuals while others with identical risk profiles do not, is not clearly understood. This review considers the potential role for mitochondrial genetics and function in determining CVD susceptibility from the standpoint that the original features that molded cellular function were based upon mitochondrial-nuclear relationships established millions of years ago and were likely refined during prehistoric environmental selection events that today, are largely absent. Consequently, contemporary risk factors that influence our susceptibility to a variety of age-related diseases, including CVD were probably not part of the dynamics that defined the processes of mitochondrial-nuclear interaction, and thus, cell function. In this regard, the selective conditions that contributed to cellular functionality and evolution should be given more consideration when interpreting and designing experimental data and strategies. Finally, future studies that probe beyond epidemiologic associations are required. These studies will serve as the initial steps for addressing the provocative concept that contemporary human disease susceptibility is the result of selection events for mitochondrial function that increased chances for prehistoric human survival and reproductive success.
Collapse
Affiliation(s)
- David M Krzywanski
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
70
|
Rose G, Crocco P, D'Aquila P, Montesanto A, Bellizzi D, Passarino G. Two variants located in the upstream enhancer region of human UCP1 gene affect gene expression and are correlated with human longevity. Exp Gerontol 2011; 46:897-904. [PMID: 21827845 DOI: 10.1016/j.exger.2011.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/31/2011] [Accepted: 07/24/2011] [Indexed: 11/25/2022]
Abstract
The brown fat specific UnCoupling Protein 1 (UCP1) is involved in thermogenesis, a process by which energy is dissipated as heat in response to cold stress and excess of caloric intake. Thermogenesis has potential implications for body mass control and cellular fat metabolism. In fact, in humans, the variability of the UCP1 gene is associated with obesity, fat gain and metabolism. Since regulation of metabolism is one of the key-pathways in lifespan extension, we tested the possible effects of UCP1 variability on survival. Two polymorphisms (A-3826G and C-3740A), falling in the upstream promoter region of UCP1, were analyzed in a sample of 910 subjects from southern Italy (475 women and 435 men; age range 40-109). By analyzing haplotype specific survival functions we found that the A-C haplotype favors survival in the elderly. Consistently, transfection experiments showed that the luciferase activity of the construct containing the A-C haplotype was significantly higher than that containing the G-A haplotype. Interestingly, the different UCP1 haplotypes responded differently to hormonal stimuli. The results we present suggest a correlation between the activity of UCP1 and human survival, indicating once again the intricacy of mechanisms involved in energy production, storage and consumption as the key to understanding human aging and longevity.
Collapse
Affiliation(s)
- Giuseppina Rose
- Department of Cell Biology, University of Calabria, Rende, Italy.
| | | | | | | | | | | |
Collapse
|
71
|
Jumpertz R, Hanson RL, Sievers ML, Bennett PH, Nelson RG, Krakoff J. Higher energy expenditure in humans predicts natural mortality. J Clin Endocrinol Metab 2011; 96:E972-6. [PMID: 21450984 PMCID: PMC3100751 DOI: 10.1210/jc.2010-2944] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Higher metabolic rates increase free radical formation, which may accelerate aging and lead to early mortality. OBJECTIVE Our objective was to determine whether higher metabolic rates measured by two different methods predict early natural mortality in humans. DESIGN Nondiabetic healthy Pima Indian volunteers (n = 652) were admitted to an inpatient unit for approximately 7 d as part of a longitudinal study of obesity and diabetes risk factors. Vital status of study participants was determined through December 31, 2006. Twenty-four-hour energy expenditure (24EE) was measured in 508 individuals, resting metabolic rate (RMR) was measured in 384 individuals, and 240 underwent both measurements on separate days. Data for 24EE were collected in a respiratory chamber between 1985 and 2006 with a mean (SD) follow-up time of 11.1 (6.5) yr and for RMR using an open-circuit respiratory hood system between 1982 and 2006 with a mean follow-up time of 15.4 (6.3) yr. Cox regression models were used to test the effect of EE on natural mortality, controlled for age, sex, and body weight. RESULTS In both groups, 27 natural deaths occurred during the study period. For each 100-kcal/24 h increase in EE, the risk of natural mortality increased by 1.29 (95% confidence interval = 1.00-1.66; P < 0.05) in the 24EE group and by 1.25 (95% confidence interval = 1.01-1.55; P < 0.05) in the RMR group, after adjustment for age, sex, and body weight in proportional hazard analyses. CONCLUSIONS Higher metabolic rates as reflected by 24EE or RMR predict early natural mortality, indicating that higher energy turnover may accelerate aging in humans.
Collapse
Affiliation(s)
- Reiner Jumpertz
- Obesity and Diabetes Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016, USA.
| | | | | | | | | | | |
Collapse
|
72
|
Keipert S, Voigt A, Klaus S. Dietary effects on body composition, glucose metabolism, and longevity are modulated by skeletal muscle mitochondrial uncoupling in mice. Aging Cell 2011; 10:122-36. [PMID: 21070590 PMCID: PMC3042149 DOI: 10.1111/j.1474-9726.2010.00648.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Little is known about how diet and energy metabolism interact in determination of lifespan under ad libitum feeding. From 12 weeks of age until death, male and female wild-type (WT) and transgenic (TG) mice with increased skeletal muscle mitochondrial uncoupling (HSA-mUCP1 mice) were fed one of three different semisynthetic diets differing in macronutrient ratio: control (high-carbohydrate/low-fat-HCLF) and two high-fat diets: high-carbohydrate/high-fat (HCHF), and low-carbohydrate/high-fat (LCHF). Compared to control and LCHF, HCHF feeding rapidly and significantly increased body fat content in WT. Median lifespan of WT was decreased by 33% (HCHF) and 7% (LCHF) compared to HCLF. HCHF significantly increased insulin resistance (HOMA) of WT from 24 weeks on compared to control. TG mice had lower lean body mass and increased energy expenditure, insulin sensitivity, and maximum lifespan (+10%) compared to WT. They showed a delayed development of obesity on HCHF but reached similar maximum adiposity as WT. TG median lifespan was only slightly reduced by HCHF (−7%) and unaffected by LCHF compared to control. Correlation analyses showed that decreased longevity was more strongly linked to a high rate of fat gain than to adiposity itself. Furthermore, insulin resistance was negatively and weight-specific energy expenditure was positively correlated with longevity. We conclude that (i) dietary macronutrient ratios strongly affected obesity development, glucose homeostasis, and longevity, (ii) that skeletal muscle mitochondrial uncoupling alleviated the detrimental effects of high-fat diets, and (iii) that early imbalances in energy homeostasis leading to increased insulin resistance are predictive for a decreased lifespan.
Collapse
|
73
|
Novak CM, Escande C, Burghardt PR, Zhang M, Barbosa MT, Chini EN, Britton SL, Koch LG, Akil H, Levine JA. Spontaneous activity, economy of activity, and resistance to diet-induced obesity in rats bred for high intrinsic aerobic capacity. Horm Behav 2010; 58:355-67. [PMID: 20350549 PMCID: PMC2923555 DOI: 10.1016/j.yhbeh.2010.03.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 01/05/2023]
Abstract
Though obesity is common, some people remain resistant to weight gain even in an obesogenic environment. The propensity to remain lean may be partly associated with high endurance capacity along with high spontaneous physical activity and the energy expenditure of activity, called non-exercise activity thermogenesis (NEAT). Previous studies have shown that high-capacity running rats (HCR) are lean compared to low-capacity runners (LCR), which are susceptible to cardiovascular disease and metabolic syndrome. Here, we examine the effect of diet on spontaneous activity and NEAT, as well as potential mechanisms underlying these traits, in rats selectively bred for high or low intrinsic aerobic endurance capacity. Compared to LCR, HCR were resistant to the sizeable increases in body mass and fat mass induced by a high-fat diet; HCR also had lower levels of circulating leptin. HCR were consistently more active than LCR, and had lower fuel economy of activity, regardless of diet. Nonetheless, both HCR and LCR showed a similar decrease in daily activity levels after high-fat feeding, as well as decreases in hypothalamic orexin-A content. The HCR were more sensitive to the NEAT-activating effects of intra-paraventricular orexin-A compared to LCR, especially after high-fat feeding. Lastly, levels of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) in the skeletal muscle of HCR were consistently higher than LCR, and the high-fat diet decreased skeletal muscle PEPCK-C in both groups of rats. Differences in muscle PEPCK were not secondary to the differing amount of activity. This suggests the possibility that intrinsic differences in physical activity levels may originate at the level of the skeletal muscle, which could alter brain responsiveness to neuropeptides and other factors that regulate spontaneous daily activity and NEAT.
Collapse
Affiliation(s)
- Colleen M Novak
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Mookerjee SA, Divakaruni AS, Jastroch M, Brand MD. Mitochondrial uncoupling and lifespan. Mech Ageing Dev 2010; 131:463-72. [PMID: 20363244 PMCID: PMC2924931 DOI: 10.1016/j.mad.2010.03.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 03/17/2010] [Accepted: 03/29/2010] [Indexed: 12/21/2022]
Abstract
The quest to understand why we age has given rise to numerous lines of investigation that have gradually converged to include metabolic control by mitochondrial activity as a major player. That is, the ideal balance between nutrient uptake, its transduction into usable energy, and the mitigation of damaging byproducts can be regulated by mitochondrial respiration and output (ATP, reactive oxygen species (ROS), and heat). Mitochondrial inefficiency through proton leak, which uncouples substrate oxidation from ADP phosphorylation, can comprise as much as 30% of the basal metabolic rate. This uncoupling is hypothesized to protect cells from conditions that favor ROS production. Uncoupling can also occur through pharmacological induction of proton leak and activity of the uncoupling proteins. Mitochondrial uncoupling is implicated in lifespan extension through its effects on metabolic rate and ROS production. However, evidence to date does not suggest a consistent role for uncoupling in lifespan. The purpose of this review is to discuss recent work examining how mitochondrial uncoupling impacts lifespan.
Collapse
|
75
|
Sung HJ, Ma W, Wang PY, Hynes J, O'Riordan TC, Combs CA, McCoy JP, Bunz F, Kang JG, Hwang PM. Mitochondrial respiration protects against oxygen-associated DNA damage. Nat Commun 2010; 1:5. [PMID: 20975668 PMCID: PMC3393093 DOI: 10.1038/ncomms1003] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 03/02/2010] [Indexed: 12/24/2022] Open
Abstract
Oxygen is not only required for oxidative phosphorylation but also serves as the essential substrate for the formation of reactive oxygen species (ROS), which is implicated in ageing and tumorigenesis. Although the mitochondrion is known for its bioenergetic function, the symbiotic theory originally proposed that it provided protection against the toxicity of increasing oxygen in the primordial atmosphere. Using human cells lacking Synthesis of Cytochrome c Oxidase 2 (SCO2-/-), we have tested the oxygen toxicity hypothesis. These cells are oxidative phosphorylation defective and glycolysis dependent; they exhibit increased viability under hypoxia and feature an inverted growth response to oxygen compared with wild-type cells. SCO2-/- cells have increased intracellular oxygen and nicotinamide adenine dinucleotide (NADH) levels, which result in increased ROS and oxidative DNA damage. Using this isogenic cell line, we have revealed the genotoxicity of ambient oxygen. Our study highlights the importance of mitochondrial respiration both for bioenergetic benefits and for maintaining genomic stability in an oxygen-rich environment.
Collapse
Affiliation(s)
- Ho Joong Sung
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Pagel-Langenickel I, Bao J, Pang L, Sack MN. The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance. Endocr Rev 2010; 31:25-51. [PMID: 19861693 PMCID: PMC2852205 DOI: 10.1210/er.2009-0003] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 08/27/2009] [Indexed: 12/18/2022]
Abstract
Multiple organs contribute to the development of peripheral insulin resistance, with the major contributors being skeletal muscle, liver, and adipose tissue. Because insulin resistance usually precedes the development of type 2 diabetes mellitus (T2DM) by many years, understanding the pathophysiology of insulin resistance should enable development of therapeutic strategies to prevent disease progression. Some subjects with mitochondrial genomic variants/defects and a subset of lean individuals with hereditary predisposition to T2DM exhibit skeletal muscle mitochondrial dysfunction early in the course of insulin resistance. In contrast, in the majority of subjects with T2DM the plurality of evidence implicates skeletal muscle mitochondrial dysfunction as a consequence of perturbations associated with T2DM, and these mitochondrial deficits then contribute to subsequent disease progression. We review the affirmative and contrarian data regarding skeletal muscle mitochondrial biology in the pathogenesis of insulin resistance and explore potential therapeutic options to intrinsically modulate mitochondria as a strategy to combat insulin resistance. Furthermore, an overview of restricted molecular manipulations of skeletal muscle metabolic and mitochondrial biology offers insight into the mitochondrial role in metabolic substrate partitioning and in promoting innate adaptive and maladaptive responses that collectively regulate peripheral insulin sensitivity. We conclude that skeletal muscle mitochondrial dysfunction is not generally a major initiator of the pathophysiology of insulin resistance, although its dysfunction is integral to this pathophysiology and it remains an intriguing target to reverse/delay the progressive perturbations synonymous with T2DM.
Collapse
Affiliation(s)
- Ines Pagel-Langenickel
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1454, USA
| | | | | | | |
Collapse
|
77
|
Bratic I, Trifunovic A. Mitochondrial energy metabolism and ageing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:961-7. [PMID: 20064485 DOI: 10.1016/j.bbabio.2010.01.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 10/20/2022]
Abstract
Ageing can be defined as "a progressive, generalized impairment of function, resulting in an increased vulnerability to environmental challenge and a growing risk of disease and death". Ageing is likely a multifactorial process caused by accumulated damage to a variety of cellular components. During the last 20 years, gerontological studies have revealed different molecular pathways involved in the ageing process and pointed out mitochondria as one of the key regulators of longevity. Increasing age in mammals correlates with increased levels of mitochondrial DNA (mtDNA) mutations and a deteriorating respiratory chain function. Experimental evidence in the mouse has linked increased levels of somatic mtDNA mutations to a variety of ageing phenotypes, such as osteoporosis, hair loss, graying of the hair, weight reduction and decreased fertility. A mosaic respiratory chain deficiency in a subset of cells in various tissues, such as heart, skeletal muscle, colonic crypts and neurons, is typically found in aged humans. It has been known for a long time that respiratory chain-deficient cells are more prone to undergo apoptosis and an increased cell loss is therefore likely of importance in the age-associated mitochondrial dysfunction. In this review, we would like to point out the link between the mitochondrial energy balance and ageing, as well as a possible connection between the mitochondrial metabolism and molecular pathways important for the lifespan extension.
Collapse
Affiliation(s)
- Ivana Bratic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, D-50674 Cologne, Germany
| | | |
Collapse
|
78
|
Bermejo-Nogales A, Calduch-Giner JA, Pérez-Sánchez J. Gene expression survey of mitochondrial uncoupling proteins (UCP1/UCP3) in gilthead sea bream (Sparus aurata L.). J Comp Physiol B 2010; 180:685-94. [PMID: 20063001 DOI: 10.1007/s00360-009-0441-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 12/10/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
The aim of this work is to underline the biological significance of mitochondrial uncoupling proteins (UCPs) in ectothermic fish using the gilthead sea bream (Sparus aurata L.) as an experimental model. A contig of 1,990 bp in length was recognized as a UCP1 ortholog after initial searches in the gilthead sea bream AQUAFIRST database ( http://www.sigenae.org/aquafirst ). Additional searches were performed in skeletal muscle by RT-PCR, and the amplified PCR product was recognized as UCP3 after sequence completion by 5'- and 3'RACE. UCP1 expression was mostly detected in liver, whereas UCP3 transcripts were only found in skeletal and cardiac muscle fibres (white skeletal muscle > red skeletal muscle > heart). Specific gene regulation of UCP1 (liver) and UCP3 (white skeletal muscle) was addressed in physiological models of age, seasonal growth and energy-metabolic unbalances. Both the increase in energy demand (stress confinement) and the reduction in energy supply during adaptive cold response in winter down-regulated UCP1 expression. Conversely, transcript levels of UCP3 were higher with age, seasonal fattening and dietary deficiencies in essential fatty acids leading to the increase in fatty acid flux towards the muscle. This close association between UCP1 and UCP3 with the oxidative and metabolic tissue status is perhaps directly related to the ancestral protein UCP function, and allows the use of UCPs as lipotoxicity markers in ectothermic fish.
Collapse
Affiliation(s)
- Azucena Bermejo-Nogales
- Fish Nutrition and Growth Endocrinology Group, Department of Biology, Culture and Pathology of Marine Fish Species, Institute of Aquaculture Torre de la Sal, CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | | | | |
Collapse
|
79
|
Abstract
Mitochondrial proton and electron leak have a major impact on mitochondrial coupling efficiency and production of reactive oxygen species. In the first part of this chapter, we address the molecular nature of the basal and inducible proton leak pathways, and their physiological importance. The basal leak is unregulated, and a major proportion can be attributed to mitochondrial anion carriers, whereas the proton leak through the lipid bilayer appears to be minor. The basal proton leak is cell-type specific and correlates with metabolic rate. The inducible leak through the ANT (adenine nucleotide translocase) and UCPs (uncoupling proteins) can be activated by fatty acids, superoxide or lipid peroxidation products. The physiological role of inducible leak through UCP1 in mammalian brown adipose tissue is heat production, whereas the roles of non-mammalian UCP1 and its paralogous proteins, in particular UCP2 and UCP3, are not yet resolved. The second part of the chapter focuses on the electron leak that occurs in the mitochondrial electron transport chain. Exit of electrons prior to the reduction of oxygen to water at cytochrome c oxidase causes superoxide production. As the mechanisms of electron leak are crucial to understanding their physiological relevance, we summarize the mechanisms and topology of electron leak from complexes I and III in studies using isolated mitochondria. We also highlight recent progress and challenges of assessing electron leak in the living cell. Finally, we emphasize the importance of proton and electron leak as therapeutic targets in body mass regulation and insulin secretion.
Collapse
Affiliation(s)
- Martin Jastroch
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | | | | | | | | |
Collapse
|
80
|
Chan SL, Wei Z, Chigurupati S, Tu W. Compromised respiratory adaptation and thermoregulation in aging and age-related diseases. Ageing Res Rev 2010; 9:20-40. [PMID: 19800420 DOI: 10.1016/j.arr.2009.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 02/04/2023]
Abstract
Mitochondrial dysfunction and reactive oxygen species (ROS) production are at the heart of the aging process and are thought to underpin age-related diseases. Mitochondria are not only the primary energy-generating system but also the dominant cellular source of metabolically derived ROS. Recent studies unravel the existence of mechanisms that serve to modulate the balance between energy metabolism and ROS production. Among these is the regulation of proton conductance across the inner mitochondrial membrane that affects the efficiency of respiration and heat production. The field of mitochondrial respiration research has provided important insight into the role of altered energy balance in obesity and diabetes. The notion that respiration and oxidative capacity are mechanistically linked is making significant headway into the field of aging and age-related diseases. Here we review the regulation of cellular energy and ROS balance in biological systems and survey some of the recent relevant studies that suggest that respiratory adaptation and thermodynamics are important in aging and age-related diseases.
Collapse
|
81
|
Azzu V, Brand MD. The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem Sci 2009; 35:298-307. [PMID: 20006514 DOI: 10.1016/j.tibs.2009.11.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 11/04/2009] [Accepted: 11/06/2009] [Indexed: 12/15/2022]
Abstract
Mitochondrial uncoupling proteins disengage substrate oxidation from ADP phosphorylation by dissipating the proton electrochemical gradient that is required for ATP synthesis. In doing this, the archetypal uncoupling protein, UCP1, mediates adaptive thermogenesis. By contrast, its paralogues UCP2 and UCP3 are not thought to mediate whole body thermogenesis in mammals. Instead, they have been implicated in a variety of physiological and pathological processes, including protection from oxidative stress, negative regulation of glucose sensing systems and the adaptation of fatty acid oxidation capacity to starving. Although much work has been devoted to how these proteins are activated, little is known of the mechanisms that reverse this activation.
Collapse
Affiliation(s)
- Vian Azzu
- MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
| | | |
Collapse
|
82
|
Keipert S, Klaus S, Heldmaier G, Jastroch M. UCP1 ectopically expressed in murine muscle displays native function and mitigates mitochondrial superoxide production. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:324-30. [PMID: 19958747 DOI: 10.1016/j.bbabio.2009.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 10/09/2009] [Accepted: 11/25/2009] [Indexed: 11/26/2022]
Abstract
Mitochondrial uncoupling in skeletal muscle has raised a major interest as a therapeutic target for treatment of obesity, insulin sensitivity, and age-related disease. These physiological effects could be demonstrated in several mouse models ectopically expressing uncoupling protein 1 (UCP1). Here, we investigated whether UCP1 expressed under the control of the human skeletal actin (HSA) promoter in mouse skeletal muscle can be regulated, and whether it affects mitochondrial superoxide production. We show that the skeletal muscle UCP1 can be fully inhibited by a purine nucleotide (GDP) and reactivated by fatty acids (palmitate). During mitochondrial resting state (State 4), mitochondrial superoxide production is about 76% lower in transgenic mice. We suggest that this reduction is due to uncoupling activity as the administration of GDP restores superoxide production to wildtype levels. Our study confirms native behaviour of UCP1 in skeletal muscle and demonstrates beneficial effects on prevention of mitochondrial reactive oxygen species production which may reduce age-related deleterious processes.
Collapse
Affiliation(s)
- Susanne Keipert
- German Institute of Human Nutrition, Group of Energy Metabolism, 14558 Nuthetal, Germany.
| | | | | | | |
Collapse
|
83
|
Park JY, Wang PY, Matsumoto T, Sung HJ, Ma W, Choi JW, Anderson SA, Leary SC, Balaban RS, Kang JG, Hwang PM. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ Res 2009; 105:705-12, 11 p following 712. [PMID: 19696408 PMCID: PMC2761626 DOI: 10.1161/circresaha.109.205310] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
RATIONALE Exercise capacity is a physiological characteristic associated with protection from both cardiovascular and all-cause mortality. p53 regulates mitochondrial function and its deletion markedly diminishes exercise capacity, but the underlying genetic mechanism orchestrating this is unclear. Understanding the biology of how p53 improves exercise capacity may provide useful insights for improving both cardiovascular as well as general health. OBJECTIVE The purpose of this study was to understand the genetic mechanism by which p53 regulates aerobic exercise capacity. METHODS AND RESULTS Using a variety of physiological, metabolic, and molecular techniques, we further characterized maximum exercise capacity and the effects of training, measured various nonmitochondrial and mitochondrial determinants of exercise capacity, and examined putative regulators of mitochondrial biogenesis. As p53 did not affect baseline cardiac function or inotropic reserve, we focused on the involvement of skeletal muscle and now report a wider role for p53 in modulating skeletal muscle mitochondrial function. p53 interacts with Mitochondrial Transcription Factor A (TFAM), a nuclear-encoded gene important for mitochondrial DNA (mtDNA) transcription and maintenance, and regulates mtDNA content. The increased mtDNA in p53(+/+) compared to p53(-/-) mice was more marked in aerobic versus glycolytic skeletal muscle groups with no significant changes in cardiac tissue. These in vivo observations were further supported by in vitro studies showing overexpression of p53 in mouse myoblasts increases both TFAM and mtDNA levels whereas depletion of TFAM by shRNA decreases mtDNA content. CONCLUSIONS Our current findings indicate that p53 promotes aerobic metabolism and exercise capacity by using different mitochondrial genes and mechanisms in a tissue-specific manner.
Collapse
Affiliation(s)
- Joon-Young Park
- Translational Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD
| | - Ping-yuan Wang
- Translational Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD
| | - Takumi Matsumoto
- Translational Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD
| | - Ho Joong Sung
- Translational Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD
| | - Wenzhe Ma
- Translational Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD
| | - Jeong W. Choi
- Translational Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD
| | - Stasia A. Anderson
- Translational Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD
| | - Scot C. Leary
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, Canada
| | - Robert S. Balaban
- Translational Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD
| | - Ju-Gyeong Kang
- Translational Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD
| | - Paul M. Hwang
- Translational Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD
| |
Collapse
|
84
|
Lanza IR, Nair KS. Mitochondrial function as a determinant of life span. Pflugers Arch 2009; 459:277-89. [PMID: 19756719 PMCID: PMC2801852 DOI: 10.1007/s00424-009-0724-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 08/26/2009] [Indexed: 12/31/2022]
Abstract
Average human life expectancy has progressively increased over many decades largely due to improvements in nutrition, vaccination, antimicrobial agents, and effective treatment/prevention of cardiovascular disease, cancer, etc. Maximal life span, in contrast, has changed very little. Caloric restriction (CR) increases maximal life span in many species, in concert with improvements in mitochondrial function. These effects have yet to be demonstrated in humans, and the duration and level of CR required to extend life span in animals is not realistic in humans. Physical activity (voluntary exercise) continues to hold much promise for increasing healthy life expectancy in humans, but remains to show any impact to increase maximal life span. However, longevity in Caenorhabditis elegans is related to activity levels, possibly through maintenance of mitochondrial function throughout the life span. In humans, we reported a progressive decline in muscle mitochondrial DNA abundance and protein synthesis with age. Other investigators also noted age-related declines in muscle mitochondrial function, which are related to peak oxygen uptake. Long-term aerobic exercise largely prevented age-related declines in mitochondrial DNA abundance and function in humans and may increase spontaneous activity levels in mice. Notwithstanding, the impact of aerobic exercise and activity levels on maximal life span is uncertain. It is proposed that age-related declines in mitochondrial content and function not only affect physical function, but also play a major role in regulation of life span. Regular aerobic exercise and prevention of adiposity by healthy diet may increase healthy life expectancy and prolong life span through beneficial effects at the level of the mitochondrion.
Collapse
Affiliation(s)
- Ian R Lanza
- Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | |
Collapse
|
85
|
Lemire BD, Behrendt M, DeCorby A, Gásková D. C. elegans longevity pathways converge to decrease mitochondrial membrane potential. Mech Ageing Dev 2009; 130:461-5. [PMID: 19442682 DOI: 10.1016/j.mad.2009.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/28/2009] [Accepted: 05/01/2009] [Indexed: 10/20/2022]
Abstract
Energy production via oxidative phosphorylation generates a mitochondrial membrane potential (DeltaPsi(m)) across the inner membrane. In this work, we show that a lower DeltaPsi(m) is associated with increased lifespan in Caenorhabditis elegans. The long-lived mutants daf-2(e1370), age-1(hx546), clk-1(qm30), isp-1(qm150) and eat-2(ad465) all have a lower DeltaPsi(m) than wild type animals. The lower DeltaPsi(m) of daf-2(e1370) is daf-16 dependent, indicating that the insulin-like signaling pathway not only regulates lifespan but also mitochondrial energetics. RNA interference (RNAi) against 17 genes shown to extend lifespan also decrease DeltaPsi(m). Furthermore, lifespan can be significantly extended with the uncoupler carbonylcyanide-3-chlorophenylhydrazone (CCCP), which dissipates DeltaPsi(m). We conclude that longevity pathways converge on the mitochondria and lead to a decreased DeltaPsi(m). Our results are consistent with the 'uncoupling to survive' hypothesis, which states that dissipation of the DeltaPsi(m) will extend lifespan.
Collapse
Affiliation(s)
- Bernard D Lemire
- Department of Biochemistry, University of Alberta, Alberta, Canada.
| | | | | | | |
Collapse
|
86
|
Hughes BG, Hekimi S. Mclk1+/- mice are not resistant to the development of atherosclerosis. Lipids Health Dis 2009; 8:16. [PMID: 19416523 PMCID: PMC2683836 DOI: 10.1186/1476-511x-8-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 05/05/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mice with a single copy of Mclk1 (a.k.a. Coq7), a gene that encodes a mitochondrial enzyme required for the biosynthesis of ubiquinone and other functions, live longer than wild-type mice. The prolonged survival implies a decreased mortality from age-dependent lethal pathologies. Atherosclerosis is one of the main age-dependent pathologies in humans and can be modeled in mice that lack Apolipoprotein E (ApoE-/-) or mice that lack the Low Density Lipoprotein Receptor (LDLr-/-) in addition to being fed an atherosclerosis-inducing diet. We sought to determine if Mclk1 heterozygosity protects against atherosclerosis and dyslipidemia in these models. RESULTS We found that Mclk1 heterozygosity did not protect against dyslipidemia, oxidative stress, or atherosclerosis in young (6 or 10 months) or older (18 months) mice. Furthermore, the absence of ApoE suppressed the lifespan-promoting effects of Mclk1 heterozygosity. CONCLUSION These findings indicate that although Mclk1 heterozygosity can extend lifespan of mice, it does not necessarily protect against atherosclerosis. Moreover, in the presence of hyperlipidemia and chronic inflammation, Mclk1 heterozygosity is incapable of extending lifespan.
Collapse
Affiliation(s)
- Bryan G Hughes
- Department of Biology, McGill University, Montreal H3A 1B1, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal H3A 1B1, Canada
| |
Collapse
|
87
|
Humphrey DM, Toivonen JM, Giannakou M, Partridge L, Brand MD. Expression of human uncoupling protein-3 in Drosophila insulin-producing cells increases insulin-like peptide (DILP) levels and shortens lifespan. Exp Gerontol 2009; 44:316-27. [PMID: 19385039 PMCID: PMC2698063 DOI: 10.1016/j.exger.2009.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 11/18/2008] [Accepted: 02/04/2009] [Indexed: 12/01/2022]
Abstract
Uncoupling proteins (UCPs) can dissipate mitochondrial protonmotive force by increasing the proton conductance of the inner membrane and through this effect could decrease ROS production, ameliorate oxidative stress and extend lifespan. We investigated whether ubiquitous, pan-neuronal or neurosecretory cell-specific expression of human UCP3 (hUCP3) in adult Drosophila melanogaster affected lifespan. Low, ubiquitous expression of hUCP3 at levels found in rodent skeletal muscle mitochondria did not affect proton conductance in mitochondria isolated from whole flies, but high pan-neuronal expression of hUCP3 increased the proton conductance of mitochondria isolated from fly heads. Expression of hUCP3 at moderate levels in adult neurons led to a marginal lifespan-extension in males. However, high expression of hUCP3 in neuronal tissue shortened lifespan. The life-shortening effect was replicated when hUCP3 was expressed specifically in median neurosecretory cells (mNSC), which express three of the Drosophila insulin-like peptides (DILPs). Expression of hUCP3 in the mNSC did not alter expression of dilp2, dilp3 or dilp5 mRNA, but led to increased amounts of DILP2 in fly heads. These data suggest that lowering mitochondrial coupling by high expression of hUCP3 alters mNSC function in a way that appears to increase DILP-levels in fly heads and lead to a concomitant decrease in lifespan.
Collapse
Affiliation(s)
- Dickon M. Humphrey
- MRC Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Janne M. Toivonen
- Department of Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Maria Giannakou
- Department of Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Linda Partridge
- Department of Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Martin D. Brand
- MRC Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945, USA
| |
Collapse
|
88
|
Chakravarthy MV, Zhu Y, Yin L, Coleman T, Pappan KL, Marshall CA, McDaniel ML, Semenkovich CF. Inactivation of hypothalamic FAS protects mice from diet-induced obesity and inflammation. J Lipid Res 2009; 50:630-40. [PMID: 19029118 PMCID: PMC2656656 DOI: 10.1194/jlr.m800379-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 10/24/2008] [Indexed: 01/22/2023] Open
Abstract
Obesity promotes insulin resistance and chronic inflammation. Disrupting any of several distinct steps in lipid synthesis decreases adiposity, but it is unclear if this approach coordinately corrects the environment that propagates metabolic disease. We tested the hypothesis that inactivation of FAS in the hypothalamus prevents diet-induced obesity and systemic inflammation. Ten weeks of high-fat feeding to mice with inactivation of FAS (FASKO) limited to the hypothalamus and pancreatic beta cells protected them from diet-induced obesity. Though high-fat fed FASKO mice had no beta-cell phenotype, they were hypophagic and hypermetabolic, and they had increased insulin sensitivity at the liver but not the periphery as demonstrated by hyperinsulinemic-euglycemic clamps, and biochemically by increased phosphorylated Akt, glycogen synthase kinase-3beta, and FOXO1 compared with wild-type mice. High-fat fed FASKO mice had decreased excretion of urinary isoprostanes, suggesting less oxidative stress and blunted tumor necrosis factor alpha (TNFalpha) and interleukin-6 (IL-6) responses to endotoxin, suggesting less systemic inflammation. Pair-feeding studies demonstrated that these beneficial effects were dependent on central FAS disruption and not merely a consequence of decreased adiposity. Thus, inducing central FAS deficiency may be a valuable integrative strategy for treating several components of the metabolic syndrome, in part by correcting hepatic insulin resistance and suppressing inflammation.
Collapse
Affiliation(s)
- Manu V. Chakravarthy
- Department of Medicine, Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine in St. Louis, MO 63110
| | - Yimin Zhu
- Department of Medicine, Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine in St. Louis, MO 63110
| | - Li Yin
- Department of Medicine, Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine in St. Louis, MO 63110
| | - Trey Coleman
- Department of Medicine, Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine in St. Louis, MO 63110
| | - Kirk L. Pappan
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, MO 63110
| | - Connie A. Marshall
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, MO 63110
| | - Michael L. McDaniel
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, MO 63110
| | - Clay F. Semenkovich
- Department of Medicine, Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine in St. Louis, MO 63110
- Department of Cell Biology & Physiology, Washington University School of Medicine in St. Louis, MO 63110
| |
Collapse
|
89
|
|
90
|
Befroy DE, Petersen KF, Dufour S, Mason GF, Rothman DL, Shulman GI. Increased substrate oxidation and mitochondrial uncoupling in skeletal muscle of endurance-trained individuals. Proc Natl Acad Sci U S A 2008; 105:16701-6. [PMID: 18936488 PMCID: PMC2570428 DOI: 10.1073/pnas.0808889105] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Indexed: 01/07/2023] Open
Abstract
Endurance exercise training is accompanied by physiological changes that improve muscle function and performance. Several studies have demonstrated that markers of mitochondrial capacity are elevated, however, these studies tend to be performed ex vivo under conditions that yield maximal enzyme activities or in vivo but monitoring the response to exercise. Therefore, it is unclear whether basal mitochondrial metabolism is affected by exercise training. To explore whether resting muscle metabolism was altered in trained individuals in vivo, two independent parameters of metabolic function-tricarboxylic acid (TCA) cycle flux (V(TCA)), and ATP synthesis (V(ATP))-were assessed noninvasively by using magnetic resonance spectroscopy in a cohort of young endurance trained subjects (n = 7) and a group of matched sedentary subjects (n = 8). V(TCA) was 54% higher in the muscle of endurance trained compared with sedentary subjects (91.7 +/- 7.6 vs. 59.6 +/- 4.9 nmol/g/min, P < 0.01); however, V(ATP) was not different between the trained and sedentary subjects (5.98 +/- 0.43 vs. 6.35 +/- 0.70 mumol/g/min, P = 0.67). The ratio V(ATP)/V(TCA) (an estimate of mitochondrial coupling) was also significantly reduced in trained subjects (P < 0.04). These data demonstrate that basal mitochondrial substrate oxidation is increased in the muscle of endurance trained individuals yet energy production is unaltered, leading to an uncoupling of oxidative phosphorylation at rest. Increased mitochondrial uncoupling may represent another mechanism by which exercise training enhances muscle insulin sensitivity via increased fatty acid oxidation in the resting state.
Collapse
Affiliation(s)
| | | | - Sylvie Dufour
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536
| | | | | | - Gerald I. Shulman
- Departments of *Internal Medicine
- Cellular and Molecular Physiology, and
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536
| |
Collapse
|
91
|
Pagel-Langenickel I, Bao J, Joseph JJ, Schwartz DR, Mantell BS, Xu X, Raghavachari N, Sack MN. PGC-1alpha integrates insulin signaling, mitochondrial regulation, and bioenergetic function in skeletal muscle. J Biol Chem 2008; 283:22464-72. [PMID: 18579525 DOI: 10.1074/jbc.m800842200] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The pathophysiology underlying mitochondrial dysfunction in insulin-resistant skeletal muscle is incompletely characterized. To further delineate this we investigated the interaction between insulin signaling, mitochondrial regulation, and function in C2C12 myotubes and in skeletal muscle. In myotubes elevated insulin and glucose disrupt insulin signaling, mitochondrial biogenesis, and mitochondrial bioenergetics. The insulin-sensitizing thiazolidinedione pioglitazone restores these perturbations in parallel with induction of the mitochondrial biogenesis regulator PGC-1alpha. Overexpression of PGC-1alpha rescues insulin signaling and mitochondrial bioenergetics, and its silencing concordantly disrupts insulin signaling and mitochondrial bioenergetics. In primary skeletal myoblasts pioglitazone also up-regulates PGC-1alpha expression and restores the insulin-resistant mitochondrial bioenergetic profile. In parallel, pioglitazone up-regulates PGC-1alpha in db/db mouse skeletal muscle. Interestingly, the small interfering RNA knockdown of the insulin receptor in C2C12 myotubes down-regulates PGC-1alpha and attenuates mitochondrial bioenergetics. Concordantly, mitochondrial bioenergetics are blunted in insulin receptor knock-out mouse-derived skeletal myoblasts. Taken together these data demonstrate that elevated glucose and insulin impairs and pioglitazone restores skeletal myotube insulin signaling, mitochondrial regulation, and bioenergetics. Pioglitazone functions in part via the induction of PGC-1alpha. Moreover, PGC-1alpha is identified as a bidirectional regulatory link integrating insulin-signaling and mitochondrial homeostasis in skeletal muscle.
Collapse
Affiliation(s)
- Ines Pagel-Langenickel
- Translational Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1454, USA
| | | | | | | | | | | | | | | |
Collapse
|