51
|
Zhang J, Zeng S, Wang P, Chen Y, Zeng C. NLRP3: A Promising Therapeutic Target for Inflammatory Bowel Disease. Curr Drug Targets 2023; 24:1106-1116. [PMID: 37946354 DOI: 10.2174/0113894501255960231101105113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/06/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is an intestinal disease with complicated pathological mechanisms. The incidence of IBD has been increasing in recent years, which has a significant negative impact on the lives of patients. Therefore, it is particularly important to find new therapeutic targets and innovative drugs for the development of IBD. Recent studies have revealed that NLRP3 inflammatory vesicles can play an important role in maintaining intestinal homeostasis and sustaining the intestinal immune response in IBD. On the one hand, aberrant activation of NLRP3 inflammatory vesicles may cause excessive immune response by converting caspase-1, proIL-18, and proIL-1β to their active forms and releasing pro-inflammatory cytokines to stimulate the development and progression of IBD, and we can improve IBD by targeting blockade of NLRP3 activation. On the other hand, NLRP3 may also play an enter protective role by maintaining the homeostasis of the intestinal immune system. In this paper, we reviewed the activation mechanism of NLRP3 inflammasome, and the effects of NLRP3 inflammasome activation on IBD are discussed from two different perspectives: pathology and protection. At the same time, we listed the effects of direct inhibitors, indirect inhibitors, and natural inhibitors of NLRP3 inflammasome on IBD in combination with cutting-edge advances and clinical practice results, providing new targets and new ideas for the clinical treatment of IBD.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy of Nanchang University, Nanchang, China
| | - Shuyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy of Nanchang University, Nanchang, China
| | - Peng Wang
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Youxiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chunyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy of Nanchang University, Nanchang, China
| |
Collapse
|
52
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
53
|
Chen C, Zhou Y, Ning X, Li S, Xue D, Wei C, Zhu Z, Sheng L, Lu B, Li Y, Ye X, Fu Y, Bai C, Cai W, Ding Y, Lin S, Yan G, Huang Y, Yin W. Directly targeting ASC by lonidamine alleviates inflammasome-driven diseases. J Neuroinflammation 2022; 19:315. [PMID: 36577999 PMCID: PMC9798610 DOI: 10.1186/s12974-022-02682-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Dysregulated activation of the inflammasome is involved in various human diseases including acute cerebral ischemia, multiple sclerosis and sepsis. Though many inflammasome inhibitors targeting NOD-like receptor protein 3 (NLRP3) have been designed and developed, none of the inhibitors are clinically available. Growing evidence suggests that targeting apoptosis-associated speck-like protein containing a CARD (ASC), the oligomerization of which is the key event for the assembly of inflammasome, may be another promising therapeutic strategy. Lonidamine (LND), a small-molecule inhibitor of glycolysis used as an antineoplastic drug, has been evidenced to have anti-inflammation effects. However, its anti-inflammatory mechanism is still largely unknown. METHODS Middle cerebral artery occlusion (MCAO), experimental autoimmune encephalomyelitis (EAE) and LPS-induced sepsis mice models were constructed to investigate the therapeutic and anti-inflammasome effects of LND. The inhibition of inflammasome activation and ASC oligomerization by LND was evaluated using western blot (WB), immunofluorescence (IF), quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA) in murine bone marrow-derived macrophages (BMDMs). Direct binding of LND with ASC was assessed using molecular mock docking, surface plasmon resonance (SPR), and drug affinity responsive target stability (DARTS). RESULTS Here, we find that LND strongly attenuates the inflammatory injury in experimental models of inflammasome-associated diseases including autoimmune disease-multiple sclerosis (MS), ischemic stroke and sepsis. Moreover, LND blocks diverse types of inflammasome activation independent of its known targets including hexokinase 2 (HK2). We further reveal that LND directly binds to the inflammasome ligand ASC and inhibits its oligomerization. CONCLUSIONS Taken together, our results identify LND as a broad-spectrum inflammasome inhibitor by directly targeting ASC, providing a novel candidate drug for the treatment of inflammasome-driven diseases in clinic.
Collapse
Affiliation(s)
- Chen Chen
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YuWei Zhou
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - XinPeng Ning
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - ShengLong Li
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - DongDong Xue
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - CaiLv Wei
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Zhu Zhu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - LongXiang Sheng
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - BingZheng Lu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yuan Li
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - XiaoYuan Ye
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - YunZhao Fu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Chuan Bai
- grid.12981.330000 0001 2360 039XInstitute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Cai
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YuXuan Ding
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - SuiZhen Lin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, 510663 China
| | - GuangMei Yan
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YiJun Huang
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Yin
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
54
|
Shi X, Zhou H, Wei J, Mo W, Li Q, Lv X. The signaling pathways and therapeutic potential of itaconate to alleviate inflammation and oxidative stress in inflammatory diseases. Redox Biol 2022; 58:102553. [PMID: 36459716 PMCID: PMC9713374 DOI: 10.1016/j.redox.2022.102553] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Endogenous small molecules are metabolic regulators of cell function. Itaconate is a key molecule that accumulates in cells when the Krebs cycle is disrupted. Itaconate is derived from cis-aconitate decarboxylation by cis-aconitate decarboxylase (ACOD1) in the mitochondrial matrix and is also known as immune-responsive gene 1 (IRG1). Studies have demonstrated that itaconate plays an important role in regulating signal transduction and posttranslational modification through its immunoregulatory activities. Itaconate is also an important bridge among metabolism, inflammation, oxidative stress, and the immune response. This review summarizes the structural characteristics and classical pathways of itaconate, its derivatives, and the compounds that release itaconate. Here, the mechanisms of itaconate action, including its transcriptional regulation of ATF3/IκBζ axis and type I IFN, its protein modification regulation of KEAP1, inflammasome, JAK1/STAT6 pathway, TET2, and TFEB, and succinate dehydrogenase and glycolytic enzyme metabolic action, are presented. Moreover, the roles of itaconate in diseases related to inflammation and oxidative stress induced by autoimmune responses, viruses, sepsis and IRI are discussed in this review. We hope that the information provided in this review will help increase the understanding of cellular immune metabolism and improve the clinical treatment of diseases related to inflammation and oxidative stress.
Collapse
|
55
|
Li C, Qin D, Hu J, Yang Y, Hu D, Yu B. Inflamed adipose tissue: A culprit underlying obesity and heart failure with preserved ejection fraction. Front Immunol 2022; 13:947147. [PMID: 36483560 PMCID: PMC9723346 DOI: 10.3389/fimmu.2022.947147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
The incidence of heart failure with preserved ejection fraction is increasing in patients with obesity, diabetes, hypertension, and in the aging population. However, there is a lack of adequate clinical treatment. Patients with obesity-related heart failure with preserved ejection fraction display unique pathophysiological and phenotypic characteristics, suggesting that obesity could be one of its specific phenotypes. There has been an increasing recognition that overnutrition in obesity causes adipose tissue expansion and local and systemic inflammation, which consequently exacerbates cardiac remodeling and leads to the development of obese heart failure with preserved ejection fraction. Furthermore, overnutrition leads to cellular metabolic reprogramming and activates inflammatory signaling cascades in various cardiac cells, thereby promoting maladaptive cardiac remodeling. Growing evidence indicates that the innate immune response pathway from the NLRP3 inflammasome, to interleukin-1 to interleukin-6, is involved in the generation of obesity-related systemic inflammation and heart failure with preserved ejection fraction. This review established the existence of obese heart failure with preserved ejection fraction based on structural and functional changes, elaborated the inflammation mechanisms of obese heart failure with preserved ejection fraction, proposed that NLRP3 inflammasome activation may play an important role in adiposity-induced inflammation, and summarized the potential therapeutic approaches.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Donglu Qin
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Jiarui Hu
- Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Die Hu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China,*Correspondence: Bilian Yu,
| |
Collapse
|
56
|
Yoo HJ, Choi DW, Roh YJ, Lee YM, Lim JH, Eo S, Lee HJ, Kim NY, Kim S, Cho S, Im G, Lee BC, Kim JH. MsrB1-regulated GAPDH oxidation plays programmatic roles in shaping metabolic and inflammatory signatures during macrophage activation. Cell Rep 2022; 41:111598. [DOI: 10.1016/j.celrep.2022.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/02/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
|
57
|
Sedivy-Haley K, Blimkie T, Falsafi R, Lee AHY, Hancock REW. A transcriptomic analysis of the effects of macrophage polarization and endotoxin tolerance on the response to Salmonella. PLoS One 2022; 17:e0276010. [PMID: 36240188 PMCID: PMC9565388 DOI: 10.1371/journal.pone.0276010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Salmonella is an intracellular pathogen causing significant morbidity and mortality. Its ability to grow inside macrophages is important to virulence, and is dependent on the activation state of the macrophages. Classically activated M1 macrophages are non-permissive for Salmonella growth, while alternatively activated M2 macrophages are permissive for Salmonella growth. Here we showed that endotoxin-primed macrophages (MEP), such as those associated with sepsis, showed similar levels of Salmonella resistance to M1 macrophages after 2 hr of intracellular infection, but at the 4 hr and 24 hr time points were susceptible like M2 macrophages. To understand this mechanistically, transcriptomic sequencing, RNA-Seq, was performed. This showed that M1 and MEP macrophages that had not been exposed to Salmonella, demonstrated a process termed here as primed activation, in expressing relatively higher levels of particular anti-infective genes and pathways, including the JAK-STAT (Janus kinase-signal transducer and activator of transcription) pathway. In contrast, in M2 macrophages these genes and pathways were largely expressed only in response to infection. Conversely, in response to infection, M1 macrophages, but not MEP macrophages, modulated additional genes known to be associated with susceptibility to Salmonella infection, possibly contributing to the differences in resistance at later time points. Application of the JAK inhibitor Ruxolitinib before infection reduced resistance in M1 macrophages, supporting the importance of early JAK-STAT signalling in M1 resistance to Salmonella.
Collapse
Affiliation(s)
- Katharine Sedivy-Haley
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Travis Blimkie
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reza Falsafi
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Huei-Yi Lee
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
58
|
Özsoy M, Stummer N, Zimmermann FA, Feichtinger RG, Sperl W, Weghuber D, Schneider AM. Role of Energy Metabolism and Mitochondrial Function in Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:1443-1450. [PMID: 35247048 DOI: 10.1093/ibd/izac024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic recurring inflammation of the intestine which can be debilitating for those with intractable disease. However, the etiopathogenesis of inflammatory bowel disorders remains to be solved. The hypothesis that mitochondrial dysfunction is a crucial factor in the disease process is being validated by an increasing number of recent studies. Thus mitochondrial alteration in conjunction with previously identified genetic predisposition, changes in the immune response, altered gut microbiota, and environmental factors (eg, diet, smoking, and lifestyle) are all posited to contribute to IBD. The implicated factors seem to affect mitochondrial function or are influenced by mitochondrial dysfunction, which explains many of the hallmarks of the disease. This review summarizes the results of studies reporting links between mitochondria and IBD that were available on PubMed through March 2021. The aim of this review is to give an overview of the current understanding of the role of mitochondria in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Mihriban Özsoy
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Nathalie Stummer
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Franz A Zimmermann
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - René G Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Sperl
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Anna M Schneider
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
59
|
Ou-Yang XL, Zhang D, Wang XP, Yu SM, Xiao Z, Li W, Li CM. Nontargeted metabolomics to characterize the effects of isotretinoin on skin metabolism in rabbit with acne. Front Pharmacol 2022; 13:963472. [PMID: 36120319 PMCID: PMC9470959 DOI: 10.3389/fphar.2022.963472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Acne vulgaris is a chronic inflammatory disease of the pilosebaceous unit. This study aimed to explore the pathogenesis of acne and the therapeutic mechanism of isotretinoin from the metabolic perspective in coal tar-induced acne in rabbits. Methods: Ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-qTOF-MS) based metabolomics was used to identify skin metabolites in groups C (blank control), M (model group) and T (isotretinoin group). Multivariate statistical analysis was used to process the metabolomics data. Results: 98 differential metabolites in group C and group M were identified. The highest proportion of differential metabolites were organic acids and derivatives, lipid metabolites, organic heterocyclic compounds, and nucleoside metabolites. The most significant metabolic pathways included protein digestion and absorption, central carbon metabolism in cancer, ABC transporters, aminoacyl-tRNA biosynthesis, biosynthesis of amino acids, and sphingolipid signaling pathway. Isotretinoin treatment normalized eight of these metabolites. Conclusions: Our study will help to further elucidate the pathogenesis of acne, the mechanism of isotretinoin at the metabolite level, and identify new therapeutic targets for treating acne.
Collapse
Affiliation(s)
- Xiao-Liang Ou-Yang
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Deng Zhang
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiu-Ping Wang
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Si-Min Yu
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Zhen Xiao
- Department of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Wei Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Chun-Ming Li
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
60
|
Giha HA, Alamin OAO, Sater MS. Diabetic sarcopenia: metabolic and molecular appraisal. Acta Diabetol 2022; 59:989-1000. [PMID: 35429264 DOI: 10.1007/s00592-022-01883-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/13/2022] [Indexed: 11/26/2022]
Abstract
Myopathy is the missing slot from the routine clinical checkup for diabetic complications. Similarly, its pathophysiological, metabolic, and molecular bases are insufficiently explored. In this review, the above issues are highlighted with a focus on skeletal muscle atrophy (also described as diabetic sarcopenia), in contrast to the normal histological, physiological, and molecular features of the muscles. Literature search using published data from different online resources was used. Several diabetic myopathy etiological factors are discussed explicitly including; inflammation and immunological responses, with emphasis on TNFα and IL-6 overproduction, oxidative stress, neuropathy and vasculopathy, aging sarcopenia, antidiabetic drugs, and insulin resistance as a denominator. The pathophysiological hallmark of diabetic muscle atrophy is the decreased muscle proteins synthesis and increased degradation. The muscle protein degradation is conveyed by 4 systems; ubiquitin-proteasome, lysosomal autophagy, caspase-3, and calpain systems, and is mostly mediated via the IL6/STAT, TNF&IL6/NFκB, myostatin/Smad2/3, and FOXO1/3 signaling pathways, while the protein synthesis inhibition is mediated via suppression of the IGF1-PI3K-Akt-mTOR, and SC-Gαi2-pathways. Moreover, the satellite cells and multilineage muscle mesenchymal progenitor cells differentiation plays a major role on the fate of the affected muscle cells by taking an adipogenic, fibrogenic, or connective tissue lineage. As a conclusion, in this article, the pathological features of diabetic sarcopenia are reviewed at gross level, while at a molecular level the normal protein turnover, signal transduction, and pathways involved in muscle atrophy are described. Finally, an integrated network describing the molecular partakers in diabetic sarcopenia is presented.
Collapse
Affiliation(s)
- Hayder A Giha
- Medical Biochemistry and Molecular Biology, Khartoum, Sudan.
| | - Osman A O Alamin
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Alneelain University, Khartoum, Sudan
- Interventional Cardiology, Ahmad Gasim Cardiac Centre, Ahmad Gasim Hospital, Khartoum North, Sudan
- Internal Medicine Council, Sudan Medical Specialization Board (S.M.S.B), Khartoum, Sudan
| | - Mai S Sater
- Department of Biochemistry, College of Medicine and Medical Sciences (CMMS), Arabian Gulf University (AGU), Manama, Kingdom of Bahrain
| |
Collapse
|
61
|
Panconesi R, Flores Carvalho M, Dondossola D, Muiesan P, Dutkowski P, Schlegel A. Impact of Machine Perfusion on the Immune Response After Liver Transplantation - A Primary Treatment or Just a Delivery Tool. Front Immunol 2022; 13:855263. [PMID: 35874758 PMCID: PMC9304705 DOI: 10.3389/fimmu.2022.855263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
The frequent use of marginal livers forces transplant centres to explore novel technologies to improve organ quality and outcomes after implantation. Organ perfusion techniques are therefore frequently discussed with an ever-increasing number of experimental and clinical studies. Two main approaches, hypothermic and normothermic perfusion, are the leading strategies to be introduced in clinical practice in many western countries today. Despite this success, the number of studies, which provide robust data on the underlying mechanisms of protection conveyed through this technology remains scarce, particularly in context of different stages of ischemia-reperfusion-injury (IRI). Prior to a successful clinical implementation of machine perfusion, the concept of IRI and potential key molecules, which should be addressed to reduce IRI-associated inflammation, requires a better exploration. During ischemia, Krebs cycle metabolites, including succinate play a crucial role with their direct impact on the production of reactive oxygen species (ROS) at mitochondrial complex I upon reperfusion. Such features are even more pronounced under normothermic conditions and lead to even higher levels of downstream inflammation. The direct consequence appears with an activation of the innate immune system. The number of articles, which focus on the impact of machine perfusion with and without the use of specific perfusate additives to modulate the inflammatory cascade after transplantation is very small. This review describes first, the subcellular processes found in mitochondria, which instigate the IRI cascade together with proinflammatory downstream effects and their link to the innate immune system. Next, the impact of currently established machine perfusion strategies is described with a focus on protective mechanisms known for the different perfusion approaches. Finally, the role of such dynamic preservation techniques to deliver specific agents, which appear currently of interest to modulate this posttransplant inflammation, is discussed together with future aspects in this field.
Collapse
Affiliation(s)
- Rebecca Panconesi
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della, Scienza di Torino, University of Turin, Turin, Italy
| | - Mauricio Flores Carvalho
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore, Policlinico and University of Milan, Milan, Italy
| | - Paolo Muiesan
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore, Policlinico and University of Milan, Milan, Italy
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Schlegel
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore, Policlinico and University of Milan, Milan, Italy
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
62
|
Immunometabolic rewiring of tubular epithelial cells in kidney disease. Nat Rev Nephrol 2022; 18:588-603. [PMID: 35798902 DOI: 10.1038/s41581-022-00592-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/20/2022]
Abstract
Kidney tubular epithelial cells (TECs) have a crucial role in the damage and repair response to acute and chronic injury. To adequately respond to constant changes in the environment, TECs have considerable bioenergetic needs, which are supported by metabolic pathways. Although little is known about TEC metabolism, a number of ground-breaking studies have shown that defective glucose metabolism or fatty acid oxidation in the kidney has a key role in the response to kidney injury. Imbalanced use of these metabolic pathways can predispose TECs to apoptosis and dedifferentiation, and contribute to lipotoxicity and kidney injury. The accumulation of lipids and aberrant metabolic adaptations of TECs during kidney disease can also be driven by receptors of the innate immune system. Similar to their actions in innate immune cells, pattern recognition receptors regulate the metabolic rewiring of TECs, causing cellular dysfunction and lipid accumulation. TECs should therefore be considered a specialized cell type - like cells of the innate immune system - that is subject to regulation by immunometabolism. Targeting energy metabolism in TECs could represent a strategy for metabolically reprogramming the kidney and promoting kidney repair.
Collapse
|
63
|
Liang H, Zhang F, Wang W, Zhao W, Zhou J, Feng Y, Wu J, Li M, Bai X, Zeng Z, Niu J, Miao Y. Heat Shock Transcription Factor 2 Promotes Mitophagy of Intestinal Epithelial Cells Through PARL/PINK1/Parkin Pathway in Ulcerative Colitis. Front Pharmacol 2022; 13:893426. [PMID: 35860016 PMCID: PMC9289131 DOI: 10.3389/fphar.2022.893426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/16/2022] [Indexed: 12/12/2022] Open
Abstract
The overactivation of NLRP3 inflammasome in intestinal epithelial cells (IECs) is among the important reasons for severe inflammation in ulcerative colitis (UC). We found that heat shock transcription factor 2 (HSF2), which is highly expressed in UC, could inhibit the activation of NLRP3 inflammasome and reduce IL-1β in IECs, but the mechanisms were still not clear. It has been reported that HSP72 regulated by HSF2 can enhance the mitophagy mediated by Parkin. The number of damaged mitochondria and the mitochondrial derived ROS (mtROS) can be reduced by mitophagy, which means the activity of NLRP3 inflammasome is inhibited. Therefore, we speculate that HSF2 might regulate the activation of NLRP3 inflammasome of IECs in UC through the mitophagy mediated by Parkin. This study proves that the number of damaged mitochondria in IECs, the level of mitophagy, and the level of ROS in intestinal mucosa are positively correlated with the severity of UC. In mice and cells, mitophagy was promoted by HSF2 through the PARL/PINK1/Parkin pathway. This study reveals the potential mechanisms of HSF2 decreasing mtROS of IECs in UC.
Collapse
Affiliation(s)
- Hao Liang
- Kunming Medical University, Kunming, China
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Fengrui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Wen Wang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Wei Zhao
- Kunming Medical University, Kunming, China
| | - Jiao Zhou
- Kunming Medical University, Kunming, China
| | - Yuran Feng
- Department of Ultrasound, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Wu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Maojuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Xinyu Bai
- Kunming Medical University, Kunming, China
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Zhong Zeng
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
- *Correspondence: Junkun Niu, ; Yinglei Miao,
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
- *Correspondence: Junkun Niu, ; Yinglei Miao,
| |
Collapse
|
64
|
Evavold CL, Kagan JC. Diverse Control Mechanisms of the Interleukin-1 Cytokine Family. Front Cell Dev Biol 2022; 10:910983. [PMID: 35832789 PMCID: PMC9272893 DOI: 10.3389/fcell.2022.910983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022] Open
Abstract
The majority of interleukin-1 (IL-1) family cytokines lack amino terminal secretion signals or transmembrane domains for secretion along the conventional biosynthetic pathway. Yet, these factors must be translocated from the cytoplasm across the plasma membrane into the extracellular space in order to regulate inflammation. Recent work has identified an array of mechanisms by which IL-1 family cytokines can be released into the extracellular space, with supramolecular organizing centers known as inflammasomes serving as dominant drivers of this process. In this review, we discuss current knowledge of the mechanisms of IL-1 family cytokine synthesis, processing, and release from cells. Using this knowledge, we propose a model whereby host metabolic state dictates the route of IL-1β secretion, with implications for microbial infection and sterile inflammation.
Collapse
Affiliation(s)
- Charles L. Evavold
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- *Correspondence: Charles L. Evavold, ; Jonathan C. Kagan,
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Charles L. Evavold, ; Jonathan C. Kagan,
| |
Collapse
|
65
|
Schlegel A, Porte R, Dutkowski P. Protective mechanisms and current clinical evidence of hypothermic oxygenated machine perfusion (HOPE) in preventing post-transplant cholangiopathy. J Hepatol 2022; 76:1330-1347. [PMID: 35589254 DOI: 10.1016/j.jhep.2022.01.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
The development of cholangiopathies after liver transplantation impacts on the quality and duration of graft and patient survival, contributing to higher costs as numerous interventions are required to treat strictures and infections at the biliary tree. Prolonged donor warm ischaemia time in combination with additional cold storage are key risk factors for the development of biliary strictures. Based on this, the clinical implementation of dynamic preservation strategies is a current hot topic in the field of donation after circulatory death (DCD) liver transplantation. Despite various retrospective studies reporting promising results, also regarding biliary complications, there are only a few randomised-controlled trials on machine perfusion. Recently, the group from Groningen has published the first randomised-controlled trial on hypothermic oxygenated perfusion (HOPE), demonstrating a significant reduction of symptomatic ischaemic cholangiopathies with the use of a short period of HOPE before DCD liver implantation. The most likely mechanism for this important effect, also shown in several experimental studies, is based on mitochondrial reprogramming under hypothermic aerobic conditions, e.g. exposure to oxygen in the cold, with a controlled and slow metabolism of ischaemically accumulated succinate and simultaneous ATP replenishment. This unique feature prevents mitochondrial oxidative injury and further downstream tissue inflammation. HOPE treatment therefore supports livers by protecting them from ischaemia-reperfusion injury (IRI), and thereby also prevents the development of post-transplant biliary injury. With reduced IRI-associated inflammation, recipients are also protected from activation of the innate immune system, with less acute rejections seen after HOPE.
Collapse
Affiliation(s)
- Andrea Schlegel
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland; General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100 Milan, Italy
| | - Robert Porte
- Department of Surgery, Surgical Research Laboratory, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland.
| |
Collapse
|
66
|
Jyonouchi H, Geng L. Whole-exome sequencing in a subject with fluctuating neuropsychiatric symptoms, immunoglobulin G1 deficiency, and subsequent development of Crohn's disease: a case report. J Med Case Rep 2022; 16:187. [PMID: 35538558 PMCID: PMC9092677 DOI: 10.1186/s13256-022-03404-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mutations or polymorphisms of genes that are associated with inflammasome functions are known to predispose individuals to Crohn's disease and likely affect clinical presentations and responses to therapeutic agents in patients with Crohn's disease. The presence of additional gene mutations/polymorphisms that can modify immune responses may further affect clinical features, making diagnosis and management of Crohn's disease even more challenging. Whole-exome sequencing is expected to be instrumental in understanding atypical presentations of Crohn's disease and the selection of therapeutic measures, especially when multiple gene mutations/polymorphisms affect patients with Crohn's disease. We report the case of a non-Hispanic Caucasian female patient with Crohn's disease who was initially diagnosed with pediatric acute-onset neuropsychiatric syndrome with fluctuating anxiety symptoms at 9 years of age. This patient was initially managed with pulse oral corticosteroid treatment and then intravenous immunoglobulin due to her immunoglobulin G1 deficiency. At 15 years of age, she was diagnosed with Crohn's disease, following onset of acute abdomen. Treatment with oral corticosteroid and then tumor necrosis factor-α blockers (adalimumab and infliximab) led to remission of Crohn's disease. However, she continued to suffer from chronic abdominal pain, persistent headache, general fatigue, and joint ache involving multiple joints. Extensive gastrointestinal workup was unrevealing, but whole-exome sequencing identified two autosomal dominant gene variants: NLRP12 (loss of function) and IRF2BP2 (gain of function). Based on whole-exome sequencing findings, infliximab was discontinued and anakinra, an interleukin-1β blocker, was started, rendering marked improvement of her clinical symptoms. However, Crohn's disease lesions recurred following Yersinia enterocolitis. The patient was successfully treated with a blocker of interleukin-12p40 (ustekinumab), and anakinra was discontinued following remission of her Crohn's disease lesions. CONCLUSION Loss-of-function mutation of NRLRP12 gene augments production of interleukin-1β and tumor necrosis factor-α, while gain-of-function mutation of IRF2BP2 impairs cytokine production and B cell differentiation. We propose that the presence of these two autosomal dominant variants caused an atypical clinical presentation of Crohn's disease.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital (SPUH), New Brunswick, USA. .,Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, SPUH, 254 Easton Ave., New Brunswick, NJ, 08901, USA.
| | - Lee Geng
- Department of Pediatrics, Saint Peter's University Hospital (SPUH), New Brunswick, USA
| |
Collapse
|
67
|
Dai J, Zhang X, Zhang J, Yang W, Yang X, Bian H, Chen Z. Blockade of mIL‐6R alleviated lipopolysaccharide‐induced systemic inflammatory response syndrome by suppressing NF‐κB‐mediated Ccl2 expression and inflammasome activation. MedComm (Beijing) 2022; 3:e132. [PMID: 35548710 PMCID: PMC9075038 DOI: 10.1002/mco2.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is characterized by dysregulated cytokine release, immune responses and is associated with organ dysfunction. IL‐6R blockade indicates promising therapeutic effects in cytokine release storm but still remains unknown in SIRS. To address the issue, we generated the human il‐6r knock‐in mice and a defined epitope murine anti‐human membrane‐bound IL‐6R (mIL‐6R) mAb named h‐mIL‐6R mAb. We found that the h‐mIL‐6R and the commercial IL‐6R mAb Tocilizumab significantly improved the survival rate, reduced the levels of TNF‐α, IL‐6, IL‐1β, IFN‐γ, transaminases and blood urea nitrogen of LPS‐induced SIRS mice. Besides, the h‐mIL‐6R mAb could also dramatically reduce the levels of inflammatory cytokines in LPS‐treated THP‐1 cells in vitro. RNA‐seq analysis indicated that the h‐mIL‐6R mAb could regulate LPS‐induced activation of NF‐κB/Ccl2 and NOD‐like receptor signaling pathways. Furthermore, we found that the h‐mIL‐6R mAb could forwardly inhibit Ccl2 expression and NLRP3‐mediated pyroptosis by suppressing NF‐κB in combination with the NF‐κB inhibitor. Collectively, mIL‐6R mAbs suppressed NF‐κB/Ccl2 signaling and inflammasome activation. IL‐6R mAbs are potential alternative therapeutics for suppressing excessive cytokine release, over‐activated inflammatory responses and alleviating organ injuries in SIRS.
Collapse
Affiliation(s)
- Ji‐Min Dai
- National Translational Science Center for Molecular Medicine&Department of Cell Biology State Key Laboratory of Cancer Biology the Fourth Military Medical University Xi'an P.R. China
- Faculty of Hepato‐Biliary‐Pancreatic Surgery The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital Beijing P.R. China
| | - Xue‐Qin Zhang
- National Translational Science Center for Molecular Medicine&Department of Cell Biology State Key Laboratory of Cancer Biology the Fourth Military Medical University Xi'an P.R. China
| | - Jia‐Jia Zhang
- National Translational Science Center for Molecular Medicine&Department of Cell Biology State Key Laboratory of Cancer Biology the Fourth Military Medical University Xi'an P.R. China
| | - Wei‐Jie Yang
- National Translational Science Center for Molecular Medicine&Department of Cell Biology State Key Laboratory of Cancer Biology the Fourth Military Medical University Xi'an P.R. China
| | - Xiang‐Min Yang
- National Translational Science Center for Molecular Medicine&Department of Cell Biology State Key Laboratory of Cancer Biology the Fourth Military Medical University Xi'an P.R. China
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine&Department of Cell Biology State Key Laboratory of Cancer Biology the Fourth Military Medical University Xi'an P.R. China
| | - Zhi‐Nan Chen
- National Translational Science Center for Molecular Medicine&Department of Cell Biology State Key Laboratory of Cancer Biology the Fourth Military Medical University Xi'an P.R. China
| |
Collapse
|
68
|
Seim GL, Fan J. A matter of time: temporal structure and functional relevance of macrophage metabolic rewiring. Trends Endocrinol Metab 2022; 33:345-358. [PMID: 35331615 PMCID: PMC9010376 DOI: 10.1016/j.tem.2022.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022]
Abstract
The response of macrophages to stimulation is a dynamic process which coordinates the orderly adoption and resolution of various immune functions. Accumulating work over the past decade has demonstrated that during the immune response macrophage metabolism is substantially rewired to support important cellular processes, including the production of bioactive molecules, intercellular communication, and the regulation of intracellular signaling and transcriptional programming. In particular, we discuss an important concept emerging from recent studies - metabolic rewiring during the immune response is temporally structured. We review the regulatory mechanisms that drive the dynamic remodeling of metabolism, and examine the functional implications of these metabolic dynamics.
Collapse
Affiliation(s)
- Gretchen L Seim
- Morgridge Institute for Research, Madison, WI, USA; Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, USA; Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
69
|
Li Y, Deng M, Li Y, Mao X, Yan S, Tang X, Mao H. Clinical heterogeneity of NLRP12-associated autoinflammatory diseases. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
70
|
Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol 2022; 23:692-704. [PMID: 35484407 PMCID: PMC9098388 DOI: 10.1038/s41590-022-01185-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 03/11/2022] [Indexed: 12/24/2022]
Abstract
The NLRP3 inflammasome is linked to sterile and pathogen-dependent inflammation, and its dysregulation underlies many chronic diseases. Mitochondria have been implicated as regulators of the NLRP3 inflammasome through several mechanisms including generation of mitochondrial reactive oxygen species (ROS). Here, we report that mitochondrial electron transport chain (ETC) complex I, II, III and V inhibitors all prevent NLRP3 inflammasome activation. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI1) or Ciona intestinalis alternative oxidase, which can complement the functional loss of mitochondrial complex I or III, respectively, without generation of ROS, rescued NLRP3 inflammasome activation in the absence of endogenous mitochondrial complex I or complex III function. Metabolomics revealed phosphocreatine (PCr), which can sustain ATP levels, as a common metabolite that is diminished by mitochondrial ETC inhibitors. PCr depletion decreased ATP levels and NLRP3 inflammasome activation. Thus, the mitochondrial ETC sustains NLRP3 inflammasome activation through PCr-dependent generation of ATP, but via a ROS-independent mechanism.
Collapse
Affiliation(s)
- Leah K Billingham
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua S Stoolman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karthik Vasan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Arianne E Rodriguez
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Taylor A Poor
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marten Szibor
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
| | - Colleen R Reczek
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peng Zhang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
71
|
Identification and Validation of Inflammatory Response-Related Gene Signatures to Predict the Prognosis of Neuroblastoma. Int J Genomics 2022; 2022:2417351. [PMID: 35535346 PMCID: PMC9078807 DOI: 10.1155/2022/2417351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Neuroblastoma (NB) is the third most common malignant tumor in children. The inflammation is believed to be closely related to NB patients’ prognosis. However, there is no comprehensive research to study the role of inflammatory response-related gene (IRRG) in NB patients. Methods. We downloaded the gene expression profiles of NB patients from GEO and TARGET database, and the expression of 200 IRRGs was extracted. Then, we performed differentially analysis between INSS stage 4 and INSS stage 4S NB patients. The univariate and multivariate Cox regression analyses were performed to screen out the overall survival- (OS-) and event-free survival- (EFS-) related IRRGs in GSE49710, and two signatures were constructed; both signatures were evaluated by Kaplan-Meier (K-M) survival curve and receiver operating characteristic (ROC) curve. Finally, the TARGET cohort was used to validate IRRG signatures, and the independence of the prognostic IRRG signatures was evaluated by integrating clinical information. Results. We screened out 10 OS-related IRRGs and 11 EFS-related IRRGs. Then, we identified that OS- and EFS-related IRRG signatures and found that the OS and EFS of NB patients in the low-risk group were significantly superior than those in the high-risk group (both
value < 0.0001). The AUC values of 3-, 5-, and 7-year OS are 0.910, 0.933, and 0.921, respectively, and 3-, 5-, and 7-year EFS are 0.840, 0.835, and 0.837, respectively. In addition, we found that both IRRG signatures can be used as independent prognostic indicators for patients with NB. Both IRRG signatures still have good predictive ability in validation cohort. Conclusions. We constructed and validated two prognostic gene signatures based on IRRGs. Our study helped us to better understand the role of inflammation in NB and provided new insights for the prognosis assessment and treatment strategy for NB patients.
Collapse
|
72
|
Creating ATP via creatine kinase B for NLRP3 activation. Nat Immunol 2022; 23:653-655. [PMID: 35484409 DOI: 10.1038/s41590-022-01191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
73
|
Kim NE, Song YJ. Coordinated regulation of interferon and inflammasome signaling pathways by SARS-CoV-2 proteins. J Microbiol 2022; 60:300-307. [PMID: 35089584 PMCID: PMC8795727 DOI: 10.1007/s12275-022-1502-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022]
Abstract
Type I and III interferons (IFNs) and the nucleotide-binding domain (NBD) leucine-rich repeat (LRR)-containing receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome play pivotal roles in the pathogenesis of SARS-CoV-2. While optimal IFN and inflammasome responses are essential for limiting SARS-CoV-2 infection, aberrant activation of these innate immune responses is associated with COVID-19 pathogenesis. In this review, we focus our discussion on recent findings on SARS-CoV-2-induced type I and III IFNs and NLRP3 inflammasome responses and the viral proteins regulating these mechanisms.
Collapse
Affiliation(s)
- Na-Eun Kim
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
74
|
Zhang T, Huang W, Ma Y. Down-regulation of TRPM2 attenuates hepatic ischemia/reperfusion injury through activation of autophagy and inhibition of NLRP3 inflammasome pathway. Int Immunopharmacol 2022; 104:108443. [PMID: 35021129 DOI: 10.1016/j.intimp.2021.108443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022]
Abstract
AIM Hepatic ischemia/reperfusion (I/R) injury is a significant pathological process that contributes to high morbidity and mortality rates, although the underlying mechanism is unknown. Recent studies have shown that transient receptor potential melastatin 2 (TRPM2) plays a critical role in organ I/R injury, but the exact mechanism is elusive. This study investigates the role and mechanism of TPRM2 in hepatic I/R injury and oxygen-glucosedeprivation/reoxygenation (OGD/R) induced hepatocyte injury. METHODS We evaluated the effects of TRPM2 on hepatic I/R injury using a knockout mouse model of hepatic I/R. In a model of OGD/R in hepatocytes, we investigated the mechanism of TPRM2 in it using the autophagy agonist and inhibitor and an NLRP3 inhibitor. RESULTS We discovered that knockout of TRPM2 protected against hepatic I/R accompanied by autophagy activation and NLRP3 inflammasome pathway inhibition. Furthermore, increasing autophagy attenuated OGD/R-induced cell injury and knockdown of TRPM2 alleviated the injury by activating autophagy. Additionally, we detected the expression of NLRP3 inflammasome pathway in the OGD/R-induced hepatocytes which had been treated with the autophagy agonist and inhibitor, and found that autophagy negatively regulated the NLRP3 inflammasome pathway. Moreover, we discovered that the administration of NLRP3-inhibitor INF39 increased cell viability and caused a decline in cell death in the OGD/R-treated hepatocytes. CONCLUSIONS Downregulation of TRPM2 protected the liver against I/R injury and OGD/R induced injury, mediated by autophagy activation and inhibition of the NLRP3 inflammasome pathway, whereas autophagy negatively regulated the NLRP3 inflammasome pathway in this process.
Collapse
Affiliation(s)
- Tao Zhang
- Department of anesthesiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenqi Huang
- Department of anesthesiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yi Ma
- Organ transplantation center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
75
|
Dutta K, Friscic J, Hoffmann MH. Targeting the tissue-complosome for curbing inflammatory disease. Semin Immunol 2022; 60:101644. [PMID: 35902311 DOI: 10.1016/j.smim.2022.101644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/15/2023]
Abstract
Hyperactivated local tissue is a cardinal feature of immune-mediated inflammatory diseases of various organs such as the joints, the gut, the skin, or the lungs. Tissue-resident structural and stromal cells, which get primed during repeated or long-lasting bouts of inflammation form the basis of this sensitization of the tissue. During priming, cells change their metabolism to make them fit for the heightened energy demands that occur during persistent inflammation. Epigenetic changes and, curiously, an activation of intracellularly expressed parts of the complement system drive this metabolic invigoration and enable tissue-resident cells and infiltrating immune cells to employ an arsenal of inflammatory functions, including activation of inflammasomes. Here we provide a current overview on complement activation and inflammatory transformation in tissue-occupying cells, focusing on fibroblasts during arthritis, and illustrate ways how therapeutics directed at complement C3 could potentially target the complosome to unprime cells in the tissue and induce long-lasting abatement of inflammation.
Collapse
Affiliation(s)
- Kuheli Dutta
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Jasna Friscic
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Markus H Hoffmann
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
76
|
Yu Q, Guo M, Zeng W, Zeng M, Zhang X, Zhang Y, Zhang W, Jiang X, Yu B. Interactions between NLRP3 inflammasome and glycolysis in macrophages: New insights into chronic inflammation pathogenesis. Immun Inflamm Dis 2022; 10:e581. [PMID: 34904398 PMCID: PMC8926505 DOI: 10.1002/iid3.581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
NLRP3 inflammasome activation in macrophages fuels sterile inflammation, which has been tied with metabolic reprogramming characterized by high glycolysis and low oxidative phosphorylation. The key enzymes in glycolysis and glycolysis‐related products can regulate and activate NLRP3 inflammasome. In turn, NLRP3 inflammasome is considered to affect glycolysis, as well. However, the exact mechanism remains ambiguous. On the basis of these findings, the focus of this review is mainly on the developments in our understanding of interaction between NLRP3 inflammasome activation and glycolysis in macrophages, and small molecule compounds that influence the activation of NLRP3 inflammasomes by regulating glycolysis in macrophages. The application of this interaction in the treatment of diseases is also discussed. This paper may yield valuable clues for development of novel therapeutic agent for NLRP3 inflammasome‐related diseases.
Collapse
Affiliation(s)
- Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
77
|
Wang X, Liu M, Geng N, Du Y, Li Z, Gao X, Han B, Liu J, Liu Y. Staphylococcus aureus mediates pyroptosis in bovine mammary epithelial cell via activation of NLRP3 inflammasome. Vet Res 2022; 53:10. [PMID: 35123552 PMCID: PMC8817610 DOI: 10.1186/s13567-022-01027-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/10/2022] [Indexed: 12/22/2022] Open
Abstract
Cell death and inflammation are intimately linked during mastitis due to Staphylococcus aureus (S. aureus). Pyroptosis, a programmed necrosis triggered by gasdermin protein family, often occurs after inflammatory caspase activation. Many pathogens invade host cells and activate cell-intrinsic death mechanisms, including pyroptosis, apoptosis, and necroptosis. We reported that bovine mammary epithelial cells (MAC-T) respond to S. aureus by NOD-like receptor protein 3 (NLRP3) inflammasome activation through K+ efflux, leading to the recruitment of apoptosis-associated speck-like protein (ASC) and the activation of caspase-1. The activated caspase-1 cleaves gasdermin D (GSDMD) and forms a N-terminal pore forming domain that drives swelling and membrane rupture. Membrane rupture results in the release of the pro-inflammatory cytokines IL-18 and IL-1β, which are activated by caspase-1. Can modulate GSDMD activation by NLRP3-dependent caspase-1 activation and then cause pyroptosis of bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Na Geng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yongzhen Du
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhaoming Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xin Gao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
78
|
Zhang J, Yu Q, Jiang D, Yu K, Yu W, Chi Z, Chen S, Li M, Yang D, Wang Z, Xu T, Guo X, Zhang K, Fang H, Ye Q, He Y, Zhang X, Wang D. Epithelial Gasdermin D shapes the host-microbial interface by driving mucus layer formation. Sci Immunol 2022; 7:eabk2092. [PMID: 35119941 DOI: 10.1126/sciimmunol.abk2092] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Goblet cells and their main secretory product, mucus, play crucial roles in orchestrating the colonic host-microbe interactions that help maintain gut homeostasis. However, the precise intracellular machinery underlying this goblet cell-induced mucus secretion remains poorly understood. Gasdermin D (GSDMD) is a recently identified pore-forming effector protein that causes pyroptosis, a lytic proinflammatory type of cell death occurring during various pathophysiological conditions. Here, we reveal an unexpected function of GSDMD in goblet cell mucin secretion and mucus layer formation. Specific deletion of Gsdmd in intestinal epithelial cells (ΔIEC) led to abrogated mucus secretion with a concomitant loss of the mucus layer. This impaired colonic mucus layer in GsdmdΔIEC mice featured a disturbed host-microbial interface and inefficient clearance of enteric pathogens from the mucosal surface. Mechanistically, stimulation of goblet cells activates caspases to process GSDMD via reactive oxygen species production; in turn, this activated GSDMD drives mucin secretion through calcium ion-dependent scinderin-mediated cortical F-actin disassembly, which is a key step in granule exocytosis. This study links epithelial GSDMD to the secretory granule exocytotic pathway and highlights its physiological nonpyroptotic role in shaping mucosal homeostasis in the gut.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Qianzhou Yu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Danlu Jiang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Weiwei Yu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Zhexu Chi
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Sheng Chen
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China.,Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Mobai Li
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Dehang Yang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Zhen Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Ting Xu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Xingchen Guo
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Kailian Zhang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Hui Fang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Qizhen Ye
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Di Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| |
Collapse
|
79
|
Lee SY, Lee BH, Park JH, Park MS, Ji GE, Sung MK. Bifidobacterium bifidum BGN4 Paraprobiotic Supplementation Alleviates Experimental Colitis by Maintaining Gut Barrier and Suppressing Nuclear Factor Kappa B Activation Signaling Molecules. J Med Food 2022; 25:146-157. [PMID: 35148194 DOI: 10.1089/jmf.2021.k.0150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are characterized by chronic gastrointestinal inflammation with continuous relapse-remission cycles. This study aimed to evaluate the protective effect of Bifidobacterium bifidum BGN4 as a probiotic or paraprobiotic against dextran sulfate sodium (DSS)-induced colitis in mice. Ten-week-old female BALB/c mice were randomly divided into five groups. The control (CON) and DSS groups received oral gavage of PBS, whereas the live B. bifidum (LIVE), heat-killed B. bifidum BGN4 (HEAT), and lysozyme-treated B. bifidum BGN4 (LYSOZYME) groups received live B. bifidum BGN4, heat-killed B. bifidum BGN4, and lysozyme-treated B. bifidum BGN4, respectively, for 10 days, followed by DSS supply to induce colitis. The paraprobiotic (HEAT and LYSOZYME) groups had less body weight loss and colon length shortening than the DSS or LIVE groups. The LYSOZYME group exhibited better preserved intestinal barrier integrity than the LIVE group by upregulating gap junction protein expression possibly through activating NOD-like receptor family pyrin domain containing 6/caspase-1/interleukin (IL)-18 signaling. The LYSOZYME group showed downregulated proinflammatory molecules, including p-inhibitor of kappa B proteins alpha (IκBα), cycloxygenase 2 (COX2), IL-1β, and T-bet, whereas the expression of the regulatory T cell transcription factor, forkhead box P3 expression, was increased. The paraprobiotic groups showed distinct separation of microbiota distribution and improved inflammation-associated dysbiosis. These results suggest that B. bifidum BGN4 paraprobiotics, especially lysozyme-treated BGN4, have a preventive effect against DSS-induced colitis, impacting intestinal barrier integrity, inflammation, and dysbiosis.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Seoul, Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Korea
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Korea
| | | | - Geun-Eog Ji
- Research Center, BIFIDO Co., Ltd., Hongcheon, Korea
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | - Mi-Kyung Sung
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
80
|
Deng G, Li C, Chen L, Xing C, Fu C, Qian C, Liu X, Wang HY, Zhu M, Wang RF. BECN2 (beclin 2) Negatively Regulates Inflammasome Sensors Through ATG9A-Dependent but ATG16L1- and LC3-Independent Non-Canonical Autophagy. Autophagy 2022; 18:340-356. [PMID: 34152938 PMCID: PMC8942444 DOI: 10.1080/15548627.2021.1934270] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022] Open
Abstract
Macroautophagy/autophagy-related proteins regulate infectious and inflammatory diseases in autophagy-dependent or -independent manner. However, the role of a newly identified mammalian-specific autophagy protein-BECN2 (beclin 2) in innate immune regulation is largely unknown. Here we showed that loss of BECN2 enhanced the activities of NLRP3, AIM2, NLRP1, and NLRC4 inflammasomes upon ligand stimulations. Mechanistically, BECN2 interacted with inflammasome sensors and mediated their degradation through a ULK1- and ATG9A-dependent, but BECN1-WIPI2-ATG16L1-LC3-independent, non-canonical autophagic pathway. BECN2 recruited inflammasome sensors on ATG9A+ vesicles to form a complex (BECN2-ATG9A-sensors) upon ULK1 activation. Three soluble NSF attachment protein receptor (SNARE) proteins (SEC22A, STX5, and STX6) were further shown to mediate the BECN2-ATG9A-dependent inflammasome sensor degradation. Loss of BECN2 promoted alum-induced peritonitis, which could be rescued by the ablation of CASP1 in Becn2-deficient mice. Hence, BECN2 negatively regulated inflammasome activation to control inflammation, serving as a potential therapeutic target for the treatment of infectious and inflammatory diseases.Abbreviations: AIM2: absent in melanoma 2; ATG: autophagy related; BECN1: beclin 1; BMDC: bone marrow-derived dendritic cells; BMDM: bone marrow-derived macrophages; CASP1: caspase 1; CQ: chloroquine; gMDSC: granulocytic myeloid-derived suppressor cells; IL: interleukin; LPS: lipopolysaccharide; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; mMDSC: monocytic myeloid-derived suppressor cells; NLRC4: NLR family CARD domain containing 4; NLRP1: NLR family pyrin domain containing 1; NLRP3: NLR family pyrin domain containing 3; PECs: peritoneal exudate cells; PYCARD/ASC: apoptosis-associated speck-like protein containing a caspase activation and recruitment domain; SNAREs: soluble NSF attachment protein receptors; STX5: syntaxin 5; STX6: syntaxin 6; ULK1: unc-51 like autophagy activating kinase 1; WIPI: WD repeat domain, phosphoinositide interacting.
Collapse
Affiliation(s)
- Guangtong Deng
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chaoran Li
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lang Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changsheng Xing
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chuntang Fu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chen Qian
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xin Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helen Y. Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Motao Zhu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
81
|
Li Z, Chen X, Tao J, Shi A, Zhang J, Yu P. Exosomes Regulate NLRP3 Inflammasome in Diseases. Front Cell Dev Biol 2022; 9:802509. [PMID: 35047512 PMCID: PMC8762245 DOI: 10.3389/fcell.2021.802509] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence has suggested the unique and critical role of exosomes as signal molecules vector in various diseases. Numerous researchers have been trying to identify how these exosomes function in immune progression, as this could promote their use as biomarkers for the disease process and potential promising diagnostic tools. NOD-like receptor (NLR) family, pyrin domain containing 3 (NLRP3), a tripartite protein, contains three functional domains a central nucleotide-binding and oligomerization domain (NACHT), an N-terminal pyrin domain (PYD), and a leucine-rich repeat domain (LRR). Of note, existing studies have identified exosome as a novel mediator of the NLRP3 inflammasome, which is critical in diseases progression. However, the actual mechanisms and clinical treatment related to exosomes and NLRP3 are still not fully understood. Herein, we presented an up-to-date review of exosomes and NLRP3 in diseases, outlining what is known about the role of exosomes in the activation of NLRP3 inflammasome and also highlighting areas of this topic that warrant further study.
Collapse
Affiliation(s)
- Zhangwang Li
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xinyue Chen
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Junjie Tao
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ao Shi
- School of Medicine, University of Nicosia, Nicosia, Cyprus.,School of Medicine, St. George University of London, London, United Kingdom
| | - Jing Zhang
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China.,Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China.,Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
82
|
Wang S, Zhang J, Wang Y, Jiang X, Guo M, Yang Z. NLRP3 inflammasome as a novel therapeutic target for heart failure. Anatol J Cardiol 2022; 26:15-22. [PMID: 35191381 PMCID: PMC8878950 DOI: 10.5152/anatoljcardiol.2021.580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 06/30/2024] Open
Abstract
Heart failure (HF) is a leading cause of mortality worldwide. The pathogenesis of HF is complex and has not yet been fully elucidated, which has slowed drug development and long-term treatments. Inflammasome-mediated responses occur during the progression of HF. It has been reported that energy metabolism and metabolites of intestinal flora are also involved in the process of HF, and they interact with each other to promote the progression of HF. NLR family pyrin domain containing 3 (NLRP3) inflammasome may be a key target in the relationship between inflammation-mediated energy metabolism and metabolites of intestinal flora. Elucidating the relationship among the above three factors may help to identify new molecular targets for the prevention and treatment of HF and ultimately affect the course of HF. In this study, we systematically summarize evidence regarding the relationship among NLRP3 inflammasome, energy metabolism, intestinal microflora metabolites, and inflammation, as well as highlight advantages of NLRP3 inflammasome in treating HF.
Collapse
Affiliation(s)
- Shuangcui Wang
- Department of Integrative Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| | - Jiaqi Zhang
- Department of Integrative Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| | - Yuli Wang
- Department of Integrative Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| | - Xijuan Jiang
- Department of Integrative Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| | - Maojuan Guo
- Department of Integrative Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| | - Zhen Yang
- Department of Chinese Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| |
Collapse
|
83
|
Niyonzima N, Rahman J, Kunz N, West EE, Freiwald T, Desai JV, Merle NS, Gidon A, Sporsheim B, Lionakis MS, Evensen K, Lindberg B, Skagen K, Skjelland M, Singh P, Haug M, Ruseva MM, Kolev M, Bibby J, Marshall O, O’Brien B, Deeks N, Afzali B, Clark RJ, Woodruff TM, Pryor M, Yang ZH, Remaley AT, Mollnes TE, Hewitt SM, Yan B, Kazemian M, Kiss MG, Binder CJ, Halvorsen B, Espevik T, Kemper C. Mitochondrial C5aR1 activity in macrophages controls IL-1β production underlying sterile inflammation. Sci Immunol 2021; 6:eabf2489. [PMID: 34932384 PMCID: PMC8902698 DOI: 10.1126/sciimmunol.abf2489] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While serum-circulating complement destroys invading pathogens, intracellularly active complement, termed the “complosome,” functions as a vital orchestrator of cell-metabolic events underlying T cell effector responses. Whether intracellular complement is also nonredundant for the activity of myeloid immune cells is currently unknown. Here, we show that monocytes and macrophages constitutively express complement component (C) 5 and generate autocrine C5a via formation of an intracellular C5 convertase. Cholesterol crystal sensing by macrophages induced C5aR1 signaling on mitochondrial membranes, which shifted ATP production via reverse electron chain flux toward reactive oxygen species generation and anaerobic glycolysis to favor IL-1β production, both at the transcriptional level and processing of pro–IL-1β. Consequently, atherosclerosis-prone mice lacking macrophage-specific C5ar1 had ameliorated cardiovascular disease on a high-cholesterol diet. Conversely, inflammatory gene signatures and IL-1β produced by cells in unstable atherosclerotic plaques of patients were normalized by a specific cell-permeable C5aR1 antagonist. Deficiency of the macrophage cell-autonomous C5 system also protected mice from crystal nephropathy mediated by folic acid. These data demonstrate the unexpected intracellular formation of a C5 convertase and identify C5aR1 as a direct modulator of mitochondrial function and inflammatory output from myeloid cells. Together, these findings suggest that the complosome is a contributor to the biologic processes underlying sterile inflammation and indicate that targeting this system could be beneficial in macrophage-dependent diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Nathalie Niyonzima
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jubayer Rahman
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Natalia Kunz
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Erin E. West
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - Jigar V. Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas S. Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Alexandre Gidon
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bjørnar Sporsheim
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Central Administration, St. Olavs Hospital, University Hospital in Trondheim, Trondheim, Norway
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristin Evensen
- Department of Neurology, Vestre Viken, Drammen Hospital, Drammen, Norway
| | - Beate Lindberg
- Department of Cardiothoracic Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Karolina Skagen
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Mona Skjelland
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Parul Singh
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Markus Haug
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Marieta M. Ruseva
- BG2, Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Martin Kolev
- BG2, Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Jack Bibby
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Olivia Marshall
- Discovery DMPK Bioanalysis Unit, GlaxoSmithKline, Stevenage, UK
| | - Brett O’Brien
- Discovery DMPK Bioanalysis Unit, GlaxoSmithKline, Stevenage, UK
| | - Nigel Deeks
- Discovery DMPK Bioanalysis Unit, GlaxoSmithKline, Stevenage, UK
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - Richard J. Clark
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Milton Pryor
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Tom E. Mollnes
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- K.G. Jebsen TREC, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Stephen M. Hewitt
- Laboratory of Pathology, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Bingyu Yan
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Máté G. Kiss
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bente Halvorsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Terje Espevik
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
84
|
The Influence of Mitochondrial-DNA-Driven Inflammation Pathways on Macrophage Polarization: A New Perspective for Targeted Immunometabolic Therapy in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 23:ijms23010135. [PMID: 35008558 PMCID: PMC8745401 DOI: 10.3390/ijms23010135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022] Open
Abstract
Cerebral ischemia-reperfusion injury is related to inflammation driven by free mitochondrial DNA. At the same time, the pro-inflammatory activation of macrophages, that is, polarization in the M1 direction, aggravates the cycle of inflammatory damage. They promote each other and eventually transform macrophages/microglia into neurotoxic macrophages by improving macrophage glycolysis, transforming arginine metabolism, and controlling fatty acid synthesis. Therefore, we propose targeting the mtDNA-driven inflammatory response while controlling the metabolic state of macrophages in brain tissue to reduce the possibility of cerebral ischemia-reperfusion injury.
Collapse
|
85
|
Tastan B, Arioz BI, Tufekci KU, Tarakcioglu E, Gonul CP, Genc K, Genc S. Dimethyl Fumarate Alleviates NLRP3 Inflammasome Activation in Microglia and Sickness Behavior in LPS-Challenged Mice. Front Immunol 2021; 12:737065. [PMID: 34858398 PMCID: PMC8631454 DOI: 10.3389/fimmu.2021.737065] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
NLRP3 inflammasome activation contributes to several pathogenic conditions, including lipopolysaccharide (LPS)-induced sickness behavior characterized by reduced mobility and depressive behaviors. Dimethyl fumarate (DMF) is an immunomodulatory and anti-oxidative molecule commonly used for the symptomatic treatment of multiple sclerosis and psoriasis. In this study, we investigated the potential use of DMF against microglial NLRP3 inflammasome activation both in vitro and in vivo. For in vitro studies, LPS- and ATP-stimulated N9 microglial cells were used to induce NLRP3 inflammasome activation. DMF’s effects on inflammasome markers, pyroptotic cell death, ROS formation, and Nrf2/NF-κB pathways were assessed. For in vivo studies, 12–14 weeks-old male BALB/c mice were treated with LPS, DMF + LPS and ML385 + DMF + LPS. Behavioral tests including open field, forced swim test, and tail suspension test were carried out to see changes in lipopolysaccharide-induced sickness behavior. Furthermore, NLRP3 and Caspase-1 expression in isolated microglia were determined by immunostaining. Here we demonstrated that DMF ameliorated LPS and ATP-induced NLRP3 inflammasome activation by reducing IL-1β, IL-18, caspase-1, and NLRP3 levels, reactive oxygen species formation and damage, and inhibiting pyroptotic cell death in N9 murine microglia via Nrf2/NF-κB pathways. DMF also improved LPS-induced sickness behavior in male mice and decreased caspase-1/NLRP3 levels via Nrf2 activation. Additionally, we showed that DMF pretreatment decreased miR-146a and miR-155 both in vivo and in vitro. Our results proved the effectiveness of DMF on the amelioration of microglial NLRP3 inflammasome activation. We anticipate that this study will provide the foundation consideration for further studies aiming to suppress NLRP3 inflammasome activation associated with in many diseases and a better understanding of its underlying mechanisms.
Collapse
Affiliation(s)
- Bora Tastan
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Burak I Arioz
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Kemal Ugur Tufekci
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Department of Healthcare Services, Vocational School of Health Services, Izmir Democracy University, Izmir, Turkey
| | - Emre Tarakcioglu
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ceren Perihan Gonul
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Kursad Genc
- Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
86
|
Huang SS, Sheng YC, Jiang YY, Liu N, Lin MM, Wu JC, Liang ZQ, Qin ZH, Wang Y. TIGAR plays neuroprotective roles in KA-induced excitotoxicity through reducing neuroinflammation and improving mitochondrial function. Neurochem Int 2021; 152:105244. [PMID: 34826530 DOI: 10.1016/j.neuint.2021.105244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/30/2021] [Accepted: 11/19/2021] [Indexed: 02/05/2023]
Abstract
Excitotoxicity refers to the ability of excessive extracellular excitatory amino acids to damage neurons via receptor activation. It is a crucial pathogenetic process in neurodegenerative diseases. TP53 is confirmed to be involved in excitotoxicity. It is demonstrated that TP53 induced glycolysis and apoptotic regulator (TIGAR)-regulated metabolic pathway can protect against neuronal injury. However, the role of TIGAR in excitotoxicity and specific mechanisms is still unknown. In this study, an in vivo excitotoxicity model was constructed via stereotypical kainic acid (KA) injection into the striatum of mice. KA reduced TIGAR expression levels, neuroinflammatory responses and mitochondrial dysfunction. TIGAR overexpression could reverse KA-induced neuronal injury by reducing neuroinflammation and improving mitochondrial function, thereby exerting neuroprotective effects. Therefore, this study could provide a potential therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Si-Si Huang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yi-Chao Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yi-Yue Jiang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Na Liu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Miao-Miao Lin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jun-Chao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhong-Qin Liang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
87
|
Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proc Natl Acad Sci U S A 2021; 118:2107682118. [PMID: 34782454 DOI: 10.1073/pnas.2107682118] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cholesterol biosynthetic intermediates, such as lanosterol and desmosterol, are emergent immune regulators of macrophages in response to inflammatory stimuli or lipid overloading, respectively. However, the participation of these sterols in regulating macrophage functions in the physiological context of atherosclerosis, an inflammatory disease driven by the accumulation of cholesterol-laden macrophages in the artery wall, has remained elusive. Here, we report that desmosterol, the most abundant cholesterol biosynthetic intermediate in human coronary artery lesions, plays an essential role during atherogenesis, serving as a key molecule integrating cholesterol homeostasis and immune responses in macrophages. Depletion of desmosterol in myeloid cells by overexpression of 3β-hydroxysterol Δ24-reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol, promotes the progression of atherosclerosis. Single-cell transcriptomics in isolated CD45+CD11b+ cells from atherosclerotic plaques demonstrate that depletion of desmosterol increases interferon responses and attenuates the expression of antiinflammatory macrophage markers. Lipidomic and transcriptomic analysis of in vivo macrophage foam cells demonstrate that desmosterol is a major endogenous liver X receptor (LXR) ligand involved in LXR/retinoid X receptor (RXR) activation and thus macrophage foam cell formation. Decreased desmosterol accumulation in mitochondria promotes macrophage mitochondrial reactive oxygen species production and NLR family pyrin domain containing 3 (NLRP3)-dependent inflammasome activation. Deficiency of NLRP3 or apoptosis-associated speck-like protein containing a CARD (ASC) rescues the increased inflammasome activity and atherogenesis observed in desmosterol-depleted macrophages. Altogether, these findings underscore the critical function of desmosterol in the atherosclerotic plaque to dampen inflammation by integrating with macrophage cholesterol metabolism and inflammatory activation and protecting from disease progression.
Collapse
|
88
|
Shinjyo N, Kita K. Infection and Immunometabolism in the Central Nervous System: A Possible Mechanistic Link Between Metabolic Imbalance and Dementia. Front Cell Neurosci 2021; 15:765217. [PMID: 34795562 PMCID: PMC8592913 DOI: 10.3389/fncel.2021.765217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndromes are frequently associated with dementia, suggesting that the dysregulation of energy metabolism can increase the risk of neurodegeneration and cognitive impairment. In addition, growing evidence suggests the link between infections and brain disorders, including Alzheimer's disease. The immune system and energy metabolism are in an intricate relationship. Infection triggers immune responses, which are accompanied by imbalance in cellular and organismal energy metabolism, while metabolic disorders can lead to immune dysregulation and higher infection susceptibility. In the brain, the activities of brain-resident immune cells, including microglia, are associated with their metabolic signatures, which may be affected by central nervous system (CNS) infection. Conversely, metabolic dysregulation can compromise innate immunity in the brain, leading to enhanced CNS infection susceptibility. Thus, infection and metabolic imbalance can be intertwined to each other in the etiology of brain disorders, including dementia. Insulin and leptin play pivotal roles in the regulation of immunometabolism in the CNS and periphery, and dysfunction of these signaling pathways are associated with cognitive impairment. Meanwhile, infectious complications are often comorbid with diabetes and obesity, which are characterized by insulin resistance and leptin signaling deficiency. Examples include human immunodeficiency virus (HIV) infection and periodontal disease caused by an oral pathogen Porphyromonas gingivalis. This review explores potential interactions between infectious agents and insulin and leptin signaling pathways, and discuss possible mechanisms underlying the relationship between infection, metabolic dysregulation, and brain disorders, particularly focusing on the roles of insulin and leptin.
Collapse
Affiliation(s)
- Noriko Shinjyo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
89
|
Sabbir MG, Inoue A, Taylor CG, Zahradka P. Loss of β-Arrestins or six Gα proteins in HEK293 cells caused Warburg effect and prevented progesterone-induced rapid proteasomal degradation of progesterone receptor membrane component 1. J Steroid Biochem Mol Biol 2021; 214:105995. [PMID: 34506922 DOI: 10.1016/j.jsbmb.2021.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Hormonal dysregulation plays a significant role in the metabolic switching during malignant transformation. Progesterone Receptor Membrane Component 1 (PGRMC1) is a single-pass transmembrane receptor activated by the binding of progesterone (P4), a sex hormone. In a previous study, P4 treatment caused rapid (within 30 min) induction of aerobic glycolysis in transformed HEK293 cells, a hallmark malignant phenotype known as the Warburg effect. This metabolic reprogramming was associated with the proteasomal degradation of a 70 kilodalton (kDa) PGRMC1. PGRMC1 interacts with a variety of proteins, including G protein-coupled receptors (GPCRs) and P4-PGRMC1 signaling modulates cyclic adenosine monophosphate (cAMP) production. Therefore, we hypothesized that the P4-induced Warburg effect and proteasomal degradation of PGRMC1 involve G proteins and β-Arrestins (ARRBs). In the present study, we investigated P4-induced aerobic glycolysis, proteasomal degradation of p70 PGRMC1, as well as abundance and subcellular translocation of PGRMC1 along with two key glycolytic enzymes Hexokinase 1 (HK1) and Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) in six Gα subunit (Gsix) proteins or ARRB1/2-deficient HEK293 cells. Loss of ARRB1/2 or Gsix proteins inhibited P4-induced p70 PGRMC1 degradation but failed to prevent the P4-induced Warburg effect. Also, deficiency of ARRB1/2 or Gsix proteins differentially affected the basal as well as P4-induced abundance and subcellular translocation of PGRMC1, HK1, and GAPDH proteins. Overall, the findings indicate that P4-PGRMC1-mediated metabolic reprogramming in HEK293 cells depends on β-Arrestins and Gα proteins suggesting the involvement of an underlying GPCR signal transduction pathway.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada; Alzo Biosciences Inc., San Diego, USA.
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Carla G Taylor
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|
90
|
Theobald SJ, Gräb J, Fritsch M, Suárez I, Eisfeld HS, Winter S, Koch M, Hölscher C, Pasparakis M, Kashkar H, Rybniker J. Gasdermin D mediates host cell death but not interleukin-1β secretion in Mycobacterium tuberculosis-infected macrophages. Cell Death Discov 2021; 7:327. [PMID: 34718331 PMCID: PMC8557205 DOI: 10.1038/s41420-021-00716-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022] Open
Abstract
Necrotic cell death represents a major pathogenic mechanism of Mycobacterium tuberculosis (Mtb) infection. It is increasingly evident that Mtb induces several types of regulated necrosis but how these are interconnected and linked to the release of pro-inflammatory cytokines remains unknown. Exploiting a clinical cohort of tuberculosis patients, we show here that the number and size of necrotic lesions correlates with IL-1β plasma levels as a strong indicator of inflammasome activation. Our mechanistic studies reveal that Mtb triggers mitochondrial permeability transition (mPT) and subsequently extensive macrophage necrosis, which requires activation of the NLRP3 inflammasome. NLRP3-driven mitochondrial damage is dependent on proteolytic activation of the pore-forming effector protein gasdermin D (GSDMD), which links two distinct cell death machineries. Intriguingly, GSDMD, but not the membranolytic mycobacterial ESX-1 secretion system, is dispensable for IL-1β secretion from Mtb-infected macrophages. Thus, our study dissects a novel mechanism of pathogen-induced regulated necrosis by identifying mitochondria as central regulatory hubs capable of delineating cytokine secretion and lytic cell death.
Collapse
Affiliation(s)
- Sebastian J Theobald
- Department I of Internal Medicine, University of Cologne, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Jessica Gräb
- Department I of Internal Medicine, University of Cologne, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Melanie Fritsch
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.,Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), University of Cologne, 50935, Cologne, Germany
| | - Isabelle Suárez
- Department I of Internal Medicine, University of Cologne, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Hannah S Eisfeld
- Department I of Internal Medicine, University of Cologne, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Sandra Winter
- Department I of Internal Medicine, University of Cologne, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Maximilian Koch
- Department I of Internal Medicine, University of Cologne, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Christoph Hölscher
- Division of Infection Immunology, Research Center Borstel, 23845, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Borstel, 23845, Borstel, Germany
| | - Manolis Pasparakis
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.,Institute for Genetics, University of Cologne, 50674, Cologne, Germany
| | - Hamid Kashkar
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.,Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), University of Cologne, 50935, Cologne, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, University of Cologne, 50937, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany. .,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
91
|
Abstract
Mitochondria are considered to be the powerhouse of the cell. Normal functioning of the mitochondria is not only essential for cellular energy production but also for several immunomodulatory processes. Macrophages operate in metabolic niches and rely on rapid adaptation to specific metabolic conditions such as hypoxia, nutrient limitations, or reactive oxygen species to neutralize pathogens. In this regard, the fast reprogramming of mitochondrial metabolism is indispensable to provide the cells with the necessary energy and intermediates to efficiently mount the inflammatory response. Moreover, mitochondria act as a physical scaffold for several proteins involved in immune signaling cascades and their dysfunction is immediately associated with a dampened immune response. In this review, we put special focus on mitochondrial function in macrophages and highlight how mitochondrial metabolism is involved in macrophage activation.
Collapse
Affiliation(s)
- Mohamed Zakaria Nassef
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Brunswick, Germany
| | - Jasmin E Hanke
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Brunswick, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Brunswick, Germany
| |
Collapse
|
92
|
Baicalin alleviates Mycoplasma gallisepticum-induced oxidative stress and inflammation via modulating NLRP3 inflammasome-autophagy pathway. Int Immunopharmacol 2021; 101:108250. [PMID: 34656906 DOI: 10.1016/j.intimp.2021.108250] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
Baicalin is a well-known flavonoid compound, possess therapeutic potential against inflammatory diseases. Previous studies reported that Mycoplasma gallisepticum (MG) induced inflammatory response and immune dysregulation inside the host body. However, the underlying molecular mechanisms of baicalin against MG-infected chicken-like macrophages (HD11 cells) are still illusive. Oxidant status and total reactive oxygen species (ROS) were detected by ELISA assays and flow cytometry respectively. Mitochondrial membrane potential (ΔΨM) was evaluated by immunofluorescence microscopy. Transmission electron microscopy was used for ultrastructural analysis. The hallmarks of inflammation and autophagy were determined by western blotting. Oxidative stress and reactive oxygen species (ROS) were significantly enhanced in the MG-infected HD11 cells. MG infection caused disruption in the mitochondrial membrane potential (ΔΨM) compared to the control conditions. Meanwhile, baicalin treatment reduced MG-induced reactive oxygen species (ROS), oxidative stress and alleviated the disruption in ΔΨM. The activities of inflammatory markers were significantly enhanced in the MG-infected HD11 cells. Increased protein expressions of TLR-2-NF-κB pathway, NLRP3-inflammasome and autophagy-related proteins were detected in the MG-infected HD11 cells. Besides, baicalin treatment significantly reduced the protein expressions of TLR-2-NF-κB pathway and NLRP3 inflammasome. While, the autophagy-related proteins were significantly enhanced with baicalin treatment in a dose-dependent manner in the MG-infected HD11 cells. The results showed that baicalin prevented HD11 cells from MG-induced oxidative stress and inflammation via the opposite modulation of TLR-2-NF-κB-mediated NLRP3-inflammasome pathway and autophagy, and baicalin could be a promising candidate for the prevention of inflammatory effects caused by MG-infection in macrophages.
Collapse
|
93
|
Tu C, Gao Y, Song D, Niu M, Ma RR, Zhou MX, He X, Xiao XH, Wang JB. Screening for Susceptibility-Related Biomarkers of Diclofenac-Induced Liver Injury in Rats Using Metabolomics. Front Pharmacol 2021; 12:693928. [PMID: 34630079 PMCID: PMC8494976 DOI: 10.3389/fphar.2021.693928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/03/2021] [Indexed: 11/22/2022] Open
Abstract
Early identification of individuals susceptible to idiosyncratic drug-induced liver injury (IDILI) is a challenging unmet demand. Diclofenac, one of the most widely available over-the-counter drugs for pain management worldwide, may induce liver dysfunction, acute liver failure, and death. Herein, we report that diclofenac-related hepatobiliary adverse reactions occurred more frequently in cases with immune activation. Furthermore, experiments with rats demonstrated divergent hepatotoxicity responses in individuals exposed to diclofenac, and modest inflammation potentiated diclofenac-induced liver injury. Susceptible rats had unique plasma metabolomic characteristics, and as such, the metabolomic approach could be used to distinguish susceptible individuals. The 23 identified susceptibility-related metabolites were enriched by several metabolic pathways related to acute-phase reactions of immunocytes and inflammatory responses, including sphingolipid, tyrosine, phenylalanine, tryptophan, and lipid metabolism pathways. This finding implies a mechanistic role of metabolic and immune disturbances affects susceptibility to diclofenac-IDILI. Further nine metabolite biomarkers with potent diagnostic capabilities were identified using receiver operating characteristic curves. These findings elucidated the potential utility of metabolomic biomarkers to identify individuals susceptible to drug hepatotoxicity and the underlying mechanism of metabolic and immune disturbances occurring in IDILI.
Collapse
Affiliation(s)
- Can Tu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Di Song
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Run-Ran Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ming-Xi Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xian He
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
94
|
Guo X, Chen S, Yu W, Chi Z, Wang Z, Xu T, Zhang J, Jiang D, Guo Y, Fang H, Zhang K, Li M, Yang D, Yu Q, Ye Q, Wang D, Zhang X, Wu Y. AKT controls NLRP3 inflammasome activation by inducing DDX3X phosphorylation. FEBS Lett 2021; 595:2447-2462. [PMID: 34387860 DOI: 10.1002/1873-3468.14175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 11/06/2022]
Abstract
The NLRP3 inflammasome, a critical component of the innate immune system, induces caspase-1 activation and interleukin-1β maturation and drives cell fate toward pyroptosis. However, the mechanism of NLRP3 inflammasome activation still remains elusive. Here we provide evidence that AKT regulates NLRP3 inflammasome activation. Upon NLRP3 activation, AKT activity is inhibited by second stimulus-induced reactive oxygen species. In contrast, AKT activation leads to NLRP3 inhibition and improved mitochondrial fitness. Mechanistically, AKT induces the phosphorylation of the DDX3X (DEAD-box helicase 3, X-linked), a recently identified NLRP3 inflammasome component, and impairs the interaction between DDX3X and NLRP3. Furthermore, an AKT agonist reduces NLRP3-dependent inflammation in two in vivo models of LPS-induced sepsis and Alum-induced peritonitis. Altogether, our study highlights an important role of AKT in controlling NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xingchen Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, China
| | - Sheng Chen
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Weiwei Yu
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Zhexu Chi
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Zhen Wang
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Ting Xu
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Jian Zhang
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Danlu Jiang
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Yuxian Guo
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Hui Fang
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Kailian Zhang
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Mobai Li
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Dehang Yang
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Qianzhou Yu
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Qizhen Ye
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Di Wang
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, China
| |
Collapse
|
95
|
Linder A, Hornung V. Inflammasomes in T cells. J Mol Biol 2021; 434:167275. [PMID: 34599941 DOI: 10.1016/j.jmb.2021.167275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
The concept of non-self recognition through germ-line encoded pattern recognition receptors (PRRs) has been well-established for professional innate immune cells. However, there is growing evidence that also T cells employ PRRs and associated effector functions in response to certain non-self or damage signals. Inflammasomes constitute a special subgroup of PRRs that is hardwired to a signaling cascade that culminates in the activation of caspase-1. Active caspase-1 processes pro-inflammatory cytokines of the IL-1 family and also triggers a lytic programmed cell death pathway known as pyroptosis. An increasing body of literature suggests that inflammasomes are also functional in T cells. On the one hand, conventional inflammasome signaling cascades have been described that operate similarly to pathways characterized in innate immune cells. On the other hand, unconventional functions have been suggested, in which certain inflammasome components play a role in unrelated processes, such as cell fate decisions and functions of T helper cells. In this review, we discuss our current knowledge on inflammasome functions in T cells and the biological implications of these findings for health and disease.
Collapse
Affiliation(s)
- Andreas Linder
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Medicine II, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany. https://twitter.com/AndreasLinder7
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
96
|
Politiek FA, Waterham HR. Compromised Protein Prenylation as Pathogenic Mechanism in Mevalonate Kinase Deficiency. Front Immunol 2021; 12:724991. [PMID: 34539662 PMCID: PMC8446354 DOI: 10.3389/fimmu.2021.724991] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Mevalonate kinase deficiency (MKD) is an autoinflammatory metabolic disorder characterized by life-long recurring episodes of fever and inflammation, often without clear cause. MKD is caused by bi-allelic pathogenic variants in the MVK gene, resulting in a decreased activity of the encoded enzyme mevalonate kinase (MK). MK is an essential enzyme in the isoprenoid biosynthesis pathway, which generates both non-sterol and sterol isoprenoids. The inflammatory symptoms of patients with MKD point to a major role for isoprenoids in the regulation of the innate immune system. In particular a temporary shortage of the non-sterol isoprenoid geranylgeranyl pyrophosphate (GGPP) is increasingly linked with inflammation in MKD. The shortage of GGPP compromises protein prenylation, which is thought to be one of the main causes leading to the inflammatory episodes in MKD. In this review, we discuss current views and the state of knowledge of the pathogenetic mechanisms in MKD, with particular focus on the role of compromised protein prenylation.
Collapse
Affiliation(s)
- Frouwkje A Politiek
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
97
|
Nandi D, Farid NSS, Karuppiah HAR, Kulkarni A. Imaging Approaches to Monitor Inflammasome Activation. J Mol Biol 2021; 434:167251. [PMID: 34537231 DOI: 10.1016/j.jmb.2021.167251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Inflammasomes are a critical component of innate immune response which plays an important role in the pathogenesis of various chronic and acute inflammatory disease conditions. An inflammasome complex consists of a multimeric protein assembly triggered by any form of pathogenic or sterile insult, resulting in caspase-1 activation. This active enzyme is further known to activate downstream pro-inflammatory cytokines along with a pore-forming protein, eventually leading to a lytic cell death called pyroptosis. Understanding the spatiotemporal kinetics of essential inflammasome components provides a better interpretation of the complex signaling underlying inflammation during several disease pathologies. This can be attained via in-vitro and in-vivo imaging platforms, which not only provide a basic understanding of molecular signaling but are also crucial to develop and screen targeted therapeutics. To date, numerous studies have reported platforms to image different signaling components participating in inflammasome activation. Here, we review several elements of inflammasome signaling, a common molecular mechanism combining these elements and their respective imaging tools. We anticipate that future needs will include developing new inflammasome imaging systems that can be utilized as clinical tools for diagnostics and monitoring treatment responses.
Collapse
Affiliation(s)
- Dipika Nandi
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA; Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA. https://twitter.com/dipikanandi24
| | - Noorul Shaheen Sheikh Farid
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA. https://twitter.com/Shaheen30n
| | - Hayat Anu Ranjani Karuppiah
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA. https://twitter.com/AnuHayat
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA; Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA; Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA; Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
98
|
Li LC, Chen WY, Chen JB, Lee WC, Chang CC, Tzeng HT, Huang CC, Chang YJ, Yang JL. The AST-120 Recovers Uremic Toxin-Induced Cognitive Deficit via NLRP3 Inflammasome Pathway in Astrocytes and Microglia. Biomedicines 2021; 9:biomedicines9091252. [PMID: 34572437 PMCID: PMC8467651 DOI: 10.3390/biomedicines9091252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by the progressive loss of renal function; moreover, CKD progression commonly leads to multiple comorbidities, including neurological dysfunction and immune disorders. CKD-triggered neuroinflammation significantly contributes to cognitive impairment. This study aimed to investigate the contribution of uremic toxins to cognitive impairment. Serum creatinine, blood urea nitrogen (BUN), indoxyl sulfate (IS), and p-cresol sulfate (PCS) levels were measured using an enzyme-linked immunosorbent assay and high-performance liquid chromatography. The creatinine, BUN, IS, and PCS levels were increased from 4 weeks after 5/6-nephrectomy in mice, which suggested that 5/6-nephrectomy could yield a CKD animal model. Further, CKD mice showed significantly increased brain and serum indoxyl sulfate levels. Immunohistochemistry analysis revealed hippocampal inflammation and NLRP3-inflammasomes in astrocytes. Further, the Y-maze and Morris water maze tests revealed learning and memory defects in CKD mice. AST-120, which is also an IS absorbent, effectively reduced serum and hippocampal IS levels as well as reversed the cognitive impairment in CKD mice. Additionally, NLRP3-knockout mice that underwent 5/6-nephrectomy showed no change in cognitive function. These findings suggested that IS is an important uremic toxin that induces NLRP3 inflammasome-mediated not only in microglia, but it also occurred in astrocytic inflammation, which subsequently causes cognitive impairment.
Collapse
Affiliation(s)
- Lung-Chih Li
- Division of Nephrology, Department of Internal Medicine, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-C.L.); (W.-C.L.); (C.-C.H.)
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-Y.C.); (H.-T.T.)
| | - Wei-Yu Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-Y.C.); (H.-T.T.)
| | - Jin-Bor Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (J.-B.C.); (C.-C.C.)
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-C.L.); (W.-C.L.); (C.-C.H.)
| | - Chiung-Chih Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (J.-B.C.); (C.-C.C.)
| | - Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-Y.C.); (H.-T.T.)
| | - Chiang-Chi Huang
- Division of Nephrology, Department of Internal Medicine, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-C.L.); (W.-C.L.); (C.-C.H.)
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-Y.C.); (H.-T.T.)
- Correspondence: ; Tel.: +886-7-7317123 (ext. 8593)
| |
Collapse
|
99
|
Soliman AM, Sim RH, Das S, Mahakkanukrauh P. Therapeutic Targeting of Inflammatory Pathways with Emphasis on NLRP3 Inflammasomes by Natural Products: A Novel Approach for the Treatment of Inflammatory Eye Diseases. Curr Med Chem 2021; 29:2891-2912. [PMID: 34514977 DOI: 10.2174/0929867328666210910154330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
There is an increase in the incidence of inflammatory eye diseases worldwide. Several dysregulated inflammatory pathways, including the NOD-like receptor protein 3 (NLRP3) inflammasome, have been reported to contribute significantly to the pathogenesis and progression of ophthalmic diseases. Although the available allopathic/conventional medicine has demonstrated effectiveness in managing eye diseases, there is an ongoing global demand for alternative therapeutics with minimal adverse drug reactions, easy availability, increase in patient-compliance, and better disease outcome. Therefore, several studies are investigating the utilization of natural products and herbal formulations in impeding inflammatory pathways, including the NLRP3 inflammasome, in order to prevent or manage eye diseases. In the present review, we highlight the recently reported inflammatory pathways with special emphasis on NLRP3 Inflammasomes involved in the development of eye diseases. Furthermore, we present a variety of natural products and phytochemicals that were reported to interfere with these pathways and their underlying mechanisms of action. These natural products represent potential therapeutic applications for the treatment of several inflammatory eye diseases.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences-Physiology, Cell and Developmental Biology, University of Alberta, Edmonton, AB T6G 2R3. Canada
| | - Ru Hui Sim
- Tanglin Health Clinic, 50480 Kuala Lumpu. Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat. Oman
| | - Pasuk Mahakkanukrauh
- Department of Anatomy & Excellence Center of Osteology Research and Training, Cadaveric Surgical and Training Center, Chiang Mai University. Thailand
| |
Collapse
|
100
|
Non-coding RNAs: The key regulators in NLRP3 inflammasome-mediated inflammatory diseases. Int Immunopharmacol 2021; 100:108105. [PMID: 34481143 DOI: 10.1016/j.intimp.2021.108105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
Inflammasomes are multiprotein complexes responding to various microbes and endogenous danger signals, contributing to initiating the innate protective response of inflammatory diseases. NLRP3 inflammasome is a crucial regulator of pro-inflammatory cytokines (IL-1β and IL-18) production through activating caspase-1. Non-coding RNAs (ncRNAs) are a class of RNA transcripts lacking the ability to encode peptides or proteins. Its dysregulation leads to the development and progression of inflammation in diseases. Recently, accumulating evidence has indicated that NLRP3 inflammasome activation could be modulated by ncRNAs (lncRNAs, miRNAs, and circRNAs) in a variety of inflammatory diseases. This review focuses on the substantial role and function of ncRNAs in the NLRP3 inflammasome activation, providing novel insight for the future therapeutic approach of inflammatory diseases.
Collapse
|