51
|
Shah R, Zhong J, Massier L, Tanriverdi K, Hwang SJ, Haessler J, Nayor M, Zhao S, Perry AS, Wilkins JT, Shadyab AH, Manson JE, Martin L, Levy D, Kooperberg C, Freedman JE, Rydén M, Murthy VL. Targeted Proteomics Reveals Functional Targets for Early Diabetes Susceptibility in Young Adults. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004192. [PMID: 38323454 PMCID: PMC10940209 DOI: 10.1161/circgen.123.004192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/05/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND The circulating proteome may encode early pathways of diabetes susceptibility in young adults for surveillance and intervention. Here, we define proteomic correlates of tissue phenotypes and diabetes in young adults. METHODS We used penalized models and principal components analysis to generate parsimonious proteomic signatures of diabetes susceptibility based on phenotypes and on diabetes diagnosis across 184 proteins in >2000 young adults in the CARDIA (Coronary Artery Risk Development in Young Adults study; mean age, 32 years; 44% women; 43% Black; mean body mass index, 25.6±4.9 kg/m2), with validation against diabetes in >1800 individuals in the FHS (Framingham Heart Study) and WHI (Women's Health Initiative). RESULTS In 184 proteins in >2000 young adults in CARDIA, we identified 2 proteotypes of diabetes susceptibility-a proinflammatory fat proteotype (visceral fat, liver fat, inflammatory biomarkers) and a muscularity proteotype (muscle mass), linked to diabetes in CARDIA and WHI/FHS. These proteotypes specified broad mechanisms of early diabetes pathogenesis, including transorgan communication, hepatic and skeletal muscle stress responses, vascular inflammation and hemostasis, fibrosis, and renal injury. Using human adipose tissue single cell/nuclear RNA-seq, we demonstrate expression at transcriptional level for implicated proteins across adipocytes and nonadipocyte cell types (eg, fibroadipogenic precursors, immune and vascular cells). Using functional assays in human adipose tissue, we demonstrate the association of expression of genes encoding these implicated proteins with adipose tissue metabolism, inflammation, and insulin resistance. CONCLUSIONS A multifaceted discovery effort uniting proteomics, underlying clinical susceptibility phenotypes, and tissue expression patterns may uncover potentially novel functional biomarkers of early diabetes susceptibility in young adults for future mechanistic evaluation.
Collapse
Affiliation(s)
- Ravi Shah
- Vanderbilt Translational & Clinical Cardiovascular Research Center, Vanderbilt Univ, Nashville, TN
| | - Jiawei Zhong
- Dept of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Lucas Massier
- Dept of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Kahraman Tanriverdi
- Vanderbilt Translational & Clinical Cardiovascular Research Center, Vanderbilt Univ, Nashville, TN
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Matthew Nayor
- Sections of Preventive Medicine & Epidemiology & Cardiovascular Medicine, Dept of Medicine, Dept of Epidemiology, Boston University Schools of Medicine & Public Health, Boston, MA & Framingham Heart Study, Framingham, MA
| | | | - Andrew S. Perry
- Vanderbilt Translational & Clinical Cardiovascular Research Center, Vanderbilt Univ, Nashville, TN
| | | | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health & Human Longevity Science, Univ of California, San Diego, La Jolla, CA
| | - JoAnn E. Manson
- Dept of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Lisa Martin
- George Washington Univ School of Medicine & Health Sciences
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Jane E. Freedman
- Vanderbilt Translational & Clinical Cardiovascular Research Center, Vanderbilt Univ, Nashville, TN
| | - Mikael Rydén
- Dept of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
52
|
Halasz L, Divoux A, Sandor K, Erdos E, Daniel B, Smith SR, Osborne TF. An Atlas of Promoter Chromatin Modifications and HiChIP Regulatory Interactions in Human Subcutaneous Adipose-Derived Stem Cells. Int J Mol Sci 2023; 25:437. [PMID: 38203607 PMCID: PMC10778978 DOI: 10.3390/ijms25010437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The genome of human adipose-derived stem cells (ADSCs) from abdominal and gluteofemoral adipose tissue depots are maintained in depot-specific stable epigenetic conformations that influence cell-autonomous gene expression patterns and drive unique depot-specific functions. The traditional approach to explore tissue-specific transcriptional regulation has been to correlate differential gene expression to the nearest-neighbor linear-distance regulatory region defined by associated chromatin features including open chromatin status, histone modifications, and DNA methylation. This has provided important information; nonetheless, the approach is limited because of the known organization of eukaryotic chromatin into a topologically constrained three-dimensional network. This network positions distal regulatory elements in spatial proximity with gene promoters which are not predictable based on linear genomic distance. In this work, we capture long-range chromatin interactions using HiChIP to identify remote genomic regions that influence the differential regulation of depot-specific genes in ADSCs isolated from different adipose depots. By integrating these data with RNA-seq results and histone modifications identified by ChIP-seq, we uncovered distal regulatory elements that influence depot-specific gene expression in ADSCs. Interestingly, a subset of the HiChIP-defined chromatin loops also provide previously unknown connections between waist-to-hip ratio GWAS variants with genes that are known to significantly influence ADSC differentiation and adipocyte function.
Collapse
Affiliation(s)
- Laszlo Halasz
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA;
| | - Katalin Sandor
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| | - Edina Erdos
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| | - Bence Daniel
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| | - Steven R. Smith
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA;
| | - Timothy F. Osborne
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| |
Collapse
|
53
|
Møller AF, Madsen JGS. JOINTLY: interpretable joint clustering of single-cell transcriptomes. Nat Commun 2023; 14:8473. [PMID: 38123569 PMCID: PMC10733431 DOI: 10.1038/s41467-023-44279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Single-cell and single-nucleus RNA-sequencing (sxRNA-seq) is increasingly being used to characterise the transcriptomic state of cell types at homeostasis, during development and in disease. However, this is a challenging task, as biological effects can be masked by technical variation. Here, we present JOINTLY, an algorithm enabling joint clustering of sxRNA-seq datasets across batches. JOINTLY performs on par or better than state-of-the-art batch integration methods in clustering tasks and outperforms other intrinsically interpretable methods. We demonstrate that JOINTLY is robust against over-correction while retaining subtle cell state differences between biological conditions and highlight how the interpretation of JOINTLY can be used to annotate cell types and identify active signalling programs across cell types and pseudo-time. Finally, we use JOINTLY to construct a reference atlas of white adipose tissue (WATLAS), an expandable and comprehensive community resource, in which we describe four adipocyte subpopulations and map compositional changes in obesity and between depots.
Collapse
Affiliation(s)
- Andreas Fønss Møller
- Institute of Biochemistry and Molecular Biology, University of Southern, Odense, Denmark
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Jesper Grud Skat Madsen
- Institute of Biochemistry and Molecular Biology, University of Southern, Odense, Denmark.
- Institute of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense M, 5230, Denmark.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
54
|
Hwang N, Kang D, Shin SJ, Yoon BK, Chun J, Kim JW, Fang S. Creeping fat exhibits distinct Inflammation-specific adipogenic preadipocytes in Crohn's disease. Front Immunol 2023; 14:1198905. [PMID: 38111581 PMCID: PMC10725931 DOI: 10.3389/fimmu.2023.1198905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Creeping fat (CrF) is an extraintestinal manifestation observed in patients with Crohn's disease (CD). It is characterized by the accumulation of mesenteric adipose tissue (MAT) that wraps around the intestinal wall. Although the role of CrF in CD is still debated, multiple studies have highlighted a correlation between CrF and inflammation, as well as fibrostenosais of the intestine, which contributes to the worsening of CD symptoms. However, the mechanism underlying the potential role of CrF in the development of Crohn's fibrosis remains an enigma. This study aimed to analyze CrF comprehensively using single-cell RNA sequencing analysis. The data was compared with transcriptomic data from adipose tissue in other disease conditions, such as ulcerative colitis, lymphedema, and obesity. Our analysis classified two lineages of preadipocyte (PAC) clusters responsible for adipogenesis and fibrosis in CrF. Committed PACs in CrF showed increased cytokine expression in response to bacterial stimuli, potentially worsening inflammation in patients with CD. We also observed an increase in fibrotic activity in PAC clusters in CrF. Co-analyzing the data from patients with lymphedema, we found that pro-fibrotic PACs featured upregulated pentraxin-3 expression, suggesting a potential target for the treatment of fibrosis in CrF. Furthermore, PACs in CrF exhibited a distinct increase in cell-to-cell communication via cytokines related to inflammation and fibrosis, such as CCL, LIGHT, PDGF, MIF, and SEMA3. Interestingly, these interactions also increased in PACs of the lymphedema, whereas the increased MIF signal of PACs was found to be a distinct characteristic of CrF. In immune cell clusters in CrF, we observed high immune activity of pro-inflammatory macrophages, antigen-presenting macrophages, B cells, and IgG+ plasma cells. Finally, we have demonstrated elevated IgG+ plasma cell infiltration and increased pentraxin-3 protein levels in the fibrotic regions of CrF in CD patients when compared to MAT from both UC patients and healthy individuals. These findings provide new insights into the transcriptomic features related to the inflammation of cells in CrF and suggest potential targets for attenuating fibrosis in CD.
Collapse
Affiliation(s)
- Nahee Hwang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dongwoo Kang
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bo Kyung Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeyoung Chun
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-woo Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
55
|
Roy RV, Means N, Rao G, Asfa S, Madka V, Dey A, Zhang Y, Choudhury M, Fung KM, Dhanasekaran DN, Friedman JE, Crawford HC, Rao CV, Bhattacharya R, Mukherjee P. Pancreatic Ubap2 deletion regulates glucose tolerance, inflammation, and protection from cerulein-induced pancreatitis. Cancer Lett 2023; 578:216455. [PMID: 37865160 PMCID: PMC10897936 DOI: 10.1016/j.canlet.2023.216455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Ubiquitin-binding associated protein 2 (UBAP2) is reported to promote macropinocytosis and pancreatic adenocarcinoma (PDAC) growth, however, its role in normal pancreatic function remains unknown. We addressed this knowledge gap by generating UBAP2 knockout (U2KO) mice under a pancreas-specific Cre recombinase (Pdx1-Cre). Pancreatic architecture remained intact in U2KO animals, but they demonstrated slight glucose intolerance compared to controls. Upon cerulein challenge to induce pancreatitis, U2KO animals had reduced levels of several pancreatitis-relevant cytokines, amylase and lipase in the serum, reduced tissue damage, and lessened neutrophil infiltration into the pancreatic tissue. Mechanistically, cerulein-challenged U2KO animals revealed reduced NF-κB activation compared to controls. In vitro promoter binding studies confirmed the reduction of NF-κB binding to its target molecules supporting UBAP2 as a new regulator of inflammation in pancreatitis and may be exploited as a therapeutic target in future to inhibit pancreatitis.
Collapse
Affiliation(s)
- Ram Vinod Roy
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicolas Means
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sima Asfa
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anindya Dey
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yushan Zhang
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Monalisa Choudhury
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Danny N Dhanasekaran
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Howard C Crawford
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health System, Detroit, MI, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
56
|
Avtanski D, Hadzi-Petrushev N, Josifovska S, Mladenov M, Reddy V. Emerging technologies in adipose tissue research. Adipocyte 2023; 12:2248673. [PMID: 37599422 PMCID: PMC10443968 DOI: 10.1080/21623945.2023.2248673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
Technologies are transforming the understanding of adipose tissue as a complex and dynamic tissue that plays a critical role in energy homoeostasis and metabolic health. This mini-review provides a brief overview of the potential impact of novel technologies in biomedical research and aims to identify areas where these technologies can make the most significant contribution to adipose tissue research. It discusses the impact of cutting-edge technologies such as single-cell sequencing, multi-omics analyses, spatial transcriptomics, live imaging, 3D tissue engineering, microbiome analysis, in vivo imaging, and artificial intelligence/machine learning. As these technologies continue to evolve, we can expect them to play an increasingly important role in advancing our understanding of adipose tissue and improving the treatment of related diseases.
Collapse
Affiliation(s)
- Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, New York, NY, USA
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, Skopje, North Macedonia
| | - Slavica Josifovska
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, Skopje, North Macedonia
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, Skopje, North Macedonia
| | - Varun Reddy
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| |
Collapse
|
57
|
Schleh MW, Caslin HL, Garcia JN, Mashayekhi M, Srivastava G, Bradley AB, Hasty AH. Metaflammation in obesity and its therapeutic targeting. Sci Transl Med 2023; 15:eadf9382. [PMID: 37992150 PMCID: PMC10847980 DOI: 10.1126/scitranslmed.adf9382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/29/2023] [Indexed: 11/24/2023]
Abstract
Obesity-associated inflammation is a systemic process that affects all metabolic organs. Prominent among these is adipose tissue, where cells of the innate and adaptive immune system are markedly changed in obesity, implicating these cells in a range of processes linking immune memory to metabolic regulation. Furthermore, weight loss and weight cycling have unexpected effects on adipose tissue immune populations. Here, we review the current literature on the roles of various immune cells in lean and obese adipose tissue. Within this context, we discuss pharmacological and nonpharmacological approaches to obesity treatment and their impact on systemic inflammation.
Collapse
Affiliation(s)
- Michael W. Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Heather L. Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jamie N. Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Mona Mashayekhi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gitanjali Srivastava
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Weight Loss Center, Vanderbilt University Medical Center, Nashville, TN 37204 USA
| | - Anna B. Bradley
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Weight Loss Center, Vanderbilt University Medical Center, Nashville, TN 37204 USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
58
|
Gheonea TC, Oancea CN, Mititelu M, Lupu EC, Ioniță-Mîndrican CB, Rogoveanu I. Nutrition and Mental Well-Being: Exploring Connections and Holistic Approaches. J Clin Med 2023; 12:7180. [PMID: 38002792 PMCID: PMC10672474 DOI: 10.3390/jcm12227180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Quality of life, well-being, and psycho-emotional balance are closely related to the quality of the diet, the level of physical activity, the quality of rest, but also the absence of the consumption of narcotic substances and tobacco, or alcohol abuse. Based on the distribution of a questionnaire that included 30 questions, we aimed to statistically evaluate several factors that influence mental health and vices. It recorded a total of 1719 valid responses, which came from 78.3% female respondents and 21.7% male respondents. After processing the anthropometric data, it was observed that the majority of respondents are of normal weight (63.87%) and come from women in particular (36.13%). Based on the answers recorded, although over 60% of the respondents participating in the study are up to 40 years old, there is an increased tendency towards sedentarism (over 58% of the respondents declaring that they do sports very rarely or not at all), a low tendency regarding optimal consumption of vegetables and fruits, many respondents do not hydrate properly, which is why approximately 60% of respondents feel frequently tired, and over 32% are frequently nervous. The increased level of stress among the respondents and emotional eating are also generated by inadequate rest, reduced physical activity, and a diet that does not help the efficient detoxification of the body.
Collapse
Affiliation(s)
- Theodora Claudia Gheonea
- Center for IBD Patients, Faculty of Medicine, University of Medicine and Pharmacy from Craiova, 200345 Craiova, Romania; (T.C.G.); (I.R.)
| | - Carmen-Nicoleta Oancea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy from Craiova, 200345 Craiova, Romania;
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Ion Rogoveanu
- Center for IBD Patients, Faculty of Medicine, University of Medicine and Pharmacy from Craiova, 200345 Craiova, Romania; (T.C.G.); (I.R.)
| |
Collapse
|
59
|
Stansbury CM, Dotson GA, Pugh H, Rehemtulla A, Rajapakse I, Muir LA. A lipid-associated macrophage lineage rewires the spatial landscape of adipose tissue in early obesity. JCI Insight 2023; 8:e171701. [PMID: 37651193 PMCID: PMC10619435 DOI: 10.1172/jci.insight.171701] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Adipose tissue macrophage (ATM) infiltration is associated with adipose tissue dysfunction and insulin resistance in mice and humans. Recent single-cell data highlight increased ATM heterogeneity in obesity but do not provide a spatial context for ATM phenotype dynamics. We integrated single-cell RNA-Seq, spatial transcriptomics, and imaging of murine adipose tissue in a time course study of diet-induced obesity. Overall, proinflammatory immune cells were predominant in early obesity, whereas nonresident antiinflammatory ATMs predominated in chronic obesity. A subset of these antiinflammatory ATMs were transcriptomically intermediate between monocytes and mature lipid-associated macrophages (LAMs) and were consistent with a LAM precursor (pre-LAM). Pre-LAMs were spatially associated with early obesity crown-like structures (CLSs), which indicate adipose tissue dysfunction. Spatial data showed colocalization of ligand-receptor transcripts related to lipid signaling among monocytes, pre-LAMs, and LAMs, including Apoe, Lrp1, Lpl, and App. Pre-LAM expression of these ligands in early obesity suggested signaling to LAMs in the CLS microenvironment. Our results refine understanding of ATM diversity and provide insight into the dynamics of the LAM lineage during development of metabolic disease.
Collapse
Affiliation(s)
- Cooper M. Stansbury
- Department of Computational Medicine and Bioinformatics
- The Michigan Institute for Computational Discovery and Engineering
| | | | - Harrison Pugh
- Department of Computational Medicine and Bioinformatics
| | | | - Indika Rajapakse
- Department of Computational Medicine and Bioinformatics
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
60
|
Yuan Z, Yao J. Harnessing computational spatial omics to explore the spatial biology intricacies. Semin Cancer Biol 2023; 95:25-41. [PMID: 37400044 DOI: 10.1016/j.semcancer.2023.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Spatially resolved transcriptomics (SRT) has unlocked new dimensions in our understanding of intricate tissue architectures. However, this rapidly expanding field produces a wealth of diverse and voluminous data, necessitating the evolution of sophisticated computational strategies to unravel inherent patterns. Two distinct methodologies, gene spatial pattern recognition (GSPR) and tissue spatial pattern recognition (TSPR), have emerged as vital tools in this process. GSPR methodologies are designed to identify and classify genes exhibiting noteworthy spatial patterns, while TSPR strategies aim to understand intercellular interactions and recognize tissue domains with molecular and spatial coherence. In this review, we provide a comprehensive exploration of SRT, highlighting crucial data modalities and resources that are instrumental for the development of methods and biological insights. We address the complexities and challenges posed by the use of heterogeneous data in developing GSPR and TSPR methodologies and propose an optimal workflow for both. We delve into the latest advancements in GSPR and TSPR, examining their interrelationships. Lastly, we peer into the future, envisaging the potential directions and perspectives in this dynamic field.
Collapse
Affiliation(s)
- Zhiyuan Yuan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| | | |
Collapse
|
61
|
Huang J, Siyar S, Sharma R, Herrig I, Wise L, Aidt S, List E, Kopchick JJ, Puri V, Lee KY. Adipocyte Subpopulations Mediate Growth Hormone-induced Lipolysis and Glucose Tolerance in Male Mice. Endocrinology 2023; 164:bqad151. [PMID: 37897489 DOI: 10.1210/endocr/bqad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023]
Abstract
In adipose tissue, growth hormone (GH) stimulates lipolysis, leading to an increase in plasma free fatty acid levels and a reduction in insulin sensitivity. In our previous studies, we have found that GH increases lipolysis by reducing peroxisome proliferator-activated receptor γ (PPARγ) transcription activity, leading to a reduction of tat-specific protein 27 (FSP27, also known as CIDEC) expression. In previous studies, our laboratory uncovered 3 developmentally distinct subpopulations of white adipocytes. In this manuscript, we show that one of the subpopulations, termed type 2 adipocytes, has increased GH-induced signaling and lipolysis compared to other adipocyte subtypes. To assess the physiological role of GH-mediated lipolysis mediated by this adipocyte subpopulation, we specifically expressed human FSP27 (hFSP27) transgene in type 2 adipocytes (type2Ad-hFSP27tg mice). Systemically, male type2Ad-hFSP27tg mice displayed reduced serum glycerol release and nonesterified fatty acids levels after acute GH treatment, and improvement in acute, but not chronic, GH-induced glucose intolerance. Furthermore, we demonstrate that type2Ad-hFSP27tg mice displayed improved hepatic insulin signaling. Taken together, these results indicate that this adipocyte subpopulation is a critical regulator of the GH-mediated lipolytic and metabolic response. Thus, further investigation of adipocyte subpopulations may provide novel treatment strategies to regulate GH-induced glucose intolerance in patients with growth and metabolic disorders.
Collapse
Affiliation(s)
- Jun Huang
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sohana Siyar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Rita Sharma
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Isabella Herrig
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Lauren Wise
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Spencer Aidt
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Edward List
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
62
|
Zuo L, Geng Z, Song X, Li J, Wang Y, Zhang X, Ge S, Wang L, Liu G, Zhang L, Xu M, Zhao Y, Shen L, Ge Y, Wu R, Hu J. Browning of Mesenteric White Adipose Tissue in Crohn's Disease: A New Pathological Change and Therapeutic Target. J Crohns Colitis 2023; 17:1179-1192. [PMID: 36932969 DOI: 10.1093/ecco-jcc/jjad046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Indexed: 03/19/2023]
Abstract
BACKROUND Hypertrophic mesenteric adipose tissue [htMAT] is a distinctive hallmark of Crohn's disease [CD], and it affects enteritis via inflammatory adipokine secretion by dysfunctional white adipocytes. White adipocytes can become beige adipocytes, which are characterized by active lipid consumption and favourable endocrine function, via white adipocyte browning. Our study aimed to determine whether white adipocyte browning occurs in htMAT and its role in CD. METHODS White adipocyte browning was examined in MAT samples from CD patients and controls. Human MAT explants and primary mesenteric adipocytes were cultured for in vitro experiments. Mice with 2,4,6-trinitrobenzenesulphonic acid solution [TNBS]-induced colitis were used for in vivo studies. A β3-adrenergic receptor agonist [CL316,243] was used to induce white adipocyte browning, and IL-4/STAT6 signalling was analysed to explore the mechanism underlying the anti-inflammatory activity of beige adipocytes. RESULTS White adipocyte browning was observed in htMAT from CD patients, as shown by the appearance of uncoupling protein 1 [UCP1]-positive multilocular [beige] adipocytes with lipid-depleting activity and anti-inflammatory endocrine profiles. Both human MAT and primary mesenteric adipocytes from CD patients and controls could be induced to undergo browning, which increased their lipid-depleting and anti-inflammatory activities in vitro. Inducing MAT browning ameliorated mesenteric hypertrophy and inflammation as well as colitis in TNBS-treated mice in vivo. The anti-inflammatory activity of beige adipocytes was at least partially related to STAT6 signalling activation via the autocrine and paracrine effects of IL-4. CONCLUSION White adipocyte browning is a newly identified pathological change in htMAT of CD patients and a possible therapeutic target.
Collapse
Affiliation(s)
- Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sitang Ge
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Lian Wang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Guangyong Liu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Lele Zhang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Mengyu Xu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yajing Zhao
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Li Shen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yuanyuan Ge
- Department of Colorectal Surgery, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Rong Wu
- Department of General Surgery, Southeast University Zhongda Hospital, Nanjing, China
| | - Jianguo Hu
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| |
Collapse
|
63
|
Luo J, He Z, Li Q, Lv M, Cai Y, Ke W, Niu X, Zhang Z. Adipokines in atherosclerosis: unraveling complex roles. Front Cardiovasc Med 2023; 10:1235953. [PMID: 37645520 PMCID: PMC10461402 DOI: 10.3389/fcvm.2023.1235953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Adipokines are biologically active factors secreted by adipose tissue that act on local and distant tissues through autocrine, paracrine, and endocrine mechanisms. However, adipokines are believed to be involved in an increased risk of atherosclerosis. Classical adipokines include leptin, adiponectin, and ceramide, while newly identified adipokines include visceral adipose tissue-derived serpin, omentin, and asprosin. New evidence suggests that adipokines can play an essential role in atherosclerosis progression and regression. Here, we summarize the complex roles of various adipokines in atherosclerosis lesions. Representative protective adipokines include adiponectin and neuregulin 4; deteriorating adipokines include leptin, resistin, thrombospondin-1, and C1q/tumor necrosis factor-related protein 5; and adipokines with dual protective and deteriorating effects include C1q/tumor necrosis factor-related protein 1 and C1q/tumor necrosis factor-related protein 3; and adipose tissue-derived bioactive materials include sphingosine-1-phosphate, ceramide, and adipose tissue-derived exosomes. However, the role of a newly discovered adipokine, asprosin, in atherosclerosis remains unclear. This article reviews progress in the research on the effects of adipokines in atherosclerosis and how they may be regulated to halt its progression.
Collapse
Affiliation(s)
- Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
64
|
Markussen LK, Mandrup S. Adipocyte gene expression in obesity - insights gained and challenges ahead. Curr Opin Genet Dev 2023; 81:102060. [PMID: 37331148 DOI: 10.1016/j.gde.2023.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
White adipocytes possess extraordinary plasticity with an unparalleled capacity to expand in size with nutritional overload. Several lines of evidence indicate that limitations to this plasticity, as found in both lipodystrophy and obesity, drive several of the comorbidities of these disease, thereby underscoring the need to understand the mechanisms of healthy and unhealthy adipose expansion. Recent single-cell technologies and studies of isolated adipocytes have allowed researchers to gain insight into the molecular mechanisms of adipocyte plasticity. Here, we review current insight into the effect of nutritional overload on white adipocyte gene expression and function. We review the role of adipocyte size and heterogeneity and discuss the challenges and future directions.
Collapse
Affiliation(s)
- Lasse K Markussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; Center for Adipocyte Signaling (ADIPOSIGN), Odense, Denmark; Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark. https://twitter.com/@ATLAS_SDU
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; Center for Adipocyte Signaling (ADIPOSIGN), Odense, Denmark; Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark.
| |
Collapse
|
65
|
Dewal RS, Wolfrum C. Master of disguise: deconvoluting adipose tissue heterogeneity and its impact on metabolic health. Curr Opin Genet Dev 2023; 81:102085. [PMID: 37421902 DOI: 10.1016/j.gde.2023.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
Adipose tissue in its different forms: white, brown, and beige, while essential in day-to-day bodily functions, leads to several disorders when present in overabundance, including obesity and type-2 diabetes. Adipose tissue function/dysfunction is largely mediated by the diversity of its cell composition, within adipocytes and cells in its stromal fraction. Owing to its heterogeneous nature, recent studies have focused on intercalating the effects of cellular diversity with adipose tissue function, particularly by employing sequencing technologies. In this review, we highlight the recent advances in utilizing single-cell and single-nuclei RNA sequencing technologies to discover novel adipose tissue cell types or subtypes, and to determine their role in mediating tissue, as well as whole-body metabolism and function.
Collapse
Affiliation(s)
- Revati S Dewal
- Laboratory of Translational Nutritional Biology, Department of Health Sciences and Technology, ETH Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland. https://twitter.com/@revadewa3
| | - Christian Wolfrum
- Laboratory of Translational Nutritional Biology, Department of Health Sciences and Technology, ETH Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| |
Collapse
|
66
|
Conway JRW, Dinç DD, Follain G, Paavolainen O, Kaivola J, Boström P, Hartiala P, Peuhu E, Ivaska J. IGFBP2 secretion by mammary adipocytes limits breast cancer invasion. SCIENCE ADVANCES 2023; 9:eadg1840. [PMID: 37436978 DOI: 10.1126/sciadv.adg1840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The progression of noninvasive ductal carcinoma in situ to invasive ductal carcinoma for patients with breast cancer results in a significantly poorer prognosis and is the precursor to metastatic disease. In this work, we have identified insulin-like growth factor-binding protein 2 (IGFBP2) as a potent adipocrine factor secreted by healthy breast adipocytes that acts as a barrier against invasive progression. In line with this role, adipocytes differentiated from patient-derived stromal cells were found to secrete IGFBP2, which significantly inhibited breast cancer invasion. This occurred through binding and sequestration of cancer-derived IGF-II. Moreover, depletion of IGF-II in invading cancer cells using small interfering RNAs or an IGF-II-neutralizing antibody ablated breast cancer invasion, highlighting the importance of IGF-II autocrine signaling for breast cancer invasive progression. Given the abundance of adipocytes in the healthy breast, this work exposes the important role they play in suppressing cancer progression and may help expound upon the link between increased mammary density and poorer prognosis.
Collapse
Affiliation(s)
- James R W Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Defne D Dinç
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Institute of Biomedicine, and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Gautier Follain
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Oona Paavolainen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Institute of Biomedicine, and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Pia Boström
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; University of Turku, 20520 Turku, Finland
| | - Pauliina Hartiala
- Department of Plastic and General Surgery, Turku University Hospital, 20520 Turku, Finland
- Medicity Research Laboratory, InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Institute of Biomedicine, and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014 Helsinki, Finland
| |
Collapse
|
67
|
Shi J, Pan Y, Liu X, Cao W, Mu Y, Zhu Q. Spatial Omics Sequencing Based on Microfluidic Array Chips. BIOSENSORS 2023; 13:712. [PMID: 37504111 PMCID: PMC10377411 DOI: 10.3390/bios13070712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Spatial profiling technologies fill the gap left by the loss of spatial information in traditional single-cell sequencing, showing great application prospects. After just a few years of quick development, spatial profiling technologies have made great progress in resolution and simplicity. This review introduces the development of spatial omics sequencing based on microfluidic array chips and describes barcoding strategies using various microfluidic designs with simplicity and efficiency. At the same time, the pros and cons of each strategy are compared. Moreover, commercialized solutions for spatial profiling are also introduced. In the end, the future perspective of spatial omics sequencing and research directions are discussed.
Collapse
Affiliation(s)
- Jianyu Shi
- State Key Laboratory of Industrial Control Technology, Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| | - Yating Pan
- State Key Laboratory of Industrial Control Technology, Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| | - Xudong Liu
- State Key Laboratory of Industrial Control Technology, Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| | - Wenjian Cao
- State Key Laboratory of Industrial Control Technology, Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| | - Ying Mu
- State Key Laboratory of Industrial Control Technology, Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| | - Qiangyuan Zhu
- State Key Laboratory of Industrial Control Technology, Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
68
|
Xie B, Gao D, Zhou B, Chen S, Wang L. New discoveries in the field of metabolism by applying single-cell and spatial omics. J Pharm Anal 2023; 13:711-725. [PMID: 37577385 PMCID: PMC10422156 DOI: 10.1016/j.jpha.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 08/15/2023] Open
Abstract
Single-cell multi-Omics (SCM-Omics) and spatial multi-Omics (SM-Omics) technologies provide state-of-the-art methods for exploring the composition and function of cell types in tissues/organs. Since its emergence in 2009, single-cell RNA sequencing (scRNA-seq) has yielded many groundbreaking new discoveries. The combination of this method with the emergence and development of SM-Omics techniques has been a pioneering strategy in neuroscience, developmental biology, and cancer research, especially for assessing tumor heterogeneity and T-cell infiltration. In recent years, the application of these methods in the study of metabolic diseases has also increased. The emerging SCM-Omics and SM-Omics approaches allow the molecular and spatial analysis of cells to explore regulatory states and determine cell fate, and thus provide promising tools for unraveling heterogeneous metabolic processes and making them amenable to intervention. Here, we review the evolution of SCM-Omics and SM-Omics technologies, and describe the progress in the application of SCM-Omics and SM-Omics in metabolism-related diseases, including obesity, diabetes, nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD). We also conclude that the application of SCM-Omics and SM-Omics approaches can help resolve the molecular mechanisms underlying the pathogenesis of metabolic diseases in the body and facilitate therapeutic measures for metabolism-related diseases. This review concludes with an overview of the current status of this emerging field and the outlook for its future.
Collapse
Affiliation(s)
- Baocai Xie
- Department of Critical Care Medicine, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
- Department of Respiratory Diseases, The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450014, China
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Biqiang Zhou
- Department of Geriatric & Spinal Pain Multi-Department Treatment, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, 518035, China
| | - Shi Chen
- Department of Critical Care Medicine, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Department of Respiratory Diseases, The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450014, China
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
69
|
Liu Q, Long Q, Zhao J, Wu W, Lin Z, Sun W, Gu P, Deng T, Loomes KM, Wu D, Kong APS, Zhou J, Cheng AS, Hui HX. Cold-Induced Reprogramming of Subcutaneous White Adipose Tissue Assessed by Single-Cell and Single-Nucleus RNA Sequencing. RESEARCH (WASHINGTON, D.C.) 2023; 6:0182. [PMID: 37398933 PMCID: PMC10308956 DOI: 10.34133/research.0182] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Adipose browning has demonstrated therapeutic potentials in several diseases. Here, by conducting transcriptomic profiling at the single-cell and single-nucleus resolution, we reconstituted the cellular atlas in mouse inguinal subcutaneous white adipose tissue (iWAT) at thermoneutrality or chronic cold condition. All major nonimmune cells within the iWAT, including adipose stem and progenitor cells (ASPCs), mature adipocytes, endothelial cells, Schwann cells, and smooth muscle cells, were recovered, allowing us to uncover an overall and detailed blueprint for transcriptomes and intercellular cross-talks and the dynamics during white adipose tissue brown remodeling. Our findings also unravel the existence of subpopulations in mature adipocytes, ASPCs, and endothelial cells, as well as new insights on their interconversion and reprogramming in response to cold. The adipocyte subpopulation competent of major histocompatibility complex class II (MHCII) antigen presentation is potentiated. Furthermore, a subcluster of ASPC with CD74 expression was identified as the precursor of this MHCII+ adipocyte. Beige adipocytes are transdifferented from preexisting lipid generating adipocytes, which exhibit developmental trajectory from de novo differentiation of amphiregulin cells (Aregs). Two distinct immune-like endothelial subpopulations are present in iWAT and are responsive to cold. Our data reveal fundamental changes during cold-evoked adipose browning.
Collapse
Affiliation(s)
- Qing Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiaoyun Long
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiayu Zhao
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Wenjie Wu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zexin Lin
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wei Sun
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ping Gu
- Department of Endocrinology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kerry Martin Loomes
- School of Biological Sciences and Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Donghai Wu
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Alice P. S. Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Alfred S. Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
70
|
Li JH, Hepworth MR, O'Sullivan TE. Regulation of systemic metabolism by tissue-resident immune cell circuits. Immunity 2023; 56:1168-1186. [PMID: 37315533 PMCID: PMC10321269 DOI: 10.1016/j.immuni.2023.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023]
Abstract
Recent studies have demonstrated that tissue homeostasis and metabolic function are dependent on distinct tissue-resident immune cells that form functional cell circuits with structural cells. Within these cell circuits, immune cells integrate cues from dietary contents and commensal microbes in addition to endocrine and neuronal signals present in the tissue microenvironment to regulate structural cell metabolism. These tissue-resident immune circuits can become dysregulated during inflammation and dietary overnutrition, contributing to metabolic diseases. Here, we review the evidence describing key cellular networks within and between the liver, gastrointestinal tract, and adipose tissue that control systemic metabolism and how these cell circuits become dysregulated during certain metabolic diseases. We also identify open questions in the field that have the potential to enhance our understanding of metabolic health and disease.
Collapse
Affiliation(s)
- Joey H Li
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA; Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matthew R Hepworth
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| |
Collapse
|
71
|
Palani NP, Horvath C, Timshel PN, Folkertsma P, Grønning AGB, Henriksen TI, Peijs L, Jensen VH, Sun W, Jespersen NZ, Wolfrum C, Pers TH, Nielsen S, Scheele C. Adipogenic and SWAT cells separate from a common progenitor in human brown and white adipose depots. Nat Metab 2023; 5:996-1013. [PMID: 37337126 PMCID: PMC10290958 DOI: 10.1038/s42255-023-00820-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/11/2023] [Indexed: 06/21/2023]
Abstract
Adipocyte function is a major determinant of metabolic disease, warranting investigations of regulating mechanisms. We show at single-cell resolution that progenitor cells from four human brown and white adipose depots separate into two main cell fates, an adipogenic and a structural branch, developing from a common progenitor. The adipogenic gene signature contains mitochondrial activity genes, and associates with genome-wide association study traits for fat distribution. Based on an extracellular matrix and developmental gene signature, we name the structural branch of cells structural Wnt-regulated adipose tissue-resident (SWAT) cells. When stripped from adipogenic cells, SWAT cells display a multipotent phenotype by reverting towards progenitor state or differentiating into new adipogenic cells, dependent on media. Label transfer algorithms recapitulate the cell types in human adipose tissue datasets. In conclusion, we provide a differentiation map of human adipocytes and define the multipotent SWAT cell, providing a new perspective on adipose tissue regulation.
Collapse
Affiliation(s)
- Nagendra P Palani
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Carla Horvath
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Pascal N Timshel
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- ZS Associates, Copenhagen, Denmark
| | - Pytrik Folkertsma
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Alexander G B Grønning
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tora I Henriksen
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lone Peijs
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Verena H Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Naja Z Jespersen
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Søren Nielsen
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
72
|
Emont MP, Rosen ED. Exploring the heterogeneity of white adipose tissue in mouse and man. Curr Opin Genet Dev 2023; 80:102045. [PMID: 37094486 PMCID: PMC10330284 DOI: 10.1016/j.gde.2023.102045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
Adipose tissue is a heterogeneous organ, comprising cell types, including mature adipocytes, progenitor cells, immune cells, and vascular cells. Here, we discuss the heterogeneity of human and mouse white adipose tissue in general and white adipocytes specifically, focusing on how our understanding of adipocyte subpopulations has expanded with the advent of single nuclear RNA sequencing and spatial transcriptomics. Furthermore, we discuss critical remaining questions regarding how these distinct populations arise, how their functions differ from one another, and which potentially contribute to metabolic pathophysiology.
Collapse
Affiliation(s)
- Margo P Emont
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, USA; Harvard Medical School, USA; Broad Institute, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, USA; Harvard Medical School, USA; Broad Institute, USA.
| |
Collapse
|
73
|
Maude H, Cebola I. Zooming into process-specific risk. Nat Metab 2023; 5:730-731. [PMID: 37253880 DOI: 10.1038/s42255-023-00770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Hannah Maude
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
74
|
Glunk V, Laber S, Sinnott-Armstrong N, Sobreira DR, Strobel SM, Batista TM, Kubitz P, Moud BN, Ebert H, Huang Y, Brandl B, Garbo G, Honecker J, Stirling DR, Abdennur N, Calabuig-Navarro V, Skurk T, Ocvirk S, Stemmer K, Cimini BA, Carpenter AE, Dankel SN, Lindgren CM, Hauner H, Nobrega MA, Claussnitzer M. A non-coding variant linked to metabolic obesity with normal weight affects actin remodelling in subcutaneous adipocytes. Nat Metab 2023; 5:861-879. [PMID: 37253881 PMCID: PMC11533588 DOI: 10.1038/s42255-023-00807-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Recent large-scale genomic association studies found evidence for a genetic link between increased risk of type 2 diabetes and decreased risk for adiposity-related traits, reminiscent of metabolically obese normal weight (MONW) association signatures. However, the target genes and cellular mechanisms driving such MONW associations remain to be identified. Here, we systematically identify the cellular programmes of one of the top-scoring MONW risk loci, the 2q24.3 risk locus, in subcutaneous adipocytes. We identify a causal genetic variant, rs6712203, an intronic single-nucleotide polymorphism in the COBLL1 gene, which changes the conserved transcription factor motif of POU domain, class 2, transcription factor 2, and leads to differential COBLL1 gene expression by altering the enhancer activity at the locus in subcutaneous adipocytes. We then establish the cellular programme under the genetic control of the 2q24.3 MONW risk locus and the effector gene COBLL1, which is characterized by impaired actin cytoskeleton remodelling in differentiating subcutaneous adipocytes and subsequent failure of these cells to accumulate lipids and develop into metabolically active and insulin-sensitive adipocytes. Finally, we show that perturbations of the effector gene Cobll1 in a mouse model result in organismal phenotypes matching the MONW association signature, including decreased subcutaneous body fat mass and body weight along with impaired glucose tolerance. Taken together, our results provide a mechanistic link between the genetic risk for insulin resistance and low adiposity, providing a potential therapeutic hypothesis and a framework for future identification of causal relationships between genome associations and cellular programmes in other disorders.
Collapse
Affiliation(s)
- Viktoria Glunk
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Samantha Laber
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
| | - Nasa Sinnott-Armstrong
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Herbold Computational Biology Program, Publich Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Debora R Sobreira
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Sophie M Strobel
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
| | - Thiago M Batista
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Phil Kubitz
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bahareh Nemati Moud
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hannah Ebert
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Yi Huang
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Beate Brandl
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Garrett Garbo
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
| | - Julius Honecker
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - David R Stirling
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nezar Abdennur
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Virtu Calabuig-Navarro
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Thomas Skurk
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Soeren Ocvirk
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Intestinal Microbiology Research Group, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Kerstin Stemmer
- Molecular Cell Biology, Institute for Theoretical Medicine, University of Augsburg, Augsburg, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Beth A Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Simon N Dankel
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Cecilia M Lindgren
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Hans Hauner
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Marcelo A Nobrega
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA.
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
75
|
Vo T, Balderson B, Jones K, Ni G, Crawford J, Millar A, Tolson E, Singleton M, Kojic M, Robertson T, Walters S, Mulay O, Bhuva DD, Davis MJ, Wainwright BJ, Nguyen Q, Genovesi LA. Spatial transcriptomic analysis of Sonic hedgehog medulloblastoma identifies that the loss of heterogeneity and promotion of differentiation underlies the response to CDK4/6 inhibition. Genome Med 2023; 15:29. [PMID: 37127652 PMCID: PMC10150495 DOI: 10.1186/s13073-023-01185-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/20/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Medulloblastoma (MB) is a malignant tumour of the cerebellum which can be classified into four major subgroups based on gene expression and genomic features. Single-cell transcriptome studies have defined the cellular states underlying each MB subgroup; however, the spatial organisation of these diverse cell states and how this impacts response to therapy remains to be determined. METHODS Here, we used spatially resolved transcriptomics to define the cellular diversity within a sonic hedgehog (SHH) patient-derived model of MB and show that cells specific to a transcriptional state or spatial location are pivotal for CDK4/6 inhibitor, Palbociclib, treatment response. We integrated spatial gene expression with histological annotation and single-cell gene expression data from MB, developing an analysis strategy to spatially map cell type responses within the hybrid system of human and mouse cells and their interface within an intact brain tumour section. RESULTS We distinguish neoplastic and non-neoplastic cells within tumours and from the surrounding cerebellar tissue, further refining pathological annotation. We identify a regional response to Palbociclib, with reduced proliferation and induced neuronal differentiation in both treated tumours. Additionally, we resolve at a cellular resolution a distinct tumour interface where the tumour contacts neighbouring mouse brain tissue consisting of abundant astrocytes and microglia and continues to proliferate despite Palbociclib treatment. CONCLUSIONS Our data highlight the power of using spatial transcriptomics to characterise the response of a tumour to a targeted therapy and provide further insights into the molecular and cellular basis underlying the response and resistance to CDK4/6 inhibitors in SHH MB.
Collapse
Affiliation(s)
- Tuan Vo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Brad Balderson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Kahli Jones
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Guiyan Ni
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Joanna Crawford
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Amanda Millar
- The University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Elissa Tolson
- The University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Matthew Singleton
- The University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Marija Kojic
- The University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Thomas Robertson
- Department of Pathology, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, QLD, 4029, Australia
| | - Shaun Walters
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Onkar Mulay
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dharmesh D Bhuva
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Faculty of Medicine, South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Melissa J Davis
- The University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Faculty of Medicine, South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, 5000, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Brandon J Wainwright
- The University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Laura A Genovesi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
- The University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
76
|
Wirth J, Huber N, Yin K, Brood S, Chang S, Martinez-Jimenez CP, Meier M. Spatial transcriptomics using multiplexed deterministic barcoding in tissue. Nat Commun 2023; 14:1523. [PMID: 36934108 PMCID: PMC10024691 DOI: 10.1038/s41467-023-37111-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/02/2023] [Indexed: 03/20/2023] Open
Abstract
Spatially resolved transcriptomics of tissue sections enables advances in fundamental and applied biomedical research. Here, we present Multiplexed Deterministic Barcoding in Tissue (xDBiT) to acquire spatially resolved transcriptomes of nine tissue sections in parallel. New microfluidic chips were developed to spatially encode mRNAs over a total tissue area of 1.17 cm2 with a 50 µm resolution. Optimization of the biochemical protocol increased read and gene counts per spot by one order of magnitude compared to previous reports. Furthermore, the introduction of alignment markers allowed seamless registration of images and spatial transcriptomic spots. Together with technological advances, we provide an open-source computational pipeline to prepare raw sequencing data for downstream analysis. The functionality of xDBiT was demonstrated by acquiring 16 spatially resolved transcriptomic datasets from five different murine organs, including the cerebellum, liver, kidney, spleen, and heart. Factor analysis and deconvolution of spatial transcriptomes allowed for in-depth characterization of the murine kidney.
Collapse
Affiliation(s)
- Johannes Wirth
- Helmholtz Pioneer Campus, Helmholtz Munich, Munich, Germany
| | - Nina Huber
- Helmholtz Pioneer Campus, Helmholtz Munich, Munich, Germany
| | - Kelvin Yin
- Helmholtz Pioneer Campus, Helmholtz Munich, Munich, Germany
| | - Sophie Brood
- Helmholtz Pioneer Campus, Helmholtz Munich, Munich, Germany
| | - Simon Chang
- Helmholtz Pioneer Campus, Helmholtz Munich, Munich, Germany
| | - Celia P Martinez-Jimenez
- Helmholtz Pioneer Campus, Helmholtz Munich, Munich, Germany.
- TUM School of Medicine, Technical University of Munich, Munich, Germany.
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Munich, Munich, Germany.
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
77
|
An integrated single cell and spatial transcriptomic map of human white adipose tissue. Nat Commun 2023; 14:1438. [PMID: 36922516 PMCID: PMC10017705 DOI: 10.1038/s41467-023-36983-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
To date, single-cell studies of human white adipose tissue (WAT) have been based on small cohort sizes and no cellular consensus nomenclature exists. Herein, we performed a comprehensive meta-analysis of publicly available and newly generated single-cell, single-nucleus, and spatial transcriptomic results from human subcutaneous, omental, and perivascular WAT. Our high-resolution map is built on data from ten studies and allowed us to robustly identify >60 subpopulations of adipocytes, fibroblast and adipogenic progenitors, vascular, and immune cells. Using these results, we deconvolved spatial and bulk transcriptomic data from nine additional cohorts to provide spatial and clinical dimensions to the map. This identified cell-cell interactions as well as relationships between specific cell subtypes and insulin resistance, dyslipidemia, adipocyte volume, and lipolysis upon long-term weight changes. Altogether, our meta-map provides a rich resource defining the cellular and microarchitectural landscape of human WAT and describes the associations between specific cell types and metabolic states.
Collapse
|
78
|
Maniyadath B, Zhang Q, Gupta RK, Mandrup S. Adipose tissue at single-cell resolution. Cell Metab 2023; 35:386-413. [PMID: 36889280 PMCID: PMC10027403 DOI: 10.1016/j.cmet.2023.02.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Adipose tissue exhibits remarkable plasticity with capacity to change in size and cellular composition under physiological and pathophysiological conditions. The emergence of single-cell transcriptomics has rapidly transformed our understanding of the diverse array of cell types and cell states residing in adipose tissues and has provided insight into how transcriptional changes in individual cell types contribute to tissue plasticity. Here, we present a comprehensive overview of the cellular atlas of adipose tissues focusing on the biological insight gained from single-cell and single-nuclei transcriptomics of murine and human adipose tissues. We also offer our perspective on the exciting opportunities for mapping cellular transitions and crosstalk, which have been made possible by single-cell technologies.
Collapse
Affiliation(s)
- Babukrishna Maniyadath
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Qianbin Zhang
- Department of Internal Medicine, Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rana K Gupta
- Department of Internal Medicine, Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
79
|
Al-Sayyar A, Hammad MM, Williams MR, Al-Onaizi M, Abubaker J, Alzaid F. Neurotransmitters in Type 2 Diabetes and the Control of Systemic and Central Energy Balance. Metabolites 2023; 13:384. [PMID: 36984824 PMCID: PMC10058084 DOI: 10.3390/metabo13030384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Efficient signal transduction is important in maintaining the function of the nervous system across tissues. An intact neurotransmission process can regulate energy balance through proper communication between neurons and peripheral organs. This ensures that the right neural circuits are activated in the brain to modulate cellular energy homeostasis and systemic metabolic function. Alterations in neurotransmitters secretion can lead to imbalances in appetite, glucose metabolism, sleep, and thermogenesis. Dysregulation in dietary intake is also associated with disruption in neurotransmission and can trigger the onset of type 2 diabetes (T2D) and obesity. In this review, we highlight the various roles of neurotransmitters in regulating energy balance at the systemic level and in the central nervous system. We also address the link between neurotransmission imbalance and the development of T2D as well as perspectives across the fields of neuroscience and metabolism research.
Collapse
Affiliation(s)
| | | | | | - Mohammed Al-Onaizi
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Institut Necker Enfants Malades-INEM, Université Paris Cité, CNRS, INSERM, F-75015 Paris, France
| |
Collapse
|
80
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
81
|
Abstract
PURPOSE OF REVIEW This review aims to discuss the most recent evidence identifying the presence of distinct white adipocyte subpopulations in white adipose tissue (WAT) and how these may be altered with increasing adiposity and/or metabolic disease. We conceptualize how changes in adipocyte subpopulations may contribute to alterations in WAT function and the development of metabolic diseases such as type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD). RECENT FINDINGS Studies utilizing novel analytical approaches support the existence of distinct white adipocyte subpopulations in both human and murine WAT. Adipocyte subtypes are potentially functionally distinct and may have different roles in WAT function and obesity-associated metabolic diseases. SUMMARY The exploration of white adipocyte heterogeneity using novel analytical technologies, has unveiled a new layer of complexity in the study of WAT biology. Interrogation of potential functional differences between adipocyte subpopulations and their role in the function of different WAT depots is now needed. Through understanding the mechanisms regulating white adipocyte subtype development and potential pathophysiological consequences of changes in the presence of adipocyte subpopulations, studies could provide novel therapeutic targets for the treatment of T2DM, NAFLD, and CVD.
Collapse
Affiliation(s)
- Josh Bilson
- Human Development and Health, Faculty of Medicine, University of Southampton
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust
| | - Jaswinder K. Sethi
- Human Development and Health, Faculty of Medicine, University of Southampton
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Christopher D. Byrne
- Human Development and Health, Faculty of Medicine, University of Southampton
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust
| |
Collapse
|
82
|
Heydari AA, Sindi SS. Deep learning in spatial transcriptomics: Learning from the next next-generation sequencing. BIOPHYSICS REVIEWS 2023; 4:011306. [PMID: 38505815 PMCID: PMC10903438 DOI: 10.1063/5.0091135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/19/2022] [Indexed: 03/21/2024]
Abstract
Spatial transcriptomics (ST) technologies are rapidly becoming the extension of single-cell RNA sequencing (scRNAseq), holding the potential of profiling gene expression at a single-cell resolution while maintaining cellular compositions within a tissue. Having both expression profiles and tissue organization enables researchers to better understand cellular interactions and heterogeneity, providing insight into complex biological processes that would not be possible with traditional sequencing technologies. Data generated by ST technologies are inherently noisy, high-dimensional, sparse, and multi-modal (including histological images, count matrices, etc.), thus requiring specialized computational tools for accurate and robust analysis. However, many ST studies currently utilize traditional scRNAseq tools, which are inadequate for analyzing complex ST datasets. On the other hand, many of the existing ST-specific methods are built upon traditional statistical or machine learning frameworks, which have shown to be sub-optimal in many applications due to the scale, multi-modality, and limitations of spatially resolved data (such as spatial resolution, sensitivity, and gene coverage). Given these intricacies, researchers have developed deep learning (DL)-based models to alleviate ST-specific challenges. These methods include new state-of-the-art models in alignment, spatial reconstruction, and spatial clustering, among others. However, DL models for ST analysis are nascent and remain largely underexplored. In this review, we provide an overview of existing state-of-the-art tools for analyzing spatially resolved transcriptomics while delving deeper into the DL-based approaches. We discuss the new frontiers and the open questions in this field and highlight domains in which we anticipate transformational DL applications.
Collapse
|
83
|
Gu P, Ding K, Lu L, Zhang Y, Wang W, Guo Q, Liao Y, Yang B, Wang T, Zhou C, Lu B, Kong APS, Cheng AS, Hui HX, Shao J. Compromised browning in white adipose tissue of ageing people. Eur J Endocrinol 2023; 188:lvad014. [PMID: 36750512 DOI: 10.1093/ejendo/lvad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Adipose tissue plays a pivotal role in the pathology of metabolic disorders. In the past decade, brown and brown-like adipose tissues were detected in adult humans and show therapeutic potential in ageing-related metabolic diseases. OBJECTIVE This study investigated expressions of major brown adipose markers in white adipose tissue (WAT) of different ages. Their associations with metabolic parameters and key adipokines were interrogated. DESIGN Cross-sectional study, 2019-2021. METHODS We recruited 21 young, 67 middle-aged, and 34 older patients. Omental adipose tissues were collected, and expressions of key brown markers and adipokines and the adipocyte size were evaluated. The fat depot distribution was evaluated by computed tomography. RESULTS UCP1 and PRDM16 mRNA expressions declined with ageing in WAT and were more associated with age, than with the body mass index (BMI). The increased visceral adipose tissue (VAT) amount, as well as the VAT to subcutaneous adipose tissue (SAT) ratio, was decreased in the highest tertile of UCP1 expression, while individuals in different PRDM16 mRNA tertiles exhibited similar fat distribution. UCP1 mRNA was positively correlated with ADIPOQ and the strength of the correlation declined with ageing. In contrast, the association between UCP1 and LEP was insignificant in young and middle-aged groups but became significantly correlated in the older-people group. We also found a positive correlation between UCP1 and PRDM16. CONCLUSIONS PRDM16 and UCP1, despite their key functions in adipose browning, exhibit differential clinical correlations with metabolic features in human WAT in an age-dependent manner. These two genes may participate in the pathogenesis of ageing-related metabolic diseases, but with distinct mechanisms.
Collapse
Affiliation(s)
- Ping Gu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Kai Ding
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Lei Lu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Yu Zhang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Wei Wang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Qingyu Guo
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Yannian Liao
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Bingjie Yang
- Department of Endocrinology, Jinling Hospital, Nanjing Med University, Nanjing 210000, China
| | - Tiantian Wang
- Department of Endocrinology, Jinling Hospital, Nanjing Med University, Nanjing 210000, China
| | - Changsheng Zhou
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Bin Lu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Alice P S Kong
- Department of Medicine and Therapeutics, Hong Kong Special Administrative Region, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, Shatin, Hong Kong, China
| | - Alfred S Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| |
Collapse
|
84
|
Song Z, Liu N, He Y, Chen J, Li J, Wang F, Wu Z. Knockout of ICAT in Adipose Tissue Alleviates Fibro-inflammation in Obese Mice. Inflammation 2023; 46:404-417. [PMID: 36181623 DOI: 10.1007/s10753-022-01742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The E2 promoter binding factor 1 (E2F1) and the Wnt/β-catenin signaling are crucial in regulating metabolic homeostasis including obesity. The β-catenin interacting protein 1 (CTNNBIP1), also known as the inhibitor of β-catenin and TCF4 (ICAT), is required for E2F1 to inhibit the activity of β-catenin. However, the role of ICAT in E2F1 regulating obesity-related metabolic disorders remains unknown. In the present study, male adipose tissue-specific ICAT knockout (ICATadi-/-) C57BL/6 J mice and control littermates aged 6-8 weeks were fed with high-fat diet (HFD) for 12 weeks to explore the effect of ICAT on lipid metabolism and obesity-related disorders. Results showed that the adipose tissue-specific ICAT knockout had negligible effect on lipid metabolism, reflected by no difference in body weight, fat mass, and the expression of proteins involved in lipid metabolism in white adipose tissue (WAT) and the liver between the ICATadi-/- mice and the control littermate (ICATfl/fl) mice. However, the knockout of ICAT reduced inflammatory response in WAT and the liver. Additionally, Sirius red staining results showed that deletion of ICAT attenuated fibrosis and reduced mRNA levels of transforming growth factor β1(TGF-β1), matrix metallopeptidase 2 (Mmp2), Mmp3, and collagen, type V, alpha 1 (Col5a1) in WAT and the liver. These results suggested that knockout of ICAT improved the metabolic abnormalities of obese mice through attenuating adipose tissue and the liver inflammation as well as fibrosis. Our findings may provide a new insight to understand the role of ICAT in inflammation and fibrosis.
Collapse
Affiliation(s)
- Zhuan Song
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Ning Liu
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Yu He
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100193, China
| | - Jun Li
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Fengchao Wang
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Zhenlong Wu
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
85
|
Abstract
Rather than serving as a mere onlooker, adipose tissue is a complex endocrine organ and active participant in disease initiation and progression. Disruptions of biological processes operating within adipose can disturb healthy systemic physiology, the sequelae of which include metabolic disorders such as obesity and type 2 diabetes. A burgeoning interest in the field of adipose research has allowed for the elucidation of regulatory networks underlying both adipose tissue function and dysfunction. Despite this progress, few diseases are treated by targeting maladaptation in the adipose, an oft-overlooked organ. In this review, we elaborate on the distinct subtypes of adipocytes, their developmental origins and secretory roles, and the dynamic interplay at work within the tissue itself. Central to this discussion is the relationship between adipose and disease states, including obesity, cachexia, and infectious diseases, as we aim to leverage our wealth of knowledge for the development of novel and targeted therapeutics.
Collapse
Affiliation(s)
- Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA;
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; .,Howard Hughes Medical Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
86
|
Xu P, Wang M, Sharma NK, Comeau ME, Wabitsch M, Langefeld CD, Civelek M, Zhang B, Das SK. Multi-omic integration reveals cell-type-specific regulatory networks of insulin resistance in distinct ancestry populations. Cell Syst 2023; 14:41-57.e8. [PMID: 36630956 PMCID: PMC9852073 DOI: 10.1016/j.cels.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/26/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
Our knowledge of the cell-type-specific mechanisms of insulin resistance remains limited. To dissect the cell-type-specific molecular signatures of insulin resistance, we performed a multiscale gene network analysis of adipose and muscle tissues in African and European ancestry populations. In adipose tissues, a comparative analysis revealed ethnically conserved cell-type signatures and two adipocyte subtype-enriched modules with opposite insulin sensitivity responses. The modules enriched for adipose stem and progenitor cells as well as immune cells showed negative correlations with insulin sensitivity. In muscle tissues, the modules enriched for stem cells and fibro-adipogenic progenitors responded to insulin sensitivity oppositely. The adipocyte and muscle fiber-enriched modules shared cellular-respiration-related genes but had tissue-specific rearrangements of gene regulations in response to insulin sensitivity. Integration of the gene co-expression and causal networks further pinpointed key drivers of insulin resistance. Together, this study revealed the cell-type-specific transcriptomic networks and signaling maps underlying insulin resistance in major glucose-responsive tissues. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Peng Xu
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Neeraj K Sharma
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Mary E Comeau
- Department of Biostatistics and Data Science, Division of Public Health Sciences, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, D-89075 Ulm, Germany
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Mete Civelek
- Center for Public Health Genomics, Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Bin Zhang
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Swapan K Das
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
87
|
Ospina O, Soupir A, Fridley BL. A Primer on Preprocessing, Visualization, Clustering, and Phenotyping of Barcode-Based Spatial Transcriptomics Data. Methods Mol Biol 2023; 2629:115-140. [PMID: 36929076 DOI: 10.1007/978-1-0716-2986-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Recent developments in spatially resolved transcriptomics (ST) have resulted in a large number of studies characterizing the architecture of tissues, the spatial distribution of cell types, and their interactions. Furthermore, ST promises to enable the discovery of more accurate drug targets while also providing a better understanding of the etiology and evolution of complex diseases. The analysis of ST brings similar challenges as seen in other gene expression assays such as scRNA-seq; however, there is the additional spatial information that warrants the development of suitable algorithms for the quality control, preprocessing, visualization, and other discovery-enabling approaches (e.g., clustering, cell phenotyping). In this chapter, we review some of the existing algorithms to perform these analytical tasks and highlight some of the unmet analytical challenges in the analysis of ST data. Given the diversity of available ST technologies, we focus this chapter on the analysis of barcode-based RNA quantitation techniques.
Collapse
Affiliation(s)
- Oscar Ospina
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Alex Soupir
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
88
|
Kolb H. Obese visceral fat tissue inflammation: from protective to detrimental? BMC Med 2022; 20:494. [PMID: 36575472 PMCID: PMC9795790 DOI: 10.1186/s12916-022-02672-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/21/2022] [Indexed: 12/28/2022] Open
Abstract
Obesity usually is accompanied by inflammation of fat tissue, with a prominent role of visceral fat. Chronic inflammation in obese fat tissue is of a lower grade than acute immune activation for clearing the tissue from an infectious agent. It is the loss of adipocyte metabolic homeostasis that causes activation of resident immune cells for supporting tissue functions and regaining homeostasis. Initially, the excess influx of lipids and glucose in the context of overnutrition is met by adipocyte growth and proliferation. Eventual lipid overload of hypertrophic adipocytes leads to endoplasmic reticulum stress and the secretion of a variety of signals causing increased sympathetic tone, lipolysis by adipocytes, lipid uptake by macrophages, matrix remodeling, angiogenesis, and immune cell activation. Pro-inflammatory signaling of adipocytes causes the resident immune system to release increased amounts of pro-inflammatory and other mediators resulting in enhanced tissue-protective responses. With chronic overnutrition, these protective actions are insufficient, and death of adipocytes as well as senescence of several tissue cell types is seen. This structural damage causes the expression or release of immunostimulatory cell components resulting in influx and activation of monocytes and many other immune cell types, with a contribution of stromal cells. Matrix remodeling and angiogenesis is further intensified as well as possibly detrimental fibrosis. The accumulation of senescent cells also may be detrimental via eventual spread of senescence state from affected to neighboring cells by the release of microRNA-containing vesicles. Obese visceral fat inflammation can be viewed as an initially protective response in order to cope with excess ambient nutrients and restore tissue homeostasis but may contribute to tissue damage at a later stage.
Collapse
Affiliation(s)
- Hubert Kolb
- Faculty of Medicine, University of Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany. .,West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Hohensandweg 37, 40591, Düsseldorf, Germany.
| |
Collapse
|
89
|
Chen Y, Tang L. The crosstalk between parenchymal cells and macrophages: A keeper of tissue homeostasis. Front Immunol 2022; 13:1050188. [PMID: 36505488 PMCID: PMC9732730 DOI: 10.3389/fimmu.2022.1050188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Non-parenchymal cells (NPCs) and parenchymal cells (PCs) collectively perform tissue-specific functions. PCs play significant roles and continuously adjust the intrinsic functions and metabolism of organs. Tissue-resident macrophages (TRMs) are crucial members of native NPCs in tissues and are essential for immune defense, tissue repair and development, and homeostasis maintenance. As a plastic-phenotypic and prevalent cluster of NPCs, TRMs dynamically assist PCs in functioning by producing cytokines, inflammatory and anti-inflammatory signals, growth factors, and proteolytic enzymes. Furthermore, the PCs of tissues modulate the functional activity and polarization of TRMs. Dysregulation of the PC-TRM crosstalk axis profoundly impacts many essential physiological functions, including synaptogenesis, gastrointestinal motility and secretion, cardiac pulsation, gas exchange, blood filtration, and metabolic homeostasis. This review focuses on the PC-TRM crosstalk in mammalian vital tissues, along with their interactions with tissue homeostasis maintenance and disorders. Thus, this review highlights the fundamental biological significance of the regulatory network of PC-TRM in tissue homeostasis.
Collapse
|
90
|
Nawaz A, Bilal M, Fujisaka S, Kado T, Aslam MR, Ahmed S, Okabe K, Igarashi Y, Watanabe Y, Kuwano T, Tsuneyama K, Nishimura A, Nishida Y, Yamamoto S, Sasahara M, Imura J, Mori H, Matzuk MM, Kudo F, Manabe I, Uezumi A, Nakagawa T, Oishi Y, Tobe K. Depletion of CD206 + M2-like macrophages induces fibro-adipogenic progenitors activation and muscle regeneration. Nat Commun 2022; 13:7058. [PMID: 36411280 PMCID: PMC9678897 DOI: 10.1038/s41467-022-34191-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Muscle regeneration requires the coordination of muscle stem cells, mesenchymal fibro-adipogenic progenitors (FAPs), and macrophages. How macrophages regulate the paracrine secretion of FAPs during the recovery process remains elusive. Herein, we systemically investigated the communication between CD206+ M2-like macrophages and FAPs during the recovery process using a transgenic mouse model. Depletion of CD206+ M2-like macrophages or deletion of CD206+ M2-like macrophages-specific TGF-β1 gene induces myogenesis and muscle regeneration. We show that depletion of CD206+ M2-like macrophages activates FAPs and activated FAPs secrete follistatin, a promyogenic factor, thereby boosting the recovery process. Conversely, deletion of the FAP-specific follistatin gene results in impaired muscle stem cell function, enhanced fibrosis, and delayed muscle regeneration. Mechanistically, CD206+ M2-like macrophages inhibit the secretion of FAP-derived follistatin via TGF-β signaling. Here we show that CD206+ M2-like macrophages constitute a microenvironment for FAPs and may regulate the myogenic potential of muscle stem/satellite cells.
Collapse
Affiliation(s)
- Allah Nawaz
- grid.267346.20000 0001 2171 836XDepartment of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan ,grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan ,grid.16694.3c0000 0001 2183 9479Present Address: Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215 USA
| | - Muhammad Bilal
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Shiho Fujisaka
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Tomonobu Kado
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Muhammad Rahil Aslam
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Saeed Ahmed
- grid.415712.40000 0004 0401 3757Department of Medicine and Surgery, Rawalpindi Medical University, Rawalpindi, Punjab 46000 Pakistan
| | - Keisuke Okabe
- grid.267346.20000 0001 2171 836XDepartment of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan ,grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Yoshiko Igarashi
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Yoshiyuki Watanabe
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Takahide Kuwano
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Koichi Tsuneyama
- grid.267335.60000 0001 1092 3579Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503 Japan
| | - Ayumi Nishimura
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Yasuhiro Nishida
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Seiji Yamamoto
- grid.267346.20000 0001 2171 836XDepartment of Pathology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Masakiyo Sasahara
- grid.267346.20000 0001 2171 836XDepartment of Pathology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Johji Imura
- grid.267346.20000 0001 2171 836XDepartment of Diagnostic Pathology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Hisashi Mori
- grid.267346.20000 0001 2171 836XDepartment of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Martin M. Matzuk
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030-3411 USA
| | - Fujimi Kudo
- grid.136304.30000 0004 0370 1101Department of Systems Medicine, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Ichiro Manabe
- grid.136304.30000 0004 0370 1101Department of Systems Medicine, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Akiyoshi Uezumi
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Takashi Nakagawa
- grid.267346.20000 0001 2171 836XDepartment of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Yumiko Oishi
- grid.410821.e0000 0001 2173 8328Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Kazuyuki Tobe
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| |
Collapse
|
91
|
AlZaim I, Eid AH, Abd-Elrahman KS, El-Yazbi AF. Adipose Tissue Mitochondrial Dysfunction and Cardiometabolic Diseases: On the Search for Novel Molecular Targets. Biochem Pharmacol 2022; 206:115337. [DOI: 10.1016/j.bcp.2022.115337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
92
|
Kislev N, Eidelheit S, Perlmutter S, Benayahu D. How to follow lipid droplets dynamics during adipocyte metabolism. J Cell Physiol 2022; 237:4157-4168. [PMID: 35986713 PMCID: PMC9804707 DOI: 10.1002/jcp.30857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023]
Abstract
Lipid droplets (LDs) are important cellular organelles due to their ability to accumulate and store lipids. LD dynamics are associated with various cellular and metabolic processes. Accurate monitoring of LD's size and shape is of prime importance as it indicates the metabolic status of the cells. Unintrusive continuous quantification techniques have a clear advantage in analyzing LDs as they measure and monitor the cells' metabolic function and droplets over time. Here, we present a novel machine-learning-based method for LDs analysis by segmentation of phase-contrast images of differentiated adipocytes (in vitro) and adipose tissue (in vivo). We developed a new workflow based on the ImageJ waikato environment for knowledge analysis segmentation plugin, which provides an accurate, label-free, live single-cell, and organelle quantification of LD-related parameters. By applying the new method on differentiating 3T3-L1 cells, the size of LDs was analyzed over time in differentiated adipocytes and their correlation with other morphological parameters. Moreover, we analyzed the LDs dynamics during catabolic changes such as lipolysis and lipophagy and demonstrated its ability to identify different cellular subpopulations based on their structural, numerical, and spatial variability. This analysis was also implemented on unstained ex vivo adipose tissues to measure adipocyte size, an important readout of the tissue's metabolism. The presented approach can be applied in different LD-related metabolic conditions to provide a better understanding of LD biogenesis and function in vivo and in vitro while serving as a new platform that enables rapid and accurate screening of data sets.
Collapse
Affiliation(s)
- Nadav Kislev
- Department of Cell and Developmental Biology, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Shira Eidelheit
- Department of Cell and Developmental Biology, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Shaked Perlmutter
- Department of Cell and Developmental Biology, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
93
|
Ruggiero AD, Vemuri R, Block M, DeStephanis D, Davis M, Chou J, Williams A, Brock A, Das SK, Kavanagh K. Macrophage Phenotypes and Gene Expression Patterns Are Unique in Naturally Occurring Metabolically Healthy Obesity. Int J Mol Sci 2022; 23:12680. [PMID: 36293536 PMCID: PMC9604193 DOI: 10.3390/ijms232012680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Obesity impacts 650 million individuals globally, often co-occurring with metabolic syndrome. Though many obese individuals experience metabolic abnormalities (metabolically unhealthy obese [MUO]), ~30% do not (metabolically healthy obese [MHO]). Conversely, >10% of lean individuals are metabolically unhealthy (MUL). To evaluate the physiologic drivers of these phenotypes, a 44-animal African green monkey cohort was selected using metabolic syndrome risk criteria to represent these four clinically defined health groups. Body composition imaging and subcutaneous adipose tissue (SQ AT) biopsies were collected. Differences in adipocyte size, macrophage subtype distribution, gene expression, vascularity and fibrosis were analyzed using digital immunohistopathology, unbiased RNA-seq, endothelial CD31, and Masson’s trichrome staining, respectively. MHO AT demonstrated significant increases in M2 macrophages (p = 0.02) and upregulation of fatty acid oxidation-related terms and transcripts, including FABP7 (p = 0.01). MUO AT demonstrated downregulation of these factors and co-occurring upregulation of immune responses. These changes occurred without differences in AT distributions, adipocyte size, AT endothelial cells, collagen I deposition, or circulating cytokine levels. Without unhealthy diet consumption, healthy obesity is defined by an increased SQ AT M2/M1 macrophage ratio and lipid handling gene expression. We highlight M2 macrophages and fatty acid oxidation as targets for improving metabolic health with obesity.
Collapse
Affiliation(s)
- Alistaire D. Ruggiero
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ravichandra Vemuri
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Masha Block
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Darla DeStephanis
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Matthew Davis
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jeff Chou
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Abigail Williams
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ashlynn Brock
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Swapan Kumar Das
- Department of Endocrinology and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- College of Health and Medicine, University of Tasmania, Hobart 7000, Australia
| |
Collapse
|
94
|
Mathur N, Severinsen MCK, Jensen ME, Naver L, Schrölkamp M, Laye MJ, Watt MJ, Nielsen S, Krogh-Madsen R, Pedersen BK, Scheele C. Human visceral and subcutaneous adipose stem and progenitor cells retain depot-specific adipogenic properties during obesity. Front Cell Dev Biol 2022; 10:983899. [PMID: 36340033 PMCID: PMC9629396 DOI: 10.3389/fcell.2022.983899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Abdominal obesity associates with cardiometabolic disease and an accumulation of lipids in the visceral adipose depot, whereas lipid accumulation in the subcutaneous depot is more benign. We aimed to further investigate whether the adipogenic properties where cell-intrinsic, or dependent on a depot-specific or obesity-produced microenvironment. We obtained visceral and subcutaneous biopsies from non-obese women (n = 14) or women living with morbid obesity (n = 14) and isolated adipose stem and progenitor cells (ASPCs) from the stromal vascular fraction of non-obese (n = 13) and obese (n = 13). Following in vitro differentiation into mature adipocytes, we observed a contrasting pattern with a lower gene expression of adipogenic markers and a higher gene expression of immunogenic markers in the visceral compared to the subcutaneous adipocytes. We identified the immunogenic factor BST2 as a marker for visceral ASPCs. The effect of obesity and insulin resistance on adipogenic and immunogenic markers in the in vitro differentiated cells was minor. In contrast, differentiation with exogenous Tumor necrosis factor resulted in increased immunogenic signatures, including increased expression of BST2, and decreased adipogenic signatures in cells from both depots. Our data, from 26 women, underscore the intrinsic differences between human visceral and subcutaneous adipose stem and progenitor cells, suggest that dysregulation of adipocytes in obesity mainly occurs at a post-progenitor stage, and highlight an inflammatory microenvironment as a major constraint of human adipogenesis.
Collapse
Affiliation(s)
- Neha Mathur
- The Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Neha Mathur, ; Mai C. K. Severinsen, ; Camilla Scheele,
| | - Mai C. K. Severinsen
- The Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Neha Mathur, ; Mai C. K. Severinsen, ; Camilla Scheele,
| | - Mette E. Jensen
- The Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Naver
- Department of Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark
| | - Maren Schrölkamp
- The Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew J. Laye
- The Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew J. Watt
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Søren Nielsen
- The Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Krogh-Madsen
- The Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- The Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Scheele
- The Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Neha Mathur, ; Mai C. K. Severinsen, ; Camilla Scheele,
| |
Collapse
|
95
|
Wang G, Song A, Bae M, Wang QA. Adipose Tissue Plasticity in Aging. Compr Physiol 2022; 12:4119-4132. [PMID: 36214190 DOI: 10.1002/cphy.c220005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As a dynamic endocrine organ, white adipose tissue (WAT) stores lipids and plays a critical role in maintaining whole-body energy homeostasis and insulin sensitivity. A large group of the population over 65 years old suffer from increased WAT mass, especially in the visceral location. Visceral adiposity accelerates aging through promoting age-associated chronic conditions, significantly shortening life expectancy. Unlike WAT, brown adipose tissue (BAT) functions as an effective energy sink that burns and disposes of excess lipids and glucose upon activation of thermogenesis. Unfortunately, the thermogenic activity of BAT declines during aging. New appreciation of cellular and functional remodeling of WAT and BAT during aging has emerged in recent years. Efforts are underway to explore the potential underlying mechanisms behind these age-associated alterations in WAT and BAT and the impact of these alterations on whole-body metabolism. Lastly, it is intriguing to translate our knowledge obtained from animal models to the clinic to prevent and treat age-associated metabolic disorders. © 2022 American Physiological Society. Compr Physiol 12: 4119-4132, 2022.
Collapse
Affiliation(s)
- Guan Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Anying Song
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Marie Bae
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Qiong A Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, California, USA
| |
Collapse
|
96
|
Microenvironment components and spatially resolved single-cell transcriptome atlas of breast cancer metastatic axillary lymph nodes. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1336-1348. [PMID: 36148946 PMCID: PMC9828062 DOI: 10.3724/abbs.2022131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As an indicator of clinical prognosis, lymph node metastasis of breast cancer has drawn great attention. Many reports have revealed the characteristics of metastatic breast cancer cells, however, the effect of breast cancer cells on the microenvironment components of lymph nodes and spatial transcriptome atlas remains unclear. In this study, by integrating single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics, we investigate the transcriptional profiling of six surgically excised lymph node samples and the spatial organization of one positive lymph node. We identify the existence of osteoclast-like giant cells (OGC) which have high expressions of CD68 and CD163, the biomarkers of tumor-associated macrophages (TAMs). Through a spatially resolved transcriptomic method, we find that OGCs are scattered among metastatic breast cancer cells. In the lymph node microenvironment with breast cancer cell infiltration, TAMs are enriched in protumoral pathways including NF-κB signaling pathways and NOD-like receptor signaling pathways. Further subclustering demonstrates the potential differentiation trajectory in which macrophages develop from a state of active chemokine production to a state of active lymphocyte activation. This study is the first to integrate scRNA-seq and spatial transcriptomics in the tumor microenvironment of axillary lymph nodes, offering a systematic approach to delve into breast cancer lymph node metastasis.
Collapse
|
97
|
Pan L, Shan S, Tremmel R, Li W, Liao Z, Shi H, Chen Q, Zhang X, Li X. HTCA: a database with an in-depth characterization of the single-cell human transcriptome. Nucleic Acids Res 2022; 51:D1019-D1028. [PMID: 36130266 PMCID: PMC9825435 DOI: 10.1093/nar/gkac791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/12/2022] [Accepted: 09/02/2022] [Indexed: 01/30/2023] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) is one of the most used single-cell omics in recent decades. The exponential growth of single-cell data has immense potential for large-scale integration and in-depth explorations that are more representative of the study population. Efforts have been made to consolidate published data, yet extensive characterization is still lacking. Many focused on raw-data database constructions while others concentrate mainly on gene expression queries. Hereby, we present HTCA (www.htcatlas.org), an interactive database constructed based on ∼2.3 million high-quality cells from ∼3000 scRNA-seq samples and comprised in-depth phenotype profiles of 19 healthy adult and matching fetal tissues. HTCA provides a one-stop interactive query to gene signatures, transcription factor (TF) activities, TF motifs, receptor-ligand interactions, enriched gene ontology (GO) terms, etc. across cell types in adult and fetal tissues. At the same time, HTCA encompasses single-cell splicing variant profiles of 16 adult and fetal tissues, spatial transcriptomics profiles of 11 adult and fetal tissues, and single-cell ATAC-sequencing (scATAC-seq) profiles of 27 adult and fetal tissues. Besides, HTCA provides online analysis tools to perform major steps in a typical scRNA-seq analysis. Altogether, HTCA allows real-time explorations of multi-omics adult and fetal phenotypic profiles and provides tools for a flexible scRNA-seq analysis.
Collapse
Affiliation(s)
| | | | - Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany,University of Tuebingen, Tuebingen 72076, Germany
| | - Weiyuan Li
- School of Medicine, Yunnan University, Kunnan, Yunnan 650091, China
| | - Zehuan Liao
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Solna 17177, Sweden,School of Biological Sciences, Nanyang Technological University, 637 551, Singapore
| | - Hangyu Shi
- Department of Acupuncture, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100029, China
| | - Qishuang Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaolu Zhang
- Correspondence may also be addressed to Xiaolu Zhang.
| | - Xuexin Li
- To whom correspondence should be addressed. Tel: +46 0704998515;
| |
Collapse
|
98
|
Benova A, Ferencakova M, Bardova K, Funda J, Prochazka J, Spoutil F, Cajka T, Dzubanova M, Balcaen T, Kerckhofs G, Willekens W, van Lenthe GH, Alquicer G, Pecinova A, Mracek T, Horakova O, Rossmeisl M, Kopecky J, Tencerova M. Novel thiazolidinedione analog reduces a negative impact on bone and mesenchymal stem cell properties in obese mice compared to classical thiazolidinediones. Mol Metab 2022; 65:101598. [PMID: 36103974 PMCID: PMC9508355 DOI: 10.1016/j.molmet.2022.101598] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Objective The use of thiazolidinediones (TZDs) as insulin sensitizers has been shown to have side effects including increased accumulation of bone marrow adipocytes (BMAds) associated with a higher fracture risk and bone loss. A novel TZD analog MSDC-0602K with low affinity to PPARγ has been developed to reduce adverse effects of TZD therapy. However, the effect of MSDC-0602K on bone phenotype and bone marrow mesenchymal stem cells (BM-MSCs) in relation to obesity has not been intensively studied yet. Methods Here, we investigated whether 8-week treatment with MSDC-0602K has a less detrimental effect on bone loss and BM-MSC properties in obese mice in comparison to first generation of TZDs, pioglitazone. Bone parameters (bone microstructure, bone marrow adiposity, bone strength) were examined by μCT and 3-point bending test. Primary BM-MSCs were isolated and measured for osteoblast and adipocyte differentiation. Cellular senescence, bioenergetic profiling, nutrient consumption and insulin signaling were also determined. Results The findings demonstrate that MSDC-0602K improved bone parameters along with increased proportion of smaller BMAds in tibia of obese mice when compared to pioglitazone. Further, primary BM-MSCs isolated from treated mice and human BM-MSCs revealed decreased adipocyte and higher osteoblast differentiation accompanied with less inflammatory and senescent phenotype induced by MSDC-0602K vs. pioglitazone. These changes were further reflected by increased glycolytic activity differently affecting glutamine and glucose cellular metabolism in MSDC-0602K-treated cells compared to pioglitazone, associated with higher osteogenesis. Conclusion Our study provides novel insights into the action of MSDC-0602K in obese mice, characterized by the absence of detrimental effects on bone quality and BM-MSC metabolism when compared to classical TZDs and thus suggesting a potential therapeutical use of MSDC-0602K in both metabolic and bone diseases. MSDC-0602K improves bone quality and increases proportion of smaller BMAds in obese mice. MSDC-0602K-treated mice show lower adipogenic differentiation with less senescent phenotype in primary BM-MSCs. MSDC-0602K induces higher glycolytic activity in BM-MSCs compared to pioglitazone. MSDC-0602-treated BM-MSCs prefer glutamine over glucose uptake in comparison to AT-MSCs. Beneficial effect of MSDC-06002K in BM-MSCs manifests by absence of MPC inhibition.
Collapse
Affiliation(s)
- Andrea Benova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michaela Ferencakova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Cajka
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Martina Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Tim Balcaen
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Department of Materials Engineering, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Pole of Morphology, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | | | | | - Glenda Alquicer
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Alena Pecinova
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Mracek
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic.
| |
Collapse
|
99
|
Whytock KL, Sun Y, Divoux A, Yu G, Smith SR, Walsh MJ, Sparks LM. Single cell full-length transcriptome of human subcutaneous adipose tissue reveals unique and heterogeneous cell populations. iScience 2022; 25:104772. [PMID: 35992069 PMCID: PMC9385549 DOI: 10.1016/j.isci.2022.104772] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
White adipose tissue (WAT) is a complex mixture of adipocytes and non-adipogenic cells. Characterizing the cellular composition of WAT is critical for identifying where potential alterations occur that impact metabolism. Most single-cell (sc) RNA-Seq studies focused on the stromal vascular fraction (SVF) which does not contain adipocytes and have used technology that has a 3' or 5' bias. Using full-length sc/single-nuclei (sn) RNA-Seq technology, we interrogated the transcriptional composition of WAT using: snRNA-Seq of whole tissue, snRNA-Seq of isolated adipocytes, and scRNA-Seq of SVF. Whole WAT snRNA-Seq provided coverage of major cell types, identified three distinct adipocyte clusters, and was capable of tracking adipocyte differentiation with pseudotime. Compared to WAT, adipocyte snRNA-Seq was unable to match adipocyte heterogeneity. SVF scRNA-Seq provided greater resolution of non-adipogenic cells. These findings provide critical evidence for the utility of sc full-length transcriptomics in WAT and SVF in humans.
Collapse
Affiliation(s)
- Katie L. Whytock
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL 32804, USA
| | - Yifei Sun
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL 32804, USA
| | - GongXin Yu
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL 32804, USA
| | - Steven R. Smith
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL 32804, USA
| | - Martin J. Walsh
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lauren M. Sparks
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL 32804, USA
| |
Collapse
|
100
|
Corvera S. Perinatal fat progenitors shape adult metabolism. Nat Metab 2022; 4:963-964. [PMID: 35982291 PMCID: PMC9534327 DOI: 10.1038/s42255-022-00626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adipose tissue plays a critical role in systemic metabolism. This work describes how perturbations in the adipocyte progenitor cell repertoire during the perinatal period exert long-lasting metabolic effects in adulthood.
Collapse
Affiliation(s)
- Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|