51
|
Lopez C, Vaivre-Douret L. Influence of visual control on the quality of graphic gesture in children with handwriting disorders. Sci Rep 2021; 11:23537. [PMID: 34876643 PMCID: PMC8651655 DOI: 10.1038/s41598-021-02969-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Handwriting disorders (HD) are considered one of the major public health problems among school-aged children worldwide with significant interference on academic performances. The current study hypothesized that HD could be partly explained by a deficit in sensory feedback processing during handwriting. To explore this hypothesis, we have analyzed the effect of vision suppression on postural-gestural and on spatial/temporal/kinematic organization of drawing during an early pre-scriptural loop task with a digital pen, under two conditions: eyes open and eyes closed. Data collected from 35 children with HD were compared to data collected from typical children (typical group) from primary schools. The HD group showed significantly poorer postural control and an improvement on the spatial/temporal/kinematic organization of drawings when they closed their eyes compared to eyes opened. While in the typical group, postural-gestural organization became significantly more mature but there was no significant influence found on spatial/temporal/kinematic parameters of the loops. Thus, handwriting disorders could be explained by both proprioceptive/kinesthetic feedback disabilities and a disruptive effect of the visual control on the quality of the pre-scriptural drawings among these children who have kinesthetic memory and visuospatial disabilities. The ability of directing the strokes would remain dependent on sensory feedbacks, themselves insufficiently efficient, which would lead to difficulties in reaching a proactive control of handwriting. This current research is a liable contribution to enhance clinical practice, useful in clinical decision-making processes for handwriting disorders remediation.
Collapse
Affiliation(s)
- Clémence Lopez
- Faculty of Society and Humanity, Department of Psychology, Université de Paris, Paris, France
- National Institute of Health and Medical Research (INSERM UMR 1018-CESP), Paris-Saclay, UVSQ, Villejuif and Necker-Enfants Malades University Hospital, Carré Necker Porte N4, 149, rue de Sèvres, 75015, Paris, France
| | - Laurence Vaivre-Douret
- National Institute of Health and Medical Research (INSERM UMR 1018-CESP), Paris-Saclay, UVSQ, Villejuif and Necker-Enfants Malades University Hospital, Carré Necker Porte N4, 149, rue de Sèvres, 75015, Paris, France.
- Faculty of Health, Department of Medicine, Université de Paris, Paris, France.
- Institut Universitaire de France (IUF), Paris, France.
- Necker-Enfants Malades University Hospital, AP-HP.Centre, Paris, France.
- Department of Paediatric Endocrinology, Imagine Institute, Necker-Enfants Malades University Hospital, Paris, France.
| |
Collapse
|
52
|
Pei L, Longcamp M, Leung FKS, Ouyang G. Temporally resolved neural dynamics underlying handwriting. Neuroimage 2021; 244:118578. [PMID: 34534659 DOI: 10.1016/j.neuroimage.2021.118578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 01/22/2023] Open
Abstract
How do the temporal dynamics of neural activity encode highly coordinated visual-motor behaviour? To capture the millisecond-resolved neural activations associated with fine visual-motor skills, we devised a co-registration system to simultaneously record electroencephalogram and handwriting kinematics while participants were performing four handwriting tasks (writing in Chinese/English scripts with their dominant/non-dominant hand). The neural activation associated with each stroke was clearly identified with a well-structured and reliable pattern. The functional significance of this pattern was validated by its significant associations with language, hand and the cognitive stages and kinematics of handwriting. Furthermore, the handwriting rhythmicity was found to be synchronised to the brain's ongoing theta oscillation, and the synchronisation was associated with the factor of language and hand. These major findings imply an implication between motor skill formation and the interplay between the rhythms in the brain and the peripheral systems.
Collapse
Affiliation(s)
- Leisi Pei
- Faculty of Education, The University of Hong Kong, Hong Kong, China
| | | | | | - Guang Ouyang
- Faculty of Education, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
53
|
Vinci-Booher S, James KH. Protracted Neural Development of Dorsal Motor Systems During Handwriting and the Relation to Early Literacy Skills. Front Psychol 2021; 12:750559. [PMID: 34867637 PMCID: PMC8639586 DOI: 10.3389/fpsyg.2021.750559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022] Open
Abstract
Handwriting is a complex visual-motor skill that affects early reading development. A large body of work has demonstrated that handwriting is supported by a widespread neural system comprising ventral-temporal, parietal, and frontal motor regions in adults. Recent work has demonstrated that this neural system is largely established by 8 years of age, suggesting that the development of this system occurs in young children who are still learning to read and write. We made use of a novel MRI-compatible writing tablet that allowed us to measure brain activation in 5-8-year-old children during handwriting. We compared activation during handwriting in children and adults to provide information concerning the developmental trajectory of the neural system that supports handwriting. We found that parietal and frontal motor involvement during handwriting in children is different from adults, suggesting that the neural system that supports handwriting changes over the course of development. Furthermore, we found that parietal and frontal motor activation correlated with a literacy composite score in our child sample, suggesting that the individual differences in the dorsal response during handwriting are related to individual differences in emerging literacy skills. Our results suggest that components of the widespread neural system supporting handwriting develop at different rates and provide insight into the mechanisms underlying the contributions of handwriting to early literacy development.
Collapse
Affiliation(s)
| | - Karin H. James
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
54
|
Guan CQ, Li Y, Meng W, Morett LM. Curved vs. Straight-Line Handwriting Effects on Word Recognition in Typical and Dyslexic Readers Across Chinese and English. Front Psychol 2021; 12:745300. [PMID: 34777137 PMCID: PMC8580950 DOI: 10.3389/fpsyg.2021.745300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Handwriting serves to link auditory and motor routines with visual word processing, which is a hallmark of successful reading. The current study aims to explore the effect of multisensory integration as a pathway to neural specialization for print among typical and dyslexic readers across writing systems. We identified 9-10-year-old dyslexic Chinese children (n = 24) and their typically developing counterparts (n = 24) on whom we conducted both behavioral and electroencephalogram (EEG) experiments. We designed four learning conditions: Handwriting Chinese (HC), Viewing Chinese (VC), Drawing followed by Character Recognition in Chinese (D-C), and Drawing followed by Word Recognition in English (D-E). In both handwriting and drawing conditions, we also designed curved vs. straight-line stimuli. Both behavioral and EEG results showed that handwriting straight line strokes facilitated visual word recognition in Chinese compared to handwriting curved lines. Handwriting conditions resulted in a lateralization of the N170 in typical readers, but not the dyslexic readers. Interestingly, drawing curved lines facilitate word recognition in English among dyslexic readers. Taken together, the results of the study suggest benefits of handwriting on the neural processing and behavioral performance in response to Chinese character recognition and curved-line drawing effects on English word recognition among dyslexic readers. But the lack of handwriting effects in dyslexic readers suggest that students who have deficits in reading may also be missing the link between multisensory integration and word recognition in the visual word form areas. The current study results have implications for maintaining handwriting practices to promote perception and motor integration for visual word form area development for normal readers and suggest that drawing practices might benefit Chinese dyslexic readers in reading English.
Collapse
Affiliation(s)
- Connie Qun Guan
- Faculty of Foreign Studies, Beijing Language and Culture University, Beijing, China
| | - Yifei Li
- School of Foreign Studies, Beijing University of Science and Technology, Beijing, China
| | - Wanjin Meng
- Institute of Moral Education, Psychology and Special Education, China National Institute of Education Sciences, Beijing, China
| | - Laura M Morett
- Department of Educational Studies in Psychology, Research Methodology, and Counseling University of Alabama, Tuscaloosa, AL, United States
| |
Collapse
|
55
|
Is Instructional Scaffolding a Better Strategy for Teaching Writing to EFL Learners? A Functional MRI Study in Healthy Young Adults. Brain Sci 2021; 11:brainsci11111378. [PMID: 34827377 PMCID: PMC8615726 DOI: 10.3390/brainsci11111378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
To test the scaffolding theory when applied to the teaching and learning of writing English as a foreign language, this cross-sectional study was conducted to collect physiological data. A total of 53 participants were randomly assigned into two groups, and brain activity was investigated during a guided-writing task using storytelling pictures. The writing task was further divided into four parts using graded levels of difficulty. The experimental group performed tasks in sequence from easy to difficult, whereas the comparison group performed the tasks at random. Outcomes included handwriting assessments and fMRI measurements. Writing outcome assessments were analyzed using SPSS, and scanned images were analyzed using Statistical Parametric Mapping (SPM) software. The results revealed a positive learning effect associated with scaffolding instruction. The experimental group performed better during the writing tasks, and the fMRI images showed less intense and weaker reactions in the language processing region than were observed in the comparison group. The fMRI results also presented the experimental group with reduced motor and cognitive functions when writing in English. This study provides insight regarding brain activity during writing tasks in humans and may have implications for English-language instruction.
Collapse
|
56
|
Progressive macrographia for block letter writing: A case study. Cortex 2021; 144:56-69. [PMID: 34649006 DOI: 10.1016/j.cortex.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022]
Abstract
"Macrographia", a relatively rare symptom generally following cerebellar diseases, consists of an abnormally large handwriting. The case reported in the present investigation shows several outstanding features. First, it is of the progressive variety, letters increase in size as one goes through the word towards the lower-right portion of space. Moreover, it is limited to one allographic variety, that is, block letters. This phenomenon is previously unreported, all allographic varieties being usually equally affected. Finally, no prominent cerebellar or basal ganglia abnormality could be demonstrated with structural MRI or PET. From a cognitive point of view, a peculiar combination of spatial attention, executive function and working memory deficits is proposed to account for the progressive misalignment and elongation of individual letters when specifically writing in block prints. From an anatomical perspective, the pattern of multifocal lesions, encompassing multiple cortical areas in both hemispheres and the corpus callosum, may support this multi-componential interpretation of the reported phenomenon.
Collapse
|
57
|
Fornazzari L, Tan YB, Haladyn J, Bharatha A, Barfett J, Wilson-Sanchez M, Afroz N, Fischer CE. The painter who changed her brain at the flick of a switch. Neurocase 2021; 27:333-337. [PMID: 34436984 DOI: 10.1080/13554794.2021.1954198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The study of artists with acquired brain damage is an empirical way to investigate the multiplicity of cerebral changes that occur with artistic training. We describe a talented painter with a left progressive cerebral lesion. In spite of losing function of her right hand, she regained dexterity of the left one in ten days for painting and drawing but not for writing. We discuss two potential explanations for her rapid recovery: (a) her extensive artistic training and/or (b) the slow-growing nature of her cerebral lesion.
Collapse
Affiliation(s)
- Luis Fornazzari
- Keenan Research Centre for Biomedical Research, St Michael's Hospital, London, UK.,, University of Toronto, Toronto, Canada.,Faculty of Music, University of Toronto, Toronto, Canada
| | - Yu Bin Tan
- Keenan Research Centre for Biomedical Research, St Michael's Hospital, London, UK.,Department of Psychology, University of Toronto Scarborough, Scarborough, Canada
| | | | - Aditya Bharatha
- Neuro Radiology Department, St Michael's Hospital, London, UK
| | - Joseph Barfett
- Neuro Radiology Department, St Michael's Hospital, London, UK.,Nuclear Medicine Department, St Michael's Hospital, Toronto, Canada
| | - Maya Wilson-Sanchez
- OCAD University, Toronto, Canada.,Art History, University of Toronto, Toronto, Canada
| | - Nausheen Afroz
- Keenan Research Centre for Biomedical Research, St Michael's Hospital, London, UK
| | - Corinne E Fischer
- Keenan Research Centre for Biomedical Research, St Michael's Hospital, London, UK.,Department of Psychiatry, Division of Geriatric Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
58
|
Li J, Hong L, Bi HY, Yang Y. Functional brain networks underlying automatic and controlled handwriting in Chinese. BRAIN AND LANGUAGE 2021; 219:104962. [PMID: 33984629 DOI: 10.1016/j.bandl.2021.104962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to identify the functional brain networks underlying the distinctions between automatic and controlled handwriting in Chinese. Network-based analysis was applied to functional magnetic resonance imaging data collected while adult participants performed a copying task under automatic and speed-controlled conditions. We found significant differences between automatic and speed-controlled handwriting in functional connectivity within and between the frontoparietal network, default mode network, dorsal attention network, somatomotor network and visual network; these differences reflect the variations in general attentional control and task-relevant visuomotor operations. However, no differences in brain activation were detected between the two handwriting conditions, suggesting that the reorganization of functional networks, rather than the modulation of local brain activation, underlies the dissociations between automatic and controlled handwriting in Chinese. Our findings illustrate the brain basis of handwriting automaticity, shedding new light on how handwriting automaticity may be disrupted in individuals with neurological disorders.
Collapse
Affiliation(s)
- Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Hong
- Department of Foreign Languages, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
59
|
Yang Y, Zuo Z, Tam F, Graham SJ, Li J, Ji Y, Meng Z, Gu C, Bi HY, Ou J, Xu M. The brain basis of handwriting deficits in Chinese children with developmental dyslexia. Dev Sci 2021; 25:e13161. [PMID: 34288292 PMCID: PMC9286553 DOI: 10.1111/desc.13161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Abundant behavioral studies have demonstrated high comorbidity of reading and handwriting difficulties in developmental dyslexia (DD), a neurological condition characterized by unexpectedly low reading ability despite adequate nonverbal intelligence and typical schooling. The neural correlates of handwriting deficits remain largely unknown; however, as well as the extent that handwriting deficits share common neural bases with reading deficits in DD. The present work used functional magnetic resonance imaging to examine brain activity during handwriting and reading tasks in Chinese dyslexic children (n = 18) and age-matched controls (n = 23). Compared to controls, dyslexic children exhibited reduced activation during handwriting tasks in brain regions supporting sensory-motor processing (including supplementary motor area and postcentral gyrus) and visual-orthography processing (including bilateral precuneus and right cuneus). Among these regions, the left supplementary motor area and the right precuneus also showed a trend of reduced activation during reading tasks in dyslexics. Moreover, increased activation was found in the left inferior frontal gyrus and anterior cingulate cortex in dyslexics, which may reflect more efforts of executive control to compensate for the impairments of motor and visual-orthographic processing. Finally, dyslexic children exhibited aberrant functional connectivity among brain areas for cognitive control and sensory-motor processes during handwriting tasks. Together, these findings suggest that handwriting deficits in DD are associated with functional abnormalities of multiple brain regions implicated in motor execution, visual-orthographic processing, and cognitive control, providing important implications for the diagnosis and treatment of dyslexia.
Collapse
Affiliation(s)
- Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology,Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology,Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuzhu Ji
- Department of Psychology, College of Education, Zhejiang University of Technology, Hangzhou, China
| | - Zelong Meng
- Department of Psychology, School of Humanities and Social Sciences, Beijing Forestry University, Beijing, China
| | - Chanyuan Gu
- Department of Chinese and Bilingual Studies, Faculty of Humanities, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology,Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Ou
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
| | - Min Xu
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
60
|
Neuroanatomical correlates of self-awareness of highly practiced visuomotor skills. Brain Struct Funct 2021; 226:2295-2306. [PMID: 34228220 DOI: 10.1007/s00429-021-02328-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 06/22/2021] [Indexed: 12/27/2022]
Abstract
Metacognition is the ability to introspect and control ongoing cognitive processes. Despite the extensive investigation of the brain architectures supporting metacognition for perception and memory, little is known about the neural basis of metacognitive capacity for motor function, a vital aspect of human behavior. Here, using functional and structural magnetic resonance imaging (MRI), we examined the brain substrates underlying self-awareness of handwriting, a highly practiced visuomotor skill. Results showed that experienced adult writers generally overestimated their handwriting quality, and such overestimation was more pronounced in men relative to women. Individual variations in self-awareness of handwriting quality were positively correlated with gray matter volume in the left fusiform gyrus, right middle frontal gyrus and right precuneus. The left fusiform gyrus and right middle frontal gyrus are thought to represent domain-specific brain mechanisms for handwriting self-awareness, while the right precuneus that has been reported in other domains likely represents a domain-general brain mechanism for metacognition. Furthermore, the activity of these structurally related regions in a handwriting task was not correlated with self-awareness of handwriting, suggesting the correlation with metacognition was independent of task performance. Together, this study reveals that metacognition for practiced motor skills relies on both domain-general and domain-specific brain systems, extending our understanding about the neural basis of human metacognition.
Collapse
|
61
|
Guan CQ, Smolen ER, Meng W, Booth JR. Effect of Handwriting on Visual Word Recognition in Chinese Bilingual Children and Adults. Front Psychol 2021; 12:628160. [PMID: 34122220 PMCID: PMC8194694 DOI: 10.3389/fpsyg.2021.628160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
In a digital era that neglects handwriting, the current study is significant because it examines the mechanisms underlying this process. We recruited 9- to 10-year-old Chinese children (n = 24), who were at an important period of handwriting development, and adult college students (n = 24), for both behavioral and electroencephalogram (EEG) experiments. We designed four learning conditions: handwriting Chinese (HC), viewing Chinese (VC), drawing shapes followed by Chinese recognition (DC), and drawing shapes followed by English recognition (DE). Both behavioral and EEG results showed that HC facilitated visual word recognition compared to VC, and behavioral results showed that HC facilitated visual word recognition compared to drawing shapes. HC and VC resulted in a lateralization of the N170 in adults, but not in children. Taken together, the results of the study suggest benefits of handwriting on the neural processing and behavioral performance in response to Chinese characters. The study results argue for maintaining handwriting practices to promote the perception of visual word forms in the digital age.
Collapse
Affiliation(s)
- Connie Qun Guan
- Faculty of Foreign Studies, Beijing Language and Culture University, Beijing, China.,Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Elaine R Smolen
- Teachers College, Columbia University, New York City, NY, United States
| | - Wanjin Meng
- Institute of Psychology, Moral and Special Education, National Institute for Education Sciences, Beijing, China
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
62
|
Zainaee S, Mahdipour R, Mahdavi Rashed M, Sobhani-Rad D. Dysgraphia and dysprosody in a patient with arteriovenous malformation: a case report. Neurocase 2021; 27:259-265. [PMID: 34106816 DOI: 10.1080/13554794.2021.1929332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Arteriovenous malformation (AVM) results from development of abnormal connections between veins and arteries. This study reported anAVM case suffering from dysgraphia and dysprosody. According to the results after the trauma, the patient's handwriting was identified as macrographic and illegible, and written letters and verbs were neglected in free writing or dictation. Moreover, prosody of the patient's utterances was changed. Finally, an intervention was conducted to improve the writing impairments whereby they eventually enhanced. AVM can adversely affect communication opportunities and working life due to these impairments. Thus referring the patient to speech and language pathologists seems sensible and necessary.
Collapse
Affiliation(s)
- Shahryar Zainaee
- Department of Speech Therapy, School of Paramedical Sciences, Mashhad University of Medical Sciences
| | - Ramin Mahdipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Davood Sobhani-Rad
- Department of Speech Therapy, School of Paramedical Sciences, Mashhad University of Medical Sciences
| |
Collapse
|
63
|
A Heteromodal Word-Meaning Binding Site in the Visual Word Form Area under Top-Down Frontoparietal Control. J Neurosci 2021; 41:3854-3869. [PMID: 33687963 DOI: 10.1523/jneurosci.2771-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
The integral capacity of human language together with semantic memory drives the linkage of words and their meaning, which theoretically is subject to cognitive control. However, it remains unknown whether, across different language modalities and input/output formats, there is a shared system in the human brain for word-meaning binding and how this system interacts with cognitive control. Here, we conducted a functional magnetic resonance imaging experiment based on a large cohort of subjects (50 females, 50 males) to comprehensively measure the brain responses evoked by semantic processing in spoken and written word comprehension and production tasks (listening, speaking, reading, and writing). We found that heteromodal word input and output tasks involved distributed brain regions within a frontal-parietal-temporal network and focally coactivated the anterior lateral visual word form area (VWFA), which is located in the basal occipitotemporal area. Directed connectivity analysis revealed that the VWFA was invariably under significant top-down modulation of the frontoparietal control network and interacts with regions related to attention and semantic representation. This study reveals that the VWFA is a key site subserving general semantic processes linking words and meaning, challenging the predominant emphasis on this area's specific role in reading or more general visual processes. Our findings also suggest that the dynamics between semantic memory and cognitive control mechanisms during word processing are largely independent of the modalities of input or output.SIGNIFICANCE STATEMENT Binding words and their meaning into a coherent whole during retrieval requires accessing semantic memory and cognitive control, allowing our thoughts to be expressed and comprehended through mind-external tokens in multiple modalities, such as written or spoken forms. However, it is still unknown whether multimodal language comprehension and production share a common word-meaning binding system in human brains and how this system is connected to a cognitive control mechanism. By systematically measuring brain activity evoked by spoken and written verbal input and output tasks tagging word-meaning binding processes, we demonstrate a general word-meaning binding site within the visual word form area (VWFA) and how this site is modulated by the frontal-parietal control network.
Collapse
|
64
|
Zhang Z, Yuan Q, Liu Z, Zhang M, Wu J, Lu C, Ding G, Guo T. The cortical organization of writing sequence: evidence from observing Chinese characters in motion. Brain Struct Funct 2021; 226:1627-1639. [DOI: 10.1007/s00429-021-02276-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/09/2021] [Indexed: 12/27/2022]
|
65
|
DUAL-tDCS Treatment over the Temporo-Parietal Cortex Enhances Writing Skills: First Evidence from Chronic Post-Stroke Aphasia. Life (Basel) 2021; 11:life11040343. [PMID: 33919714 PMCID: PMC8070712 DOI: 10.3390/life11040343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
The learning of writing skills involves the re-engagement of previously established independent procedures. Indeed, the writing deficit an adult may acquire after left hemispheric brain injury is caused by either an impairment to the lexical route, which processes words as a whole, to the sublexical procedure based on phoneme-to-grapheme conversion rules, or to both procedures. To date, several approaches have been proposed for writing disorders, among which, interventions aimed at restoring the sub-lexical procedure were successful in cases of severe agraphia. In a randomized double-blind crossover design, fourteen chronic Italian post-stroke aphasics underwent dual transcranial direct current stimulation (tDCS) (20 min, 2 mA) with anodal and cathodal current simultaneously placed over the left and right temporo-parietal cortex, respectively. Two different conditions were considered: (1) real, and (2) sham, while performing a writing task. Each experimental condition was performed for ten workdays over two weeks. After real stimulation, a greater amelioration in writing with respect to the sham was found. Relevantly, these effects generalized to different language tasks not directly treated. This evidence suggests, for the first time, that dual tDCS associated with training is efficacious for severe agraphia. Our results confirm the critical role of the temporo-parietal cortex in writing skills.
Collapse
|
66
|
Mizuochi-Endo T, Itou K, Makuuchi M, Kato B, Ikeda K, Nakamura K. Graphomotor memory in Exner's area enhances word learning in the blind. Commun Biol 2021; 4:443. [PMID: 33824412 PMCID: PMC8024258 DOI: 10.1038/s42003-021-01971-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/05/2021] [Indexed: 01/11/2023] Open
Abstract
Handwriting is thought to impede vocabulary learning in sighted adults because the motor execution of writing interferes with efficient audiovisual processing during encoding. However, the motor memory of writing may facilitate adult word learning when visual sensory inputs are severely restricted. Using functional MRI, we show that late-blind participants, but not sighted participants, learned novel words by recruiting the left dorsal premotor cortex known as Exner’s writing area and its functional coupling with the left hippocampus. During later recall, the phonological and semantic contents of these words are represented in the activation patterns of the left hippocampus as well as in those of left frontotemporal language areas. These findings suggest that motor codes of handwriting help blind participants maintain word-form representations during learning and retrieval. We propose that such reliance on the motor system reflects a broad architecture of the cerebral language network which encompasses the limb motor system as a hardwired component. Mizuochi-Endo et al. conduct a fMRI study, which reveals that in blind participants, unlike sighted participants, learning new words is associated with increased activity in Exner’s area—a part of the brain known to play a crucial role in handwriting motor memory. This demonstrates the importance of writing motor memory in vocabulary learning in the blind.
Collapse
Affiliation(s)
| | - Kazuyuki Itou
- National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Michiru Makuuchi
- National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Baku Kato
- National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Kazuhisa Ikeda
- National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Kimihiro Nakamura
- National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan.
| |
Collapse
|
67
|
Asselborn T, Johal W, Tleubayev B, Zhexenova Z, Dillenbourg P, McBride C, Sandygulova A. The transferability of handwriting skills: from the Cyrillic to the Latin alphabet. NPJ SCIENCE OF LEARNING 2021; 6:6. [PMID: 33623040 PMCID: PMC7902616 DOI: 10.1038/s41539-021-00084-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Do handwriting skills transfer when a child writes in two different scripts, such as the Latin and Cyrillic alphabets? Are our measures of handwriting skills intrinsically bound to one alphabet or will a child who faces handwriting difficulties in one script experience similar difficulties in the other script? To answer these questions, 190 children from grades 1-4 were asked to copy a short text using both the Cyrillic and Latin alphabets on a digital tablet. A recent change of policy in Kazakhstan gave us an opportunity to measure transfer, as the Latin-based Kazakh alphabet has not yet been introduced. Therefore, pupils in grade 1 had a 6-months experience in Cyrillic, and pupils in grades 2, 3, and 4 had 1.5, 2.5, and 3.5 years of experience in Cyrillic, respectively. This unique situation created a quasi-experimental situation that allowed us to measure the influence of the number of years spent practicing Cyrillic on the quality of handwriting in the Latin alphabet. The results showed that some of the differences between the two scripts were constant across all grades. These differences thus reflect the intrinsic differences in the handwriting dynamics between the two alphabets. For instance, several features related to the pen pressure on the tablet are quite different. Other features, however, revealed decreasing differences between the two scripts across grades. While we found that the quality of Cyrillic writing increased from grades 1-4, due to increased practice, we also found that the quality of the Latin writing increased as well, despite the fact that all of the pupils had the same absence of experience in writing in Latin. We can therefore interpret this improvement in Latin script as an indicator of the transfer of fine motor control skills from Cyrillic to Latin. This result is especially surprising given that one could instead hypothesize a negative transfer, i.e., that the finger controls automated for one alphabet would interfere with those required by the other alphabet. One interesting side-effect of these findings is that the algorithms that we developed for the diagnosis of handwriting difficulties among French-speaking children could be relevant for other alphabets, paving the way for the creation of a cross-lingual model for the detection of handwriting difficulties.
Collapse
Affiliation(s)
| | - Wafa Johal
- CHILI Lab, EPFL, Route Cantonale, 1015, Lausanne, Switzerland
- Faculty of Engineering, UNSW, Sydney, NSW, Australia
| | - Bolat Tleubayev
- Department of Robotics and Mechatronics, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Zhanel Zhexenova
- Department of Robotics and Mechatronics, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | - Catherine McBride
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Anara Sandygulova
- Department of Robotics and Mechatronics, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
68
|
Wang C, Zhang Q. Word frequency effect in written production: Evidence from ERPs and neural oscillations. Psychophysiology 2021; 58:e13775. [PMID: 33522614 DOI: 10.1111/psyp.13775] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 01/02/2023]
Abstract
It has been widely documented that word frequency (WF) modulates language processing in various input and output modalities. WF effect has also been reported in the domain of written production; however, how WF affects written production is a controversial issue. The present study attempts to investigate the time course of and neural oscillation underlying the WF effect in handwritten production. Participants were asked to handwrite pictures names of high versus low WF, while concurrently recording EEG. EEG trials were extracted time-locked to picture onsets and then submitted to event-related potential analysis and time-frequency analysis. WF affected ERPs in the time windows of around 98-160 and 282-360 ms after picture onsets. More importantly, WF modulated the evoked and induced theta-band (4-8 Hz) neural oscillations in the time window of around 36-240 and 244-472 ms, respectively. Considering the time course of language production and the role of theta-band oscillation in long-term memory retrieval, we suggest that the two stages of the WF effect, respectively, reflect conceptual preparation and retrieval of orthographic word-forms in written production.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Qingfang Zhang
- Department of Psychology, Renmin University of China, Beijing, China
| |
Collapse
|
69
|
Lin Z, Tam F, Churchill NW, Schweizer TA, Graham SJ. Tablet Technology for Writing and Drawing during Functional Magnetic Resonance Imaging: A Review. SENSORS 2021; 21:s21020401. [PMID: 33430023 PMCID: PMC7826671 DOI: 10.3390/s21020401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
Functional magnetic resonance imaging (fMRI) is a powerful modality to study brain activity. To approximate naturalistic writing and drawing behaviours inside the scanner, many fMRI-compatible tablet technologies have been developed. The digitizing feature of the tablets also allows examination of behavioural kinematics with greater detail than using paper. With enhanced ecological validity, tablet devices have advanced the fields of neuropsychological tests, neurosurgery, and neurolinguistics. Specifically, tablet devices have been used to adopt many traditional paper-based writing and drawing neuropsychological tests for fMRI. In functional neurosurgery, tablet technologies have enabled intra-operative brain mapping during awake craniotomy in brain tumour patients, as well as quantitative tremor assessment for treatment outcome monitoring. Tablet devices also play an important role in identifying the neural correlates of writing in the healthy and diseased brain. The fMRI-compatible tablets provide an excellent platform to support naturalistic motor responses and examine detailed behavioural kinematics.
Collapse
Affiliation(s)
- Zhongmin Lin
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada;
| | - Fred Tam
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
| | - Nathan W. Churchill
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (N.W.C.); (T.A.S.)
| | - Tom A. Schweizer
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (N.W.C.); (T.A.S.)
- Division of Neurosurgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Simon J. Graham
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
- Correspondence:
| |
Collapse
|
70
|
Sawamura D, Sakuraba S, Yoshida K, Hasegawa N, Suzuki Y, Yoshida S, Honke T, Sakai S. Chopstick operation training with the left non-dominant hand. Transl Neurosci 2021; 12:385-395. [PMID: 34721894 PMCID: PMC8536892 DOI: 10.1515/tnsci-2020-0189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Background Training a non-dominant hand is important for rehabilitating people who are required to change handedness. However, improving the dexterity in using chopsticks with a non-dominant hand through training remains unclear. This study is aimed to measure whether chopstick training improves non-dominant hand chopstick operation skills and leads to acquisition of skill levels similar to those of the dominant hand. Methods This single-blinded randomized controlled trial enrolled 34 healthy young right-handed subjects who scored >70 points on the Edinburgh Handedness Questionnaire Inventory. They were randomly allocated to training or control groups. The training group participated in a 6-week chopstick training program with the non-dominant left hand, while the control group did not. Asymmetry of chopstick operation skill, perceived psychological stress, and oxygen-hemoglobin concentration as a brain activity measure in each hemisphere were measured before and after training. Results Participants in the training group had significantly lower asymmetry than those in the control group during the post-training assessment (F[1,30] ≥ 5.54, p ≤ 0.03, partial η2 ≥ 0.156). Only perceived psychological stress had a significantly higher asymmetry during the post-training assessment (t[15] = 3.81, p < 0.01). Conclusion Six weeks of chopstick training improved non-dominant chopstick operation skills, and a performance level similar to that of the dominant hand was acquired.
Collapse
Affiliation(s)
- Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Satoshi Sakuraba
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Ishikari-Gun, 061-0293, Japan
| | - Kazuki Yoshida
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Naoya Hasegawa
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Yumi Suzuki
- Department of Occupational Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, 990-2212, Japan
| | - Susumu Yoshida
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Ishikari-Gun, 061-0293, Japan
| | - Toshihiro Honke
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Ishikari-Gun, 061-0293, Japan
| | - Shinya Sakai
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| |
Collapse
|
71
|
Billeri L, Naro A, Manuli A, Calabro RS. Could pure agraphia be the only sign of stroke? Lessons from two case reports. J Postgrad Med 2021; 67:93-95. [PMID: 33835058 PMCID: PMC8253320 DOI: 10.4103/jpgm.jpgm_1066_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Agraphia is defined as the disruption of the previously intact writing skills due to an acquired brain damage. Stroke remains the most common cause of language impairment; however, writing disorders, including agraphia, are underestimated in patients with stroke. In this regard, we report two patients presenting with pure agraphia as an early symptom of stroke. Both patients complained of at least two difficulties in visualizing letter formation beforehand, the frequent need for verbal cues, misuse of lines and margins, poorly legible signature, and writing and thinking at the same time (e.g., creative thinking and taking notes). They underwent brain magnetic resonance imaging which revealed a small lacunar infarction of the left insula and external capsule (patient 1) and a small hemorrhagic lesion in the posterior limb of the left internal capsule (patient 2). To our knowledge, this is the first report on pure agraphia as the presenting symptom of stroke. We suggest that all patients with acute agraphia, even when presenting as an isolated symptom, should be evaluated for stroke, in order to better facilitate its diagnosis and treatment.
Collapse
Affiliation(s)
- L Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - A Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - A Manuli
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - R S Calabro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| |
Collapse
|
72
|
Feng X, Altarelli I, Monzalvo K, Ding G, Ramus F, Shu H, Dehaene S, Meng X, Dehaene-Lambertz G. A universal reading network and its modulation by writing system and reading ability in French and Chinese children. eLife 2020; 9:54591. [PMID: 33118931 PMCID: PMC7669264 DOI: 10.7554/elife.54591] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/26/2020] [Indexed: 01/12/2023] Open
Abstract
Are the brain mechanisms of reading acquisition similar across writing systems? And do similar brain anomalies underlie reading difficulties in alphabetic and ideographic reading systems? In a cross-cultural paradigm, we measured the fMRI responses to words, faces, and houses in 96 Chinese and French 10-year-old children, half of whom were struggling with reading. We observed a reading circuit which was strikingly similar across languages and consisting of the left fusiform gyrus, superior temporal gyrus/sulcus, precentral and middle frontal gyri. Activations in some of these areas were modulated either by language or by reading ability, but without interaction between those factors. In various regions previously associated with dyslexia, reading difficulty affected activation similarly in Chinese and French readers, including the middle frontal gyrus, a region previously described as specifically altered in Chinese. Our analyses reveal a large degree of cross-cultural invariance in the neural correlates of reading acquisition and reading impairment.
Collapse
Affiliation(s)
- Xiaoxia Feng
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Saclay, Gif-sur-Yvette, France.,State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Irene Altarelli
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Saclay, Gif-sur-Yvette, France.,Université de Paris, LaPsyDÉ, CNRS, Paris, France
| | - Karla Monzalvo
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, CNRS, EHESS), Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Saclay, Gif-sur-Yvette, France.,Collège de France, Université PSL Paris Sciences Lettres, Paris, France
| | - Xiangzhi Meng
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.,PekingU-PolyU Center for Child Development and Learning, Peking University, Beijing, China
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
73
|
Palmis S, Velay JL, Habib M, Anton JL, Nazarian B, Sein J, Longcamp M. The handwriting brain in middle childhood. Dev Sci 2020; 24:e13046. [PMID: 33035404 DOI: 10.1111/desc.13046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/22/2020] [Accepted: 09/03/2020] [Indexed: 01/01/2023]
Abstract
While the brain network supporting handwriting has previously been defined in adults, its organization in children has never been investigated. We compared the handwriting network of 23 adults and 42 children (8- to 11-year-old). Participants were instructed to write the alphabet, the days of the week, and to draw loops while being scanned. The handwriting network previously described in adults (five key regions: left dorsal premotor cortex, superior parietal lobule (SPL), fusiform and inferior frontal gyri, and right cerebellum) was also strongly activated in children. The right precentral gyrus and the right anterior cerebellum were more strongly activated in adults than in children, while the left fusiform gyrus (FuG) was more strongly activated in children than in adults. Finally, we found that, contrary to adults, children recruited prefrontal regions to complete the writing task. This constitutes the first comparative investigation of the neural correlates of writing in children and adults. Our results suggest that the network supporting handwriting is already established in middle childhood. They also highlight the major role of prefrontal regions in learning this complex skill and the importance of right precentral regions and cerebellum in the performance of automated handwriting.
Collapse
Affiliation(s)
- Sarah Palmis
- Aix-Marseille Univ, CNRS, LNC, Marseille, France
| | | | - Michel Habib
- Aix-Marseille Univ, CNRS, LNC, Marseille, France
| | - Jean-Luc Anton
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Bruno Nazarian
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Julien Sein
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | | |
Collapse
|
74
|
Febbo DD, Lunardini F, Malavolti M, Pedrocchi A, Borghese NA, Ferrante S. IoT ink pen for ecological monitoring of daily life handwriting. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:5749-5752. [PMID: 33019280 DOI: 10.1109/embc44109.2020.9175999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The analysis of the writing gesture has been successfully investigated in the diagnosis of age-related diseases, but the current technologies and methods still do not allow the ecological daily monitoring of handwriting, mostly because they rely on standardized writing protocols. In this study, we first designed and validated a novel electronic ink pen, equipped with motion and writing force sensing, for the ecological daily-life monitoring of handwriting in uncontrolled environments. We used the pen to acquire writing activities from healthy adults, from which we computed useful handwriting and tremor indicators. We evaluated the reliability of our measurements by computing the intraclass correlation coefficients (ICC) and the minimal detectable changes (MDC). Moderate to excellent reliability were obtained for all the handwriting indicators computed in two different writing tasks. MDC values can be used as reference to discriminate a real change in the handwriting parameters from a measurement error in longitudinal studies. These results pave the way towards the use of the pen for daily life handwriting monitoring.
Collapse
|
75
|
Tao Y, Rapp B. How functional network connectivity changes as a result of lesion and recovery: An investigation of the network phenotype of stroke. Cortex 2020; 131:17-41. [PMID: 32781259 PMCID: PMC9088558 DOI: 10.1016/j.cortex.2020.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 03/15/2020] [Accepted: 06/02/2020] [Indexed: 11/28/2022]
Abstract
This study, through a series of univariate and multivariate (classification) analyses, investigated fMRI task-based functional connectivity (FC) at pre- and post-treatment time-points in 18 individuals with chronic post-stroke dysgraphia. The investigation examined the effects of lesion and treatment-based recovery on functional organization, focusing on both inter-hemispheric (homotopic) and intra-hemispheric connectivity. The work confirmed, in the chronic stage, the "network phenotype of stroke injury" proposed by Siegel et al. (2016) consisting of abnormally low inter-hemispheric connectivity as well as abnormally high intra-hemispheric (ipsilesional) connectivity. In terms of recovery-based changes in FC, this study found overall hyper-normalization of these abnormal inter and intra-hemispheric connectivity patterns, suggestive of over-correction. Specifically, treatment-related homotopic FC increases were observed between left and right dorsal frontal-parietal regions. With regard to intra-hemispheric connections, recovery was dominated by increased ipsilateral connectivity between frontal and parietal regions along with decreased connectivity between the frontal regions and posterior parietal-occipital-temporal areas. Both inter and intra-hemispheric changes were associated with treatment-driven improvements in spelling performance. We suggest an interpretation according to which, with treatment, as posterior orthographic processing areas become more effective, executive control from frontal-parietal networks becomes less necessary.
Collapse
Affiliation(s)
- Yuan Tao
- Department of Cognitive Science, Johns Hopkins University, USA.
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, USA; Department of Neuroscience, Johns Hopkins University, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| |
Collapse
|
76
|
Vinci-Booher S, James KH. Ecological validity of experimental set-up affects parietal involvement during letter production. Neurosci Lett 2020; 731:134920. [PMID: 32272143 DOI: 10.1016/j.neulet.2020.134920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/08/2020] [Accepted: 03/18/2020] [Indexed: 11/18/2022]
Abstract
Studies of symbol production using fMRI often use techniques that introduce an artificial pairing between motor production and visual perception. These techniques allow participants to see their own output by recording their pen trajectories using a touchscreen-only tablet and displaying these productions on a mirror placed above their head. We recently developed an MR-safe writing tablet with video display that allows participants to see their own hand and their own productions while producing symbols in real time on the surface where they are producing them-allowing for more ecologically valid fMRI studies of production. We conducted a study to determine whether the participation of posterior parietal cortex during symbol production was affected by the pairing of motor production and visual feedback associated with the two types of tablets. We performed ROI analyses in intraparietal sulcus while adult participants produced letters to dictation using either a touchscreen-only tablet (no visual guidance of the hand) (n = 14) or using a touchscreen-and-video-display tablet (visual guidance of the hand) (n = 14). We found that left posterior intraparietal sulcus was more active during production with the touchscreen-only tablet than during production with the touchscreen-and-video-display tablet. These results suggest that posterior parietal involvement during production tasks is associated with the somewhat artificial visual-motor pairing that is introduced by the techniques used in some studies of symbol production.
Collapse
Affiliation(s)
- Sophia Vinci-Booher
- 1101 E. 10th Street, Indiana University, Bloomington, IN 47405, United States.
| | - Karin H James
- 1101 E. 10th Street, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
77
|
Sefcikova V, Sporrer JK, Ekert JO, Kirkman MA, Samandouras G. High Interrater Variability in Intraoperative Language Testing and Interpretation in Awake Brain Mapping Among Neurosurgeons or Neuropsychologists: An Emerging Need for Standardization. World Neurosurg 2020; 141:e651-e660. [PMID: 32522656 DOI: 10.1016/j.wneu.2020.05.250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Brain mapping with direct electric stimulation is considered the gold standard for maximum safe resection of tumors affecting eloquent regions. However, no consensus exists in selection and interpretation of intraoperative testing for language and other cognitive domains. Our aim was to capture and statistically analyze variability in practices in intraoperative language testing among neurosurgeons and neuropsychologists in the United States, Europe, and the rest of the world. METHODS An electronic questionnaire was developed by a multidisciplinary team at Queen Square, London, and distributed internationally through selected organized societies. The survey included 2 domains: terminology and common understanding of clinical deficits; and selection of intraoperative tests used per specific brain region. Participants were stratified by specialty, years of experience, and monthly caseload. Data were analyzed using Krippendorff α, Wilcoxon rank sum test, and Kruskal-Wallis analysis of variance. RESULTS A total of 137 specialists participated. A low agreement was recorded for each of the 20 questions (Krippendorff α = -0.023 to 0.312). Further subgroup analysis revealed low interrater reliability independent of specialism (neurosurgeons, α = 0.013-0.318 compared with nonneurosurgeons, α = -0.021 to 0.398; P = 0.808) and years of experience (<1 years, α = -0.003 to 0.282; 2-5 years, α = 0.009-0.327; 6-10 years, α = 0.003-0.234; and >10 years, α = -0.003 to 0.372; P = 0.200). CONCLUSIONS The current study documents high interrater variability, regardless of specialism and years of experience in the cohort of neurosurgeons and language specialists surveyed and may be applicable to a wider group of specialists, indicating the need to reduce interobserver, interinstitutional and interspecialty variability, reach consensus, and increase the validity, interpretation, and predictive power of intraoperative mapping.
Collapse
Affiliation(s)
- Viktoria Sefcikova
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Juliana K Sporrer
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Justyna O Ekert
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Matthew A Kirkman
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - George Samandouras
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
78
|
Saarinen T, Kujala J, Laaksonen H, Jalava A, Salmelin R. Task-Modulated Corticocortical Synchrony in the Cognitive-Motor Network Supporting Handwriting. Cereb Cortex 2020; 30:1871-1886. [PMID: 31670795 PMCID: PMC7132916 DOI: 10.1093/cercor/bhz210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 01/06/2023] Open
Abstract
Both motor and cognitive aspects of behavior depend on dynamic, accurately timed neural processes in large-scale brain networks. Here, we studied synchronous interplay between cortical regions during production of cognitive-motor sequences in humans. Specifically, variants of handwriting that differed in motor variability, linguistic content, and memorization of movement cues were contrasted to unveil functional sensitivity of corticocortical connections. Data-driven magnetoencephalography mapping (n = 10) uncovered modulation of mostly left-hemispheric corticocortical interactions, as quantified by relative changes in phase synchronization. At low frequencies (~2–13 Hz), enhanced frontoparietal synchrony was related to regular handwriting, whereas premotor cortical regions synchronized for simple loop production and temporo-occipital areas for a writing task substituting normal script with loop patterns. At the beta-to-gamma band (~13–45 Hz), enhanced synchrony was observed for regular handwriting in the central and frontoparietal regions, including connections between the sensorimotor and supplementary motor cortices and between the parietal and dorsal premotor/precentral cortices. Interpreted within a modular framework, these modulations of synchrony mainly highlighted interactions of the putative pericentral subsystem of hand coordination and the frontoparietal subsystem mediating working memory operations. As part of cortical dynamics, interregional phase synchrony varies depending on task demands in production of cognitive-motor sequences.
Collapse
Affiliation(s)
- Timo Saarinen
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Espoo, Finland
- Aalto NeuroImaging, Aalto University, FI-00076 AALTO, Espoo, Finland
- Address correspondence to Timo Saarinen, Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, FI-00076 AALTO, Espoo, Finland.
| | - Jan Kujala
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Espoo, Finland
- Department of Psychology, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Hannu Laaksonen
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Espoo, Finland
- Aalto NeuroImaging, Aalto University, FI-00076 AALTO, Espoo, Finland
| | - Antti Jalava
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Espoo, Finland
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Espoo, Finland
- Aalto NeuroImaging, Aalto University, FI-00076 AALTO, Espoo, Finland
| |
Collapse
|
79
|
Yang Y, Tam F, Graham SJ, Sun G, Li J, Gu C, Tao R, Wang N, Bi HY, Zuo Z. Men and women differ in the neural basis of handwriting. Hum Brain Mapp 2020; 41:2642-2655. [PMID: 32090433 PMCID: PMC7294055 DOI: 10.1002/hbm.24968] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/23/2022] Open
Abstract
There is an ongoing debate about whether, and to what extent, males differ from females in their language skills. In the case of handwriting, a composite language skill involving language and motor processes, behavioral observations consistently show robust sex differences but the mechanisms underlying the effect are unclear. Using functional magnetic resonance imaging (fMRI) in a copying task, the present study examined the neural basis of sex differences in handwriting in 53 healthy adults (ages 19–28, 27 males). Compared to females, males showed increased activation in the left posterior middle frontal gyrus (Exner's area), a region thought to support the conversion between orthographic and graphomotor codes. Functional connectivity between Exner's area and the right cerebellum was greater in males than in females. Furthermore, sex differences in brain activity related to handwriting were independent of language material. This study identifies a novel neural signature of sex differences in a hallmark of human behavior, and highlights the importance of considering sex as a factor in scientific research and clinical applications involving handwriting.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Guochen Sun
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Tianjin, China
| | - Junjun Li
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chanyuan Gu
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ran Tao
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Nizhuan Wang
- Artificial Intelligence and Neuro-informatics Engineering (ARINE) Laboratory, School of Computer Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Hong-Yan Bi
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,The Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
80
|
Differences in Frontal Network Anatomy Across Primate Species. J Neurosci 2020; 40:2094-2107. [PMID: 31949106 PMCID: PMC7055147 DOI: 10.1523/jneurosci.1650-18.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022] Open
Abstract
The frontal lobe is central to distinctive aspects of human cognition and behavior. Some comparative studies link this to a larger frontal cortex and even larger frontal white matter in humans compared with other primates, yet others dispute these findings. The discrepancies between studies could be explained by limitations of the methods used to quantify volume differences across species, especially when applied to white matter connections. In this study, we used a novel tractography approach to demonstrate that frontal lobe networks, extending within and beyond the frontal lobes, occupy 66% of total brain white matter in humans and 48% in three monkey species: vervets (Chlorocebus aethiops), rhesus macaque (Macaca mulatta) and cynomolgus macaque (Macaca fascicularis), all male. The simian-human differences in proportional frontal tract volume were significant for projection, commissural, and both intralobar and interlobar association tracts. Among the long association tracts, the greatest difference was found for tracts involved in motor planning, auditory memory, top-down control of sensory information, and visuospatial attention, with no significant differences in frontal limbic tracts important for emotional processing and social behaviour. In addition, we found that a nonfrontal tract, the anterior commissure, had a smaller volume fraction in humans, suggesting that the disproportionally large volume of human frontal lobe connections is accompanied by a reduction in the proportion of some nonfrontal connections. These findings support a hypothesis of an overall rearrangement of brain connections during human evolution.SIGNIFICANCE STATEMENT Tractography is a unique tool to map white matter connections in the brains of different species, including humans. This study shows that humans have a greater proportion of frontal lobe connections compared with monkeys, when normalized by total brain white matter volume. In particular, tracts associated with language and higher cognitive functions are disproportionally larger in humans compared with monkeys, whereas other tracts associated with emotional processing are either the same or disproportionally smaller. This supports the hypothesis that the emergence of higher cognitive functions in humans is associated with increased extended frontal connectivity, allowing human brains more efficient cross talk between frontal and other high-order associative areas of the temporal, parietal, and occipital lobes.
Collapse
|
81
|
The role of the striatum in visuomotor integration during handwriting: an fMRI study. J Neural Transm (Vienna) 2020; 127:331-337. [PMID: 31901984 DOI: 10.1007/s00702-019-02131-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/21/2019] [Indexed: 10/25/2022]
Abstract
This study investigates the role of the dorsal/sensorimotor striatum in visuomotor integration (i.e., the transformation of internal visual information about letter shapes into motor output) during handwriting. Twenty healthy participants underwent fMRI scanning with tasks consisting of self-paced handwriting of alphabetically ordered single letters and simple dots, with both tasks performed without visual feedback. Functional connectivity (FC) from these two tasks was compared to demonstrate the difference between coordinated activity arising during handwriting and the activity during a simpler motor condition. Our study focused upon the writing-specific cortico-striatal network of preselected regions of interest consisting of the visual word form area (VWFA), anterior intraparietal sulcus/superior parietal lobule, striatum, premotor cortex/Exner's area, and primary and supplementary motor regions. We observed systematically increased task-induced cortico-striatal and cortico-cortical FC. This increased synchronization of neural activity between the VWFA, i.e., the visual cortical area containing information about letter shapes, and the frontoparietal motor regions is mediated by the striatum. These findings suggest the involvement of the striatum in integrating stored letter-shape information with motor planning and execution during handwriting.
Collapse
|
82
|
Borges MT, Aprígio LCS, Azoni CAS, Crenitte PAP. Types of handwriting and signs of dysgraphia in children and adolescents with learning difficultie. REVISTA CEFAC 2020. [DOI: 10.1590/1982-0216/202022617719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Purpose: to characterize handwriting aspects of children and adolescents with complaints of learning difficulties, based on the type of handwriting they used. Methods: thirty-two children and adolescents participated in the study. They were first to eighth graders of both sexes, aged 7 to 15 years, with complaints of learning difficulties. The participants were divided according to the type of letter they used: SG1 (block letters), SG2 (cursive letters), and SG3 (mixed letters). A themed composition was analyzed with an adapted Dysgraphia Scale. Afterwards, the score obtained in the items of the Dysgraphia Scale was statistically analyzed, comparing the results between the three groups, between SG1 and SG2, SG1 and SG3, and SG2 and SG3. Appropriate statistical tests were applied, considering as significant the p-value < 0.05. Results: no difference was found regarding the groups’ age and schooling level. As for the items in the Scale, there was a difference between the three groups regarding irregular spacing in between words, collisions and adhesions, and total score. Signs of dysgraphia were observed in the three groups, according to the Scale’s criteria. Conclusion: changes in handwriting are common in children with learning difficulties, especially when they write using cursive and mixed letters.
Collapse
|
83
|
Acquisition of chopstick-operation skills with the non-dominant hand and concomitant changes in brain activity. Sci Rep 2019; 9:20397. [PMID: 31892724 PMCID: PMC6938489 DOI: 10.1038/s41598-019-56956-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023] Open
Abstract
Despite their common use as eating utensils in East Asia, chopsticks require complex fine motor-skills for adequate operation and are thus most frequently used with the dominant hand; however, the effect of training time on the proficiency of using chopsticks with the non-dominant hand, as well as the brain activity underlying changes in skill, remain unclear. This study characterised the effect of time spent training in chopstick operation with the non-dominant hand on chopstick-use proficiency and the related brain activity to obtain data that may help individuals who are obliged to change handedness due to neurological disease to learn to use their non-dominant hand in performing daily activities. Thirty-two healthy right-handed students were randomly allocated to training (n = 16) or control (n = 16) groups; the former received 6 weeks of training in chopstick use with their non-dominant (left) hand, and the latter received none. After training, significant improvements in the execution speed and smoothness of upper extremity joints were observed in the training group. Moreover, left dorsolateral prefrontal cortex activity significantly decreased, and bilateral premotor cortex activity significantly increased across training. These results indicated that 6 weeks of chopstick training with the non-dominant hand effectively improved chopstick operation.
Collapse
|
84
|
Chen H, Pan X, Bickerton WL, Lau JK, Zhou J, Zhou B, Harris L, Rotshtein P. Delineating the cognitive-neural substrates of writing: a large scale behavioral and voxel based morphometry study. Sci Rep 2019; 9:18881. [PMID: 31827143 PMCID: PMC6906401 DOI: 10.1038/s41598-019-55129-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/23/2019] [Indexed: 11/26/2022] Open
Abstract
The current study investigated the cognitive and neural substrates that underpin writing ability. We explored similarities and differences in writing numbers and words and compared these to language and manual actions in a large group of sub-acute, stroke patients (n = 740). The behavioral data showed association and dissociation in the ability to write words and numbers. Comorbidities of writing deficits with both language and motor impairments were prevalent, with less than a handful showing deficits restricted to the writing tasks. A second analysis with a subset of patients (n = 267) explored the neural networks that mediate writing abilities. Lesion to right temporal contributed to writing words, while lesions to left postcentral contributed to writing numbers. Overlapping neural mechanisms included the bilateral prefrontal cortex, right inferior parietal, left middle occipital and the right cerebellum. With the former regions associated with error pattern typical to writing based on prior knowledge (the lexical route), while lesion to left MOG was associated with errors to the phonological (non-lexical) route. Using principle components extracted from the behavioral data, we showed that right prefrontal and right parietal contributed to the ability to use pen, while lesion to bilateral prefrontal, inferior temporal and cerebellum supported unique use of pen for writing. The behavioral and imaging data suggested that writing numbers and words primarily relied on overlapping cognitive and neural functions. Incidents of pure writing deficits, in the absence of motor or language deficits were rare. Nevertheless, the PCA and neural data suggested that writing abilities were associated with some unique neuro-cognitive functions, specifically dedicated to the use of pen and the ability to transform meaning to motor command.
Collapse
Affiliation(s)
- Haobo Chen
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, P.R. China.
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Xiaoping Pan
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, P.R. China.
| | | | - Johnny King Lau
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
- School of Psychology and Clinical Language Sciences, University of Reading, Harry Pitt Building, Reading, RG6 7BE, UK
| | - Jin Zhou
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, P.R. China
| | - Beinan Zhou
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
- Faculty of linguistics, philology and phonetics, University of Oxford, Oxford, OX1 3UD, UK
| | - Lara Harris
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Psychological Medicine, King's College London, London, WC2R 2LS, UK
| | - Pia Rotshtein
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
85
|
Longcamp M, Hupé JM, Ruiz M, Vayssière N, Sato M. Shared premotor activity in spoken and written communication. BRAIN AND LANGUAGE 2019; 199:104694. [PMID: 31586790 DOI: 10.1016/j.bandl.2019.104694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to uncover a possible common neural organizing principle in spoken and written communication, through the coupling of perceptual and motor representations. In order to identify possible shared neural substrates for processing the basic units of spoken and written language, a sparse sampling fMRI acquisition protocol was performed on the same subjects in two experimental sessions with similar sets of letters being read and written and of phonemes being heard and orally produced. We found evidence of common premotor regions activated in spoken and written language, both in perception and in production. The location of those brain regions was confined to the left lateral and medial frontal cortices, at locations corresponding to the premotor cortex, inferior frontal cortex and supplementary motor area. Interestingly, the speaking and writing tasks also appeared to be controlled by largely overlapping networks, possibly indicating some domain general cognitive processing. Finally, the spatial distribution of individual activation peaks further showed more dorsal and more left-lateralized premotor activations in written than in spoken language.
Collapse
Affiliation(s)
| | - Jean-Michel Hupé
- CNRS, Université de Toulouse Paul Sabatier, CerCo, Toulouse, France
| | - Mathieu Ruiz
- CNRS, Université de Toulouse Paul Sabatier, CerCo, Toulouse, France
| | - Nathalie Vayssière
- CNRS, Université de Toulouse Paul Sabatier, CerCo, Toulouse, France; Toulouse Mind and Brain Institute, France
| | - Marc Sato
- CNRS, Aix-Marseille Univ, LPL, Aix-en-Provence, France
| |
Collapse
|
86
|
Hervais-Adelman A, Kumar U, Mishra RK, Tripathi VN, Guleria A, Singh JP, Eisner F, Huettig F. Learning to read recycles visual cortical networks without destruction. SCIENCE ADVANCES 2019; 5:eaax0262. [PMID: 31555732 PMCID: PMC6750915 DOI: 10.1126/sciadv.aax0262] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/19/2019] [Indexed: 05/05/2023]
Abstract
Learning to read is associated with the appearance of an orthographically sensitive brain region known as the visual word form area. It has been claimed that development of this area proceeds by impinging upon territory otherwise available for the processing of culturally relevant stimuli such as faces and houses. In a large-scale functional magnetic resonance imaging study of a group of individuals of varying degrees of literacy (from completely illiterate to highly literate), we examined cortical responses to orthographic and nonorthographic visual stimuli. We found that literacy enhances responses to other visual input in early visual areas and enhances representational similarity between text and faces, without reducing the extent of response to nonorthographic input. Thus, acquisition of literacy in childhood recycles existing object representation mechanisms but without destructive competition.
Collapse
Affiliation(s)
- Alexis Hervais-Adelman
- Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, Netherlands
- Neurolinguistics, University of Zürich, Department of Psychology, Binzmühlerstrasse 14, 8050, Zürich, Switzerland
- Corresponding author.
| | - Uttam Kumar
- Centre of Biomedical Research, Raibareli Road, Lucknow, 226014 Uttar Pradesh, India
| | - Ramesh K. Mishra
- University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| | - Viveka N. Tripathi
- Centre for Behavioural and Cognitive Sciences, University of Allahabad, University Road, Old Katra, Prayagraj, 211002 Uttar Pradesh, India
- Department of Psychology, Iswar Saran Degree College, Prayagraj, 211002 Uttar Pradesh, India
| | - Anupam Guleria
- Centre of Biomedical Research, Raibareli Road, Lucknow, 226014 Uttar Pradesh, India
| | - Jay P. Singh
- Centre for Behavioural and Cognitive Sciences, University of Allahabad, University Road, Old Katra, Prayagraj, 211002 Uttar Pradesh, India
| | - Frank Eisner
- Donders Institute, Radboud University, Montessorilaan 3, 6525 HR Nijmegen, Netherlands
| | - Falk Huettig
- Psychology of Language Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, Netherlands
- Centre for Language Studies, Radboud University, Houtlaan 4, 6525 XZ Nijmegen, Netherlands
| |
Collapse
|
87
|
Lupo M, Siciliano L, Olivito G, Masciullo M, Bozzali M, Molinari M, Cercignani M, Silveri MC, Leggio M. Non-linear spelling in writing after a pure cerebellar lesion. Neuropsychologia 2019; 132:107143. [PMID: 31302109 DOI: 10.1016/j.neuropsychologia.2019.107143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 11/17/2022]
Abstract
The most common deficits in processing written language result from damage to the graphemic buffer system and refer to semantic and lexical problems or difficulties in phoneme-graphene conversion. However, a writing disorder that has not yet been studied in depth is the non-linear spelling phenomenon. Indeed, although some cases have been described, no report has exhaustively explained the cognitive mechanism and the anatomical substrates underlying this process. In the present study, we analyzed the modality of non-linear writing in a patient affected by a focal cerebellar lesion, who presented with an alteration of the normal trend to write the order of the letters. Based on this evidence, we analyzed the functional connectivity between the cerebellum and the brain network that subtends handwriting and demonstrated how the cerebellar lesion of the patient affected the connections between the cerebellum and cortical areas that support the anatomical system of writing. This is the first report of non-linear spelling in a patient with a lesion outside the fronto-parietal network, specifically with a focal cerebellar lesion. We propose that non-linear writing can be interpreted in view of the role of the cerebellum in timing and sequential processing. Thus, considering the current functional connectivity data, we hypothesize that the cerebellum might be relevant in the mechanism that allows the correct activation timing of letters within a string and placement of the letters in a specific sequential writing order.
Collapse
Affiliation(s)
- Michela Lupo
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Libera Siciliano
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Giusy Olivito
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy; Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Marco Bozzali
- Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy; Clinical Imaging Science Center, Brighton and Sussex Medical School, Brighton, UK
| | - Marco Molinari
- Neurorehabilitation 1 and Spinal Center, Neuro-Robot Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mara Cercignani
- Clinical Imaging Science Center, Brighton and Sussex Medical School, Brighton, UK
| | | | - Maria Leggio
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
88
|
Fenner AS, Webster KT, Ficek BN, Frangakis CE, Tsapkini K. Written Verb Naming Improves After tDCS Over the Left IFG in Primary Progressive Aphasia. Front Psychol 2019; 10:1396. [PMID: 31249546 PMCID: PMC6582664 DOI: 10.3389/fpsyg.2019.01396] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/29/2019] [Indexed: 11/15/2022] Open
Abstract
Transcranial direct current stimulation (tDCS), a non-invasive neuromodulation technique, is an effective adjunct to naming treatments in post-stroke aphasia and primary progressive aphasia (PPA). Enhanced performance in oral and written naming and spelling of nouns with tDCS has been quantified in detail, but it is not known whether it is effective for verb treatment in PPA. We addressed the question of whether performance in naming and spelling of verbs can be augmented with anodal tDCS over the left inferior frontal gyrus (IFG). We compared tDCS coupled with oral and written verb naming/spelling treatment with oral and written verb naming/spelling treatment alone. In a double-blind, sham-controlled, crossover design, 11 participants with logopenic or non-fluent variant PPA received approximately 15 consecutive sessions of anodal tDCS and sham over the left IFG coupled with oral and written verb-naming + spelling treatment. Written verb-naming performance improved significantly more for trained verbs in the tDCS than the sham condition. Importantly, tDCS effects generalized to untrained items for written verb naming and were significant even at 2 months post-treatment. We conclude that tDCS over the left IFG can improve written verb naming and spelling in PPA.
Collapse
Affiliation(s)
- Amberlynn S. Fenner
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Kimberly T. Webster
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, United States
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Bronte N. Ficek
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Constantine E. Frangakis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, United States
- Department of Radiology, Johns Hopkins Medicine, Baltimore, MD, United States
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, United States
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
89
|
Tao Y, Rapp B. The effects of lesion and treatment-related recovery on functional network modularity in post-stroke dysgraphia. NEUROIMAGE-CLINICAL 2019; 23:101865. [PMID: 31146116 PMCID: PMC6538967 DOI: 10.1016/j.nicl.2019.101865] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/22/2019] [Accepted: 05/19/2019] [Indexed: 01/21/2023]
Abstract
A better understanding of the neural network properties that support cognitive recovery after a brain lesion is important for our understanding of human neuroplasticity and may have valuable clinical implications. In fifteen individuals with chronic, acquired written language deficits subsequent to left-hemisphere stroke, we used task-based functional connectivity to evaluate the relationship between the graph-theoretic measures (modularity, participation coefficient and within-module degree z-score) and written language production accuracy before and after behavioral treatment. A reference modular structure and local and global hubs identified from healthy controls formed the basis of the analyses. Overall, the investigation revealed that less modular networks with greater global and lower local integration were associated with greater deficit severity and lower response to treatment. Furthermore, we found treatment-induced increases in modularity and local integration measures. In particular, local integration within intact ventral occipital-temporal regions of the spelling network showed the greatest increase in local integration following treatment. This investigation significantly extends previous research by using task-based (rather than resting-state) functional connectivity to examine a larger set of network characteristics in the evaluation of treatment-induced recovery and by including comparisons with control participants. The findings demonstrate the relevance of network modularity for understanding the neuroplasticity supporting functional neural reorganization.
Collapse
Affiliation(s)
- Yuan Tao
- Department of Cognitive Science, Johns Hopkins University, USA.
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, USA; Department of Neuroscience, Johns Hopkins University, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| |
Collapse
|
90
|
Chen W, Chen C, Yang P, Bi S, Liu J, Xia M, Lin Q, Ma N, Li N, He Y, Zhang J, Wang Y, Wang W. Long-term Chinese calligraphic handwriting reshapes the posterior cingulate cortex: A VBM study. PLoS One 2019; 14:e0214917. [PMID: 30947247 PMCID: PMC6448813 DOI: 10.1371/journal.pone.0214917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/24/2019] [Indexed: 01/27/2023] Open
Abstract
As a special kind of handwriting with a brush, Chinese calligraphic handwriting (CCH) requires a large amount of practice with high levels of concentration and emotion regulation. Previous studies have showed that long-term CCH training has positive effects physically (induced by handwriting activities) and psychologically (induced by the state of relaxation and concentration), the latter of which is similar to the effects of meditation. The aim of this study was to investigate the long-term CCH training effect on anxiety and attention, as well as brain structure. Participants were 32 individuals who had at least five years of CCH experience and 44 controls. Results showed that CCH training benefited individuals' selective and divided attention but did not decrease their anxiety level. Moreover, the VBM analysis showed that long-term CCH training was mainly associated with smaller grey matter volumes (GMV) in the right precuneus/posterior cingulate cortex (PCC). No brain areas showed larger GMV in the CCH group than the control group. Using two sets of regions of interest (ROIs), one related to meditation and the other to handwriting, ROI analysis showed significant differences between the CCH and the control group only at the meditation-related ROIs, not at the handwriting-related ROIs. Finally, for the whole sample, the GMV of both the whole brain and the PCC were negatively correlated with selective attention and divided attention. The present study was cross-sectional and had a relatively small sample size, but its results suggested that CCH training might benefit attention and influence particular brain structure through mental processes such as meditation.
Collapse
Affiliation(s)
- Wen Chen
- Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- College of Information Science and Technology, Beijing Normal University, Beijing, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, California, United States of America
| | - Pin Yang
- Conservation Department, The National Palace Museum, Beijing, China
| | - Suyu Bi
- School of International Journalism and Communication, Beijing Foreign Studies University, Beijing, China
- School of Arts and Media, Beijing Normal University, Beijing, China
| | - Jin Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qixiang Lin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Na Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Na Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jiacai Zhang
- College of Information Science and Technology, Beijing Normal University, Beijing, China
| | - Yiwen Wang
- School of International Journalism and Communication, Beijing Foreign Studies University, Beijing, China
| | - Wenjing Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
91
|
Ellenblum G, Purcell JJ, Song X, Rapp B. High-level Integrative Networks: A Resting-state fMRI Investigation of Reading and Spelling. J Cogn Neurosci 2019; 31:961-977. [PMID: 30938593 DOI: 10.1162/jocn_a_01405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Orthographic processing skills (reading and spelling) are evolutionarily recent and mastered late in development, providing an opportunity to investigate how the properties of the neural networks supporting skills of this type compare to those supporting evolutionarily older, well-established "reference" networks. Although there has been extensive research using task-based fMRI to study the neural substrates of reading, there has been very little using resting-state fMRI to examine the properties of orthographic networks. In this investigation using resting-state fMRI, we compare the within-network and across-network coherence properties of reading and spelling networks directly to these properties of reference networks, and we also compare the network properties of the key node of the orthographic networks-the visual word form area-to those of the other nodes of the orthographic and reference networks. Consistent with previous results, we find that orthographic processing networks do not exhibit certain basic network coherence properties displayed by other networks. However, we identify novel distinctive properties of the orthographic processing networks and establish that the visual word form area has unusually high levels of connectivity with a broad range of brain areas. These characteristics form the basis of our proposal that orthographic networks represent a class of "high-level integrative networks" with distinctive properties that allow them to recruit and integrate multiple, lower level processes.
Collapse
Affiliation(s)
| | | | - Xiaowei Song
- Northwestern University.,National Institutes of Health.,University of Maryland, Baltimore
| | | |
Collapse
|
92
|
The impact of spelling regularity on handwriting production: A coupled fMRI and kinematics study. Cortex 2019; 113:111-127. [DOI: 10.1016/j.cortex.2018.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/13/2018] [Accepted: 11/27/2018] [Indexed: 11/17/2022]
|
93
|
Germano GD, Capellini SA. Use of technological tools to evaluate handwriting production of the alphabet and pseudocharacters by Brazilian students. Clinics (Sao Paulo) 2019; 74:e840. [PMID: 30916211 PMCID: PMC6424067 DOI: 10.6061/clinics/2019/e840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/19/2018] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE This study aimed to characterize and compare the handwriting performance of Brazilian students from the 3rd to the 5th grade level of elementary school I with a computerized instrument that allowed the real performance to be observed during the execution of the handwriting. METHODS Ninety-five students, aged 8 years to 11 years and 11 months, were assigned the production tasks of handwriting letters and pseudocharacters to assess the variables of latency, letter duration production and movement fluency. The stimulus presentation and the analysis of the movements were analyzed by Ductus software. RESULTS In relation to the writing duration, latency and fluency of the alphabet letters, there was a diminution of values from the 3rd to 5th grade. For the comparison between alphabet and pseudocharacter latency, the results indicated a difference between the alphabet letter and its corresponding pseudocharacter, with greater latency for the pseudocharacter. This finding suggests that a motor sequence has not been established, so it cannot be assumed that the production of the alphabet letters was automatic. CONCLUSION The results of this study make it possible to verify the interaction failures between the central and peripheral processes, with progression between the 3rd and 5th grade. It also highlights the influence of the lack of systematized teaching of the tracing of letters for Brazilian students since proficiency in calligraphy is critically linked to academic performance. These findings provide a great contribution to Brazilian educational psychology and reflect both educational and clinical practices.
Collapse
Affiliation(s)
- Giseli Donadon Germano
- Departamento de Educacao Especial, Campus Marilia, Universidade Estadual Paulista “Julio de Mesquita Filho” UNESP, Marilia, SP, BR
- *Corresponding author. E-mail:
| | - Simone Aparecida Capellini
- Departamento de Educacao Especial, Campus Marilia, Universidade Estadual Paulista “Julio de Mesquita Filho” UNESP, Marilia, SP, BR
| |
Collapse
|
94
|
Ficek BN, Wang Z, Zhao Y, Webster KT, Desmond JE, Hillis AE, Frangakis C, Faria AV, Caffo B, Tsapkini K. "The effect of tDCS on functional connectivity in primary progressive aphasia" NeuroImage: Clinical, volume 19 (2018), pages 703-715. NEUROIMAGE-CLINICAL 2019; 22:101734. [PMID: 30878405 PMCID: PMC6543522 DOI: 10.1016/j.nicl.2019.101734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transcranial direct current stimulation (tDCS) is an innovative technique recently shown to improve language outcomes even in neurodegenerative conditions such as primary progressive aphasia (PPA), but the underlying brain mechanisms are not known. The present study tested whether the additional language gains with repetitive tDCS (over sham) in PPA are caused by changes in functional connectivity between the stimulated area (the left inferior frontal gyrus (IFG)) and the rest of the language network. We scanned 24 PPA participants (11 female) before and after language intervention (written naming/spelling) with a resting-state fMRI sequence and compared changes before and after three weeks of tDCS or sham coupled with language therapy. We correlated changes in the language network as well as in the default mode network (DMN) with language therapy outcome measures (letter accuracy in written naming). Significant tDCS effects in functional connectivity were observed between the stimulated area and other language network areas and between the language network and the DMN. TDCS over the left IFG lowered the connectivity between the above pairs. Changes in functional connectivity correlated with improvement in language scores (letter accuracy as a proxy for written naming) evaluated before and after therapy. These results suggest that one mechanism for anodal tDCS over the left IFG in PPA is a decrease in functional connectivity (compared to sham) between the stimulated site and other posterior areas of the language network. These results are in line with similar decreases in connectivity observed after tDCS over the left IFG in aging and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Bronte N Ficek
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Zeyi Wang
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD 21287, USA
| | - Yi Zhao
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD 21287, USA
| | - Kimberly T Webster
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - John E Desmond
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Constantine Frangakis
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD 21287, USA; Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | - Brian Caffo
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD 21287, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
95
|
Crespo Y, Ibañez A, Soriano MF, Iglesias S, Aznarte JI. Handwriting movements for assessment of motor symptoms in schizophrenia spectrum disorders and bipolar disorder. PLoS One 2019; 14:e0213657. [PMID: 30870472 PMCID: PMC6417658 DOI: 10.1371/journal.pone.0213657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/26/2019] [Indexed: 01/04/2023] Open
Abstract
The main aim of the present study was to explore the value of several measures of handwriting in the study of motor abnormalities in patients with bipolar or psychotic disorders. 54 adult participants with a schizophrenia spectrum disorder or bipolar disorder and 44 matched healthy controls, participated in the study. Participants were asked to copy a handwriting pattern consisting of four loops, with an inking pen on a digitizing tablet. We collected a number of classical, non-linear and geometrical measures of handwriting. The handwriting of patients was characterized by a significant decrease in velocity and acceleration and an increase in the length, disfluency and pressure with respect to controls. Concerning non-linear measures, we found significant differences between patients and controls in the Sample Entropy of velocity and pressure, Lempel-Ziv of velocity and pressure, and Higuchi Fractal Dimension of pressure. Finally, Lacunarity, a measure of geometrical heterogeneity, was significantly greater in handwriting patterns from patients than from controls. We did not find differences in any handwriting measure on function of the specific diagnosis or the antipsychotic dose. Results indicate that participants with a schizophrenia spectrum disorder or bipolar disorder exhibit significant motor impairments and that these impairments can be readily quantified using measures of handwriting movements. Besides, they suggest that motor abnormalities are a core feature of several mental disorders and they seem to be unrelated to the pharmacological treatment.
Collapse
Affiliation(s)
- Yasmina Crespo
- Psychology Department, University of Jaén, Jaén, Spain
- Mental Health Unit, St. Agustín Universitary Hospital, Linares, Jaén, Spain
| | | | | | | | | |
Collapse
|
96
|
Ferrazzano G, Conte A, Belvisi D, Fabbrini A, Baione V, Berardelli A, Fabbrini G. Writing, reading, and speaking in blepharospasm. J Neurol 2019; 266:1136-1140. [PMID: 30783748 DOI: 10.1007/s00415-019-09243-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/25/2019] [Accepted: 02/11/2019] [Indexed: 11/30/2022]
Abstract
The aim of the study was to evaluate the effects of writing, reading, and speaking on orbiculari oculi (OO) muscle spasms and on the blink rate in patients with blepharospasm (BSP). Patients with hemifacial spasm (HFS) and healthy subjects (HS) acted as control subjects. Thirty patients with BSP, 20 patients with primary HFS and 20 age-matched healthy subjects were videotaped according to a standardized procedure: at rest with eyes open; while writing a standard sentence on paper; while writing a standard sentence on a blackboard keeping the head straight; during a conversation based on a simple topic (speaking task); and while reading a standard text aloud. Two independent movement disorders specialists reviewed the videotapes and measured the number of OO spasms and blinks in each segment. Writing and reading reduced the number of OO spasms in BSP patients, whereas speaking did not. On the other hand, writing, reading, and speaking did not modify spasms in HFS patients. These tasks modulated the blink rate in all the three groups of subjects (BSP, HFS, and HS). Our hypothesis is that the modulation of OO spasm in BSP during writing and reading depends on influences coming from occipital areas onto the brainstem circuits. Whether cognitive training with reading and writing may be used to improve OO muscle spasms is an issue that warrants further investigation.
Collapse
Affiliation(s)
| | - Antonella Conte
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Viale dell' Università 30, 00185, Rome, Italy
| | | | - Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell' Università 30, 00185, Rome, Italy
| | - Viola Baione
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell' Università 30, 00185, Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Viale dell' Università 30, 00185, Rome, Italy
| | - Giovanni Fabbrini
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy. .,Department of Human Neurosciences, Sapienza University of Rome, Viale dell' Università 30, 00185, Rome, Italy.
| |
Collapse
|
97
|
Smith LR, Roach NN, Chapman Smith S. Clinical Reasoning: A 61-year-old woman with acute onset dysgraphia. Neurology 2019; 92:e386-e391. [DOI: 10.1212/wnl.0000000000006821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
98
|
van Ierschot F, Bastiaanse R, Miceli G. Evaluating Spelling in Glioma Patients Undergoing Awake Surgery: a Systematic Review. Neuropsychol Rev 2018; 28:470-495. [DOI: 10.1007/s11065-018-9391-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/07/2018] [Indexed: 01/20/2023]
|
99
|
Yang Y, Zhang J, Meng ZL, Qin L, Liu YF, Bi HY. Neural Correlates of Orthographic Access in Mandarin Chinese Writing: An fMRI Study of the Word-Frequency Effect. Front Behav Neurosci 2018; 12:288. [PMID: 30555308 PMCID: PMC6284029 DOI: 10.3389/fnbeh.2018.00288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
Writing is an essential tool for human communication and involves multiple linguistic, cognitive, and motor processes. Chinese, a logographic writing system, differs remarkably from the writing systems of alphabetic languages. The neural substrates of Chinese writing are largely unknown. Using functional magnetic resonance imaging (fMRI) in a copying task, this study probed the neural underpinnings of orthographic access during Mandarin Chinese writing by employing the word-frequency effect. The results showed that writing low-frequency characters evoked greater activation in the bilateral superior/middle/inferior frontal gyrus, superior/inferior parietal lobule, and fusiform gyrus than writing high-frequency characters. Moreover, psychophysiological interaction (PPI) analysis demonstrated that the word-frequency effect modulated functional connectivity within the frontal-occipital networks and the parietal-occipital networks. Together, these findings illustrate the neural correlates of orthographic access for Mandarin Chinese writing, shedding new light on the cognitive architecture of writing across various writing systems.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Jun Zhang
- Jiangxi Institute of Education Sciences, Nanchang, China.,School-family Partnership Research Center, Graduate School of Education, Peking University, Beijing, China
| | - Ze-Long Meng
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Qin
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Fei Liu
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Yan Bi
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
100
|
Dynamic signatures: A review of dynamic feature variation and forensic methodology. Forensic Sci Int 2018; 291:216-229. [DOI: 10.1016/j.forsciint.2018.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022]
|