51
|
Sherratt SCR, Libby P, Dawoud H, Bhatt DL, Malinski T, Mason RP. Eicosapentaenoic acid (EPA) reduces pulmonary endothelial dysfunction and inflammation due to changes in protein expression during exposure to particulate matter air pollution. Biomed Pharmacother 2023; 162:114629. [PMID: 37027984 DOI: 10.1016/j.biopha.2023.114629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
AIMS Inhalation of air pollution small particle matter (PM) is a leading cause of cardiovascular (CV) disease. Exposure to PMs causes endothelial cell (EC) dysfunction as evidenced by nitric oxide (NO) synthase uncoupling, vasoconstriction and inflammation. Eicosapentaenoic acid (EPA) has been shown to mitigate PM-induced adverse cardiac changes in patients receiving omega-3 fatty acid supplementation. We set out to determine the pro-inflammatory effects of multiple PMs (urban and fine) on pulmonary EC NO bioavailability and protein expression, and whether EPA restores EC function under these conditions. METHODS AND RESULTS We pretreated pulmonary ECs with EPA and then exposed them to urban or fine air pollution PMs. LC/MS-based proteomic analysis to assess relative expression levels. Expression of adhesion molecules was measured by immunochemistry. The ratio of NO to peroxynitrite (ONOO-) release, an indication of eNOS coupling, was measured using porphyrinic nanosensors following calcium stimulation. Urban/fine PMs also modulated 9/12 and 13/36 proteins, respectively, linked to platelet and neutrophil degranulation pathways and caused > 50% (p < 0.001) decrease in the stimulated NO/ONOO- release ratio. EPA treatment altered expression of proteins involved in these inflammatory pathways, including a decrease in peroxiredoxin-5 and an increase in superoxide dismutase-1. EPA also increased expression of heme oxygenase-1 (HMOX1), a cytoprotective protein, by 2.1-fold (p = 0.024). EPA reduced elevations in sICAM-1 levels by 22% (p < 0.01) and improved the NO/ONOO- release ratio by > 35% (p < 0.05). CONCLUSION These cellular changes may contribute to anti-inflammatory, cytoprotective and lipid changes associated with EPA treatment during air pollution exposure.
Collapse
Affiliation(s)
- Samuel C R Sherratt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA; Elucida Research LLC, Beverly, MA, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hazem Dawoud
- Nanomedical Research Laboratory, Ohio University, Athens, OH, USA
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York, NY, USA
| | - Tadeusz Malinski
- Nanomedical Research Laboratory, Ohio University, Athens, OH, USA.
| | - R Preston Mason
- Elucida Research LLC, Beverly, MA, USA; Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
52
|
Chen D, Sun X, Cheke RA. Inferring a Causal Relationship between Environmental Factors and Respiratory Infections Using Convergent Cross-Mapping. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25050807. [PMID: 37238562 DOI: 10.3390/e25050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
The incidence of respiratory infections in the population is related to many factors, among which environmental factors such as air quality, temperature, and humidity have attracted much attention. In particular, air pollution has caused widespread discomfort and concern in developing countries. Although the correlation between respiratory infections and air pollution is well known, establishing causality between them remains elusive. In this study, by conducting theoretical analysis, we updated the procedure of performing the extended convergent cross-mapping (CCM, a method of causal inference) to infer the causality between periodic variables. Consistently, we validated this new procedure on the synthetic data generated by a mathematical model. For real data in Shaanxi province of China in the period of 1 January 2010 to 15 November 2016, we first confirmed that the refined method is applicable by investigating the periodicity of influenza-like illness cases, an air quality index, temperature, and humidity through wavelet analysis. We next illustrated that air quality (quantified by AQI), temperature, and humidity affect the daily influenza-like illness cases, and, in particular, the respiratory infection cases increased progressively with increased AQI with a time delay of 11 days.
Collapse
Affiliation(s)
- Daipeng Chen
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
- Mathematical Institute, Leiden University, 2333 CA Leiden, The Netherlands
| | - Xiaodan Sun
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Robert A Cheke
- Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Chatham ME4 4TB, Kent, UK
| |
Collapse
|
53
|
Cary CM, Seymore TN, Singh D, Vayas KN, Goedken MJ, Adams S, Polunas M, Sunil VR, Laskin DL, Demokritou P, Stapleton PA. Single inhalation exposure to polyamide micro and nanoplastic particles impairs vascular dilation without generating pulmonary inflammation in virgin female Sprague Dawley rats. Part Fibre Toxicol 2023; 20:16. [PMID: 37088832 PMCID: PMC10122824 DOI: 10.1186/s12989-023-00525-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Exposure to micro- and nanoplastic particles (MNPs) in humans is being identified in both the indoor and outdoor environment. Detection of these materials in the air has made inhalation exposure to MNPs a major cause for concern. One type of plastic polymer found in indoor and outdoor settings is polyamide, often referred to as nylon. Inhalation of combustion-derived, metallic, and carbonaceous aerosols generate pulmonary inflammation, cardiovascular dysfunction, and systemic inflammation. Additionally, due to the additives present in plastics, MNPs may act as endocrine disruptors. Currently there is limited knowledge on potential health effects caused by polyamide or general MNP inhalation. OBJECTIVE The purpose of this study is to assess the toxicological consequences of a single inhalation exposure of female rats to polyamide MNP during estrus by means of aerosolization of MNP. METHODS Bulk polyamide powder (i.e., nylon) served as a representative MNP. Polyamide aerosolization was characterized using particle sizers, cascade impactors, and aerosol samplers. Multiple-Path Particle Dosimetry (MPPD) modeling was used to evaluate pulmonary deposition of MNPs. Pulmonary inflammation was assessed by bronchoalveolar lavage (BAL) cell content and H&E-stained tissue sections. Mean arterial pressure (MAP), wire myography of the aorta and uterine artery, and pressure myography of the radial artery was used to assess cardiovascular function. Systemic inflammation and endocrine disruption were quantified by measurement of proinflammatory cytokines and reproductive hormones. RESULTS Our aerosolization exposure platform was found to generate particles within the micro- and nano-size ranges (thereby constituting MNPs). Inhaled particles were predicted to deposit in all regions of the lung; no overt pulmonary inflammation was observed. Conversely, increased blood pressure and impaired dilation in the uterine vasculature was noted while aortic vascular reactivity was unaffected. Inhalation of MNPs resulted in systemic inflammation as measured by increased plasma levels of IL-6. Decreased levels of 17β-estradiol were also observed suggesting that MNPs have endocrine disrupting activity. CONCLUSIONS These data demonstrate aerosolization of MNPs in our inhalation exposure platform. Inhaled MNP aerosols were found to alter inflammatory, cardiovascular, and endocrine activity. These novel findings will contribute to a better understanding of inhaled plastic particle toxicity.
Collapse
Affiliation(s)
- Chelsea M Cary
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Talia N Seymore
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Dilpreet Singh
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 02115, Boston, MA, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), 08854, Piscataway, NJ, USA
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Michael J Goedken
- Research Pathology Services, Rutgers University, 08854, Piscataway, NJ, USA
| | - Samantha Adams
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Marianne Polunas
- Research Pathology Services, Rutgers University, 08854, Piscataway, NJ, USA
| | - Vasanthi R Sunil
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), 08854, Piscataway, NJ, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 02115, Boston, MA, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), 08854, Piscataway, NJ, USA
- Department of Environmental and Occupational Health and Justice, Rutgers School of Public Health, Rutgers University, 08854, Piscataway, NJ, USA
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA.
- Environmental and Occupational Health Sciences Institute (EOHSI), 08854, Piscataway, NJ, USA.
| |
Collapse
|
54
|
Rose M, Filiatreault A, Williams A, Guénette J, Thomson EM. Modulation of insulin signaling pathway genes by ozone inhalation and the role of glucocorticoids: A multi-tissue analysis. Toxicol Appl Pharmacol 2023; 469:116526. [PMID: 37088303 DOI: 10.1016/j.taap.2023.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Air pollution is associated with increased risk of metabolic diseases including type 2 diabetes, of which dysregulation of the insulin-signaling pathway is a feature. While studies suggest pollutant exposure alters insulin signaling in certain tissues, there is a lack of comparison across multiple tissues needed for a holistic assessment of metabolic effects, and underlying mechanisms remain unclear. Air pollution increases plasma levels of glucocorticoids, systemic regulators of metabolic function. The objectives of this study were to 1) determine effects of ozone on insulin-signaling genes in major metabolic tissues, and 2) elucidate the role of glucocorticoids. Male Fischer-344 rats were treated with metyrapone, a glucocorticoid synthesis inhibitor, and exposed to 0.8 ppm ozone or clean air for 4 h, with tissue collected immediately or 24 h post exposure. Ozone inhalation resulted in distinct mRNA profiles in the liver, brown adipose, white adipose and skeletal muscle tissues, including effects on insulin-signaling cascade genes (Pik3r1, Irs1, Irs2) and targets involved in glucose metabolism (Hk2, Pgk1, Slc2a1), cell survival (Bcl2l1), and genes associated with diabetes and obesity (Serpine1, Retn, Lep). lucocorticoid-dependent regulation was observed in the liver and brown and white adipose tissues, while effects in skeletal muscle were largely unaffected by metyrapone treatment. Gene expression changes were accompanied by altered phosphorylation states of insulin-signaling proteins (BAD, GSK, IR-β, IRS-1) in the liver. The results show that systemic effects of ozone inhalation include tissue-specific regulation of insulin-signaling pathway genes via both glucocorticoid-dependent and independent mechanisms, providing insight into mechanisms underlying adverse effects of pollutants.
Collapse
Affiliation(s)
- Mercedes Rose
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Alain Filiatreault
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Josée Guénette
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada.
| |
Collapse
|
55
|
Su B, Zhong P, Wu Y, Tian Y, Zheng X. Changing Patterns of Heart Disease Mortality in Rural and Urban Areas - China, 1987-2021. China CDC Wkly 2023; 5:306-310. [PMID: 37193309 PMCID: PMC10182902 DOI: 10.46234/ccdcw2023.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 05/18/2023] Open
Abstract
What is already known about this topic? The burden of heart disease is increasing rapidly due to the aging population and changing lifestyles in China. What is added by this report? This study investigated the evolution of mortality rates due to heart disease in urban and rural areas of China over the past 35 years, and identified the age-period-cohort effects on mortality changes. What are the implications for public health practice? Healthcare providers should prioritize attention to heart disease among older males living in rural areas.
Collapse
Affiliation(s)
- Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Panliang Zhong
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yu Wu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Xiaoying Zheng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
- Xiaoying Zheng,
| |
Collapse
|
56
|
Veronese N, Maniscalco L, Matranga D, Lacca G, Dominguez LJ, Barbagallo M. Association Between Pollution and Frailty in Older People: A Cross-Sectional Analysis of the UK Biobank. J Am Med Dir Assoc 2023; 24:475-481.e3. [PMID: 36774967 DOI: 10.1016/j.jamda.2022.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 02/11/2023]
Abstract
OBJECTIVES Frailty is a relevant issue in older people, being associated with several negative outcomes. Increasing literature is reporting that pollution (particularly air pollution) can increase the risk of frailty, but the research is still limited. We aimed to investigate the potential association of pollution (air, noise) with frailty and prefrailty among participants 60 years and older of the UK Biobank study. DESIGN Cross-sectional. SETTINGS AND PARTICIPANTS Older participants (age ≥ 60 years) participating to the UK Biobank. METHODS Frailty and prefrailty presence were ascertained using a model including 5 indicators (weakness, slowness, weight loss, low physical activity, and exhaustion). Air pollution was measured through residential exposures to nitrogen oxides (NOx) and particulate matter (PM2.5, PM2.5-10, PM10). The average residential sound level during the daytime, the evening, and night was used as an index for noise pollution. RESULTS A total of 220,079 subjects, aged 60 years and older, was included. The partial proportional odds model, adjusted for several confounders, showed that the increment in the exposure to NOx was associated with a higher probability of being in both the prefrail and frail category [odds ratio (OR) 1.003; 95% CI 1.001-1.004]. Similarly, the increase in the exposure to PM2.5-10 was associated with a higher probability of being prefrail and frail (OR 1.014; 95% CI 1.001-1.036), such as the increment in the exposure to PM2.5 that was associated with a higher probability of being frail (OR 1.018; 95% CI 1.001-1.037). CONCLUSIONS AND IMPLICATIONS Our study indicates that the exposure to air pollutants as PM2.5, PM2.5-10, or NOx might be associated with frailty and prefrailty, suggesting that air pollution can contribute to frailty and indicating that the frailty prevention and intervention strategies should take into account the dangerous impact of air pollutants.
Collapse
Affiliation(s)
- Nicola Veronese
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, "G. D'Alessandro"-PROMISE-University of Palermo, Palermo, Italy.
| | - Laura Maniscalco
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, "G. D'Alessandro"-PROMISE-University of Palermo, Palermo, Italy
| | - Domenica Matranga
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, "G. D'Alessandro"-PROMISE-University of Palermo, Palermo, Italy
| | - Guido Lacca
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, "G. D'Alessandro"-PROMISE-University of Palermo, Palermo, Italy
| | - Ligia J Dominguez
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, "G. D'Alessandro"-PROMISE-University of Palermo, Palermo, Italy; School of Medicine and Surgery, University Kore of Enna, Enna, Italy
| | - Mario Barbagallo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, "G. D'Alessandro"-PROMISE-University of Palermo, Palermo, Italy
| |
Collapse
|
57
|
Godoy ML, Banús ED, Bon M, Miró EE, Milt VG. Synthesis of Co,Ce Oxide Nanoparticles Using an Aerosol Method and Their Deposition on Different Structured Substrates for Catalytic Removal of Diesel Particulate Matter. Catalysts 2023. [DOI: 10.3390/catal13040660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The synthesis of Co and Ce oxide nanoparticles using precipitation of precursor salt solutions in the form of microdroplets generated with a nebulizer proved to be an efficient, fast and inexpensive method. Different morphologies of single oxides particles were obtained. Ceria nanoparticles were almost cube-shaped of 8 nm average size, forming 1.3–1.5 μm aggregates, whereas cobalt oxide appeared as rounded-edged particles of 37 nm average size, mainly forming nanorods 50–500 nm. Co3O4 and CeO2 nanoparticles were used to generate structured catalysts from both metallic (stainless steel wire mesh monoliths) and ceramic (cordierite honeycombs) substrates. Ceria Nyacol was used as a binder to favor the anchoring of catalytic particles thus enhancing the adhesion of the coating. The resulting structured catalysts were tested for the combustion of diesel soot with the aim of being used in the regeneration of particulate filters (DPFs). The performance of these structured catalysts was similar to or even better than that exhibited by the catalysts prepared using commercial nanoparticles. Among the catalysts tested, the structured systems using ceramic substrates were more efficient, showing lower values of the maximum combustion rate temperatures (TM = 410 °C).
Collapse
|
58
|
Wang S, Han Q, Wei Z, Wang Y, Deng L, Chen M. Formaldehyde causes an increase in blood pressure by activating ACE/AT1R axis. Toxicology 2023; 486:153442. [PMID: 36706861 DOI: 10.1016/j.tox.2023.153442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Previous studies suggest some link between formaldehyde exposure and harmful cardiovascular effects. But whether exposure to formaldehyde can cause blood pressure to rise, and if so, what the underlying mechanism is, remains unclear. In this study, C57BL/6 male mice were exposed to 0.1, 0.5, 2.5 mg/m3 of gaseous formaldehyde for 4 h daily over a three-week period. The systolic blood pressure (SBP), diastolic blood pressure (DBP), mean blood pressure (MBP) and heart rate (HR) of the mice were measured by tail-cuff plethysmography, and any histopathological changes in the target organs of hypertension were investigated. The results showed that exposure to formaldehyde did cause a significant increase in blood pressure and heart rate, and resulted in varying degrees of damage to the heart, aortic vessels and kidneys. To explore the underlying mechanism, a specific inhibitor of angiotensin converting enzyme (ACE) was used to block the ACE/AT1R axis. We observed the levels of ACE and angiotensin II type 1 receptor (AT1R), as well as the bradykinin (BK) in cardiac cytoplasm. The data suggest that exposure to formaldehyde induced an increase in the expression of ACE and AT1R, and decreased the levels of BK. Strikingly, treatment with 5 mg/kg/d ACE inhibitor can attenuate the increase in blood pressure and the pathological changes caused by formaldehyde exposure. This result has improved our understanding of whether, and how, formaldehyde exposure affects the development of hypertension.
Collapse
Affiliation(s)
- Shuwei Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079 Hubei, China
| | - Qi Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079 Hubei, China
| | - Zhaolan Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079 Hubei, China
| | - Yunyi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079 Hubei, China
| | - Lingfu Deng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079 Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079 Hubei, China.
| |
Collapse
|
59
|
Mehmood W, Alsmady AA, Amin S, Mohd-Rashid R, Aman-Ullah A. Environmental pollution and sustainability of IPO performance: evidence from the Pakistani Market. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30073-30086. [PMID: 36427127 DOI: 10.1007/s11356-022-23985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
This study examined the effect of air pollution on the initial return of IPOs in Pakistan. Cross-sectional data were used to examine 102 listed IPOs on Pakistan Stock Exchange between 1996 and 2019. Ordinary least squares and quantile least squares were employed to examine the influence of air pollution on IPO initial returns. Lastly, stepwise regression was utilised for additional analysis. According to the findings, in the presence of high air pollution, IPO initial returns also increase due to higher uncertainty. The findings demonstrate that air pollution intensifies a company's information environment and financial uncertainty. Therefore, addressing environmental challenges is critical for both public health and capital formation. This study's findings will increase companies' awareness of the economic effect of air pollution, particularly in a country where air pollution is strictly regulated. This study provides businesses with an economic reason to reduce their pollution levels, and it can also help regulators pass environmental laws that are aimed at addressing this issue.
Collapse
Affiliation(s)
- Waqas Mehmood
- School of Economics, Finance and Banking, Universiti Utara Malaysia, 06010, Sintok, Kedah, Malaysia.
| | - Ahnaf Ali Alsmady
- Accounting Department, Faculty of Business Administration, (University of Tabuk), Tabuk, Saudi Arabia
| | - Saqib Amin
- Department of Economics, Accounting and Finance, Oulu Business School, University of Oulu, 90570, Oulu, Finland
| | - Rasidah Mohd-Rashid
- School of Economics, Finance and Banking, Universiti Utara Malaysia, 06010, Sintok, Kedah, Malaysia
| | - Attia Aman-Ullah
- School of Business Management, Universiti Utara Malaysia, 06010, Sintok, Kedah, Malaysia
| |
Collapse
|
60
|
Li J, Song Y, Shi L, Jiang J, Wan X, Wang Y, Ma Y, Dong Y, Zou Z, Ma J. Long-term effects of ambient PM 2.5 constituents on metabolic syndrome in Chinese children and adolescents. ENVIRONMENTAL RESEARCH 2023; 220:115238. [PMID: 36621550 DOI: 10.1016/j.envres.2023.115238] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Metabolic syndrome (MetS) is considered a main public health issue as it remarkably adds the risk of cardiovascular disease, leading to a heavy burden of disease. There is growing evidence linking fine particulate matter (PM2.5) exposure to MetS. However, the influences of PM2.5 constituents, especially in children and adolescents, remain unclear. Our study was according to a national analysis among Chinese children and adolescents to examine the associations between long-term exposure to PM2.5 main constituents and MetS. A total of 10,066 children and adolescents aged 10-18 years were recruited in 7 provinces in China, with blood tests, health exams, and questionnaire surveys. We estimated long-term exposures to PM2.5 mass and its five constituents, containing black carbon (BC), organic matter (OM), inorganic nitrate (NO3-), sulfate (SO42-), and soil particles (SOIL) from multi-source data fusion models. Mixed-effects logistic regression models were used with the adjustment of a variety of covariates. In the surveyed populations, 2.9% were classified as MetS. From the single-pollutant models, we discovered that long-term exposures to PM2.5 mass, BC, OM, NO3-, as well as SO42-, were significantly associated with the prevalence of MetS, with odds ratios (ORs) per 1 μg/m3 that were 1.02 (95% confidence interval (CI): 1.01, 1.03) for PM2.5 mass, 1.24 (95% CI: 1.14, 1.35) for BC, 1.07 (95% CI: 1.04, 1.11) for OM, 1.09 (95% CI: 1.04, 1.13) for NO3-, and 1.14 (95% CI:1.04, 1.24) for SO42-. The influence of BC on the prevalence of MetS was robust in both the multi-pollutant model and the PM2.5-constituent joint model. The paper indicates long-term exposure to PM2.5 mass and specific PM2.5 constituents, particularly for BC, was significantly associated with a higher MetS prevalence among children and adolescents in China. Our results highlight the significance of establishing further regulations on PM2.5 constituents.
Collapse
Affiliation(s)
- Jing Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Jun Jiang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Xiaoyu Wan
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Yaqi Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Yinghua Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China.
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
61
|
Abrantes D, Ferreira MC, Costa PD, Hora J, Felício S, Dias TG, Coimbra M. A New Perspective on Supporting Vulnerable Road Users' Safety, Security and Comfort through Personalized Route Planning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3027. [PMID: 36833717 PMCID: PMC9960537 DOI: 10.3390/ijerph20043027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Due to an increase in population, urban centers are currently seeing an increase in traffic, resulting in negative consequences such as pollution and congestion. Efforts have been made to promote a modal shift towards the use of more sustainable means of transport, such as walking and cycling, but several deterrents influence the citizens' perceptions of safety, security and comfort, discouraging their choice of active modes of transport. This study focuses on the importance of providing meaningful information to vulnerable road users (VRUs) to support their perceptions and objectives while moving within urban spaces through a novel concept of route planning. A broad survey of the needs and concerns of VRUs through interviews, focus groups and questionnaires, applied to the Portuguese population of the Metropolitan Area of Porto, led to the development of a new concept of route planners that show personalized routes according to the individual perceptions of each user. This concept is materialized in a route planner prototype that has been extensively tested by potential users. Subjective evaluation and feedback showed the usefulness of the concept and added value to a familiar product, leading to a satisfying experience for participants. This study shows that there is an opportunity to improve these tools to provide a higher degree of power and customization to users on route planning, which includes addressing mobility restrictions and personal perceptions of safety, security and comfort. The ultimate goal of this new approach is to persuade citizens to switch to more sustainable means of transport.
Collapse
Affiliation(s)
- Diogo Abrantes
- Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Marta Campos Ferreira
- Faculdade de Engenharia, Universidade do Porto, 4200-265 Porto, Portugal
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 4200-465 Porto, Portugal
| | - Paulo Dias Costa
- Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- CINTESIS—Centro de Investigação em Tecnologias e Serviços de Saúde, 4200-450 Porto, Portugal
| | - Joana Hora
- Faculdade de Engenharia, Universidade do Porto, 4200-265 Porto, Portugal
| | - Soraia Felício
- Faculdade de Engenharia, Universidade do Porto, 4200-265 Porto, Portugal
| | - Teresa Galvão Dias
- Faculdade de Engenharia, Universidade do Porto, 4200-265 Porto, Portugal
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 4200-465 Porto, Portugal
| | - Miguel Coimbra
- Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 4200-465 Porto, Portugal
| |
Collapse
|
62
|
Nagrani R, Marron M, Bongaerts E, Nawrot TS, Ameloot M, de Hoogh K, Vienneau D, Lequy E, Jacquemin B, Guenther K, De Ruyter T, Mehlig K, Molnár D, Moreno LA, Russo P, Veidebaum T, Ahrens W, Buck C. Association of urinary and ambient black carbon, and other ambient air pollutants with risk of prediabetes and metabolic syndrome in children and adolescents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120773. [PMID: 36455765 DOI: 10.1016/j.envpol.2022.120773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/10/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The effects of exposure to black carbon (BC) on various diseases remains unclear, one reason being potential exposure misclassification following modelling of ambient air pollution levels. Urinary BC particles may be a more precise measure to analyze the health effects of BC. We aimed to assess the risk of prediabetes and metabolic syndrome (MetS) in relation to urinary BC particles and ambient BC and to compare their associations in 5453 children from IDEFICS/I. Family cohort. We determined the amount of BC particles in urine using label-free white-light generation under femtosecond pulsed laser illumination. We assessed annual exposure to ambient air pollutants (BC, PM2.5 and NO2) at the place of residence using land use regression models for Europe, and we calculated the residential distance to major roads (≤250 m vs. more). We analyzed the cross-sectional relationships between urinary BC and air pollutants (BC, PM2.5 and NO2) and distance to roads, and the associations of all these variables to the risk of prediabetes and MetS, using logistic and linear regression models. Though we did not observe associations between urinary and ambient BC in overall analysis, we observed a positive association between urinary and ambient BC levels in boys and in children living ≤250 m to a major road compared to those living >250 m away from a major road. We observed a positive association between log-transformed urinary BC particles and MetS (ORper unit increase = 1.72, 95% CI = 1.21; 2.45). An association between ambient BC and MetS was only observed in children living closer to a major road. Our findings suggest that exposure to BC (ambient and biomarker) may contribute to the risk of MetS in children. By measuring the internal dose, the BC particles in urine may have additionally captured non-residential sources and reduced exposure misclassification. Larger studies, with longitudinal design including measurement of urinary BC at multiple time-points are warranted to confirm our findings.
Collapse
Affiliation(s)
- Rajini Nagrani
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany.
| | - Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Kreuzenstrasse 2, 4123 Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Kreuzenstrasse 2, 4123 Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Emeline Lequy
- Unité "Cohortes en Population" UMS 011 Inserm/Université Paris-Cité/Université Paris Saclay/UVSQ Villejuif, France
| | - Bénédicte Jacquemin
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherché en Santé, Environnement et Travail) - UMR_S 1085,Rennes, France
| | - Kathrin Guenther
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Thaïs De Ruyter
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health and Primary Care, Ghent University, 9000, Ghent, Belgium
| | - Kirsten Mehlig
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Dénes Molnár
- Department of Paediatrics, Medical School, University of Pécs, Pécs, Hungary
| | - Luis A Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IIS Aragón) Zaragoza, Spain and Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Paola Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | | | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany; Institute of Statistics, Faculty of Mathematics and Computer Science, Bremen University, Bremen, Germany
| | - Christoph Buck
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| |
Collapse
|
63
|
Kim YJ, Hwang SW, Lee T, Lee JY, Uh Y. Association between urinary albumin creatinine ratio and cardiovascular disease. PLoS One 2023; 18:e0283083. [PMID: 36943853 PMCID: PMC10030008 DOI: 10.1371/journal.pone.0283083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION The association between microalbuminuria and cardiovascular disease (CVD) is accumulating in various patient populations. However, when stratified by sex, the relationship between microalbuminuria and CVD remains unclear. METHOD We obtained data from the 2011-2014 and 2019-2020 Korea National Health and Nutrition Examination Survey (KNHANES). Microalbuminuria was measured based on spot urine albumin-creatinine ratio (UACR). The Framingham risk score (FRS) model was implemented to evaluate the CVD risk. Linear and logistic regression models were used to identify the associations of microalbuminuria status with cardiometabolic predictors and CVD status determined by the FRS score. RESULTS Among 19,340 representative Korean participants, the (UACR) in Korean women and men with history of CVD was higher than in those without history of CVD. Among patients without history of CVD, multivariate regression analysis showed that a high UACR was related to older age, lower high-density lipoprotein cholesterol level, higher total cholesterol level, higher systolic blood pressure, higher prevalence of current smoking, higher prevalence of diabetes, and higher anti-hypertensive medication use in both women and men. The UACR showed a positive linear correlation with the Framingham risk score in both women and men. CONCLUSION The presence of microalbuminuria was significantly associated with the cardiometabolic risk factors and the increased risk of CVD evaluated by FRS model in both women and men in a nationally representative sample of Korea.
Collapse
Affiliation(s)
- Yoo Jin Kim
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sang Won Hwang
- Artificial Intelligence Bigdata Medical Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Taesic Lee
- Department of Family Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- The Study of Obesity and Metabolic Syndrome, KAFM, Korea
| | - Jun Young Lee
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
64
|
Mun E, Cho J. Review of Internet of Things-Based Artificial Intelligence Analysis Method through Real-Time Indoor Air Quality and Health Effect Monitoring: Focusing on Indoor Air Pollution That Are Harmful to the Respiratory Organ. Tuberc Respir Dis (Seoul) 2023; 86:23-32. [PMID: 36288738 PMCID: PMC9816487 DOI: 10.4046/trd.2022.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/07/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022] Open
Abstract
Everyone is aware that air and environmental pollutants are harmful to health. Among them, indoor air quality directly affects physical health, such as respiratory rather than outdoor air. However, studies that have examined the correlation between environmental and health information have been conducted with public data targeting large cohorts, and studies with real-time data analysis are insufficient. Therefore, this research explores the research with an indoor air quality monitoring (AQM) system based on developing environmental detection sensors and the internet of things to collect, monitor, and analyze environmental and health data from various data sources in real-time. It explores the usage of wearable devices for health monitoring systems. In addition, the availability of big data and artificial intelligence analysis and prediction has increased, investigating algorithmic studies for accurate prediction of hazardous environments and health impacts. Regarding health effects, techniques to prevent respiratory and related diseases were reviewed.
Collapse
Affiliation(s)
- EunMi Mun
- Department of Software Engineering, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jaehyuk Cho
- Department of Software Engineering, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
65
|
Peralta AA, Gold DR, Yazdi MD, Wei Y, Schwartz J. The role of short-term air pollution and temperature on arterial stiffness in a longitudinal closed cohort of elderly individuals. ENVIRONMENTAL RESEARCH 2023; 216:114597. [PMID: 36279911 DOI: 10.1016/j.envres.2022.114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND/AIMS Our study adds to the sparse literature that examines whether arterial stiffness, related to cardiovascular risk, increases with exposure to air pollution. We assessed the associations between spatiotemporally resolved air pollutants and vascular and hemodynamic parameters in an elderly population-based in Eastern Massachusetts. METHODS Among 397 men living in Eastern Massachusetts between 2007 and 2013, we utilized time-varying linear mixed-effects regressions to examine associations between central augmentation index (%) and central pulse pressure (mmHg) and short-term (0-7 days) exposure to air pollution concentrations (fine particulate matter (PM2.5), nitrogen dioxide (NO2), ozone (O3)), and temperature adjusted for known cardiovascular risk factors. Central augmentation index (AIx) and pulse pressure (AP) were measured at each visit using radial artery applanation tonometry for pulse wave analysis. Each air pollutant and temperature were geocoded to the participant's residential address using validated ensemble and hybrid exposure models and gridMET predictions. RESULTS We found consistent results that higher short-term PM2.5 concentrations (0-7 day moving averages) were associated with significantly higher measures of arterial stiffness. Each 4.52 μg/m3 interquartile range (IQR) increase in daily PM2.5 for a 3-day moving average was associated with a 0.63% (95% confidence interval (CI): 0.11, 1.15) increase in AIx and a 1.65 mmHg (95% CI: 0.42, 2.88) increase in pulse pressure. Furthermore, each 3.83 μg/m3 IQR increase in daily PM2.5 for a 7-day moving average was associated with a 0.57% (95% CI: -0.01, 1.14) increase in AIx and a 1.91 mmHg (95% CI: 0.54, 3.28) increase in pulse pressure. Smaller increases in AIx and AP were observed for the other short-term moving averages of PM2.5 exposure apart from days zero and five for AIx. We found no clear association between O3, NO2, temperature, and the outcomes. CONCLUSIONS Short-term PM2.5 exposure was associated with markers of arterial stiffness and central hemodynamics.
Collapse
Affiliation(s)
- Adjani A Peralta
- Department of Environmental Health; Harvard T.H. Chan School of Public Health, United States.
| | - Diane R Gold
- Department of Environmental Health; Harvard T.H. Chan School of Public Health, United States; Channing Division of Network Medicine, Department of Medicine; Brigham and Women's Hospital and Harvard Medical School, United States
| | - Mahdieh Danesh Yazdi
- Department of Environmental Health; Harvard T.H. Chan School of Public Health, United States
| | - Yaguang Wei
- Department of Environmental Health; Harvard T.H. Chan School of Public Health, United States
| | - Joel Schwartz
- Department of Environmental Health; Harvard T.H. Chan School of Public Health, United States; Department of Epidemiology; Harvard T.H. Chan School of Public Health, United States
| |
Collapse
|
66
|
Redfern J, Gregory AT, Raman J, Figtree GA, Singleton A, Denniss AR, Ferguson C. Environment, Climate and Cardiovascular Health: What We Know, What We Need to Know and What We Need to Do. Heart Lung Circ 2023; 32:1-3. [PMID: 36739116 DOI: 10.1016/j.hlc.2022.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Julie Redfern
- School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| | - Ann T Gregory
- Heart, Lung and Circulation, Sydney, NSW, Australia. https://twitter.com/HeartLungCirc
| | - Jai Raman
- Austin & St Vincent's Hospitals, Melbourne, and University of Melbourne, Vic, Australia; Deakin University, Geelong & Melbourne, Vic, Australia; James Cook University, Townsville & Cairns, Qld, Australia; University of Illinois, Urbana-Champaign, IL, USA
| | - Gemma A Figtree
- Department of Cardiology, Royal North Shore Hospital and University of Sydney, Sydney, NSW, Australia
| | - Anna Singleton
- School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - A Robert Denniss
- Heart, Lung and Circulation, Sydney, NSW, Australia; Department of Cardiology, Westmead Hospital, and University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Blacktown Hospital, and Western Sydney University, Sydney, NSW, Australia
| | - Caleb Ferguson
- School of Nursing, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
67
|
Zordão OP, Campolim CM, Yariwake VY, Castro G, Ferreira CKDO, Santos A, Norberto S, Veras MM, Saad MJA, Saldiva PHN, Kim YB, Prada PO. Maternal exposure to air pollution alters energy balance transiently according to gender and changes gut microbiota. Front Endocrinol (Lausanne) 2023; 14:1069243. [PMID: 37082122 PMCID: PMC10112381 DOI: 10.3389/fendo.2023.1069243] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/07/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction The timing of maternal exposure to air pollution is crucial to define metabolic changes in the offspring. Here we aimed to determine the most critical period of maternal exposure to particulate matter (PM2.5) that impairs offspring's energy metabolism and gut microbiota composition. Methods Unexposed female and male C57BL/6J mice were mated. PM2.5 or filtered air (FA) exposure occurred only in gestation (PM2.5/FA) or lactation (FA/PM2.5). We studied the offspring of both genders. Results PM2.5 exposure during gestation increased body weight (BW) at birth and from weaning to young in male adulthood. Leptin levels, food intake, Agrp, and Npy levels in the hypothalamus were also increased in young male offspring. Ikbke, Tnf increased in male PM2.5/FA. Males from FA/PM2.5 group were protected from these phenotypes showing higher O2 consumption and Ucp1 in the brown adipose tissue. In female offspring, we did not see changes in BW at weaning. However, adult females from PM2.5/FA displayed higher BW and leptin levels, despite increased energy expenditure and thermogenesis. This group showed a slight increase in food intake. In female offspring from FA/PM2.5, BW, and leptin levels were elevated. This group displayed higher energy expenditure and a mild increase in food intake. To determine if maternal exposure to PM2.5 could affect the offspring's gut microbiota, we analyzed alpha diversity by Shannon and Simpson indexes and beta diversity by the Linear Discriminant Analysis (LDA) in offspring at 30 weeks. Unlike males, exposure during gestation led to higher adiposity and leptin maintenance in female offspring at this age. Gestation exposure was associated with decreased alpha diversity in the gut microbiota in both genders. Discussion Our data support that exposure to air pollution during gestation is more harmful to metabolism than exposure during lactation. Male offspring had an unfavorable metabolic phenotype at a young age. However, at an older age, only females kept more adiposity. Ultimately, our data highlight the importance of controlling air pollution, especially during gestation.
Collapse
Affiliation(s)
- Olivia Pizetta Zordão
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Clara Machado Campolim
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Victor Yuji Yariwake
- Laboratory of Environmental and Experimental Pathology, Department of Pathology, University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | - Gisele Castro
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Andrey Santos
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sónia Norberto
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mariana Matera Veras
- Laboratory of Environmental and Experimental Pathology, Department of Pathology, University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratory of Environmental and Experimental Pathology, Department of Pathology, University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Patricia Oliveira Prada
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, SP, Brazil
- *Correspondence: Patricia Oliveira Prada, ;
| |
Collapse
|
68
|
Kwan SC, Zakaria SB, Ibrahim MF, Wan Mahiyuddin WR, Md Sofwan N, A Wahab MI, Ahmad RDR, Abbas AR, Woon WK, Sahani M. Health impacts from TRAPs and carbon emissions in the projected electric vehicle growth and energy generation mix scenarios in Malaysia. ENVIRONMENTAL RESEARCH 2023; 216:114524. [PMID: 36228692 DOI: 10.1016/j.envres.2022.114524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Road transport contributes over 70% of air pollution in urban areas and is the second largest contributor to the total carbon dioxide emissions in Malaysia at 21% in 2016. Transport-related air pollutants (TRAPs) such as NOx, SO2, CO and particulate matter (PM) pose significant threats to the urban population's health. Malaysia has targeted to deploy 885,000 EV cars on the road by 2030 in the Low Carbon Mobility Blueprint (LCMB). This study aims to quantify the health co-benefits of electric vehicle adoption from their impacts on air quality in Malaysia. Two EV uptake projections, i.e. LCMB and Revised EV Adoption (REVA) projections, and five electricity generation mix scenarios were modelled up to 2040. We used comparative health risk assessment to estimate the potential changes in mortality and burden of diseases (BoD) from the emissions in each scenario. Intake fractions and exposure-risk functions were used to calculate the burden from respiratory diseases (PM2.5, NOx, SO2, CO), cardiovascular diseases and lung cancer (PM2.5). Results showed that along with a net reduction of carbon emissions across all scenarios, there could be reduced respiratory mortality from NOx by 10,200 mortality (176,200 DALYs) and SO2 by 2600 mortality (45,400 DALYs) per year in 2040. However, there could also be additional 719 mortality (9900 DALYs) per year from PM2.5 and 329 mortality (5600 DALYs) from CO per year. The scale of reduction in mortality and BoD from NOx and SO2 are significantly larger than the scale of increase from PM2.5 and CO, indicating potential net positive health impacts from the EV adoption in the scenarios. The health cost savings from the reduced BoD of respiratory mortality could reach up to RM 7.5 billion per year in 2040. In conclusion, EV is a way forward in promoting a healthy and sustainable future transport in Malaysia.
Collapse
Affiliation(s)
- Soo Chen Kwan
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sazalina Binti Zakaria
- Built Environment and Climate Change Unit, Generation & Environment Department, TNB Research, Malaysia
| | - Mohd Faiz Ibrahim
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Nurzawani Md Sofwan
- Environmental Health Program, Faculty of Health Sciences, Universiti Teknologi MARA Sarawak Branch, Kota Samarahan, Sarawak, Malaysia
| | - Muhammad Ikram A Wahab
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Radin Diana R Ahmad
- Built Environment and Climate Change Unit, Generation & Environment Department, TNB Research, Malaysia
| | - Ahmad Rosly Abbas
- Built Environment and Climate Change Unit, Generation & Environment Department, TNB Research, Malaysia
| | - Wei Kian Woon
- Corporate Strategy & Sustainability, Strategy and Ventures Division, Tenaga Nasional Berhad, Malaysia
| | - Mazrura Sahani
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
69
|
Haddad P, Kutlar Joss M, Weuve J, Vienneau D, Atkinson R, Brook J, Chang H, Forastiere F, Hoek G, Kappeler R, Lurmann F, Sagiv S, Samoli E, Smargiassi A, Szpiro A, Patton AP, Boogaard H, Hoffmann B. Long-term exposure to traffic-related air pollution and stroke: A systematic review and meta-analysis. Int J Hyg Environ Health 2023; 247:114079. [PMID: 36446272 DOI: 10.1016/j.ijheh.2022.114079] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Stroke remains the second cause of death worldwide. The mechanisms underlying the adverse association of exposure to traffic-related air pollution (TRAP) with overall cardiovascular disease may also apply to stroke. Our objective was to systematically evaluate the epidemiological evidence regarding the associations of long-term exposure to TRAP with stroke. METHODS PubMed and LUDOK electronic databases were searched systematically for observational epidemiological studies from 1980 through 2019 on long-term exposure to TRAP and stroke with an update in January 2022. TRAP was defined according to a comprehensive protocol based on pollutant and exposure assessment methods or proximity metrics. Study selection, data extraction, risk of bias (RoB) and confidence assessments were conducted according to standardized protocols. We performed meta-analyses using random effects models; sensitivity analyses were assessed by geographic area, RoB, fatality, traffic specificity and new studies. RESULTS Nineteen studies were included. The meta-analytic relative risks (and 95% confidence intervals) were: 1.03 (0.98-1.09) per 1 μg/m3 EC, 1.09 (0.96-1.23) per 10 μg/m3 PM10, 1.08 (0.89-1.32) per 5 μg/m3 PM2.5, 0.98 (0.92; 1.05) per 10 μg/m3 NO2 and 0.99 (0.94; 1.04) per 20 μg/m3 NOx with little to moderate heterogeneity based on 6, 5, 4, 7 and 8 studies, respectively. The confidence assessments regarding the quality of the body of evidence and separately regarding the presence of an association of TRAP with stroke considering all available evidence were rated low and moderate, respectively. CONCLUSION The available literature provides low to moderate evidence for an association of TRAP with stroke.
Collapse
Affiliation(s)
- P Haddad
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| | - M Kutlar Joss
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany; Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - J Weuve
- Department of Epidemiology, Boston University School of Public Health, 715 Albany St, Boston, MA, 02118, USA
| | - D Vienneau
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - R Atkinson
- Epidemiology, Population Health Research Institute and MRC-PHE Centre for Environment and Health, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - J Brook
- Occupational and Environmental Health Division, Dalla Lana School of Public Health, University of Toronto, 155 College St Room 500, Toronto, ON M5T 3M7, Canada
| | - H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - F Forastiere
- School of Public Health, Faculty of Medicine, Imperial College, Level 2, Faculty Building South Kensington Campus, London, SW7 2AZ, UK
| | - G Hoek
- Institute for Risk Assessment Sciences, Environmental Epidemiology, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, the Netherlands
| | - R Kappeler
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - F Lurmann
- Sonoma Technology, Inc, 1450 N McDowell Blvd #200, Petaluma, CA, 94954, USA
| | - S Sagiv
- Center for Environmental Research and Children's Health, Division of Epidemiology, University of California Berkeley School of Public Health, 2121 Berkeley Way, Berkeley, CA, 94704, USA
| | - E Samoli
- Dept. of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, Athina, 115 27, Greece
| | - A Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, 7101 Park Ave, Montreal, Quebec, H3N 1X9, Canada
| | - A Szpiro
- Department of Biostatistics, University of Washington, Hans Rosling Center for Population Health, 3980 15th Avenue NE, Box 351617, Seattle, WA, 98195-1617, USA
| | - A P Patton
- Health Effects Institute, 75 Federal suite UNIT 1400, Boston, MA, 02110, USA
| | - H Boogaard
- Health Effects Institute, 75 Federal suite UNIT 1400, Boston, MA, 02110, USA
| | - B Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
70
|
Li X, Li Y, Yu B, Zhu H, Zhou Z, Yang Y, Liu S, Tian Y, Xiao J, Xing X, Yin L. Health and economic impacts of ambient air pollution on hospital admissions for overall and specific cardiovascular diseases in Panzhihua, Southwestern China. J Glob Health 2022; 12:11012. [PMID: 36538381 PMCID: PMC9805700 DOI: 10.7189/jogh.12.11012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The associations of ambient air pollution with hospital admissions (HAs) for overall and specific causes of cardiovascular diseases (CVDs), as well as related morbidity and economic burdens remain understudied, especially in low-pollution areas of low- and middle-income countries (LMICs). We evaluated the short-term effects of exposure to PM2.5 (particles with an aerodynamic diameter ≤2.5 μm), PM10 (particles with an aerodynamic diameter ≤10 μm), and SO2 (sulfur dioxide) on HAs for CVDs in Panzhihua, China, during 2016-2020, and calculated corresponding attributable risks and economic burden. Methods We used a generalized additive model (GAM) while controlling for time trends, meteorological conditions, holidays, and days of the week to estimate the associations. The cost of illness (COI) method was adopted to further assess corresponding hospitalization costs and productivity losses. Results A total of 27 660 HAs for CVDs were included in this study. PM10 and SO2 were significantly associated with elevated risks of CVDs hospitalizations. Each 10 μg/m3 increase in PM10 and SO2 at lag06 corresponded to an increase of 2.48% (95% confidence interval (CI) = 0.92%-4.06%), and 5.50% (95% CI = 3.09%-7.97%) in risk of HAs for CVDs, respectively. The risk estimates of PM10 and SO2 on CVD hospitalizations were generally robust after adjustment for other pollutants in two-pollutant models. We found stronger associations between air pollution (PM10 and SO2) and CVDs in cool seasons than in warm seasons. For specific causes of CVDs, significant associations of PM10 and SO2 exposure with cerebrovascular disease and ischaemic heart disease were observed. Using 0 μg/m3 as the reference concentrations, 11.91% (95%CI = 4.64%-18.56%) and 15.71% (95%CI = 9.30%-21.60%) of HAs for CVDs could be attributable to PM10 and SO2, respectively. During the study period, PM10 and SO2 brought 144.34 million Yuan economic losses for overall CVDs, accounting for 0.028% of local GDP. Conclusions Our results suggest that PM10 and SO2 exposure might be an important trigger of HAs for CVDs and accounted for substantial morbidity and economic burden.
Collapse
Affiliation(s)
- Xianzhi Li
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
| | - Yajie Li
- Tibet Center for Disease Control and Prevention, Lhasa, China
| | - Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University – Hong Kong Polytechnic University, Chengdu, China
| | - Hongwei Zhu
- Department of dermatology, Panzhihua Central Hospital, Panzhihua, China
| | - Zonglei Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Yan Yang
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China,Department of Respiratory and Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, China
| | - Shunjin Liu
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
| | - Yunyun Tian
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
| | - Junjie Xiao
- Department of Medical Records and Statistics, Panzhihua Central Hospital, Panzhihua, China
| | - Xiangyi Xing
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China,Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China
| | - Li Yin
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
| |
Collapse
|
71
|
Dwivedi AK, Vishwakarma D, Dubey P, Reddy SY. Air Pollution and the Heart: Updated Evidence from Meta-analysis Studies. Curr Cardiol Rep 2022; 24:1811-1835. [PMID: 36434404 DOI: 10.1007/s11886-022-01819-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Although environmental exposure such as air pollution is detrimental to cardiovascular disease (CVD), the effects of different air pollutants on different CVD endpoints produced variable findings. We provide updated evidence between air pollutants and CVD outcomes including mitigation strategies with meta-analytic evidence. RECENT FINDINGS An increased exposure to any class of air pollutants including particulate matter (PM), gas, toxic metals, and disruptive chemicals has been associated with CVD events. Exposure to PM < 2.5 μm has been consistently associated with most heart diseases and stroke as well as CVDs among at-risk individuals. Despite this, there is no clinical approach available for systemic evaluation of air pollution exposure and management. A large number of epidemiological evidence clearly suggests the importance of air pollution prevention and control for reducing the risk of CVDs and mortality. Cost-effective and feasible strategies for air pollution monitoring, screening, and necessary interventions are urgently required among at-risk populations and those living or working, or frequently commuting in polluted areas.
Collapse
Affiliation(s)
- Alok Kumar Dwivedi
- Division of Biostatistics & Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, 5001, El Paso Drive, El Paso, TX, 79905, USA. .,Biostatistics and Epidemiology Consulting Lab, Office of Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
| | - Deepanjali Vishwakarma
- Division of Biostatistics & Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, 5001, El Paso Drive, El Paso, TX, 79905, USA
| | - Pallavi Dubey
- Department of Obstetrics and Gynecology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Sireesha Y Reddy
- Department of Obstetrics and Gynecology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| |
Collapse
|
72
|
Marmett B, Carvalho RB, Nunes RB, Rhoden CR. Exposure to O 3 and NO 2 in physically active adults: an evaluation of physiological parameters and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4269-4284. [PMID: 34988724 DOI: 10.1007/s10653-021-01194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The gaseous air pollutants ozone (O3) and nitrogen dioxide (NO2) have a large public health relevance and trigger environmental health risk. On the other hand, despite the health benefits, exercise practices might increase the susceptibility to air pollutants exposure. However, there are innumerous lifestyle factors besides physical activity habits that must be considered in the daily air pollution exposure and are still not fully comprehended. This study aimed to evaluate the effects of O3 and NO2 exposure on cardiorespiratory fitness, lipid accumulation product (LAP), and environmental health risk during the entire daily routine of physically active adults that exercise in outdoor and indoor environments. One hundred and twenty healthy young men were assigned to untrained (n = 52), indoor exercise (n = 36), and outdoor exercise (n = 32) groups, following their lifestyle exercise habits, and O3 and NO2 were assessed by personal monitoring. Exercised groups demonstrated higher healthy eating index (HEI) (p < 0.001), physical activity (PA) (p < 0.001), metabolic equivalent of task (MET) (p < 0.001), and peak oxygen uptake VO2peak (p < 0.001), while outdoor group had lower LAP index (p < 0.001) and higher O3 concentration (p = 0.0442). Environmental health risk demonstrated no difference (p > 0.05). The higher O3 concentration was positively correlated with the risk quotient (p = 0.003) and MET (p = 0.020), and a negative correlation between LAP and VO2peak was observed (p < 0.001). In conclusion, physically active individuals might have a lower risk of developing cardiovascular and metabolic diseases despite the higher O3 concentration exposure, and the exposure during exercise did not represent an additional health risk.
Collapse
Affiliation(s)
- Bruna Marmett
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, Porto Alegre, RS, 90050-170, Brazil.
| | - Roseana Boek Carvalho
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, Porto Alegre, RS, 90050-170, Brazil
| | - Ramiro Barcos Nunes
- Research Department-Instituto Federal de Educação, Ciência E Tecnologia Sul-Rio-Grandense, Gravataí, Brazil
| | - Cláudia Ramos Rhoden
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, Porto Alegre, RS, 90050-170, Brazil
| |
Collapse
|
73
|
Li H, Cai M, Li H, Qian ZM, Stamatakis K, McMillin SE, Zhang Z, Hu Q, Lin H. Is dietary intake of antioxidant vitamins associated with reduced adverse effects of air pollution on diabetes? Findings from a large cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114182. [PMID: 36270037 PMCID: PMC9626446 DOI: 10.1016/j.ecoenv.2022.114182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 05/12/2023]
Abstract
INTRODUCTION It remains unknown whether higher dietary intake of antioxidant vitamins could reduce the harmful effects of air pollution on incident diabetes mellitus. METHODS A total of 156,490 participants free of diabetes mellitus in the UK Biobank data were included in this analysis. Antioxidant vitamin intake was measured using a 24-h food intake questionnaire, and results were categorized as sufficient or insufficient according to the British Recommended Nutrient Intake. Exposure to fine particles (PM2.5), thoracic particles (PM10), nitrogen dioxide (NO2), and nitrogen oxide (NOx) was estimated using land use regression models at participants' residences. Incident diabetes mellitus was identified using health administrative datasets. Cox regression models were used to assess the associations. RESULTS A total of 4271 incident diabetes mellitus cases were identified during a median follow-up of 11.7 years. Compared with participants with insufficient intake of antioxidant vitamins, those with sufficient consumption had a weaker association between air pollution (PM2.5, PM10 and NO2) and diabetes mellitus [sufficient vs. insufficient: HR = 1.12 (95 % CI: 0.87, 1.45) vs. 1.69 (95 % CI: 1.42, 2.02) for PM2.5, 1.00 (95 % CI: 0.88, 1.14) vs. 1.21 (95 % CI: 1.10, 1.34) for PM10, and 1.01 (95 % CI: 0.98, 1.04) vs. 1.05 (95 % CI: 1.03, 1.07) for NO2 (all p for comparison < 0.05)]. Among different antioxidant vitamins, we observed stronger effects for vitamin C and E. CONCLUSION Our study suggests that ambient air pollution is one important risk factor of diabetes mellitus, and sufficient intake of antioxidant vitamins may reduce such adverse effects of air pollution on diabetes mellitus.
Collapse
Affiliation(s)
- Haopeng Li
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Miao Cai
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Haitao Li
- Department of Social Medicine and Health Service Management, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63104, USA
| | - Katie Stamatakis
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63104, USA
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA
| | - Zilong Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Qiansheng Hu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Hualiang Lin
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
74
|
Xi Y, Richardson DB, Kshirsagar AV, Wade TJ, Flythe JE, Whitsel EA, Rappold AG. Association Between Long-term Ambient PM 2.5 Exposure and Cardiovascular Outcomes Among US Hemodialysis Patients. Am J Kidney Dis 2022; 80:648-657.e1. [PMID: 35690155 DOI: 10.1053/j.ajkd.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/15/2022] [Indexed: 02/02/2023]
Abstract
RATIONALE & OBJECTIVE Ambient PM2.5 (particulate matter with a diameter of 2.5 microns) is a ubiquitous air pollutant with established adverse cardiovascular (CV) effects. However, quantitative estimates of the association between PM2.5 exposure and CV outcomes in the setting of kidney disease are limited. This study assessed the association of long-term PM2.5 exposure with CV events and cardiovascular disease (CVD)-specific mortality among patients receiving maintenance in-center hemodialysis (HD). STUDY DESIGN Retrospective cohort study. SETTINGS & PARTICIPANTS 314,079 adult kidney failure patients initiating HD between 2011 and 2016 identified from the US Renal Data System. EXPOSURE Estimated daily ZIP code-level PM2.5 concentrations were used to calculate each participant's annual average PM2.5 exposure based on the dialysis clinics visited during the 365 days before the outcome. OUTCOME CV event and CVD-specific mortality were ascertained based on ICD-9/ICD-10 diagnostic codes and recorded cause of death from Centers for Medicare & Medicaid Services form 2746. ANALYTICAL APPROACH Discrete time hazards models were used to estimate hazards ratios per 1 μg/m3 greater annual average PM2.5, adjusting for temperature, humidity, day of the week, season, age at baseline, race, employment status, and geographic region. Effect measure modification was assessed for age, sex, race, and baseline comorbidities. RESULTS Each 1 μg/m3 greater annual average PM2.5 was associated with a greater rate of CV events (HR, 1.02 [95% CI, 1.01-1.02]) and CVD-specific mortality (HR, 1.02 [95% CI, 1.02-1.03]). The association was more pronounced for people who initiated dialysis at an older age, had chronic obstructive pulmonary disease (COPD) at baseline, or were Asian. Evidence of effect modification was also observed across strata of race, and other baseline comorbidities. LIMITATIONS Potential exposure misclassification and unmeasured confounding. CONCLUSIONS Long-term ambient PM2.5 exposure was associated with CVD outcomes among patients receiving maintenance in-center HD. Stronger associations between long-term PM2.5 exposure and adverse effects were observed among patients who were of advanced age, had COPD, or were Asian. PLAIN-LANGUAGE SUMMARY Long-term exposure to air pollution, also called PM2.5, has been linked to adverse cardiovascular outcomes. However, little is known about the association of PM2.5 and outcomes among patients receiving dialysis, who are individuals with high cardiovascular disease burdens. We conducted an epidemiological study to assess the association between the annual PM2.5 exposure and cardiovascular events and death among patients receiving regular outpatient hemodialysis in the United States between 2011 and 2016. We found a higher risk of heart attacks, strokes, and related events in patients exposed to higher levels of air pollution. Stronger associations between air pollution and adverse health events were observed among patients who were older at the start of dialysis, had chronic obstructive pulmonary disease, or were Asian. These findings bolster the evidence base linking air pollution and adverse health outcomes and may inform policy makers and clinicians.
Collapse
Affiliation(s)
- Yuzhi Xi
- Oak Ridge Institute for Science and Education, United States Environmental Protection Agency, Research Triangle Park, North Carolina; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - David B Richardson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Abhijit V Kshirsagar
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, North Carolina; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Timothy J Wade
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Jennifer E Flythe
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, North Carolina; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ana G Rappold
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina.
| |
Collapse
|
75
|
Dong S, Koutrakis P, Li L, Coull BA, Schwartz J, Kosheleva A, Zanobetti A. Synergistic Effects of Particle Radioactivity (Gross β Activity) and Particulate Matter ≤2.5 μm Aerodynamic Diameter on Cardiovascular Disease Mortality. J Am Heart Assoc 2022; 11:e025470. [PMID: 36197036 PMCID: PMC9673676 DOI: 10.1161/jaha.121.025470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Background Although the effects of fine particulate matter (particulate matter ≤2.5 μm aerodynamic diameter [PM2.5]) on cardiovascular disease (CVD) morbidity and mortality are well established, little is known about the CVD health effects of particle radioactivity. In addition, there are still questions about which of the PM2.5 physical, chemical, or biological properties are mostly responsible for its toxicity. Methods and Results We investigated the association between particle radioactivity, measured as gross β activity from highly resolved spatiotemporal predictions, and mortality for CVD, myocardial infarction, stroke, and all-cause nonaccidental mortality in Massachusetts (2001-2015). Within both difference-in-differences model and generalized linear mixed model frameworks, we fit both single-exposure and 2-exposure models adjusting for PM2.5 and examined the interaction between PM2.5 and gross β activity. We found significant associations between gross β activity and PM2.5 and each mortality cause. Using difference-in-differences and adjusting for PM2.5, we found the highest associations with myocardial infarction (rate ratio, 1.16 [95% CI, 1.08-1.24]) and stroke (rate ratio, 1.11 [95% CI, 1.04-1.18]) for an interquartile range increase (0.055 millibecquerels per cubic meter) in gross β activity. We found a significant positive interaction between PM2.5 and gross β activity, with higher associations between PM2.5 and mortality at a higher level of gross β activity. We also observed that the associations varied across age groups. The results were comparable between the 2 statistical methods also with and without adjusting for PM2.5. Conclusions This is the first study that, using highly spatiotemporal predictions of gross β-activity, provides evidence that particle radioactivity increases CVD mortality and enhances PM2.5 CVD mortality. Therefore, particle radioactivity can be an important property of PM2.5 that must be further investigated. Addressing this important question can lead to cost-effective air-quality regulations.
Collapse
Affiliation(s)
- Shuxin Dong
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Petros Koutrakis
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Longxiang Li
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Brent A. Coull
- Department of Biostatistics, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Joel Schwartz
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
- Department of Epidemiology, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Anna Kosheleva
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Antonella Zanobetti
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| |
Collapse
|
76
|
Stapelberg NJC, Branjerdporn G, Adhikary S, Johnson S, Ashton K, Headrick J. Environmental Stressors and the PINE Network: Can Physical Environmental Stressors Drive Long-Term Physical and Mental Health Risks? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13226. [PMID: 36293807 PMCID: PMC9603079 DOI: 10.3390/ijerph192013226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Both psychosocial and physical environmental stressors have been linked to chronic mental health and chronic medical conditions. The psycho-immune-neuroendocrine (PINE) network details metabolomic pathways which are responsive to varied stressors and link chronic medical conditions with mental disorders, such as major depressive disorder via a network of pathophysiological pathways. The primary objective of this review is to explore evidence of relationships between airborne particulate matter (PM, as a concrete example of a physical environmental stressor), the PINE network and chronic non-communicable diseases (NCDs), including mental health sequelae, with a view to supporting the assertion that physical environmental stressors (not only psychosocial stressors) disrupt the PINE network, leading to NCDs. Biological links have been established between PM exposure, key sub-networks of the PINE model and mental health sequelae, suggesting that in theory, long-term mental health impacts of PM exposure may exist, driven by the disruption of these biological networks. This disruption could trans-generationally influence health; however, long-term studies and information on chronic outcomes following acute exposure event are still lacking, limiting what is currently known beyond the acute exposure and all-cause mortality. More empirical evidence is needed, especially to link long-term mental health sequelae to PM exposure, arising from PINE pathophysiology. Relationships between physical and psychosocial stressors, and especially the concept of such stressors acting together to impact on PINE network function, leading to linked NCDs, evokes the concept of syndemics, and these are discussed in the context of the PINE network.
Collapse
Affiliation(s)
- Nicolas J. C. Stapelberg
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Grace Branjerdporn
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Sam Adhikary
- Mater Young Adult Health Centre, Mater Hospital, Brisbane, QID 4101, Australia
| | - Susannah Johnson
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
| | - Kevin Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - John Headrick
- School of Medical Science, Griffith University, Gold Coast, QID 4215, Australia
| |
Collapse
|
77
|
Li L, Zhu Y, Han B, Chen R, Man X, Sun X, Kan H, Lei Y. Acute exposure to air pollutants increase the risk of acute glaucoma. BMC Public Health 2022; 22:1782. [PMID: 36127653 PMCID: PMC9487138 DOI: 10.1186/s12889-022-14078-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Ambient air pollution is related to the onset and progression of ocular disease. However, the effect of air pollutants on the acute glaucoma remains unclear. Objective To investigate the effect of air pollutants on the incidence of acute glaucoma (acute angle closure glaucoma and glaucomatocyclitic crisis) among adults. Methods We conducted a time-stratified case-crossover study based on the data of glaucoma outpatients from January, 2015 to Dec, 2021 in Shanghai, China. A conditional logistic regression model combined with a polynomial distributed lag model was applied for the statistical analysis. Each case serves as its own referent by comparing exposures on the day of the outpatient visit to the exposures on the other 3–4 control days on the same week, month and year. To fully capture the delayed effect of air pollution, we used a maximum lag of 7 days in main model. Results A total of 14,385 acute glaucoma outpatients were included in this study. We found exposure to PM2.5, PM10, nitrogen dioxide (NO2) and carbon monoxide (CO) significantly increased the odds of outpatient visit for acute glaucoma. Wherein the odds of acute glaucoma related to PM2.5 and NO2 were higher and more sustained, with OR of 1.07 (95%CI: 1.03–1.11) and 1.12 (95% CI: 1.08–1.17) for an IQR increase over lag 0–3 days, than PM10 and CO over lag 0–1 days (OR:1.03; 95% CI: 1.01–1.05; OR: 1.04; 95% CI: 1.01–1.07). Conclusions This case-crossover study provided first-hand evidence that air pollutants, especially PM2.5 and NO2, significantly increased risk of acute glaucoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-14078-9.
Collapse
Affiliation(s)
- Liping Li
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai, 200032, China
| | - Binze Han
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai, 200032, China.,Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China
| | - Xiaofei Man
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China. .,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai, 200032, China. .,Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
78
|
Liu C, Chan KH, Lv J, Lam H, Newell K, Meng X, Liu Y, Chen R, Kartsonaki C, Wright N, Du H, Yang L, Chen Y, Guo Y, Pei P, Yu C, Shen H, Wu T, Kan H, Chen Z, Li L. Long-Term Exposure to Ambient Fine Particulate Matter and Incidence of Major Cardiovascular Diseases: A Prospective Study of 0.5 Million Adults in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13200-13211. [PMID: 36044001 PMCID: PMC9494741 DOI: 10.1021/acs.est.2c03084] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Few cohort studies explored the long-term effects of ambient fine particulate matter (PM2.5) on incidence of cardiovascular diseases (CVDs), especially in countries with higher levels of air pollution. We aimed to evaluate the association between long-term exposure to PM2.5 and incidence of CVD in China. We performed a prospective cohort study in ten regions that recruited 512,689 adults during 2004-2008, with follow-up until 2017. Annual PM2.5 concentrations were estimated using a satellite-based model with national coverage and 1 x 1 km spatial resolution. Time-varying Cox proportional hazard regression models were used to estimate hazard ratios (HRs) for all-cause and cause-specific CVDs associated with PM2.5, adjusting for conventional covariates. During 5.08 million person-years of follow-up, 148,030 incident cases of CVD were identified. Long-term exposure to PM2.5 showed positive and linear association with incidence of CVD, without a threshold below any concentration. The adjusted HRs per 10 μg/m3 increase in PM2.5 was 1.04 (95%CI: 1.02, 1.07) for total CVD. The risk estimates differed between certain population subgroups, with greater HRs in men, in household with higher income, and in people using unclean heating fuels. This prospective study of large Chinese population provided essential epidemiological evidence for CVD incident risk associated with PM2.5.
Collapse
Affiliation(s)
- Cong Liu
- School
of Public Health, Key Lab of Public Health Safety of the Ministry
of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE
on Risk Interconnectivity and Governance on Weather/Climate Extremes
Impact and Public Health, Fudan University, Shanghai 200032, China
| | - Ka Hung Chan
- Clinical
Trial Service Unit & Epidemiological Studies Unit, Nuffield Department
of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Oxford
British Heart Foundation Center of Research Excellence, University of Oxford, Oxford OX3 7LF, UK
| | - Jun Lv
- Department
of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Peking
University Center for Public Health and Epidemic Preparedness &
Response, Beijing 100191, China
- Key Laboratory
of Molecular Cardiovascular Sciences (Peking University), Ministry
of Education, Beijing 100191, China
| | - Hubert Lam
- Clinical
Trial Service Unit & Epidemiological Studies Unit, Nuffield Department
of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Katherine Newell
- Clinical
Trial Service Unit & Epidemiological Studies Unit, Nuffield Department
of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Xia Meng
- School
of Public Health, Key Lab of Public Health Safety of the Ministry
of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE
on Risk Interconnectivity and Governance on Weather/Climate Extremes
Impact and Public Health, Fudan University, Shanghai 200032, China
| | - Yang Liu
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Renjie Chen
- School
of Public Health, Key Lab of Public Health Safety of the Ministry
of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE
on Risk Interconnectivity and Governance on Weather/Climate Extremes
Impact and Public Health, Fudan University, Shanghai 200032, China
| | - Christiana Kartsonaki
- Clinical
Trial Service Unit & Epidemiological Studies Unit, Nuffield Department
of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Neil Wright
- Clinical
Trial Service Unit & Epidemiological Studies Unit, Nuffield Department
of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Huaidong Du
- Clinical
Trial Service Unit & Epidemiological Studies Unit, Nuffield Department
of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Ling Yang
- Clinical
Trial Service Unit & Epidemiological Studies Unit, Nuffield Department
of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Yiping Chen
- Clinical
Trial Service Unit & Epidemiological Studies Unit, Nuffield Department
of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Yu Guo
- Fuwai
Hospital Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Pei Pei
- Fuwai
Hospital Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Canqing Yu
- Department
of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Peking
University Center for Public Health and Epidemic Preparedness &
Response, Beijing 100191, China
| | - Hongbing Shen
- Department
of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Tangchun Wu
- School
of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haidong Kan
- School
of Public Health, Key Lab of Public Health Safety of the Ministry
of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE
on Risk Interconnectivity and Governance on Weather/Climate Extremes
Impact and Public Health, Fudan University, Shanghai 200032, China
| | - Zhengming Chen
- Clinical
Trial Service Unit & Epidemiological Studies Unit, Nuffield Department
of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC
Population Health Research Unit, Nuffield Department of Population
Health, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Liming Li
- Department
of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Peking
University Center for Public Health and Epidemic Preparedness &
Response, Beijing 100191, China
| | | |
Collapse
|
79
|
Kim JH, Woo HD, Choi S, Song DS, Lee JH, Lee K. Long-Term Effects of Ambient Particulate and Gaseous Pollutants on Serum High-Sensitivity C-Reactive Protein Levels: A Cross-Sectional Study Using KoGES-HEXA Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811585. [PMID: 36141854 PMCID: PMC9517608 DOI: 10.3390/ijerph191811585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 05/23/2023]
Abstract
Ambient air pollutants reportedly increase inflammatory responses associated with multiple chronic diseases. We investigated the effects of long-term exposure to ambient air pollution on high-sensitivity C-reactive protein (hs-CRP) using data from 60,581 participants enrolled in the Korean Genome and Epidemiology Study-Health Examinees Study between 2012 and 2017. Community Multiscale Air Quality System with surface data assimilation was used to estimate the participants' exposure to criteria air pollutants based on geocoded residential addresses. Long-term exposure was defined as the 2-year moving average concentrations of PM10, PM2.5, SO2, NO2, and O3. Multivariable linear and logistic regression models were utilized to estimate the percent changes in hs-CRP and odds ratios of systemic low-grade inflammation (hs-CRP > 3 mg/L) per interquartile range increment in air pollutants. We identified positive associations between hs-CRP and PM10 (% changes: 3.75 [95% CI 2.68, 4.82]), PM2.5 (3.68, [2.57, 4.81]), SO2 (1.79, [1.10, 2.48]), and NO2 (3.31, [2.12, 4.52]), while negative association was demonstrated for O3 (-3.81, [-4.96, -2.65]). Elevated risks of low-grade inflammation were associated with PM10 (odds ratio: 1.07 [95% CI 1.01, 1.13]), PM2.5 (1.08 [1.02, 1.14]), and SO2 (1.05 [1.01, 1.08]). The odds ratios reported indicated that the exposures might be risk factors for inflammatory conditions; however, they did not reflect strong associations. Our findings suggest that exposure to air pollutants may play a role in the inflammation process.
Collapse
|
80
|
Putra IGNE, Astell-Burt T, Feng X. Caregiver perceptions of neighbourhood green space quality, heavy traffic conditions, and asthma symptoms: Group-based trajectory modelling and multilevel longitudinal analysis of 9,589 Australian children. ENVIRONMENTAL RESEARCH 2022; 212:113187. [PMID: 35358543 DOI: 10.1016/j.envres.2022.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/06/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND This study assessed the associations between changes in exposure to green space quality, heavy traffic conditions, and asthma symptoms among children. METHODS 10-year cohort data of 9589 children, retrieved from the Longitudinal Study of Australian Children, were analysed. Caregiver-reported neighbourhood green space quality, heavy traffic conditions, and asthma symptoms were measured biennially. Group-based trajectory mixture models were used to develop trajectory groups, denoting different patterns of, or changes in, exposure to green space quality, heavy traffic conditions, and asthma symptoms across childhood. Multilevel multinomial logistic regression was used to identify factors associated with trajectory group membership and examine the confounders-adjusted associations between trajectory groups of green space quality, heavy traffic conditions, and asthma symptoms. RESULTS Four trajectory groups for each green space quality and heavy traffic conditions, and five trajectory groups for asthma symptoms were developed. Children in less disadvantaged areas were more likely to be in trajectory groups with exposure to quality green space, but less likely to be exposed to heavy neighbourhood traffic. Living in more remote areas was associated with the decreased likelihood to be in groups with exposure to both quality green space and heavy traffic conditions over time. Accumulation of exposure to quality green space across childhood was not found to be protective against asthma symptoms. However, children whose caregiver perceptions of heavy traffic conditions trended from low to moderate levels; or were consistently in high levels across childhood had a higher likelihood to be in trajectory groups with a higher risk of asthma symptoms. CONCLUSION Exposure to quality green space was not associated with the reduced risk of asthma symptoms. The accumulation of exposure to heavy traffic conditions increased the likelihood of asthma symptoms among children. Reducing the presence of heavy traffic in neighbourhoods might reduce the risk of childhood asthma.
Collapse
Affiliation(s)
- I Gusti Ngurah Edi Putra
- Population Wellbeing and Environment Research Lab (PowerLab), NSW, Australia; School of Health and Society, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, Wollongong, NSW, Australia
| | - Thomas Astell-Burt
- Population Wellbeing and Environment Research Lab (PowerLab), NSW, Australia; School of Health and Society, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, Wollongong, NSW, Australia
| | - Xiaoqi Feng
- Population Wellbeing and Environment Research Lab (PowerLab), NSW, Australia; School of Health and Society, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, Wollongong, NSW, Australia; School of Population Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
81
|
He X, Zhai S, Liu X, Liang L, Song G, Song H, Kong Y. Interactive short-term effects of meteorological factors and air pollution on hospital admissions for cardiovascular diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68103-68117. [PMID: 35532824 DOI: 10.1007/s11356-022-20592-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
A substantial number of studies have demonstrated the association between air pollution and adverse health effects. However, few studies have explored the potential interactive effects between meteorological factors and air pollution. This study attempted to evaluate the interactive effects between meteorological factors (temperature and relative humidity) and air pollution ([Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]) on cardiovascular diseases (CVDs). Next, the high-risk population susceptible to air pollution was identified. We collected daily counts of CVD hospitalizations, air pollution, and weather data in Nanning from January 1, 2014, to December 31, 2015. Generalized additive models (GAMs) with interaction terms were adopted to estimate the interactive effects of air pollution and meteorological factors on CVD after controlling for seasonality, day of the week, and public holidays. On low-temperature days, an increase of [Formula: see text] in [Formula: see text], [Formula: see text], and [Formula: see text] was associated with increases of 4.31% (2.39%, 6.26%) at lag 2; 2.74% (1.65%, 3.84%) at lag 0-2; and 0.13% (0.02%, 0.23%) at lag 0-3 in CVD hospitalizations, respectively. During low relative humidity days, a [Formula: see text] increment of lag 0-3 exposure was associated with increases of 3.43% (4.61%, 2.67%) and 0.10% (0.04%, 0.15%) for [Formula: see text] and [Formula: see text], respectively. On high relative humidity days, an increase of [Formula: see text] in [Formula: see text] was associated with an increase of 5.86% (1.82%, 10.07%) at lag 0-2 in CVD hospitalizations. Moreover, elderly (≥ 65 years) and female patients were vulnerable to the effects of air pollution. There were interactive effects between air pollutants and meteorological factors on CVD hospitalizations. The risk that [Formula: see text], [Formula: see text], and [Formula: see text] posed to CVD hospitalizations could be significantly enhanced by low temperatures. For [Formula: see text] and [Formula: see text], CVD hospitalization risk increased in low relative humidity. The effects of [Formula: see text] were enhanced at high relative humidity.
Collapse
Affiliation(s)
- Xinxin He
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, Henan, China
| | - Shiyan Zhai
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, Henan, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Kaifeng, 475004, Henan, China.
| | - Xiaoxiao Liu
- Department of Community Health Science, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Lizhong Liang
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Genxin Song
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, Henan, China
| | - Hongquan Song
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, Henan, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Kaifeng, 475004, Henan, China
| | - Yunfeng Kong
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, Henan, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Kaifeng, 475004, Henan, China
| |
Collapse
|
82
|
Holliday KM, Gondalia R, Baldassari A, Justice AE, Stewart JD, Liao D, Yanosky JD, Jordahl KM, Bhatti P, Assimes TL, Pankow JS, Guan W, Fornage M, Bressler J, North KE, Conneely KN, Li Y, Hou L, Vokonas PS, Ward-Caviness CK, Wilson R, Wolf K, Waldenberger M, Cyrys J, Peters A, Boezen HM, Vonk JM, Sayols-Baixeras S, Lee M, Baccarelli AA, Whitsel EA. Gaseous air pollutants and DNA methylation in a methylome-wide association study of an ethnically and environmentally diverse population of U.S. adults. ENVIRONMENTAL RESEARCH 2022; 212:113360. [PMID: 35500859 PMCID: PMC9354583 DOI: 10.1016/j.envres.2022.113360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/03/2023]
Abstract
Epigenetic mechanisms may underlie air pollution-health outcome associations. We estimated gaseous air pollutant-DNA methylation (DNAm) associations using twelve subpopulations within Women's Health Initiative (WHI) and Atherosclerosis Risk in Communities (ARIC) cohorts (n = 8397; mean age 61.3 years; 83% female; 46% African-American, 46% European-American, 8% Hispanic/Latino). We used geocoded participant address-specific mean ambient carbon monoxide (CO), nitrogen oxides (NO2; NOx), ozone (O3), and sulfur dioxide (SO2) concentrations estimated over the 2-, 7-, 28-, and 365-day periods before collection of blood samples used to generate Illumina 450 k array leukocyte DNAm measurements. We estimated methylome-wide, subpopulation- and race/ethnicity-stratified pollutant-DNAm associations in multi-level, linear mixed-effects models adjusted for sociodemographic, behavioral, meteorological, and technical covariates. We combined stratum-specific estimates in inverse variance-weighted meta-analyses and characterized significant associations (false discovery rate; FDR<0.05) at Cytosine-phosphate-Guanine (CpG) sites without among-strata heterogeneity (PCochran's Q > 0.05). We attempted replication in the Cooperative Health Research in Region of Augsburg (KORA) study and Normative Aging Study (NAS). We observed a -0.3 (95% CI: -0.4, -0.2) unit decrease in percent DNAm per interquartile range (IQR, 7.3 ppb) increase in 28-day mean NO2 concentration at cg01885635 (chromosome 3; regulatory region 290 bp upstream from ZNF621; FDR = 0.03). At intragenic sites cg21849932 (chromosome 20; LIME1; intron 3) and cg05353869 (chromosome 11; KLHL35; exon 2), we observed a -0.3 (95% CI: -0.4, -0.2) unit decrease (FDR = 0.04) and a 1.2 (95% CI: 0.7, 1.7) unit increase (FDR = 0.04), respectively, in percent DNAm per IQR (17.6 ppb) increase in 7-day mean ozone concentration. Results were not fully replicated in KORA and NAS. We identified three CpG sites potentially susceptible to gaseous air pollution-induced DNAm changes near genes relevant for cardiovascular and lung disease. Further harmonized investigations with a range of gaseous pollutants and averaging durations are needed to determine the effect of gaseous air pollutants on DNA methylation and ultimately gene expression.
Collapse
Affiliation(s)
- Katelyn M Holliday
- Department of Family Medicine and Community Health, School of Medicine, Duke University, Durham, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Rahul Gondalia
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Antoine Baldassari
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Duanping Liao
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeff D Yanosky
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Kristina M Jordahl
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | | | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, USA; Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, USA
| | - Pantel S Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, Schools of Medicine and Public Health, Boston University, Boston, MA, USA
| | - Cavin K Ward-Caviness
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig Maximilians University, Munich, Germany
| | - H Marike Boezen
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, the Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, the Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, the Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, the Netherlands
| | - Sergi Sayols-Baixeras
- Cardiovascular Epidemiology and Genetics Research Group, Hospital Del Mar Medical Research Institute (IMIM), Campus Del Mar, Universitat Pompeu Fabra, Barcelona, Spain; Consorcio CIBER, M.P. Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
83
|
Shi W, Tang S, Fang J, Cao Y, Chen C, Li T, Gao X, Shi X. Epigenetic age stratifies the risk of blood pressure elevation related to short-term PM 2.5 exposure in older adults. ENVIRONMENTAL RESEARCH 2022; 212:113507. [PMID: 35636465 DOI: 10.1016/j.envres.2022.113507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Exposure to fine particulate matter (PM2.5) is a prominent risk factor for cardiovascular aging in older adults and causes mild syndromes or other comorbidities in otherwise healthy older adults. Accordingly, a precise tool for PM2.5 exposure risk stratification is urgently needed. We aimed to address this need by comparing the performances of seven types of epigenetic age and chronological age to classify the effects of short-term PM2.5 exposure on blood pressure (BP), a typical clinical surrogate marker of cardiovascular aging. METHODS We conducted a panel study of the Chinese healthy adults aged 60-69 years through five monthly visits. Personal PM2.5 exposures were measured using wearable monitoring devices for three consecutive days, and DNA methylation was determined by the Illumina MethylationEPIC BeadChip using blood samples collected at each visit. Systolic BP, diastolic BP, mean arterial pressure and pulse pressure were measured by the electronic BP monitor. Linear mixed models with interaction terms between PM2.5 and different ages were used to assess their potential usefulness for stratification. RESULTS DNAmPhenoAge, Skin & blood clock, DNAmGrimAge acceleration, and DunedinPoAm had significant modifying effects on the relationship between PM2.5 and BP. For instance, a 10-μg/m3 increase in the 72-h moving mean PM2.5 was significantly associated with 0.30% (95% CI: 0.10%, 0.51%) and -0.07% (95% CI: -0.32%, 0.18%) increases in systolic BP at higher and lower DNAmPhenoAge acceleration, respectively. Joint models further revealed that using a combination of epigenetic ages could more precisely stratify the effect of PM2.5 on BP. CONCLUSIONS Our research indicates that epigenetic age may be a useful tool for evaluating the effect of short-term PM2.5 exposure on cardiovascular aging status.
Collapse
Affiliation(s)
- Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yaqiang Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
84
|
Sun Q, Cao B, Jiang Y, Zhuang J, Zhang C, Jiang B. Association between ambient particulate matter (PM 2.5/PM 10) and first incident ST-elevation myocardial infarction in Suzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62690-62697. [PMID: 35404033 DOI: 10.1007/s11356-022-20150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Interests in evaluation of the effect of air pollution and weather conditions on cardiovascular disease have increased. However, the relationship between short-term particulate matter (PM) exposure and first incident ST-elevation myocardial infarction (STEMI) remains unclear. Medical records were collected from December 2013 to December 2016. A total of 1354 patients with first incident STEMI were included. The daily average of air pollution and weather conditions were calculated. In this case-crossover study, conditional logistic regression was performed to assess the association between daily concentrations of PM and first incident STEMI. The daily average of PM2.5 and PM10 were 58.9 μg/m3 and 80.2 μg/m3, respectively. In this case-crossover study, single-pollutant models showed that each 10 μg/m3 increase in PM2.5 was associated with a percent change of 3.36, 95% confidence interval (CI): (1.01-5.77), or in PM10 percent change of 2.1%, 95%CI: (0.2-4.04) for patients with first incident STEMI. The association remained stable after adjusting for ozone (O3). The results from subgroup analysis showed the association slightly enhanced in women, elder patients, patients with history of diabetes, patients without history of smoking, and cold seasons. The p values were not significant between these strata, which may be due to small sample size. This investigation showed that short-term PM exposure associated with first incident STEMI in Suzhou. Given the effect of PM on the first incident STEMI, strategies to decrease PM should be considered.
Collapse
Affiliation(s)
- Qian Sun
- Department of Pulmonary and Critical Care Medicine, the Affiliated Hospital 4 of Nantong University, the First Hospital of Yancheng, Yancheng City, Jiangsu Province, China
| | - Bangming Cao
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai City, Shandong Province, China
| | - Yufeng Jiang
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province, China
| | - Jin Zhuang
- Department of Pulmonary and Critical Care Medicine, the Affiliated Hospital 4 of Nantong University, the First Hospital of Yancheng, Yancheng City, Jiangsu Province, China
| | - Chi Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China.
| | - Bin Jiang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| |
Collapse
|
85
|
Fitriyah A, Nikolenko DA, Abdelbasset WK, Maashi MS, Jalil AT, Yasin G, Abdulkadhm MM, Samieva GU, Lafta HA, Abed AM, Amaral LS, Mustafa YF. Exposure to ambient air pollution and osteoarthritis; an animal study. CHEMOSPHERE 2022; 301:134698. [PMID: 35472612 DOI: 10.1016/j.chemosphere.2022.134698] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Exposure to air pollution has been associated with many adverse health effects. However, the evidence on the effects on osteoarthritis (OA) is scarce and the potential mechanism is unclear yet. Therefore, this study assessed the effect of exposure to air pollution (gaseous and particulate matter) and OA based on an animal model. We used four groups of female rats, including i) exposure to PMs and gaseous pollutants, ii) exposure only to gaseous pollutants, iii) exposure only to PMs, and iv) control (unexposed) group. The OA biomarkers, i.e., osteocalcin, cartilage oligomeric protein (COMP), and N-Telopeptides of Type I Collagen (NTX-I) and cytokines were measured in the plasma to detect the effect of exposure to ambient air pollution on OA in this animal model. The forced jogging exercises for 1 h and 5 days per week were used to record the physical activities. The median (interquartile range) concentrations of PM2.5 and PM10 were 35.9 (15.4) and 47.5 (22.5) μg/m3, respectively. The median (interquartile range (IQR)) of PM2.5, PM10, CO, NO2, SO2 and O3 in the inlet ambient air were 36.9 (16.9), 51.7 (23.6) μg/m3, 16.1 (12.5) ppm, 413.7 (177.1), 334.2 (218.8) and 208.9 (113.1) ppb, respectively. The osteocalcin was significantly lower in PM as well as PM-gaseous exposure groups compared to control. Moreover, expressions of COMP were increased significantly in the PMs and exposure group compared to the control. For the PMs-gaseous exposure group, the COMP expressions were the highest compared to the control group. Similar results were observed for NTX-I. Exposure to PM and gaseous pollutants significantly increased plasma cytokine levels compared to control. Overall, our study showed a significant effect of exposure to PMs and PMs-gaseous exposure with OA in rats. Moreover, we observed a synergistic effect of mixed gaseous-PMs exposure compared to PMs and gaseous pollutants separately.
Collapse
Affiliation(s)
- Abyadul Fitriyah
- Faculty of Animal Science, Universitas Nahdlatul Wathan Mataram, Mataram, Indonesia.
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Marwah Suliman Maashi
- Medical Laboratory Science Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, 230023, Grodno, Belarus; College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Ghulam Yasin
- Department of Botany University, Bahauddin Zakariya University, Multan, Pakistan
| | | | - G U Samieva
- Doctor of Medical Sciences, Department of Pathologic Physiology, Samarkand State Medical Institute, Samarkand, Uzbekistan
| | | | - Azher M Abed
- Department of Air Conditioning and Refrigeration, Al-Mustaqbal University College, Babylon, Iraq
| | - Larissa Souza Amaral
- Department of Bioengineering, University of São Paulo (USP) and Minas Gerais State University (UEMG), Frutal, Minas Gerais, Brazil
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| |
Collapse
|
86
|
Tian L, Sun M, Lin L, Wang Y, Yu Y, Duan J, Sun Z. Effects of ambient air pollution on glycosylated hemoglobin: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53954-53966. [PMID: 35622285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Air pollution is one of the biggest environmental health problems in the world; accumulative studies have shown that air pollution was closely related to metabolism disorders. HbA1c is a stable indicator for blood glucose level monitoring. However, studies on the impact of ambient air pollution on HbA1c have inconsistent conclusions. The objective of the study is to explore the influence of ambient air pollution on HbA1c. By searching keywords, a systematic literature retrieval was carried out on PubMed, Cochrane Library, Web of Science, and Embase databases up to April 2022. Pooled percentage change (%-change) and 95% confidence intervals (95% CI) were estimated using random effect models for particulate matter (PM) and nitrogen dioxide (NO2). A subgroup analysis of body mass index (BMI), study region, exposure period, sample size, sensitivity analysis, and publication bias detection was also performed. There were 8, 12, and 6 studies included in this meta-analysis to explore the association between PM10, PM2.5, NO2, and HbA1c, respectively. The results showed that for every increase of 10 μg/m3 in PM10, PM2.5, and NO2, the %-changes in HbA1c were 0.13%, 0.814%, and 0.02%, respectively. The subgroup analysis showed that exposure period, sample size, and BMI were associated with HbA1c in response to air pollution. PM10, PM2.5, and NO2 exposure were significantly associated with increased HbA1c levels.
Collapse
Affiliation(s)
- Li Tian
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yan Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| |
Collapse
|
87
|
Wu M, Yu L, Li T, Lu J, Yang Z, Shen P, Tang M, Jin M, Lin H, Chen K, Wang J. Association between short-term exposure to air pollution and ischemic stroke: A case-crossover study in China. ATMOSPHERIC ENVIRONMENT 2022; 283:119173. [DOI: 10.1016/j.atmosenv.2022.119173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
|
88
|
Zou L, Li B, Xiong L, Wang Y, Xie W, Huang X, Liang Y, Wei T, Liu N, Chang X, Bai C, Wu T, Xue Y, Zhang T, Tang M. Urban fine particulate matter causes cardiac hypertrophy through calcium-mediated mitochondrial bioenergetics dysfunction in mice hearts and human cardiomyocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119236. [PMID: 35367502 DOI: 10.1016/j.envpol.2022.119236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In recent years, the cardiovascular toxicity of urban fine particulate matter (PM2.5) has sparked significant alarm. Mitochondria produce 90% of ATP and make up 30% of the volume of cardiomyocytes. Thus knowledge of myocardial mitochondrial dysfunction due to PM2.5 exposure is essential for further cardiotoxic effects. Here, the mechanism of PM2.5-induced cardiac hypertrophy through calcium overload and mitochondrial dysfunction was investigated in vivo and in vitro. Male and female BALB/c mice were given 1.28, 5.5, and 11 mg PM2.5/kg bodyweight weekly through oropharyngeal inhalation for four weeks and were assigned to low, medium, and high dose groups, respectively. PM2.5-induced myocardial edema and cardiac hypertrophy were detected in the high-dose group. Mitochondria were scattered and ruptured with abnormal ultrastructural morphology. In vitro experiments on human cardiomyocyte AC16 showed that exposure to PM2.5 for 24 h caused opened mitochondrial permeability transition pore --leading to excessive calcium production, decreased mitochondrial membrane potential, weakened mitochondrial respiratory metabolism capacity, and decreased ATP production. Nevertheless, the administration of calcium chelator ameliorated the mitochondrial damage in the PM2.5-treated group. Our in vivo and in vitro results confirmed that calcium overload under PM2.5 exposure triggered mTOR/AKT/GSK-3β activation, leading to mitochondrial bioenergetics dysfunction and cardiac hypertrophy.
Collapse
Affiliation(s)
- Lingyue Zou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Binjing Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lilin Xiong
- Department of Environmental Health, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, 210003, China
| | - Yan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Wenjing Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Na Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiaoru Chang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Changcun Bai
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
89
|
Hung TT, Chung MH, Wu JY, Shen CY. A Room-Temperature Surface Acoustic Wave Ammonia Sensor Based on rGO/DPP2T-TT Composite Films. SENSORS (BASEL, SWITZERLAND) 2022; 22:5280. [PMID: 35890960 PMCID: PMC9325188 DOI: 10.3390/s22145280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Surface acoustic wave (SAW) sensors based on reduced graphene oxide/poly (diketopyrrolopyrrolethiophene-thieno [3,2-b]thiophene-thiophene) (rGO/DPP2T-TT) composite sensing films for the detection of ammonia were investigated at room temperature in this study. The rGO/DPP2T-TT composite films were deposited onto ST-X quartz SAW resonators by a drop-casting method. FESEM, EDS, and XRD characterizations showed that the rGO/DPP2T-TT composite film was successfully synthesized and exhibited numerous wrinkles and a rough structure, which are crucial for gas adsorption. The frequency response to 500-1400 ppb ammonia shown by the prepared SAW sensor coated with rGO/DPP2T-TT composite film increased linearly as the ammonia concentration increased. The sensor based on a rGO/DPP2T-TT composite film exhibited a positive frequency shift of 55 Hz/ppm, and its frequency response to 500 ppb ammonia was 35 Hz. The sensors thus show promising potential in detecting sub-ppm concentration levels of NH3 at room temperature, which opens up possibilities for applications in the noninvasive detection of NH3 in the breath. As a result, the rGO/DPP2T-TT composite sensor can be a good candidate for in situ medical diagnosis and indoor/outdoor environment monitoring.
Collapse
Affiliation(s)
- Tien-Tsan Hung
- Department of Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan;
| | - Mei-Hui Chung
- Office of Institutional Research, I-Shou University, Kaohsiung 84001, Taiwan;
| | - Jiun-Yi Wu
- Department of Electrical Engineering, I-Shou University, Kaohsiung 84001, Taiwan;
| | - Chi-Yen Shen
- Department of Electrical Engineering, I-Shou University, Kaohsiung 84001, Taiwan;
| |
Collapse
|
90
|
Grahn K, Broberg K, Gustavsson P, Ljungman P, Lindfors P, Sjöström M, Wiebert P, Selander J. Occupational exposure to particles and biomarkers of cardiovascular disease-during work and after vacation. Int Arch Occup Environ Health 2022; 95:1537-1548. [PMID: 35819531 PMCID: PMC9424160 DOI: 10.1007/s00420-022-01900-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/12/2022] [Indexed: 11/30/2022]
Abstract
Objective Ambient particle matter is a risk factor for cardiovascular disease (CVD). However, little is known about associations between particles in occupational settings and risk of CVD. We investigated associations between occupational dust exposure and biomarkers of CVD, and potential recovery effects after vacation. Methods Personal dust exposure measurements (respirable silica, respirable dust < 4 µm, and particles of 0.1–10 µm (PM 0.1–10) were conducted once, and biological sampling were performed twice on non-smoking, male construction workers in Stockholm county, Sweden; during work and immediately after summer vacation. Linear regressions with adjustments for confounders and covariates were performed evaluating associations between occupational dust exposure and biomarkers. Paired t tests were performed evaluating changes before and after vacation. Results Sixty-five workers participated. Homocysteine concentrations were significantly higher with increasing concentrations (mg/m3) of respirable silica, respirable dust, and PM 0.1–10, and pulse rate with higher levels of respirable dust and dust of PM 0.1–10. Homocysteine levels were also positively correlated to number of years of dust exposure, as were low-density lipoprotein (LDL) levels. A clear recovery effect was present for LDL after vacation, but not for homocysteine. Conclusions Occupational dust exposure was associated with some CVD risk markers, even at mean exposure concentrations below the Swedish occupational exposure limits for respirable silica and respirable dust, respectively. Vacation resulted in recovery for some risk markers. However, the change of the homocysteine and LDL levels suggest a long-term effect. Reduction of occupational exposure to dust may decrease the risk of CVD among exposed workers. Supplementary Information The online version contains supplementary material available at 10.1007/s00420-022-01900-5.
Collapse
Affiliation(s)
- Karin Grahn
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. .,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden.
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Per Gustavsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiology, Danderyd University Hospital, Danderyd, Sweden
| | - Petra Lindfors
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Mattias Sjöström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Pernilla Wiebert
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Jenny Selander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
91
|
Vahedi P, Rajabzadeh A, Soleimani A. An evaluation of the effects of ascorbic acid on the endothelium of coronary and aorta arteries in lead-intoxicated rabbits. SAGE Open Med 2022; 10:20503121221105330. [PMID: 35769490 PMCID: PMC9235302 DOI: 10.1177/20503121221105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives: Lead exposure has destructive effects on some organs. It may
produce a variety of toxic effects on endothelial cells of the
vascular system. Any changes or damages to endothelial cells may
lead to cardiovascular diseases, particularly the formation of
atherosclerotic plaques. The aim of this study was to determine
the ameliorative effects of ascorbic acid on the endothelium of
coronary and aorta arteries in lead-exposed rabbits. Methods: In this study, 30 white male rabbits of New Zealand race (weighing
about 1.6–2 kg and 5 months old) were used and divided randomly
into three groups: Group 1 (N = 10) that served
as the control and received water and normal diet, Group 2
(N = 10) was exposed to lead acetate
547 ppm (5 mg/L) daily for 40 days, and Group 3
(N = 10) received vitamin C (500 mg/kg)
and underwent the same duration of lead exposure (5 mg/L) daily
for 40 days. The levels of cholesterol, triglyceride,
low-density lipoprotein, and high-density lipoprotein were
measured using spectrophotometry, and the level of blood lead
was calculated using a lead analyzer (Magellan Diagnostics,
USA). The animals were anesthetized by pentobarbital (50 mg/kg).
Subsequently, they were sacrificed, and their thoracic aortas
and coronary arteries were removed. Then fixation, tissue
processing, histological sectioning, and H & E staining were
carried out. Finally, the sections were studied using light
microscopy. The results were analyzed using the Mann–Whitney
test. Results: The results indicated that ascorbic acid could reduce the
destructive effects of lead on vascular endothelial cells and
prevent the formation of atherosclerotic plaques in coronary and
aorta arteries. Conclusion: The results of this study confirm the beneficial effects of
ascorbic acid against the destructive effects of lead on
vascular endothelial cells. Hence, it could be proposed as a
potential prophylactic treatment for the amelioration of lead
toxicity, prevention of atherosclerosis, and improvement of
endothelial cells dysfunction.
Collapse
Affiliation(s)
- Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Asghar Rajabzadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Soleimani
- Department of Public Health, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
92
|
Chen TF, Lee SH, Zheng WR, Hsu CC, Cho KH, Kuo LW, Chou CCK, Chiu MJ, Tee BL, Cheng TJ. White matter pathology in alzheimer's transgenic mice with chronic exposure to low-level ambient fine particulate matter. Part Fibre Toxicol 2022; 19:44. [PMID: 35768852 PMCID: PMC9245233 DOI: 10.1186/s12989-022-00485-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/29/2022] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Air pollution, especially fine particulate matter (PM), can cause brain damage, cognitive decline, and an increased risk of neurodegenerative disease, especially alzheimer's disease (AD). Typical pathological findings of amyloid and tau protein accumulation have been detected in the brain after exposure in animal studies. However, these observations were based on high levels of PM exposure, which were far from the WHO guidelines and those present in our environment. In addition, white matter involvement by air pollution has been less reported. Thus, this experiment was designed to simulate the true human world and to discuss the possible white matter pathology caused by air pollution. RESULTS 6 month-old female 3xTg-AD mice were divided into exposure and control groups and housed in the Taipei Air Pollutant Exposure System (TAPES) for 5 months. The mice were subjected to the Morris water maze test after exposure and were then sacrificed with brain dissection for further analyses. The mean mass concentration of PM2.5 during the exposure period was 13.85 μg/m3. After exposure, there was no difference in spatial learning function between the two groups, but there was significant decay of memory in the exposure group. Significantly decreased total brain volume and more neuronal death in the cerebral and entorhinal cortex and demyelination of the corpus callosum were noted by histopathological staining after exposure. However, there was no difference in the accumulation of amyloid or tau on immunohistochemistry staining. For the protein analysis, amyloid was detected at significantly higher levels in the cerebral cortex, with lower expression of myelin basic protein in the white matter. A diffuse tensor image study also revealed insults in multiple white matter tracts, including the optic tract. CONCLUSIONS In conclusion, this pilot study showed that even chronic exposure to low PM2.5 concentrations still caused brain damage, such as gross brain atrophy, cortical neuron damage, and multiple white matter tract damage. Typical amyloid cascade pathology did not appear prominently in the vulnerable brain region after exposure. These findings imply that multiple pathogenic pathways induce brain injury by air pollution, and the optic nerve may be another direct invasion route in addition to olfactory nerve.
Collapse
Affiliation(s)
- Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Wan-Ru Zheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Ching-Chou Hsu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Kuan-Hung Cho
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Boon Lead Tee
- Department of Neurology, Memory and Aging Center, University of California at San Francisco, San Francisco, CA, USA
| | - Tsun-Jen Cheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan.
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
93
|
Assessing the neurotoxicity of airborne nano-scale particulate matter in human iPSC-derived neurons using a transcriptomics benchmark dose model. Toxicol Appl Pharmacol 2022; 449:116109. [DOI: 10.1016/j.taap.2022.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
|
94
|
Lee J, Lee WR, Yoo KB, Cho J, Yoon J. Risk of Cerebro-Cardiovascular Diseases among Police Officers and Firefighters: A Nationwide Retrospective Cohort Study. Yonsei Med J 2022; 63:585-590. [PMID: 35619583 PMCID: PMC9171666 DOI: 10.3349/ymj.2022.63.6.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Police officers and firefighters are exposed to risk factors for cerebro-cardiovascular diseases, and the actual risk is expected to increase compared with other occupational groups. The present study aimed to estimate the risks of cerebro-cardiovascular diseases in police officers and firefighters compared to other occupational groups. MATERIALS AND METHODS Using the National Health Insurance Service data, we constructed a retrospective cohort of public officers. Three-year consecutive health insurance registration data were used to identify police officers and firefighters. Cerebro-cardiovascular diseases consisted of acute myocardial infarction, other ischemic heart disease, cardiac arrhythmia, and stroke. We compared the incidences of cerebro-cardiovascular diseases between each of the two occupational groups (police officers and firefighters) and other public officers by calculating standardized incidence ratios (SIRs). RESULTS SIRs and 95% confidence intervals of all cerebro-cardiovascular diseases for police officers and firefighters were 1.71 (1.66-1.76) and 1.22 (1.12-1.31), respectively, as compared with all public officers. The incidence ratios remained significantly higher compared to general and education officers. Subgroup analyses for myocardial infarction, stroke, and cardiac arrhythmia exhibited significant increases in incidence ratios among police officers and firefighters. CONCLUSION This study suggests that both police officers and firefighters are at high risk of cerebro-cardiovascular diseases. Therefore, medical protection measures for these occupational groups should be improved.
Collapse
Affiliation(s)
- Jongin Lee
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woo-Ri Lee
- Department of Health Administration, Yonsei University Graduate School, Wonju, Korea
| | - Ki-Bong Yoo
- Department of Health Administration, Yonsei University Graduate School, Wonju, Korea
| | - Jaelim Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Jinha Yoon
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
95
|
Wang Y, Liu F, Yao Y, Chen M, Wu C, Yan Y, Xiang H. Associations of long-term exposure to ambient air pollutants with metabolic syndrome: The Wuhan Chronic Disease Cohort Study (WCDCS). ENVIRONMENTAL RESEARCH 2022; 206:112549. [PMID: 34919954 DOI: 10.1016/j.envres.2021.112549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Evidence on the associations between long-term exposure to ambient air pollutants (including particle with aerodynamic diameter ≤10 μm (PM10), particle with aerodynamic diameter ≤2.5 μm (PM2.5), ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2)) and prevalence of metabolic syndrome (MetS) remains inconclusive. This study aimed to determine the associations based on a case-control study nested in the Wuhan Chronic Disease Cohort study (WCDCS), a population-based study with baseline survey in 2019. METHODS A total of 10,253 residents living in Wuhan were recruited. The 3-year average concentrations of main pollutants (PM10, PM2.5, O3, NO2, and SO2) at residences prior to the survey date were estimated to evaluate the long-term exposures. The generalized linear mixed models were used to investigate the changes in MetS prevalence by an IQR increases in each air pollutant exposure concentrations. Interaction effects between air pollutants and demographic, lifestyle, and dietary factors on MetS were evaluated by including an interactive item in the main model. RESULTS The prevalence of MetS in Wuhan was 9.8%, and the 3-year exposure concentrations of PM10, PM2.5, O3, NO2, and SO2 were 84.1 μg/m3, 50.5 μg/m3, 55.7 μg/m3, 46.0 μg/m3, and 9.4 μg/m3, respectively. Higher PM10, PM2.5 and O3 exposure concentrations were associated with an elevated MetS prevalence (e.g. an IQR increase in PM2.5, OR = 1.193, 95% confidence intervals (95%CIs): 1.028, 1.385; for O3, OR = 1.074, 95%CIs: 1.025, 1.124), whereas NO2, and SO2 were negatively or insignificant correlated with odds of Mets (e.g. an IQR increase in NO2, OR = 0.865, 95%CIs: 0.795, 0.941). Males, smokers, alcohol drinkers and individuals who intake fruits occasionally exposure to PM10 and PM2.5 were found had a higher risk of developing MetS. CONCLUSIONS Long-term exposure to higher concentrations of ambient air pollutants may elevate the prevalence of MetS in populations in Central China. Susceptible individuals especially those with unhealthy lifestyles had a higher risk for MetS.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Feifei Liu
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Yifan Yao
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Meijin Chen
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Chuangxin Wu
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Yaqiong Yan
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China.
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
96
|
Chang PK, Griffith SM, Chuang HC, Chuang KJ, Wang YH, Chang KE, Hsiao TC. Particulate matter in a motorcycle-dominated urban area: Source apportionment and cancer risk of lung deposited surface area (LDSA) concentrations. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128188. [PMID: 35007803 DOI: 10.1016/j.jhazmat.2021.128188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Source-apportioned particle concentrations are necessary to properly evaluate the health impacts of air pollution. In this study, a measurement station was established at an urban roadside in northern Taiwan to the investigate lung deposited surface area (LDSA) concentration, a relevant metric for the adverse health effects of aerosol exposure, along with PM1 and equivalent black carbon (eBC) concentrations, particle number concentration (PNC), and particle size distribution (PSD). Through positive matrix factorization and multi-linear regression analysis, we attributed 57% of LDSA to traffic emissions over the entire study. During rush hour, the motorcycle fraction increased to 0.83 and LDSA (77.6 ± 9.9 µm2/cm3) and PNC (14,000 ± 2400 particles/cm3) values peaked, while 74% of LDSA was attributed to traffic. The LDSA ratio, defined as the ratio of measured LDSA to that estimated from the particle size distribution with a spherical assumption, also increased, highlighting the greater degree of fractal morphology during rush hour. The relationship between LDSA emitted by traffic and PNC yielded a higher r2 (0.92) than the r2 between traffic LDSA and eBC (0.82). Finally, the excess lifetime cancer risk linked with traffic emission was 1.56 × 10-4 (i.e. 15.6 excess cancer cases for a population of 100,000 people) based on the LDSA apportionment results.
Collapse
Affiliation(s)
- Po-Kai Chang
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei 10617, Taiwan
| | - Stephen M Griffith
- Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hui Wang
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei 10617, Taiwan
| | - Kuo-En Chang
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei 10617, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei 10617, Taiwan.
| |
Collapse
|
97
|
Benka-Coker ML, Clark ML, Rajkumar S, Young BN, Bachand AM, Brook RD, Nelson TL, Volckens J, Reynolds SJ, Wilson A, L'Orange C, Good N, Quinn C, Koehler K, Africano S, Osorto Pinel AB, Diaz-Sanchez D, Neas L, Peel JL. Household air pollution from wood-burning cookstoves and C-reactive protein among women in rural Honduras. Int J Hyg Environ Health 2022; 241:113949. [PMID: 35259686 PMCID: PMC8934269 DOI: 10.1016/j.ijheh.2022.113949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 11/15/2022]
Abstract
Household air pollution from solid fuel combustion was estimated to cause 2.31 million deaths worldwide in 2019; cardiovascular disease is a substantial contributor to the global burden. We evaluated the cross-sectional association between household air pollution (24-h gravimetric kitchen and personal particulate matter (PM2.5) and black carbon (BC)) and C-reactive protein (CRP) measured in dried blood spots among 107 women in rural Honduras using wood-burning traditional or Justa (an engineered combustion chamber) stoves. A suite of 6 additional markers of systemic injury and inflammation were considered in secondary analyses. We adjusted for potential confounders and assessed effect modification of several cardiovascular-disease risk factors. The median (25th, 75th percentiles) 24-h-average personal PM2.5 concentration was 115 μg/m3 (65,154 μg/m3) for traditional stove users and 52 μg/m3 (39, 81 μg/m3) for Justa stove users; kitchen PM2.5 and BC had similar patterns. Higher concentrations of PM2.5 and BC were associated with higher levels of CRP (e.g., a 25% increase in personal PM2.5 was associated with a 10.5% increase in CRP [95% CI: 1.2-20.6]). In secondary analyses, results were generally consistent with a null association. Evidence for effect modification between pollutant measures and four different cardiovascular risk factors (e.g., high blood pressure) was inconsistent. These results support the growing evidence linking household air pollution and cardiovascular disease.
Collapse
Affiliation(s)
- Megan L Benka-Coker
- Department of Health Sciences, Gettysburg College, Gettysburg, PA, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Maggie L Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sarah Rajkumar
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Bonnie N Young
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Annette M Bachand
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert D Brook
- Division of Cardiovascular Diseases, Wayne State University, Detroit, MI, USA
| | - Tracy L Nelson
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - John Volckens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Stephen J Reynolds
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Christian L'Orange
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Nicholas Good
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Casey Quinn
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Kirsten Koehler
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Anibal B Osorto Pinel
- Trees, Water & People, Fort Collins, CO, USA; Asociación Hondureña para el Desarrollo, Tegucigalpa, Honduras
| | - David Diaz-Sanchez
- U.S. Environmental Protectection Agency, ORD, NHEERL, Environmental Public Health Divsion, USA
| | - Lucas Neas
- U.S. Environmental Protectection Agency, ORD, NHEERL, Environmental Public Health Divsion, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
98
|
Mundisugih J, Gao CX, Ikin JF, Abramson MJ, Brown D, Biswas S, Dewar EM, Liew D, Stub D. Vascular Responses Among Adults Four Years Post Exposure to 6 Weeks of Smoke from the Hazelwood Coal Mine Fire. Vasc Health Risk Manag 2022; 18:253-265. [PMID: 35444423 PMCID: PMC9013675 DOI: 10.2147/vhrm.s339439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Aims Mega-wild fires are exposing large communities to weeks or months of high concentration smoke-related fine particulate air pollution (PM). However, little research has examined the long-term vascular responses from exposure to PM of this concentration and duration. We investigated whether level of exposure to 6 weeks of PM from the 2014 Hazelwood coal mine fire was associated with abnormal vascular responses approximately four years later. Methods A cross-sectional analysis was undertaken of 387 participants (225 exposed, 162 unexposed) aged 55–89 years, 3.5–4 years after the mine fire. The primary outcome was flow-mediated dilatation (FMD), with time to reach peak diameter as the secondary outcome. Other secondary markers included high-sensitivity C-reactive protein (hsCRP) and ischaemic Electrocardiogram (ECG) changes. Results There was no evidence of a difference in FMD between participants with high, medium, low or no mine-fire related PM2.5 exposure (4.09% vs 4.06% vs 4.02% vs 3.98%, respectively, p=0.99). Likewise, there was no difference in hsCRP or ischaemic ECG changes. In contrast, there was evidence of a difference in time to peak diameter (p=0.002) with more unexposed participants reaching peak diameter within 30 seconds (36%) compared to those who had high, medium, or low exposure (23%, 22%, 13%, respectively). Multivariate ordinal logistic regression analysis suggested that township, Morwell (exposed) vs Sale (unexposed), but not level of PM2.5 exposure, was associated with delayed time to peak diameter (OR 2.71; 95% CI 1.56, 4.69). Smokers also had delayed time to peak diameter. Conclusion There was no association between level of exposure to PM2.5 from the 6-week Hazelwood coal mine fire smoke event and reduced FMD, elevated hsCRP or ischaemic ECG four years later. Evidence of delayed time to peak diameter observed in adults from the exposed town, compared to an unexposed town, requires further investigation.
Collapse
Affiliation(s)
- Juan Mundisugih
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Health, Melbourne, VIC, Australia
| | - Caroline X Gao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Centre for Youth Mental Health (Orygen), University of Melbourne, Melbourne, VIC, Australia
| | - Jillian F Ikin
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Correspondence: Jillian F Ikin, Tel +61 3 9903 0308, Email
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - David Brown
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Sinjini Biswas
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Health, Melbourne, VIC, Australia
| | - Elizabeth M Dewar
- Department of Cardiology, Alfred Health, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Danny Liew
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Dion Stub
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Health, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
99
|
Marc-Derrien Y, Gren L, Dierschke K, Albin M, Gudmundsson A, Wierzbicka A, Sandberg F. Acute Cardiovascular Effects of Hydrotreated Vegetable Oil Exhaust. Front Physiol 2022; 13:828311. [PMID: 35350690 PMCID: PMC8957941 DOI: 10.3389/fphys.2022.828311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Ambient air pollution is recognized as a key risk factor for cardiovascular morbidity and mortality contributing to the global disease burden. The use of renewable diesel fuels, such as hydrotreated vegetable oil (HVO), have increased in recent years and its impact on human health are not completely known. The present study investigated changes in cardiovascular tone in response to exposure to diluted HVO exhaust. The study participants, 19 healthy volunteers, were exposed in a chamber on four separate occasions for 3 h and in a randomized order to: (1) HVO exhaust from a wheel loader without exhaust aftertreatment, (2) HVO exhaust from a wheel loader with an aftertreatment system, (3) clean air enriched with dry NaCl salt particles, and (4) clean air. Synchronized electrocardiogram (ECG) and photoplethysmogram (PPG) signals were recorded throughout the exposure sessions. Pulse decomposition analysis (PDA) was applied to characterize PPG pulse morphology, and heart rate variability (HRV) indexes as well as pulse transit time (PTT) indexes were computed. Relative changes of PDA features, HRV features and PTT features at 1, 2, and 3 h after onset of the exposure was obtained for each participant and exposure session. The PDA index A13, reflecting vascular compliance, increased significantly in both HVO exposure sessions but not in the clean air or NaCl exposure sessions. However, the individual variation was large and the differences between exposure sessions were not statistically significant.
Collapse
Affiliation(s)
| | - Louise Gren
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Katrin Dierschke
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden.,Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Aneta Wierzbicka
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Frida Sandberg
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
100
|
Zang ST, Wu QJ, Li XY, Gao C, Liu YS, Jiang YT, Zhang JY, Sun H, Chang Q, Zhao YH. Long-term PM 2.5 exposure and various health outcomes: An umbrella review of systematic reviews and meta-analyses of observational studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152381. [PMID: 34914980 DOI: 10.1016/j.scitotenv.2021.152381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Adverse effects from exposure to particulate matter <2.5 μm in diameter (PM2.5) on health-related outcomes have been found in a range of experimental and epidemiological studies. This study aimed to assess the significance, validity, and reliability of the relationship between long-term PM2.5 exposure and various health outcomes. The Embase, PubMed, Web of Science, CNKI, WANFANG, VIP, and SinoMed databases and reference lists of the retrieved review articles were searched to obtain meta-analysis and systematic reviews focusing on PM2.5-related outcomes as of August 31, 2021. Random-/fixed-effects models were applied to estimate summary effect size and 95% confidence intervals (CIs). The quality of included meta-analyses was evaluated based on the AMSTAR 2 tool. Small-study effect and excess significance bias studies were conducted to further assess the associations. Registered PROSPERO number: CRD42020200606. This included 24 articles involving 71 associations between PM2.5 exposure and the health outcomes. The evidence for the positive association of 10 μg/m3 increments of long-term exposure to PM2.5 and stroke incidence in Europe was convincing (effect size = 1.07, 95% CI: 1.05-1.10). There was evidence that was highly suggestive of a positive association between 10 μg/m3 increments of long-term exposure to PM2.5 and the following health-related outcomes: mortality of lung cancer (effect size = 1.11, 95% CI: 1.08-1.13) and Alzheimer's disease (effect size = 4.79, 95% CI: 2.79-8.21). There was highly suggestive evidence that chronic obstructive pulmonary disease risk is positively associated with higher long-term PM2.5 exposure versus lower long-term PM2.5 exposure (effect size = 2.32, 95% CI: 1.88-2.86). In conclusion, the positive association of long-term exposure to PM2.5 and stroke incidence in Europe was convincing. Given the validity of numerous associations of long-term exposure to PM2.5 and health-related outcomes is subject to biases, more robust evidence is urgently needed.
Collapse
Affiliation(s)
- Si-Tian Zang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xin-Yu Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chang Gao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ya-Shu Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu-Ting Jiang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia-Yu Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Sun
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|