51
|
Hinge region of Arabidopsis phyA plays an important role in regulating phyA function. Proc Natl Acad Sci U S A 2018; 115:E11864-E11873. [PMID: 30478060 DOI: 10.1073/pnas.1813162115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phytochrome A (phyA) is the only plant photoreceptor that perceives far-red light and then mediates various responses to this signal. Phosphorylation and dephosphorylation of oat phyA have been extensively studied, and it was shown that phosphorylation of a serine residue in the hinge region of oat phyA could regulate the interaction of phyA with its signal transducers. However, little is known about the role of the hinge region of Arabidopsis phyA. Here, we report that three sites in the hinge region of Arabidopsis phyA (i.e., S590, T593, and S602) are essential in regulating phyA function. Mutating all three of these sites to either alanines or aspartic acids impaired phyA function, changed the interactions of mutant phyA with FHY1 and FHL, and delayed the degradation of mutant phyA upon light exposure. Moreover, the in vivo formation of a phosphorylated phyA form was greatly affected by these mutations, while our data indicated that the abundance of this phosphorylated phyA form correlated well with the extent of phyA function, thus suggesting a pivotal role of the phosphorylated phyA in inducing the far-red light response. Taking these data together, our study reveals the important role of the hinge region of Arabidopsis phyA in regulating phyA phosphorylation and function, thus linking specific residues in the hinge region to the regulatory mechanisms of phyA phosphorylation.
Collapse
|
52
|
Zhang Y, Sun J, Xia H, Zhao C, Hou L, Wang B, Li A, Chen M, Zhao S, Wang X. Characterization of peanut phytochromes and their possible regulating roles in early peanut pod development. PLoS One 2018; 13:e0198041. [PMID: 29799880 PMCID: PMC5969742 DOI: 10.1371/journal.pone.0198041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022] Open
Abstract
Arachis hypogaea L. geocarpy is a unique feature different from other legume plants. Flowering and fertilization occur above ground, while the following processes of pod formation and development proceed in the soil. The zygote divides only few times to develop into pre-embryo and then further embryo developmental process stops when the gynoecium is exposed to light condition or normal day/night period. In this study, eight phytochrome genes were identified in two wild peanuts (four in Arachis duranensis and four in Arachis ipaensis). Using RACE and homologous cloning, the full CDS of AhphyA, AhphyA-like, AhphyB and AhphyE were acquired in cultivated peanut. Protein structure analysis showed that the conservative coding domains of phytochromes from a number of other plant species were found in these proteins. The C-terminal of AhphyA, AhphyA-like and AhphyB could interact with phytochrome-interacting factor 3 in vitro. The expression patterns of these genes in various tissues were analyzed by qRT-PCR, and significant differences were observed. Interestingly, the expression levels of AhphyA-like changed significantly during gynophore growth and early pod development. Furthermore, protein accumulation patterns of AhphyA and AhphyB in gynophore were different during early pod development stages in that AhphyA and AhphyB proteins were not detected in S1 and S2 gynophores, while significant accumulation of AhphyA and AhphyB were detected in S3 gynophore. These results provided evidence that phytochromes mediated light signal transduction may play key roles in peanut geocarpy development.
Collapse
Affiliation(s)
- Ye Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, PR China
| | - Jinbo Sun
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, PR China
- College of Life Science, Shandong Normal University, Jinan, PR China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, PR China
- College of Life Science, Shandong Normal University, Jinan, PR China
| | - Chuanzhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, PR China
- College of Life Science, Shandong Normal University, Jinan, PR China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, PR China
| | - Baoshan Wang
- College of Life Science, Shandong Normal University, Jinan, PR China
| | - Aiqin Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, PR China
| | - Min Chen
- College of Life Science, Shandong Normal University, Jinan, PR China
| | - Shuzhen Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, PR China
- College of Life Science, Shandong Normal University, Jinan, PR China
- * E-mail: (XW); (SZ)
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, PR China
- College of Life Science, Shandong Normal University, Jinan, PR China
- * E-mail: (XW); (SZ)
| |
Collapse
|
53
|
Cao K, Yu J, Xu D, Ai K, Bao E, Zou Z. Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress. BMC PLANT BIOLOGY 2018; 18:92. [PMID: 29793435 PMCID: PMC5968587 DOI: 10.1186/s12870-018-1310-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/14/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Red (R) and far-red (FR) light distinctly influence phytochrome-mediated initial tomato growth and development, and more recent evidence indicates that these spectra also modulate responses to a multitude of abiotic and biotic stresses. This research investigated whether different R: FR values affect tomato growth response and salinity tolerance. Tomato seedlings were exposed to different R: FR conditions (7.4, 1.2 and 0.8) under salinity stress (100 mM NaCl), and evaluated for their growth, biochemical changes, active reactive oxygen species (ROS) and ROS scavenging enzymes, pigments, rate of photosynthesis, and chlorophyll fluorescence. RESULTS The results showed that under conditions of salinity, tomato seedlings subjected to a lower R: FR value (0.8) significantly increased both their growth, proline content, chlorophyll content and net photosynthesis rate (Pn), while they decreased malondialdehyde (MDA) compared to the higher R: FR value (7.4). Under conditions of salinity, the lower R: FR value caused a decrease in both the superoxide anion (O2•-) and in hydrogen peroxide (H2O2) generation, an increase in the activities of superoxidase dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7) and catalase (CAT, EC 1.11.1.7). Tomato seedlings grown under the lower R: FR value and conditions of salinity showed a higher actual quantum yield of photosynthesis (ΦPSII), electron transport rate (ETR), and photochemical quenching (qP) than those exposed to a higher R: FR, indicating overall healthier growth. However, the salinity tolerance induced at the lower R: FR condition disappeared in the tomato phyB1 mutant. CONLUSION These results suggest that growing tomato with a lower R: FR value could improve seedlings' salinity tolerance, and phytochrome B1 play an very important role in this process. Therefore, different qualities of light can be used to efficiently develop abiotic stress tolerance in tomato cultivation.
Collapse
Affiliation(s)
- Kai Cao
- Horticulture College, Northwest A&F University, Yangling, Shaanxi China
- The Agriculture Ministry Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangze River, Nanjing, China
- Guangxi Zhong Nong Fu Yu International Agricultural Science and Technology Co., Ltd, Yulin, Guangxi China
| | - Jie Yu
- Horticulture College, Northwest A&F University, Yangling, Shaanxi China
| | - Dawei Xu
- Horticulture College, Northwest A&F University, Yangling, Shaanxi China
| | - Kaiqi Ai
- Horticulture College, Northwest A&F University, Yangling, Shaanxi China
| | - Encai Bao
- Horticulture College, Northwest A&F University, Yangling, Shaanxi China
- The Agriculture Ministry Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangze River, Nanjing, China
- Guangxi Zhong Nong Fu Yu International Agricultural Science and Technology Co., Ltd, Yulin, Guangxi China
| | - Zhirong Zou
- Horticulture College, Northwest A&F University, Yangling, Shaanxi China
- The Agriculture Ministry Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangze River, Nanjing, China
| |
Collapse
|
54
|
Mahawar L, Shekhawat GS. Haem oxygenase: A functionally diverse enzyme of photosynthetic organisms and its role in phytochrome chromophore biosynthesis, cellular signalling and defence mechanisms. PLANT, CELL & ENVIRONMENT 2018; 41:483-500. [PMID: 29220548 DOI: 10.1111/pce.13116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/26/2017] [Accepted: 11/23/2017] [Indexed: 05/08/2023]
Abstract
Haem oxygenase (HO) is a universal enzyme that catalyses stereospecific cleavage of haem to BV IX α and liberates Fe+2 ion and CO as by-product. Beside haem degradation, it has important functions in plants that include cellular defence, stomatal regulation, iron mobilization, phytochrome chromophore synthesis, and lateral root formation. Phytochromes are an extended family of photoreceptors with a molecular mass of 250 kDa and occur as a dimer made up of 2 equivalent subunits of 125 kDa each. Each subunit is made of two components: the chromophore, a light-capturing pigment molecule and the apoprotein. Biosynthesis of phytochrome (phy) chromophore includes the oxidative splitting of haem to biliverdin IX by an enzyme HO, which is the decisive step in the biosynthesis. In photosynthetic organisms, BVα is reduced to 3Z PΦB by a ferredoxin-dependent PΦB synthase that finally isomerised to PΦB. The synthesized PΦB assembles with the phytochrome apoprotein in the cytoplasm to generate holophytochrome. Thus, necessary for photomorphogenesis in plants, which has confirmed from the genetic studies, conducted on Arabidopsis thaliana and pea. Besides the phytochrome chromophore synthesis, the review also emphasises on the current advances conducted in plant HO implying its developmental and defensive role.
Collapse
Affiliation(s)
- Lovely Mahawar
- Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | | |
Collapse
|
55
|
Qiu Y, Pasoreck EK, Reddy AK, Nagatani A, Ma W, Chory J, Chen M. Mechanism of early light signaling by the carboxy-terminal output module of Arabidopsis phytochrome B. Nat Commun 2017. [PMID: 29199270 DOI: 10.1038/s41467-107-02062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Plant phytochromes are thought to transduce light signals by mediating the degradation of phytochrome-interacting transcription factors (PIFs) through the N-terminal photosensory module, while the C-terminal module, including a histidine kinase-related domain (HKRD), does not participate in signaling. Here we show that the C-terminal module of Arabidopsis phytochrome B (PHYB) is sufficient to mediate the degradation of PIF3 specifically and to activate photosynthetic genes in the dark. The HKRD is a dimerization domain for PHYB homo and heterodimerization. A D1040V mutation, which disrupts the dimerization of HKRD and the interaction between C-terminal module and PIF3, abrogates PHYB nuclear accumulation, photobody biogenesis, and PIF3 degradation. By contrast, disrupting the interaction between PIF3 and PHYB's N-terminal module has little effect on PIF3 degradation. Together, this study demonstrates that the dimeric form of the C-terminal module plays important signaling roles by targeting PHYB to subnuclear photobodies and interacting with PIF3 to trigger its degradation.
Collapse
Affiliation(s)
- Yongjian Qiu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | | | - Amit K Reddy
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Wenxiu Ma
- Department of Statistics, University of California, Riverside, CA, 92521, USA
| | - Joanne Chory
- Howard Hughes Medical Institute, Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
56
|
Mechanism of early light signaling by the carboxy-terminal output module of Arabidopsis phytochrome B. Nat Commun 2017; 8:1905. [PMID: 29199270 PMCID: PMC5712524 DOI: 10.1038/s41467-017-02062-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 11/03/2017] [Indexed: 11/08/2022] Open
Abstract
Plant phytochromes are thought to transduce light signals by mediating the degradation of phytochrome-interacting transcription factors (PIFs) through the N-terminal photosensory module, while the C-terminal module, including a histidine kinase-related domain (HKRD), does not participate in signaling. Here we show that the C-terminal module of Arabidopsis phytochrome B (PHYB) is sufficient to mediate the degradation of PIF3 specifically and to activate photosynthetic genes in the dark. The HKRD is a dimerization domain for PHYB homo and heterodimerization. A D1040V mutation, which disrupts the dimerization of HKRD and the interaction between C-terminal module and PIF3, abrogates PHYB nuclear accumulation, photobody biogenesis, and PIF3 degradation. By contrast, disrupting the interaction between PIF3 and PHYB's N-terminal module has little effect on PIF3 degradation. Together, this study demonstrates that the dimeric form of the C-terminal module plays important signaling roles by targeting PHYB to subnuclear photobodies and interacting with PIF3 to trigger its degradation.
Collapse
|
57
|
Rojas-Pirela M, Rigden DJ, Michels PA, Cáceres AJ, Concepción JL, Quiñones W. Structure and function of Per-ARNT-Sim domains and their possible role in the life-cycle biology of Trypanosoma cruzi. Mol Biochem Parasitol 2017; 219:52-66. [PMID: 29133150 DOI: 10.1016/j.molbiopara.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/12/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
Per-ARNT-Sim (PAS) domains of proteins play important roles as modules for signalling and cellular regulation processes in widely diverse organisms such as Archaea, Bacteria, protists, plants, yeasts, insects and vertebrates. These domains are present in many proteins where they are used as sensors of stimuli and modules for protein interactions. Characteristically, they can bind a broad spectrum of molecules. Such binding causes the domain to trigger a specific cellular response or to make the protein containing the domain susceptible to responding to additional physical or chemical signals. Different PAS proteins have the ability to sense redox potential, light, oxygen, energy levels, carboxylic acids, fatty acids and several other stimuli. Such proteins have been found to be involved in cellular processes such as development, virulence, sporulation, adaptation to hypoxia, circadian cycle, metabolism and gene regulation and expression. Our analysis of the genome of different kinetoplastid species revealed the presence of PAS domains also in different predicted kinases from these protists. Open-reading frames coding for these PAS-kinases are unusually large. In addition, the products of these genes appear to contain in their structure combinations of domains uncommon in other eukaryotes. The physiological significance of PAS domains in these parasites, specifically in Trypanosoma cruzi, is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, Scotland, United Kingdom
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela.
| |
Collapse
|
58
|
Inoue K, Nishihama R, Kohchi T. Evolutionary origin of phytochrome responses and signaling in land plants. PLANT, CELL & ENVIRONMENT 2017; 40:2502-2508. [PMID: 28098347 DOI: 10.1111/pce.12908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Phytochromes comprise one of the major photoreceptor families in plants, and they regulate many aspects of plant growth and development throughout the plant life cycle. A canonical land plant phytochrome originated in the common ancestor of streptophytes. Phytochromes have diversified in seed plants and some basal land plants because of lineage-specific gene duplications that occurred during the course of land plant evolution. Molecular genetic analyses using Arabidopsis thaliana suggested that there are two types of phytochromes in angiosperms, light-labile type I and light-stable type II, which have different signaling mechanisms and which regulate distinct responses. In basal land plants, little is known about molecular mechanisms of phytochrome signaling, although red light/far-red photoreversible physiological responses and the distribution of phytochrome genes are relatively well documented. Recent advances in molecular genetics using the moss Physcomitrella patens and the liverwort Marchantia polymorpha revealed that basal land plants show far-red-induced responses and that the establishment of phytochrome-mediated transcriptional regulation dates back to at least the common ancestor of land plants. In this review, we summarize our knowledge concerning functions of land plant phytochromes, especially in basal land plants, and discuss subfunctionalization/neofunctionalization of phytochrome signaling during the course of land plant evolution.
Collapse
Affiliation(s)
- Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
59
|
Viczián A, Klose C, Ádám É, Nagy F. New insights of red light-induced development. PLANT, CELL & ENVIRONMENT 2017; 40:2457-2468. [PMID: 27943362 DOI: 10.1111/pce.12880] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 05/14/2023]
Abstract
The red/far-red light absorbing photoreceptors phytochromes regulate development and growth and thus play an essential role in optimizing adaptation of the sessile plants to the ever-changing environment. Our understanding of how absorption of a red/far-red photon by phytochromes initiates/modifies diverse physiological responses has been steadily improving. Research performed in the last 5 years has been especially productive and led to significant conceptual changes about the mode of action of these photoreceptors. In this review, we focus on the phytochrome B photoreceptor, the major phytochrome species active in light-grown plants. We discuss how its light-independent inactivation (termed dark/thermal reversion), post-translational modification, including ubiquitination, phosphorylation and sumoylation, as well as heterodimerization with other phytochrome species modify red light-controlled physiological responses. Finally, we discuss how photobiological properties of phytochrome B enable this photoreceptor to function also as a thermosensor.
Collapse
Affiliation(s)
- András Viczián
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Cornelia Klose
- Institute of Biology2/Botany, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Éva Ádám
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| |
Collapse
|
60
|
Kim JY, Song JT, Seo HS. COP1 regulates plant growth and development in response to light at the post-translational level. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4737-4748. [PMID: 28992300 DOI: 10.1093/jxb/erx312] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photoreceptors perceive different wavelengths of light and transduce light signals downstream via a range of proteins. COP1, an E3 ubiquitin ligase, regulates light signaling by mediating the ubiquitination and subsequent proteasomal degradation of photoreceptors such as phytochromes and cryptochromes, as well as various development-related proteins including other light-responsive proteins. COP1 is itself regulated by direct interactions with several signaling molecules that modulate its activity. The control of photomorphogenesis by COP1 is also regulated by its localization to the cytoplasm in response to light. COP1 thus acts as a tightly regulated switch that determines whether development is skotomorphogenic or photomorphogenic. In this review, we discuss the effects of COP1 on the abundance and activity of various development-related proteins, including photoreceptors, and summarize the regulatory mechanisms that influence COP1 activity and stability in plants.
Collapse
Affiliation(s)
- Joo Yong Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea
| | - Hak Soo Seo
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
61
|
Hochrein L, Machens F, Messerschmidt K, Mueller-Roeber B. PhiReX: a programmable and red light-regulated protein expression switch for yeast. Nucleic Acids Res 2017; 45:9193-9205. [PMID: 28911120 PMCID: PMC5587811 DOI: 10.1093/nar/gkx610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Highly regulated induction systems enabling dose-dependent and reversible fine-tuning of protein expression output are beneficial for engineering complex biosynthetic pathways. To address this, we developed PhiReX, a novel red/far-red light-regulated protein expression system for use in Saccharomyces cerevisiae. PhiReX is based on the combination of a customizable synTALE DNA-binding domain, the VP64 activation domain and the light-sensitive dimerization of the photoreceptor PhyB and its interacting partner PIF3 from Arabidopsis thaliana. Robust gene expression and high protein levels are achieved by combining genome integrated red light-sensing components with an episomal high-copy reporter construct. The gene of interest as well as the synTALE DNA-binding domain can be easily exchanged, allowing the flexible regulation of any desired gene by targeting endogenous or heterologous promoter regions. To allow low-cost induction of gene expression for industrial fermentation processes, we engineered yeast to endogenously produce the chromophore required for the effective dimerization of PhyB and PIF3. Time course experiments demonstrate high-level induction over a period of at least 48 h.
Collapse
Affiliation(s)
- Lena Hochrein
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Fabian Machens
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Katrin Messerschmidt
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam, Department of Molecular Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.,Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
62
|
COP1 is required for UV-B-induced nuclear accumulation of the UVR8 photoreceptor. Proc Natl Acad Sci U S A 2016; 113:E4415-22. [PMID: 27407149 DOI: 10.1073/pnas.1607074113] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) promotes UV-B acclimation and tolerance in Arabidopsis thaliana UVR8 localizes to both cytosol and nucleus, but its main activity is assumed to be nuclear. UV-B photoreception stimulates nuclear accumulation of UVR8 in a presently unknown manner. Here, we show that CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is required for UV-B-induced nuclear accumulation of UVR8, but bypassing the COP1 requirement for UVR8 nuclear accumulation did not rescue the cop1 mutant UV-B phenotype. Using a glucocorticoid receptor (GR)-based fusion protein system to conditionally localize GR-UVR8 to the nucleus, we have demonstrated that both photoactivation and nuclear localization of UVR8 are required for UV-B-induced photomorphogenic responses. In contrast, there was no UV-B response when UV-B-activated UVR8 was artificially retained in the cytosol. In agreement with a predominantly nuclear activity, constitutively active UVR8(W285A) accumulated in the nucleus also in the absence of UV-B. Furthermore, GR-COP1 expression lines suggested that UV-B-activated UVR8 can be coimported into the nucleus by COP1. Our data strongly support localization of UVR8 signaling in the nucleus and a dual role for COP1 in the regulation of UV-B-induced UVR8 nuclear accumulation and in UVR8-mediated UV-B signaling.
Collapse
|
63
|
Buckley CE, Moore RE, Reade A, Goldberg AR, Weiner OD, Clarke JDW. Reversible Optogenetic Control of Subcellular Protein Localization in a Live Vertebrate Embryo. Dev Cell 2016; 36:117-126. [PMID: 26766447 PMCID: PMC4712025 DOI: 10.1016/j.devcel.2015.12.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 11/09/2015] [Accepted: 12/08/2015] [Indexed: 12/13/2022]
Abstract
We demonstrate the utility of the phytochrome system to rapidly and reversibly recruit proteins to specific subcellular regions within specific cells in a living vertebrate embryo. Light-induced heterodimerization using the phytochrome system has previously been used as a powerful tool to dissect signaling pathways for single cells in culture but has not previously been used to reversibly manipulate the precise subcellular location of proteins in multicellular organisms. Here we report the experimental conditions necessary to use this system to manipulate proteins in vivo. As proof of principle, we demonstrate that we can manipulate the localization of the apical polarity protein Pard3 with high temporal and spatial precision in both the neural tube and the embryo’s enveloping layer epithelium. Our optimizations of optogenetic component expression and chromophore purification and delivery should significantly lower the barrier for establishing this powerful optogenetic system in other multicellular organisms. The phytochrome system has been optimized for use within multicellular organisms Protein recruitment can be tightly controlled to a specific subcellular region Protein recruitment occurs with high binding and reversal kinetics The subcellular localization of the apical polarity protein Pard3 is manipulated
Collapse
Affiliation(s)
- Clare E Buckley
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Rachel E Moore
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Anna Reade
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158-9001, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-2517, USA
| | - Anna R Goldberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158-9001, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-2517, USA
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158-9001, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-2517, USA.
| | - Jonathan D W Clarke
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
64
|
Nagano S. From photon to signal in phytochromes: similarities and differences between prokaryotic and plant phytochromes. JOURNAL OF PLANT RESEARCH 2016; 129:123-135. [PMID: 26818948 DOI: 10.1007/s10265-016-0789-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/03/2016] [Indexed: 06/05/2023]
Abstract
Phytochromes represent a diverse family of red/far-red-light absorbing chromoproteins which are widespread across plants, cyanobacteria, non-photosynthetic bacteria, and more. Phytochromes play key roles in regulating physiological activities in response to light, a critical element in the acclimatization to the environment. The discovery of prokaryotic phytochromes facilitated structural studies which deepened our understanding on the general mechanisms of phytochrome action. An extrapolation of this information to plant phytochromes is justified for universally conserved functional aspects, but it is also true that there are many aspects which are unique to plant phytochromes. Here I summarize some structural studies carried out to date on both prokaryotic and plant phytochromes. I also attempt to identify aspects which are common or unique to plant and prokaryotic phytochromes. Phytochrome themselves, as well as the downstream signaling pathway in plants are more complex than in their prokaryotic counterparts. Thus many structural and functional aspects of plant phytochrome remain unresolved.
Collapse
Affiliation(s)
- Soshichiro Nagano
- Institute for Plant Physiology, Justus Liebig University Giessen, Senckenbergstrasse 3, 35390, Giessen, Germany.
| |
Collapse
|
65
|
Huang H, Yoo CY, Bindbeutel R, Goldsworthy J, Tielking A, Alvarez S, Naldrett MJ, Evans BS, Chen M, Nusinow DA. PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis. eLife 2016; 5:e13292. [PMID: 26839287 PMCID: PMC4755757 DOI: 10.7554/elife.13292] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/13/2016] [Indexed: 01/06/2023] Open
Abstract
Plants react to seasonal change in day length through altering physiology and development. Factors that function to harmonize growth with photoperiod are poorly understood. Here we characterize a new protein that associates with both circadian clock and photoreceptor components, named PHOTOPERIODIC CONTROL OF HYPOCOTYL1 (PCH1). pch1 seedlings have overly elongated hypocotyls specifically under short days while constitutive expression of PCH1 shortens hypocotyls independent of day length. PCH1 peaks at dusk, binds phytochrome B (phyB) in a red light-dependent manner, and co-localizes with phyB into photobodies. PCH1 is necessary and sufficient to promote the biogenesis of large photobodies to maintain an active phyB pool after light exposure, potentiating red-light signaling and prolonging memory of prior illumination. Manipulating PCH1 alters PHYTOCHROME INTERACTING FACTOR 4 levels and regulates light-responsive gene expression. Thus, PCH1 is a new factor that regulates photoperiod-responsive growth by integrating the clock with light perception pathways through modulating daily phyB-signaling. DOI:http://dx.doi.org/10.7554/eLife.13292.001 Most living things possess an internal “circadian” clock that synchronizes many behaviors, such as eating, resting or growing, with the day-night cycle. With the help of proteins that can detect light, known as photoreceptors, the clock also coordinates these behaviors as the number of daylight hours changes during the year. However, it is not known how the clock and photoreceptors are able to work together. The circadian clocks of animals and plants have evolved separately and use different proteins. In plants, a photoreceptor called phytochrome B responds to red light and regulates the ability of plants to grow. Most plants harness sunlight during the day, but grow fastest in the dark just before dawn. In 2015, researchers identified a new protein in a plant called Arabidopsis that is associated with several plant clock proteins and photoreceptors, including phytochrome B. However, the role of this new protein was not clear. Now, Huang et al. – including many of the researchers from the 2015 work – studied the new protein, named PCH1, in more detail. The experiments show that PCH1 is a critical link that regulates the daily growth of Arabidopsis plants in response to the number of daylight hours. PCH1 stabilizes the structure of phytochrome B so that it remains active, even in the dark. This prolonged activity acts as a molecular memory of prior exposure to light and helps to prevent plants from growing too much in the winter when there are fewer hours of daylight. Since PCH1 is also found in other species of plants, it may play the same role in regulating growth of major crop plants. The next challenge is to understand how the binding of PCH1 to phytochrome B alters the photoreceptor’s activity. In the future, Huang et al. hope to find out if manipulating the activity of PCH1 can improve the growth of crops in places where there is a large change in day length across the seasons. DOI:http://dx.doi.org/10.7554/eLife.13292.002
Collapse
Affiliation(s)
- He Huang
- Donald Danforth Plant Science Center, St. Louis, United States
| | - Chan Yul Yoo
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, United States
| | | | | | - Allison Tielking
- Mary Institute and Saint Louis Country Day School, St. Louis, United States
| | - Sophie Alvarez
- Donald Danforth Plant Science Center, St. Louis, United States
| | | | - Bradley S Evans
- Donald Danforth Plant Science Center, St. Louis, United States
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, United States
| | | |
Collapse
|
66
|
Jones DM, Murray CM, Ketelaar KJ, Thomas JJ, Villalobos JA, Wallace IS. The Emerging Role of Protein Phosphorylation as a Critical Regulatory Mechanism Controlling Cellulose Biosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:684. [PMID: 27252710 PMCID: PMC4877384 DOI: 10.3389/fpls.2016.00684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/04/2016] [Indexed: 05/02/2023]
Abstract
Plant cell walls are extracellular matrices that surround plant cells and critically influence basic cellular processes, such as cell division and expansion. Cellulose is a major constituent of plant cell walls, and this paracrystalline polysaccharide is synthesized at the plasma membrane by a large protein complex known as the cellulose synthase complex (CSC). Recent efforts have identified numerous protein components of the CSC, but relatively little is known about regulation of cellulose biosynthesis. Numerous phosphoproteomic surveys have identified phosphorylation events in CSC associated proteins, suggesting that protein phosphorylation may represent an important regulatory control of CSC activity. In this review, we discuss the composition and dynamics of the CSC in vivo, the catalog of CSC phosphorylation sites that have been identified, the function of experimentally examined phosphorylation events, and potential kinases responsible for these phosphorylation events. Additionally, we discuss future directions in cellulose synthase kinase identification and functional analyses of CSC phosphorylation sites.
Collapse
Affiliation(s)
- Danielle M. Jones
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
| | - Christian M. Murray
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
| | - KassaDee J. Ketelaar
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
| | - Joseph J. Thomas
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
| | - Jose A. Villalobos
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
| | - Ian S. Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
- Department of Chemistry, University of Nevada, Reno, RenoNV, USA
- *Correspondence: Ian S. Wallace,
| |
Collapse
|
67
|
Huang H, Alvarez S, Bindbeutel R, Shen Z, Naldrett MJ, Evans BS, Briggs SP, Hicks LM, Kay SA, Nusinow DA. Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry. Mol Cell Proteomics 2015; 15:201-17. [PMID: 26545401 PMCID: PMC4762519 DOI: 10.1074/mcp.m115.054064] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 11/30/2022] Open
Abstract
Many species possess an endogenous circadian clock to synchronize internal physiology with an oscillating external environment. In plants, the circadian clock coordinates growth, metabolism and development over daily and seasonal time scales. Many proteins in the circadian network form oscillating complexes that temporally regulate myriad processes, including signal transduction, transcription, protein degradation and post-translational modification. In Arabidopsis thaliana, a tripartite complex composed of EARLY FLOWERING 4 (ELF4), EARLY FLOWERING 3 (ELF3), and LUX ARRHYTHMO (LUX), named the evening complex, modulates daily rhythms in gene expression and growth through transcriptional regulation. However, little is known about the physical interactions that connect the circadian system to other pathways. We used affinity purification and mass spectrometry (AP-MS) methods to identify proteins that associate with the evening complex in A. thaliana. New connections within the circadian network as well as to light signaling pathways were identified, including linkages between the evening complex, TIMING OF CAB EXPRESSION1 (TOC1), TIME FOR COFFEE (TIC), all phytochromes and TANDEM ZINC KNUCKLE/PLUS3 (TZP). Coupling genetic mutation with affinity purifications tested the roles of phytochrome B (phyB), EARLY FLOWERING 4, and EARLY FLOWERING 3 as nodes connecting the evening complex to clock and light signaling pathways. These experiments establish a hierarchical association between pathways and indicate direct and indirect interactions. Specifically, the results suggested that EARLY FLOWERING 3 and phytochrome B act as hubs connecting the clock and red light signaling pathways. Finally, we characterized a clade of associated nuclear kinases that regulate circadian rhythms, growth, and flowering in A. thaliana. Coupling mass spectrometry and genetics is a powerful method to rapidly and directly identify novel components and connections within and between complex signaling pathways.
Collapse
Affiliation(s)
- He Huang
- From the ‡Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, Missouri, 63132
| | - Sophie Alvarez
- From the ‡Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, Missouri, 63132
| | - Rebecca Bindbeutel
- From the ‡Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, Missouri, 63132
| | - Zhouxin Shen
- §University of California San Diego, Division of Biological Sciences, Cell and Developmental Biology Section, 9500 Gilman Drive, La Jolla, California 92093-0116
| | - Michael J Naldrett
- From the ‡Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, Missouri, 63132
| | - Bradley S Evans
- From the ‡Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, Missouri, 63132
| | - Steven P Briggs
- §University of California San Diego, Division of Biological Sciences, Cell and Developmental Biology Section, 9500 Gilman Drive, La Jolla, California 92093-0116
| | - Leslie M Hicks
- ¶The University of North Carolina at Chapel Hill, Department of Chemistry, Chapel Hill, North Carolina 27599
| | - Steve A Kay
- ‖University of Southern California, Molecular and Computational Biology Section, Los Angeles, California 90089
| | - Dmitri A Nusinow
- From the ‡Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, Missouri, 63132;
| |
Collapse
|
68
|
Beyer HM, Juillot S, Herbst K, Samodelov SL, Müller K, Schamel WW, Römer W, Schäfer E, Nagy F, Strähle U, Weber W, Zurbriggen MD. Red Light-Regulated Reversible Nuclear Localization of Proteins in Mammalian Cells and Zebrafish. ACS Synth Biol 2015; 4:951-8. [PMID: 25803699 DOI: 10.1021/acssynbio.5b00004] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein trafficking in and out of the nucleus represents a key step in controlling cell fate and function. Here we report the development of a red light-inducible and far-red light-reversible synthetic system for controlling nuclear localization of proteins in mammalian cells and zebrafish. First, we synthetically reconstructed and validated the red light-dependent Arabidopsis phytochrome B nuclear import mediated by phytochrome-interacting factor 3 in a nonplant environment and support current hypotheses on the import mechanism in planta. On the basis of this principle we next regulated nuclear import and activity of target proteins by the spatiotemporal projection of light patterns. A synthetic transcription factor was translocated into the nucleus of mammalian cells and zebrafish to drive transgene expression. These data demonstrate the first in vivo application of a plant phytochrome-based optogenetic tool in vertebrates and expand the repertoire of available light-regulated molecular devices.
Collapse
Affiliation(s)
- Hannes M. Beyer
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- BIOSS
− Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM
− Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
| | - Samuel Juillot
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- BIOSS
− Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM
− Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
| | - Kathrin Herbst
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology and University of Heidelberg, D-76344 Eggenstein-Leopoldshafen, Germany
- BIF-IGS − BioInterfaces International Graduate School, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sophia L. Samodelov
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- BIOSS
− Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM
− Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
| | - Konrad Müller
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Wolfgang W. Schamel
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- BIOSS
− Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM
− Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
- CCI, Centre
for Chronic Immunodeficiency, University Clinincs Freiburg, Breisacher
Strasse 117, 79106 Freiburg, Germany
| | - Winfried Römer
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- BIOSS
− Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM
− Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
| | - Eberhard Schäfer
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Ferenc Nagy
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- Biological
Research Centre, Institute of Plant Biology, H-6726 Szeged, Hungary
| | - Uwe Strähle
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology and University of Heidelberg, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Wilfried Weber
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- BIOSS
− Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM
− Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
- ZBSA
− Centre for Biosystems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| | - Matias D. Zurbriggen
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- BIOSS
− Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| |
Collapse
|
69
|
Zdarska M, Dobisová T, Gelová Z, Pernisová M, Dabravolski S, Hejátko J. Illuminating light, cytokinin, and ethylene signalling crosstalk in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4913-31. [PMID: 26022257 DOI: 10.1093/jxb/erv261] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Integrating important environmental signals with intrinsic developmental programmes is a crucial adaptive requirement for plant growth, survival, and reproduction. Key environmental cues include changes in several light variables, while important intrinsic (and highly interactive) regulators of many developmental processes include the phytohormones cytokinins (CKs) and ethylene. Here, we discuss the latest discoveries regarding the molecular mechanisms mediating CK/ethylene crosstalk at diverse levels of biosynthetic and metabolic pathways and their complex interactions with light. Furthermore, we summarize evidence indicating that multiple hormonal and light signals are integrated in the multistep phosphorelay (MSP) pathway, a backbone signalling pathway in plants. Inter alia, there are strong overlaps in subcellular localizations and functional similarities in components of these pathways, including receptors and various downstream agents. We highlight recent research demonstrating the importance of CK/ethylene/light crosstalk in selected aspects of plant development, particularly seed germination and early seedling development. The findings clearly demonstrate the crucial integration of plant responses to phytohormones and adaptive responses to environmental cues. Finally, we tentatively identify key future challenges to refine our understanding of the molecular mechanisms mediating crosstalk between light and hormonal signals, and their integration during plant life cycles.
Collapse
Affiliation(s)
- Marketa Zdarska
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Tereza Dobisová
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Zuzana Gelová
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Markéta Pernisová
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Siarhei Dabravolski
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Jan Hejátko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
70
|
Weßling R, Epple P, Altmann S, He Y, Yang L, Henz SR, McDonald N, Wiley K, Bader KC, Gläßer C, Mukhtar MS, Haigis S, Ghamsari L, Stephens AE, Ecker JR, Vidal M, Jones JDG, Mayer KFX, Ver Loren van Themaat E, Weigel D, Schulze-Lefert P, Dangl JL, Panstruga R, Braun P. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 2015; 16:364-75. [PMID: 25211078 DOI: 10.1016/j.chom.2014.08.004] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/27/2014] [Accepted: 08/14/2014] [Indexed: 01/31/2023]
Abstract
While conceptual principles governing plant immunity are becoming clear, its systems-level organization and the evolutionary dynamic of the host-pathogen interface are still obscure. We generated a systematic protein-protein interaction network of virulence effectors from the ascomycete pathogen Golovinomyces orontii and Arabidopsis thaliana host proteins. We combined this data set with corresponding data for the eubacterial pathogen Pseudomonas syringae and the oomycete pathogen Hyaloperonospora arabidopsidis. The resulting network identifies host proteins onto which intraspecies and interspecies pathogen effectors converge. Phenotyping of 124 Arabidopsis effector-interactor mutants revealed a correlation between intraspecies and interspecies convergence and several altered immune response phenotypes. Several effectors and the most heavily targeted host protein colocalized in subnuclear foci. Products of adaptively selected Arabidopsis genes are enriched for interactions with effector targets. Our data suggest the existence of a molecular host-pathogen interface that is conserved across Arabidopsis accessions, while evolutionary adaptation occurs in the immediate network neighborhood of effector targets.
Collapse
Affiliation(s)
- Ralf Weßling
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Petra Epple
- Howard Hughes Medical Institute and Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stefan Altmann
- Technische Universität München (TUM), Center for Life and Food Sciences Weihenstephan, Department for Plant Systems Biology, D-85354 Freising, Germany
| | - Yijian He
- Howard Hughes Medical Institute and Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Yang
- Howard Hughes Medical Institute and Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stefan R Henz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Nathan McDonald
- Howard Hughes Medical Institute and Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristin Wiley
- Howard Hughes Medical Institute and Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kai Christian Bader
- Plant Genome and Systems Biology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Christine Gläßer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - M Shahid Mukhtar
- Howard Hughes Medical Institute and Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of Alabama Birmingham, Birmingham, AL 35294, USA
| | - Sabine Haigis
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Lila Ghamsari
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana Farber Cancer Institute, and Harvard Medical School, Department of Genetics, Boston, MA 02215, USA
| | - Amber E Stephens
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Joseph R Ecker
- Howard Hughes Medical Institute and Salk Institute for Biological Studies, Plant Biology Lab, La Jolla, CA 92037, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana Farber Cancer Institute, and Harvard Medical School, Department of Genetics, Boston, MA 02215, USA
| | - Jonathan D G Jones
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Emiel Ver Loren van Themaat
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Jeffery L Dangl
- Howard Hughes Medical Institute and Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Center for Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Ralph Panstruga
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany; Rheinisch Westfälische Technische Hochschule (RWTH) Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, D-52074 Aachen, Germany.
| | - Pascal Braun
- Technische Universität München (TUM), Center for Life and Food Sciences Weihenstephan, Department for Plant Systems Biology, D-85354 Freising, Germany.
| |
Collapse
|
71
|
Ganguly D, Crisp P, Harter K, Pogson BJ, Albrecht-Borth V. Genetic suppression of plant development and chloroplast biogenesis via the Snowy Cotyledon 3 and Phytochrome B pathways. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:676-686. [PMID: 32480711 DOI: 10.1071/fp15026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/02/2015] [Indexed: 06/11/2023]
Abstract
Plant development is regulated by external and internal factors such as light and chloroplast development. A revertant of the Arabidopsis thaliana (L.) Heyhn. chloroplast biogenesis mutant snowy cotyledon 3 (sco3-1) was isolated partially recovering the impaired chloroplast phenotype. The mutation was identified in the Phytochrome B (PhyB) gene and is a result of an amino acid change within the PAS repeat domain required for light-induced nuclear localisation. An independent phyB-9 mutation was crossed into sco3-1 mutants, resulting in the same partial reversion of sco3-1. Further analysis demonstrated that SCO3 and PhyB influence the greening process of seedlings and rosette leaves, embryogenesis, rosette formation and flowering. Interestingly, the functions of these proteins are interwoven in various ways, suggesting a complex genetic interaction. Whole-transcriptome profiling of sco3-1phyB-9 indicated that a completely distinct set of genes was differentially regulated in the double mutant compared with the single sco3-1 or phyB-9 mutants. Thus, we hypothesise that PhyB and SCO3 genetically suppress each other in plant and chloroplast development.
Collapse
Affiliation(s)
- Diep Ganguly
- ARC (Australian Research Council) Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, ACT 0200, Australia
| | - Peter Crisp
- ARC (Australian Research Council) Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, ACT 0200, Australia
| | - Klaus Harter
- Zentrum für Molekularbiologie der Pflanzen, Plant Physiology, University of Tübingen, 72076 Tübingen, Germany
| | - Barry J Pogson
- ARC (Australian Research Council) Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, ACT 0200, Australia
| | - Verónica Albrecht-Borth
- ARC (Australian Research Council) Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, ACT 0200, Australia
| |
Collapse
|
72
|
Klose C, Viczián A, Kircher S, Schäfer E, Nagy F. Molecular mechanisms for mediating light-dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors. THE NEW PHYTOLOGIST 2015; 206:965-71. [PMID: 26042244 PMCID: PMC4406131 DOI: 10.1111/nph.13207] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/05/2014] [Indexed: 05/19/2023]
Abstract
The photoreceptors phytochromes monitor the red/far-red part of the spectrum, exist in the biologically active Pfr (far-red absorbing) or inactive Pr (red absorbing) forms, and function as red/far-red light-regulated molecular switches to modulate plant development and growth. Phytochromes are synthesized in the cytoplasm, and light induces translocation of the Pfr conformer into the nucleus. Nuclear import of phytochromes is a highly regulated process and is fine-tuned by the quality and quantity of light. It appears that phytochrome A (phyA) and phytochrome B (phyB) do not possess active endogenous nuclear import signals (NLSs), thus light-induced translocation of these photoreceptors into the nucleus requires direct protein–protein interactions with their NLS-containing signaling partners. Sub-cellular partitioning of the various phytochrome species is mediated by different molecular machineries. Translocation of phyA into the nucleus is promoted by FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL), but the identity of nuclear transport facilitators mediating the import of phyB-E into the nucleus remains elusive. Phytochromes localized in the nucleus are associated with specific protein complexes, termed photobodies. The size and distribution of these structures are regulated by the intensity and duration of irradiation, and circumstantial evidence indicates that they are involved in fine-tuning phytochrome signaling.
Collapse
Affiliation(s)
- Cornelia Klose
- Institute of Botany, University of FreiburgSchänzlestrasse 1, D-79104, Freiburg, Germany
| | - András Viczián
- Institute of Plant Biology, Biological Research CentreTemesvári krt. 62, H-6726, Szeged, Hungary
| | - Stefan Kircher
- Institute of Botany, University of FreiburgSchänzlestrasse 1, D-79104, Freiburg, Germany
| | - Eberhard Schäfer
- Institute of Botany, University of FreiburgSchänzlestrasse 1, D-79104, Freiburg, Germany
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research CentreTemesvári krt. 62, H-6726, Szeged, Hungary
- School of Biological Sciences, Institute of Molecular Plant Science, University of EdinburghEdinburgh, EH9 3JH, UK
- Author for correspondence: Ferenc Nagy Tel: +36 62599718
| |
Collapse
|
73
|
Wang H, Wang H. Phytochrome signaling: time to tighten up the loose ends. MOLECULAR PLANT 2015; 8:540-51. [PMID: 25670340 DOI: 10.1016/j.molp.2014.11.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 05/18/2023]
Abstract
Phytochromes are red and far-red light photoreceptors that play fundamental roles in controlling many aspects of plant growth and development in response to light. The past two decades have witnessed the mechanistic elucidation of the action mode of phytochromes, including their regulation by external and endogenous factors and how they exert their function as transcriptional regulators. More importantly, recent advances have substantially deepened our understanding on the integration of the phytochrome-mediated signal into other cellular and developmental processes, such as elongation of hypocotyls, shoot branching, circadian clock, and flowering time, which often involves complex intercellular and interorgan signaling. Based on these advances, this review illustrates a blueprint of our current understanding of phytochrome signaling and its crosstalk with other signaling pathways, and also points out still open questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
74
|
Pogson BJ, Ganguly D, Albrecht-Borth V. Insights into chloroplast biogenesis and development. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1017-24. [PMID: 25667967 DOI: 10.1016/j.bbabio.2015.02.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/29/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022]
Abstract
In recent years many advances have been made to obtain insight into chloroplast biogenesis and development. In plants several plastids types exist such as the proplastid (which is the progenitor of all plastids), leucoplasts (group of colourless plastids important for storage including elaioplasts (lipids), amyloplasts (starch) or proteinoplasts (proteins)), chromoplasts (yellow to orange-coloured due to carotenoids, in flowers or in old leaves as gerontoplasts), and the green chloroplasts. Chloroplasts are indispensable for plant development; not only by performing photosynthesis and thus rendering the plant photoautotrophic, but also for biochemical processes (which in some instances can also take place in other plastids types), such as the synthesis of pigments, lipids, and plant hormones and sensing environmental stimuli. Although we understand many aspects of these processes there are gaps in our understanding of the establishment of functional chloroplasts and their regulation. Why is that so? Even though chloroplast function is comparable in all plants and most of the algae, ferns and moss, detailed analyses have revealed many differences, specifically with respect to its biogenesis. As an update to our prior review on the genetic analysis of chloroplast biogenesis and development [1] herein we will focus on recent advances in Angiosperms (monocotyledonous and dicotyledonous plants) that provide novel insights and highlight the challenges and prospects for unravelling the regulation of chloroplast biogenesis specifically during the establishment of the young plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
| | - Diep Ganguly
- Australian National University, Canberra, Australia
| | | |
Collapse
|
75
|
Sun W, Xu XH, Wu X, Wang Y, Lu X, Sun H, Xie X. Genome-wide identification of microRNAs and their targets in wild type and phyB mutant provides a key link between microRNAs and the phyB-mediated light signaling pathway in rice. FRONTIERS IN PLANT SCIENCE 2015; 6:372. [PMID: 26074936 PMCID: PMC4448008 DOI: 10.3389/fpls.2015.00372] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/11/2015] [Indexed: 05/20/2023]
Abstract
Phytochrome B (phyB), a member of the phytochrome family in rice, plays important roles in regulating a range of developmental processes and stress responses. However, little information about the mechanisms involved in the phyB-mediated light signaling pathway has been reported in rice. MicroRNAs (miRNAs) also perform important roles in plant development and stress responses. Thus, it is intriguing to explore the role of miRNAs in the phyB-mediated light signaling pathway in rice. In this study, comparative high-throughput sequencing and degradome analysis were used to identify candidate miRNAs and their targets that participate in the phyB-mediated light signaling pathway. A total of 720 known miRNAs, 704 novel miRNAs and 1957 target genes were identified from the fourth leaves of wild-type (WT) and phyB mutant rice at the five-leaf stage. Among them, 135 miRNAs showed differential expression, suggesting that the expression of these miRNAs is directly or indirectly under the control of phyB. In addition, 32 out of the 135 differentially expressed miRNAs were found to slice 70 genes in the rice genome. Analysis of these target genes showed that members of various transcription factor families constituted the largest proportion, indicating miRNAs are probably involved in the phyB-mediated light signaling pathway mainly by regulating the expression of transcription factors. Our results provide new clues for functional characterization of miRNAs in the phyB-mediated light signaling pathway, which should be helpful in comprehensively uncovering the molecular mechanisms of phytochrome-mediated photomorphogenesis and stress responses in plants.
Collapse
Affiliation(s)
- Wei Sun
- Shandong Rice Research Institute, Shandong Academy of Agricultural SciencesJinan, China
| | - Xiao Hui Xu
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural SciencesJinan, China
| | - Xiu Wu
- Shandong Rice Research Institute, Shandong Academy of Agricultural SciencesJinan, China
| | - Yong Wang
- Shandong Academy of Agricultural SciencesJinan, China
| | - Xingbo Lu
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural SciencesJinan, China
| | - Hongwei Sun
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural SciencesJinan, China
| | - Xianzhi Xie
- Shandong Rice Research Institute, Shandong Academy of Agricultural SciencesJinan, China
- *Correspondence: Xianzhi Xie, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, No.2 Sangyuan Road, Jinan, 250100, China
| |
Collapse
|
76
|
Vogt JHM, Schippers JHM. Setting the PAS, the role of circadian PAS domain proteins during environmental adaptation in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:513. [PMID: 26217364 PMCID: PMC4496561 DOI: 10.3389/fpls.2015.00513] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The per-ARNT-sim (PAS) domain represents an ancient protein module that can be found across all kingdoms of life. The domain functions as a sensing unit for a diverse array of signals, including molecular oxygen, small metabolites, and light. In plants, several PAS domain-containing proteins form an integral part of the circadian clock and regulate responses to environmental change. Moreover, these proteins function in pathways that control development and plant stress adaptation responses. Here, we discuss the role of PAS domain-containing proteins in anticipation, and adaptation to environmental changes in plants.
Collapse
Affiliation(s)
- Julia H. M. Vogt
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jos H. M. Schippers
- Institute for Biology I, RWTH Aachen University, Aachen, Germany
- *Correspondence: Jos H. M. Schippers, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany,
| |
Collapse
|
77
|
Nieto C, López-Salmerón V, Davière JM, Prat S. ELF3-PIF4 interaction regulates plant growth independently of the Evening Complex. Curr Biol 2014; 25:187-193. [PMID: 25557667 DOI: 10.1016/j.cub.2014.10.070] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 11/30/2022]
Abstract
The circadian clock plays a pivotal role in the control of Arabidopsis hypocotyl elongation by regulating rhythmic expression of the bHLH factors PHYTOCHROME INTERACTING FACTOR 4 and 5 (PIF4 and 5). Coincidence of increased PIF4/PIF5 transcript levels with the dark period allows nuclear accumulation of these factors, and in short days it phases maximal hypocotyl growth at dawn. During early night, PIF4 and PIF5 transcription is repressed by the Evening Complex (EC) proteins EARLY FLOWERING3 (ELF3), EARLY FLOWERING4 (ELF4), and LUX ARRHYTHMO (LUX). While ELF3 has an essential role in EC complex assembly, several lines of evidence indicate that this protein controls plant growth via other mechanisms that are presently unknown. Here, we show that the ELF3 and PIF4 proteins interact in an EC-independent manner, and that this interaction prevents PIF4 from activating its transcriptional targets. We also show that PIF4 overexpression leads to ELF3 protein destabilization, and that this effect is mediated indirectly by negative feedback regulation of photoactive PHYTOCHROME B (phyB). Physical interaction of the phyB photoreceptor with ELF3 has been reported, but its functional relevance remains poorly understood. Our findings establish that phyB is needed for ELF3 accumulation in the light, most likely by competing for CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-mediated ubiquitination and the proteasomal degradation of ELF3. Our results explain the short hypocotyl phenotype of ELF3 overexpressors, despite their normal clock function, and provide a molecular framework for understanding how warm temperatures promote hypocotyl elongation and affect the endogenous clock.
Collapse
Affiliation(s)
- Cristina Nieto
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Vadir López-Salmerón
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Jean-Michel Davière
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Salomé Prat
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
78
|
Jakob U, Kriwacki R, Uversky VN. Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev 2014; 114:6779-805. [PMID: 24502763 PMCID: PMC4090257 DOI: 10.1021/cr400459c] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, United States
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
79
|
Grandperret V, Nicolas-Francès V, Wendehenne D, Bourque S. Type-II histone deacetylases: elusive plant nuclear signal transducers. PLANT, CELL & ENVIRONMENT 2014; 37:1259-69. [PMID: 24236403 DOI: 10.1111/pce.12236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/04/2013] [Accepted: 11/10/2013] [Indexed: 05/20/2023]
Abstract
Since the beginning of the 21st century, numerous studies have concluded that the plant cell nucleus is one of the cellular compartments that define the specificity of the cellular response to an external stimulus or to a specific developmental stage. To that purpose, the nucleus contains all the enzymatic machinery required to carry out a wide variety of nuclear protein post-translational modifications (PTMs), which play an important role in signal transduction pathways leading to the modulation of specific sets of genes. PTMs include protein (de)acetylation which is controlled by the antagonistic activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Regarding protein deacetylation, plants are of particular interest: in addition to the RPD3-HDA1 and Sir2 HDAC families that they share with other eukaryotic organisms, plants have developed a specific family called type-II HDACs (HD2s). Interestingly, these HD2s are well conserved in plants and control fundamental biological processes such as seed germination, flowering or the response to pathogens. The aim of this review was to summarize current knowledge regarding this fascinating, but still poorly understood nuclear protein family.
Collapse
Affiliation(s)
- Vincent Grandperret
- Pôle Mécanisme et Gestion des Interactions Plantes-microorganismes - ERL CNRS 6300, Université de Bourgogne, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, Dijon cedex, 21065, France
| | | | | | | |
Collapse
|
80
|
de Lucas M, Prat S. PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. THE NEW PHYTOLOGIST 2014; 202:1126-1141. [PMID: 24571056 DOI: 10.1111/nph.12725] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 01/08/2014] [Indexed: 05/19/2023]
Abstract
Light and temperature, in coordination with the endogenous clock and the hormones gibberellin (GA) and brassinosteroids (BRs), modulate plant growth and development by affecting the expression of multiple cell wall- and auxin-related genes. PHYTOCHROME INTERACTING FACTORS (PIFs) play a central role in the activation of these genes, the activity of these factors being regulated by the circadian clock and phytochrome-mediated protein destabilization. GA signaling is also integrated at the level of PIFs; the DELLA repressors are found to bind these factors and impair their DNA-binding ability. The recent finding that PIFs are co-activated by BES1 and BZR1 highlights a further role of these regulators in BR signal integration, and reveals that PIFs act in a concerted manner with the BR-related BES1/BZR1 factors to activate auxin synthesis and transport at the gene expression level, and synergistically activate several genes with a role in cell expansion. Auxins feed back into this growth regulatory module by inducing GA biosynthesis and BES1/BZR1 gene expression, in addition to directly regulating several of these growth pathway gene targets. An exciting challenge in the future will be to understand how this growth program is dynamically regulated in time and space to orchestrate differential organ expansion and to provide plants with adaptation flexibility.
Collapse
Affiliation(s)
- Miguel de Lucas
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología- CSIC, Darwin 3, 28049, Madrid, Spain
| | - Salomé Prat
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología- CSIC, Darwin 3, 28049, Madrid, Spain
| |
Collapse
|
81
|
Van Buskirk EK, Reddy AK, Nagatani A, Chen M. Photobody Localization of Phytochrome B Is Tightly Correlated with Prolonged and Light-Dependent Inhibition of Hypocotyl Elongation in the Dark. PLANT PHYSIOLOGY 2014; 165:595-607. [PMID: 24769533 PMCID: PMC4044834 DOI: 10.1104/pp.114.236661] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/25/2014] [Indexed: 05/20/2023]
Abstract
Photobody localization of Arabidopsis (Arabidopsis thaliana) phytochrome B (phyB) fused to green fluorescent protein (PBG) correlates closely with the photoinhibition of hypocotyl elongation. However, the amino-terminal half of phyB fused to green fluorescent protein (NGB) is hypersensitive to light despite its inability to localize to photobodies. Therefore, the significance of photobodies in regulating hypocotyl growth remains debatable. Accumulating evidence indicates that under diurnal conditions, photoactivated phyB persists into darkness to inhibit hypocotyl elongation. Here, we examine whether photobodies are involved in inhibiting hypocotyl growth in darkness by comparing the PBG and NGB lines after the red light-to-dark transition. Surprisingly, after the transition from 10 μmol m-2 s-1 red light to darkness, PBG inhibits hypocotyl elongation three times longer than NGB. The disassembly of photobodies in PBG hypocotyl nuclei correlates tightly with the accumulation of the growth-promoting transcription factor PHYTOCHROME-INTERACTING FACTOR3 (PIF3). Destabilizing photobodies by either decreasing the light intensity or adding monochromatic far-red light treatment before the light-to-dark transition leads to faster PIF3 accumulation and a dramatic reduction in the capacity for hypocotyl growth inhibition in PBG. In contrast, NGB is defective in PIF3 degradation, and its hypocotyl growth in the dark is nearly unresponsive to changes in light conditions. Together, our results support the model that photobodies are required for the prolonged, light-dependent inhibition of hypocotyl elongation in the dark by repressing PIF3 accumulation and by stabilizing the far-red light-absorbing form of phyB. Our study suggests that photobody localization patterns of phyB could serve as instructive cues that control light-dependent photomorphogenetic responses in the dark.
Collapse
Affiliation(s)
- Elise K Van Buskirk
- Department of Biology, Duke University, Durham, North Carolina 27708 (E.K.V.B., A.K.R., M.C.); andDepartment of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (A.N.)
| | - Amit K Reddy
- Department of Biology, Duke University, Durham, North Carolina 27708 (E.K.V.B., A.K.R., M.C.); andDepartment of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (A.N.)
| | - Akira Nagatani
- Department of Biology, Duke University, Durham, North Carolina 27708 (E.K.V.B., A.K.R., M.C.); andDepartment of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (A.N.)
| | - Meng Chen
- Department of Biology, Duke University, Durham, North Carolina 27708 (E.K.V.B., A.K.R., M.C.); andDepartment of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (A.N.)
| |
Collapse
|
82
|
Possart A, Fleck C, Hiltbrunner A. Shedding (far-red) light on phytochrome mechanisms and responses in land plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:36-46. [PMID: 24467894 DOI: 10.1016/j.plantsci.2013.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 05/20/2023]
Abstract
In order to monitor ambient light conditions, plants rely on functionally diversified photoreceptors. Among these, phytochromes perceive red (R) and far-red (FR) light. FR light does not constitute a photosynthetic energy source; it however influences adaptive and developmental processes. In seed plants, phytochrome A (phyA) acts as FR receptor and mediates FR high irradiance responses (FR-HIRs). It exerts a dual role by promoting e.g. germination and seedling de-etiolation in canopy shade and by antagonising shade avoidance growth. Even though cryptogam plants such as mosses and ferns do not have phyA, they show FR-induced responses. In the present review we discuss the mechanistic basis of phyA-dependent FR-HIRs as well as their dual role in seed plants. We compare FR responses in seed plants and cryptogam plants and conclude on different potential concepts for the detection of canopy shade. Scenarios for the evolution of FR perception and responses are discussed.
Collapse
Affiliation(s)
- Anja Possart
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christian Fleck
- Laboratory for Systems and Synthetic Biology, Wageningen University, 6703 HB Wageningen, The Netherlands.
| | - Andreas Hiltbrunner
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
83
|
Yao H, Wang G, Wang X. Nuclear translocation of proteins and the effect of phosphatidic acid. PLANT SIGNALING & BEHAVIOR 2014; 9:e977711. [PMID: 25482760 PMCID: PMC5155622 DOI: 10.4161/15592324.2014.977711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 05/22/2023]
Abstract
Transport of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors called importins, typically dimmers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complexes (NPCs). However, how proteins without canonical NLS move into the nucleus is not well understood. Recent results indicate that phospholipids, such as phosphatidic acid, play important roles in the intracellular translocation of proteins between the nucleus and cytoplasm.
Collapse
Affiliation(s)
- Hongyan Yao
- National Key Laboratory of Plant Molecular
Genetics; Institute of Plant Physiology and Ecology; Chinese Academy of
Sciences; Shanghai, China
- Correspondence to: Hongyan Yao;
| | - Geliang Wang
- Department of Biology; University of Missouri;
St. Louis, MO USA; Donald Danforth Plant Science Center; St. Louis, MO
USA
| | - Xuemin Wang
- Department of Biology; University of Missouri;
St. Louis, MO USA; Donald Danforth Plant Science Center; St. Louis, MO
USA
| |
Collapse
|
84
|
Fraikin GY, Strakhovskaya MG, Rubin AB. Biological photoreceptors of light-dependent regulatory processes. BIOCHEMISTRY (MOSCOW) 2013; 78:1238-53. [DOI: 10.1134/s0006297913110047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
85
|
Ádám É, Kircher S, Liu P, Mérai Z, González-Schain N, Hörner M, Viczián A, Monte E, Sharrock RA, Schäfer E, Nagy F. Comparative functional analysis of full-length and N-terminal fragments of phytochrome C, D and E in red light-induced signaling. THE NEW PHYTOLOGIST 2013; 200:86-96. [PMID: 23772959 DOI: 10.1111/nph.12364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/12/2013] [Indexed: 06/02/2023]
Abstract
Phytochromes (phy) C, D and E are involved in the regulation of red/far-red light-induced photomorphogenesis of Arabidopsis thaliana, but only limited data are available on the mode of action and biological function of these lesser studied phytochrome species. We fused N-terminal fragments or full-length PHYC, D and E to YELLOW FLUORESCENT PROTEIN (YFP), and analyzed the function, stability and intracellular distribution of these fusion proteins in planta. The activity of the constitutively nuclear-localized homodimers of N-terminal fragments was comparable with that of full-length PHYC, D, E-YFP, and resulted in the regulation of various red light-induced photomorphogenic responses in the studied genetic backgrounds. PHYE-YFP was active in the absence of phyB and phyD, and PHYE-YFP controlled responses, as well as accumulation, of the fusion protein in the nuclei, was saturated at low fluence rates of red light and did not require functional FAR-RED ELONGATED HYPOCOTYL1 (FHY-1) and FHY-1-like proteins. Our data suggest that PHYC-YFP, PHYD-YFP and PHYE-YFP fusion proteins, as well as their truncated N-terminal derivatives, are biologically active in the modulation of red light-regulated photomorphogenesis. We propose that PHYE-YFP can function as a homodimer and that low-fluence red light-induced translocation of phyE and phyA into the nuclei is mediated by different molecular mechanisms.
Collapse
Affiliation(s)
- Éva Ádám
- Institute of Plant Biology, Biological Research Centre, Temesvári krt.62., H-6726, Szeged, Hungary
| | - Stefan Kircher
- Institute of Botany, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Peng Liu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Zsuzsanna Mérai
- Institute of Botany, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Nahuel González-Schain
- Departament de Genètica Molecular, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Univ. Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Maximilian Hörner
- BIOSS Center for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, D-79104, Freiburg, Germany
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre, Temesvári krt.62., H-6726, Szeged, Hungary
| | - Elena Monte
- Departament de Genètica Molecular, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Univ. Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Robert A Sharrock
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Eberhard Schäfer
- Institute of Botany, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
- BIOSS Center for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, D-79104, Freiburg, Germany
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt.62., H-6726, Szeged, Hungary
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| |
Collapse
|
86
|
Nito K, Wong CCL, Yates JR, Chory J. Tyrosine phosphorylation regulates the activity of phytochrome photoreceptors. Cell Rep 2013; 3:1970-9. [PMID: 23746445 DOI: 10.1016/j.celrep.2013.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022] Open
Abstract
Phytochromes are red/far-red light receptors that function in photomorphogenesis of plants. Photoisomerization of phytochrome by red light leads to its translocation to the nucleus, where it regulates gene expression. We examined whether phytochrome is phosphorylated in response to light, and we report that phytochrome B (phyB)'s N terminus contains a region with a number of phosphoserines, threonines, and tyrosines. The light-dependent phosphorylation of tyrosine 104 (Y104) appears to play a negative role in phyB's activity, because a phosphomimic mutant, phyBY104E, is unable to complement any phyB-related phenotype, is defective in binding to its signaling partner PIF3, and fails to form stable nuclear bodies even though it retains normal photochemistry in vitro. In contrast, plants stably expressing a nonphosphorylatable mutant, phyBY104F, are hypersensitive to light. The proper response to changes in the light environment is crucial for plant survival, and our study brings tyrosine phosphorylation to the forefront of light-signaling mechanisms.
Collapse
Affiliation(s)
- Kazumasa Nito
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
87
|
Jang IC, Henriques R, Chua NH. Three transcription factors, HFR1, LAF1 and HY5, regulate largely independent signaling pathways downstream of phytochrome A. PLANT & CELL PHYSIOLOGY 2013; 54:907-16. [PMID: 23503597 PMCID: PMC3674400 DOI: 10.1093/pcp/pct042] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Among signaling components downstream of phytochrome A (phyA), HY5, HFR1 and LAF1 are transcription factors that regulate expression of phyA-responsive genes. Previous work has shown that FHY1/FHL distribute phyA signals directly to HFR1 and LAF1, both of which regulate largely independent pathways, but the relationship of HY5 to these two factors was unclear. Here, we investigated the genetic relationship among the genes encoding these three transcription factors, HY5, HFR1 and LAF1. Analyses of double and triple mutants showed that HY5, a basic leucine zipper (bZIP) factor, HFR1, a basic helix-loop-helix (bHLH) factor, and LAF1, a Myb factor, independently transmit phyA signals downstream. We showed that HY5 but not its homolog, HYH, could interact with HFR1 and LAF1; on the other hand, FHY1 and its homolog, FHL did not interact with HY5 or HYH. Together, our results suggest that HY5 transmits phyA signals through an FHY1/FHL-independent pathway but it may also modulate FHY1/FHL signal through its interaction with HFR1 and LAF1.
Collapse
Affiliation(s)
- In-Cheol Jang
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- Present address: Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | - Rossana Henriques
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- Corresponding author: E-mail, ; Fax, +1 212 327 8327
| |
Collapse
|
88
|
Abstract
Extensive studies in both lower and higher plants indicate that plant phytochrome photoreceptors signal not only by regulating transcription in the nucleus but also by acting within the cytoplasm, the latter signaling routes acting within minutes or even seconds and also providing directional information. Directional signals seem to arise from phytochromes attached anisotropically to the plasma membrane. Neochromes-phytochrome-phototropin hybrid photoreceptors probably attached to the plasma membrane-provide this signal in various ferns and perhaps certain algae but are absent from other groups. In mosses and probably higher plants too, a subpopulation of canonical phytochromes interact with phototropins at the plasma membrane and thereby steer directional responses. Phytochromes also seem able to regulate translation in the cytoplasm. This review discusses putative phytochrome functions in these contexts.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, D35390 Giessen, Germany.
| |
Collapse
|
89
|
Possart A, Hiltbrunner A. An evolutionarily conserved signaling mechanism mediates far-red light responses in land plants. THE PLANT CELL 2013; 25:102-14. [PMID: 23303916 PMCID: PMC3584528 DOI: 10.1105/tpc.112.104331] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/22/2012] [Accepted: 12/18/2012] [Indexed: 05/18/2023]
Abstract
Phytochromes are plant photoreceptors important for development and adaptation to the environment. Phytochrome A (PHYA) is essential for the far-red (FR) high-irradiance responses (HIRs), which are of particular ecological relevance as they enable plants to establish under shade conditions. PHYA and HIRs have been considered unique to seed plants because the divergence of seed plants and cryptogams (e.g., ferns and mosses) preceded the evolution of PHYA. Seed plant phytochromes translocate into the nucleus and regulate gene expression. By contrast, there has been little evidence of a nuclear localization and function of cryptogam phytochromes. Here, we identified responses to FR light in cryptogams, which are highly reminiscent of PHYA signaling in seed plants. In the moss Physcomitrella patens and the fern Adiantum capillus-veneris, phytochromes accumulate in the nucleus in response to light. Although P. patens phytochromes evolved independently of PHYA, we have found that one clade of P. patens phytochromes exhibits the molecular properties of PHYA. We suggest that HIR-like responses had evolved in the last common ancestor of modern seed plants and cryptogams and that HIR signaling is more ancient than PHYA. Thus, other phytochromes in seed plants may have lost the capacity to mediate HIRs during evolution, rather than that PHYA acquired it.
Collapse
Affiliation(s)
- Anja Possart
- Centre for Plant Molecular Biology, University of Tübingen, 72076 Tuebingen, Germany
| | | |
Collapse
|
90
|
Zheng X, Wu S, Zhai H, Zhou P, Song M, Su L, Xi Y, Li Z, Cai Y, Meng F, Yang L, Wang H, Yang J. Arabidopsis phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under far-red light. THE PLANT CELL 2013; 25:115-33. [PMID: 23371951 PMCID: PMC3584529 DOI: 10.1105/tpc.112.107086] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/10/2012] [Accepted: 12/19/2012] [Indexed: 05/19/2023]
Abstract
Phytochrome A (phyA) is the primary photoreceptor mediating deetiolation under far-red (FR) light, whereas phyB predominantly regulates light responses in red light. SUPPRESSOR OF PHYA-105 (SPA1) forms an E3 ubiquitin ligase complex with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), which is responsible for the degradation of various photomorphogenesis-promoting factors, resulting in desensitization to light signaling. However, the role of phyB in FR light signaling and the regulatory pathway from light-activated phytochromes to the COP1-SPA1 complex are largely unknown. Here, we confirm that PHYB overexpression causes an etiolation response with reduced ELONGATED HYPOCOTYL5 (HY5) accumulation under FR light. Notably, phyB exerts its nuclear activities and promotes seedling etiolation in both the presence and absence of phyA in response to FR light. PhyB acts upstream of SPA1 and is functionally dependent on it in FR light signaling. PhyB interacts and forms a protein complex with SPA1, enhancing its nuclear accumulation under FR light. During the dark-to-FR transition, phyB is rapidly imported into the nucleus and facilitates nuclear SPA1 accumulation. These findings support the notion that phyB plays a role in repressing FR light signaling. Activity modulation of the COP1-SPA E3 complex by light-activated phytochromes is an effective and pivotal regulatory step in light signaling.
Collapse
Affiliation(s)
- Xu Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Suowei Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huqu Zhai
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peng Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meifang Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Su
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulin Xi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingfan Cai
- College of Bio-information, Chongqing University of Posts and Telecommunication, Chongqing 400065, China
| | - Fanhua Meng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Jianping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Address correspondence to
| |
Collapse
|
91
|
Galstyan A, Bou-Torrent J, Roig-Villanova I, Martínez-García JF. A dual mechanism controls nuclear localization in the atypical basic-helix-loop-helix protein PAR1 of Arabidopsis thaliana. MOLECULAR PLANT 2012; 5:669-677. [PMID: 22311779 DOI: 10.1093/mp/sss006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PAR1 is an atypical basic-helix-loop-helix (bHLH) protein that negatively regulates the shade avoidance syndrome in Arabidopsis thaliana acting as a transcriptional cofactor. Consistently with this function, PAR1 has to be in the nucleus to display biological activity. Previous structure-function analyses revealed that the N-terminal region of PAR1 drives the protein to the nucleus. However, truncated forms of PAR1 lacking this region still display biological activity, implying that PAR1 has additional mechanisms to localize into the nucleus. In this work, we compared the primary structure of PAR1 and various related and unrelated plant bHLH proteins, which led us to suggest that PAR1 contains a non-canonical nuclear localization signal (NLS) in the N-terminal region. By overexpressing truncated and mutated derivatives of PAR1, we have also investigated the importance of other regions of PAR1, such as the acidic and the extended HLH dimerization domains, for its nuclear localization. We found that, in the absence of the N-terminal region, a functional HLH domain is required for nuclear localization. Our results suggest the existence of a dual mechanism for PAR1 nuclear localization: (1) one mediated by the N-terminal non-consensus NLS and (2) a second one that involves interaction with other proteins via the dimerization domain.
Collapse
Affiliation(s)
- Anahit Galstyan
- Centre for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193-Barcelona, Spain
| | | | | | | |
Collapse
|
92
|
Interaction with plant transcription factors can mediate nuclear import of phytochrome B. Proc Natl Acad Sci U S A 2012; 109:5892-7. [PMID: 22451940 DOI: 10.1073/pnas.1120764109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phytochromes (phy) are red/far-red-absorbing photoreceptors that regulate the adaption of plant growth and development to changes in ambient light conditions. The nuclear transport of the phytochromes upon light activation is regarded as a key step in phytochrome signaling. Although nuclear import of phyA is regulated by the transport facilitators far red elongated hypocotyl 1 (FHY1) and fhy1-like, an intrinsic nuclear localization signal was proposed to be involved in the nuclear accumulation of phyB. We recently showed that nuclear import of phytochromes can be analyzed in a cell-free system consisting of isolated nuclei of the unicellular green algae Acetabularia acetabulum. We now show that this system is also versatile to elucidate the mechanism of the nuclear transport of phyB. We tested the nuclear transport characteristics of full-length phyB as well as N- and C-terminal phyB fragments in vitro and showed that the nuclear import of phyB can be facilitated by phytochrome-interacting factor 3 (PIF3). In vivo measurements of phyB nuclear accumulation in the absence of PIF1, -3, -4, and -5 indicate that these PIFs are the major transport facilitators during the first hours of deetiolation. Under prolonged irradiations additional factors might be responsible for phyB nuclear transport in the plant.
Collapse
|
93
|
|
94
|
Van Buskirk EK, Decker PV, Chen M. Photobodies in light signaling. PLANT PHYSIOLOGY 2012; 158:52-60. [PMID: 21951469 PMCID: PMC3252093 DOI: 10.1104/pp.111.186411] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/22/2011] [Indexed: 05/17/2023]
|
95
|
Meier I, Somers DE. Regulation of nucleocytoplasmic trafficking in plants. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:538-46. [PMID: 21764628 DOI: 10.1016/j.pbi.2011.06.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 05/20/2023]
Abstract
The timing and position of molecular components within the cell are clearly important in the context of signal transduction. One challenge in attaining correct cellular positioning is the nuclear envelope, which separates the cell into two fundamentally different compartments. Molecular passaging from one to the other is highly selective due to the required recognition by the nucleocytoplasmic transport machinery. It is becoming increasingly clear that a highly diverse set of mechanisms have developed to allow environmental (biotic and abiotic) and endogenous signals to alter the nucleocytoplasmic partitioning of key molecules. In many cases this occurs by adjusting the access of the regulated species to the canonical import/export machinery. Recent studies are uncovering the sophistication and complexity of the processes that use the canonical transport machinery in the service of a diversity of signaling pathways.
Collapse
Affiliation(s)
- Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
96
|
Li J, Li G, Wang H, Wang Deng X. Phytochrome signaling mechanisms. THE ARABIDOPSIS BOOK 2011; 9:e0148. [PMID: 22303272 PMCID: PMC3268501 DOI: 10.1199/tab.0148] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Phytochromes are red (R)/far-red (FR) light photoreceptors that play fundamental roles in photoperception of the light environment and the subsequent adaptation of plant growth and development. There are five distinct phytochromes in Arabidopsis thaliana, designated phytochrome A (phyA) to phyE. phyA is light-labile and is the primary photoreceptor responsible for mediating photomorphogenic responses in FR light, whereas phyB-phyE are light stable, and phyB is the predominant phytochrome regulating de-etiolation responses in R light. Phytochromes are synthesized in the cytosol in their inactive Pr form. Upon light irradiation, phytochromes are converted to the biologically active Pfr form, and translocate into the nucleus. phyB can enter the nucleus by itself in response to R light, whereas phyA nuclear import depends on two small plant-specific proteins FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL). Phytochromes may function as light-regulated serine/threonine kinases, and can phosphorylate several substrates, including themselves in vitro. Phytochromes are phosphoproteins, and can be dephosphorylated by a few protein phosphatases. Photoactivated phytochromes rapidly change the expression of light-responsive genes by repressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), an E3 ubiquitin ligase targeting several photomorphogenesis-promoting transcription factors for degradation, and by inducing rapid phosphorylation and degradation of Phytochrome-Interacting Factors (PIFs), a group of bHLH transcription factors repressing photomorphogenesis. Phytochromes are targeted by COP1 for degradation via the ubiquitin/26S proteasome pathway.
Collapse
Affiliation(s)
- Jigang Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-biotechnology, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06520-8104
| | - Gang Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06520-8104
| | - Haiyang Wang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06520-8104
| | - Xing Wang Deng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-biotechnology, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06520-8104
| |
Collapse
|
97
|
Chen M, Chory J. Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 2011; 21:664-71. [PMID: 21852137 DOI: 10.1016/j.tcb.2011.07.002] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/01/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022]
Abstract
As they emerge from the ground, seedlings adopt a photosynthetic lifestyle, which is accompanied by dramatic changes in morphology and global alterations in gene expression that optimizes the plant body plan for light capture. Phytochromes are red and far-red photoreceptors that play a major role during photomorphogenesis, a complex developmental program that seedlings initiate when they first encounter light. The earliest phytochrome signaling events after excitation by red light include their rapid translocation from the cytoplasm to subnuclear bodies (photobodies) that contain other proteins involved in photomorphogenesis, including a number of transcription factors and E3 ligases. In the light, phytochromes and negatively acting transcriptional regulators that interact directly with phytochromes are destabilized, whereas positively acting transcriptional regulators are stabilized. Here, we discuss recent advances in our knowledge of the mechanisms linking phytochrome photoactivation in the cytoplasm and transcriptional regulation in the nucleus.
Collapse
Affiliation(s)
- Meng Chen
- Department of Biology, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
98
|
Abstract
The absorption of light by bound or diffusible chromophores causes conformational rearrangements in natural and artificial photoreceptor proteins. These rearrangements are coupled to the opening or closing of ion transport pathways, the association or dissociation of binding partners, the enhancement or suppression of catalytic activity, or the transcription or repression of genetic information. Illumination of cells, tissues, or organisms engineered genetically to express photoreceptor proteins can thus be used to perturb biochemical and electrical signaling with exquisite cellular and molecular specificity. First demonstrated in 2002, this principle of optogenetic control has had a profound impact on neuroscience, where it provides a direct and stringent means of probing the organization of neural circuits and of identifying the neural substrates of behavior. The impact of optogenetic control is also beginning to be felt in other areas of cell and organismal biology.
Collapse
Affiliation(s)
- Gero Miesenböck
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
99
|
Wang X, Roig-Villanova I, Khan S, Shanahan H, Quail PH, Martinez-Garcia JF, Devlin PF. A novel high-throughput in vivo molecular screen for shade avoidance mutants identifies a novel phyA mutation. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2973-87. [PMID: 21398429 PMCID: PMC3202935 DOI: 10.1093/jxb/err062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The shade avoidance syndrome (SAS) allows plants to anticipate and avoid shading by neighbouring plants by initiating an elongation growth response. The phytochrome photoreceptors are able to detect a reduction in the red:far red ratio in incident light, the result of selective absorption of red and blue wavelengths by proximal vegetation. A shade-responsive luciferase reporter line (PHYB::LUC) was used to carry out a high-throughput screen to identify novel SAS mutants. The dracula 1 (dra1) mutant, that showed no avoidance of shade for the PHYB::LUC response, was the result of a mutation in the PHYA gene. Like previously characterized phyA mutants, dra1 showed a long hypocotyl in far red light and an enhanced hypocotyl elongation response to shade. However, dra1 additionally showed a long hypocotyl in red light. Since phyB levels are relatively unaffected in dra1, this gain-of-function red light phenotype strongly suggests a disruption of phyB signalling. The dra1 mutation, G773E within the phyA PAS2 domain, occurs at a residue absolutely conserved among phyA sequences. The equivalent residue in phyB is absolutely conserved as a threonine. PAS domains are structurally conserved domains involved in molecular interaction. Structural modelling of the dra1 mutation within the phyA PAS2 domain shows some similarity with the structure of the phyB PAS2 domain, suggesting that the interference with phyB signalling may be the result of non-functional mimicry. Hence, it was hypothesized that this PAS2 residue forms a key distinction between the phyA and phyB phytochrome species.
Collapse
Affiliation(s)
- Xuewen Wang
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Irma Roig-Villanova
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, 08034 Barcelona, Spain
| | - Safina Khan
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Hugh Shanahan
- Department of Computer Science, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Peter H. Quail
- Department of Plant and Microbial Biology, UC Berkeley, Albany, CA 94710, USA
| | - Jaime F. Martinez-Garcia
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, 08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Ps. Lluís Companys 23, 08010 Barcelona, Spain
| | - Paul F. Devlin
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
100
|
Abstract
Per-Arnt-Sim (PAS) domains occur in proteins from all kingdoms of life. In the bacterial kingdom, PAS domains are commonly positioned at the amino terminus of signaling proteins such as sensor histidine kinases, cyclic-di-GMP synthases/hydrolases, and methyl-accepting chemotaxis proteins. Although these domains are highly divergent at the primary sequence level, the structures of dozens of PAS domains across a broad section of sequence space have been solved, revealing a conserved three-dimensional architecture. An all-versus-all alignment of 63 PAS structures demonstrates that the PAS domain family forms structural clades on the basis of two principal variables: (a) topological location inside or outside the plasma membrane and (b) the class of small molecule that they bind. The binding of a chemically diverse range of small-molecule metabolites is a hallmark of the PAS domain family. PAS ligand binding either functions as a primary cue to initiate a cellular signaling response or provides the domain with the capacity to respond to secondary physical or chemical signals such as gas molecules, redox potential, or photons. This review synthesizes the current state of knowledge of the structural foundations and evolution of ligand recognition and binding by PAS domains.
Collapse
Affiliation(s)
- Jonathan T. Henry
- The Committee on Microbiology, The University of Chicago, Chicago, IL 60637
| | - Sean Crosson
- The Committee on Microbiology, The University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|