51
|
Guerrero P, Perez-Carrasco R, Zagorski M, Page D, Kicheva A, Briscoe J, Page KM. Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium. Development 2019; 146:dev.176297. [PMID: 31784457 PMCID: PMC6918779 DOI: 10.1242/dev.176297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/01/2019] [Indexed: 01/04/2023]
Abstract
Cell division, movement and differentiation contribute to pattern formation in developing tissues. This is the case in the vertebrate neural tube, in which neurons differentiate in a characteristic pattern from a highly dynamic proliferating pseudostratified epithelium. To investigate how progenitor proliferation and differentiation affect cell arrangement and growth of the neural tube, we used experimental measurements to develop a mechanical model of the apical surface of the neuroepithelium that incorporates the effect of interkinetic nuclear movement and spatially varying rates of neuronal differentiation. Simulations predict that tissue growth and the shape of lineage-related clones of cells differ with the rate of differentiation. Growth is isotropic in regions of high differentiation, but dorsoventrally biased in regions of low differentiation. This is consistent with experimental observations. The absence of directional signalling in the simulations indicates that global mechanical constraints are sufficient to explain the observed differences in anisotropy. This provides insight into how the tissue growth rate affects cell dynamics and growth anisotropy and opens up possibilities to study the coupling between mechanics, pattern formation and growth in the neural tube. Summary: A mechanical model of the vertebrate neuroepithelium, based on experimental observations, suggests that the rate of neuronal differentiation influences tissue growth and the shape of lineage-related clones.
Collapse
Affiliation(s)
- Pilar Guerrero
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
| | - Ruben Perez-Carrasco
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
| | | | - David Page
- Myrtle Software, Second Floor, 50 St. Andrew's Street, Cambridge CB2 3AH, UK
| | - Anna Kicheva
- IST Austria, Am Campus 1, A - 3400 Klosterneuburg, Austria
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen M Page
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
52
|
Abstract
How do tissues self-organize to generate the complex organ shapes observed in vertebrates? Organ formation requires the integration of chemical and mechanical information, yet how this is achieved is poorly understood for most organs. Muscle compartments in zebrafish display a V shape, which is believed to be required for efficient swimming. We investigate how this structure emerges during zebrafish development, combining live imaging and quantitative analysis of cellular movements. We use theoretical modeling to understand how cell differentiation and mechanical interactions between tissues guide the emergence of a specific tissue morphology. Our work reveals how spatially modulating the mechanical environment around and within tissues can lead to complex organ shape formation. Organ formation is an inherently biophysical process, requiring large-scale tissue deformations. Yet, understanding how complex organ shape emerges during development remains a major challenge. During zebrafish embryogenesis, large muscle segments, called myotomes, acquire a characteristic chevron morphology, which is believed to aid swimming. Myotome shape can be altered by perturbing muscle cell differentiation or the interaction between myotomes and surrounding tissues during morphogenesis. To disentangle the mechanisms contributing to shape formation of the myotome, we combine single-cell resolution live imaging with quantitative image analysis and theoretical modeling. We find that, soon after segmentation from the presomitic mesoderm, the future myotome spreads across the underlying tissues. The mechanical coupling between the future myotome and the surrounding tissues appears to spatially vary, effectively resulting in spatially heterogeneous friction. Using a vertex model combined with experimental validation, we show that the interplay of tissue spreading and friction is sufficient to drive the initial phase of chevron shape formation. However, local anisotropic stresses, generated during muscle cell differentiation, are necessary to reach the acute angle of the chevron in wild-type embryos. Finally, tissue plasticity is required for formation and maintenance of the chevron shape, which is mediated by orientated cellular rearrangements. Our work sheds light on how a spatiotemporal sequence of local cellular events can have a nonlocal and irreversible mechanical impact at the tissue scale, leading to robust organ shaping.
Collapse
|
53
|
Inoue Y, Tateo I, Adachi T. Epithelial tissue folding pattern in confined geometry. Biomech Model Mechanobiol 2019; 19:815-822. [PMID: 31728791 PMCID: PMC7203093 DOI: 10.1007/s10237-019-01249-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/28/2019] [Indexed: 11/30/2022]
Abstract
The primordium of the exoskeleton of an insect is epithelial tissue with characteristic patterns of folds. As the insect develops from larva to pupa, the spreading of these folds produces the three-dimensional shape of the exoskeleton of the insect. It is known that the three-dimensional exoskeleton shape has already been encoded in characteristic patterns of folds in the primordium; however, a description of how the epithelial tissue forms with the characteristic patterns of folds remains elusive. The present paper suggests a possible mechanism for the formation of the folding pattern. During the primordium development, because of the epithelial tissue is surrounded by other tissues, cell proliferation proceeds within a confined geometry. To elucidate the mechanics of the folding of the epithelial tissue in the confined geometry, we employ a three-dimensional vertex model that expresses tissue deformations based on cell mechanical behaviors and apply the model to examine the effects of cell divisions and the confined geometry on epithelial folding. Our simulation results suggest that the orientation of the axis of cell division is sufficient to cause different folding patterns in silico and that the restraint of out-of-plane deformation due to the confined geometry determines the interspacing of the folds.
Collapse
Affiliation(s)
- Yasuhiro Inoue
- Department of Micro Engineering, Kyoto University, Kyoto, Japan.
| | - Itsuki Tateo
- Department of Micro Engineering, Kyoto University, Kyoto, Japan
| | - Taiji Adachi
- Department of Micro Engineering, Kyoto University, Kyoto, Japan.,Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
54
|
Micropattern-based platform as a physiologically relevant model to study epithelial morphogenesis and nephrotoxicity. Biomaterials 2019; 218:119339. [DOI: 10.1016/j.biomaterials.2019.119339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/09/2023]
|
55
|
Cardiomyocyte orientation modulated by the Numb family proteins-N-cadherin axis is essential for ventricular wall morphogenesis. Proc Natl Acad Sci U S A 2019; 116:15560-15569. [PMID: 31300538 PMCID: PMC6681736 DOI: 10.1073/pnas.1904684116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The roles of cellular orientation during trabecular and ventricular wall morphogenesis are unknown, and so are the underlying mechanisms that regulate cellular orientation. Myocardial-specific Numb and Numblike double-knockout (MDKO) hearts display a variety of defects, including in cellular orientation, patterns of mitotic spindle orientation, trabeculation, and ventricular compaction. Furthermore, Numb- and Numblike-null cardiomyocytes exhibit cellular behaviors distinct from those of control cells during trabecular morphogenesis based on single-cell lineage tracing. We investigated how Numb regulates cellular orientation and behaviors and determined that N-cadherin levels and membrane localization are reduced in MDKO hearts. To determine how Numb regulates N-cadherin membrane localization, we generated an mCherry:Numb knockin line and found that Numb localized to diverse endocytic organelles but mainly to the recycling endosome. Consistent with this localization, cardiomyocytes in MDKO did not display defects in N-cadherin internalization but rather in postendocytic recycling to the plasma membrane. Furthermore, N-cadherin overexpression via a mosaic model partially rescued the defects in cellular orientation and trabeculation of MDKO hearts. Our study unravels a phenomenon that cardiomyocytes display spatiotemporal cellular orientation during ventricular wall morphogenesis, and its disruption leads to abnormal trabecular and ventricular wall morphogenesis. Furthermore, we established a mechanism by which Numb modulates cellular orientation and consequently trabecular and ventricular wall morphogenesis by regulating N-cadherin recycling to the plasma membrane.
Collapse
|
56
|
Myat MM, Louis D, Mavrommatis A, Collins L, Mattis J, Ledru M, Verghese S, Su TT. Regulators of cell movement during development and regeneration in Drosophila. Open Biol 2019; 9:180245. [PMID: 31039676 PMCID: PMC6544984 DOI: 10.1098/rsob.180245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/05/2019] [Indexed: 11/16/2022] Open
Abstract
Cell migration is a fundamental cell biological process essential both for normal development and for tissue regeneration after damage. Cells can migrate individually or as a collective. To better understand the genetic requirements for collective migration, we expressed RNA interference (RNAi) against 30 genes in the Drosophila embryonic salivary gland cells that are known to migrate collectively. The genes were selected based on their effect on cell and membrane morphology, cytoskeleton and cell adhesion in cell culture-based screens or in Drosophila tissues other than salivary glands. Of these, eight disrupted salivary gland migration, targeting: Rac2, Rab35 and Rab40 GTPases, MAP kinase-activated kinase-2 (MAPk-AK2), RdgA diacylglycerol kinase, Cdk9, the PDSW subunit of NADH dehydrogenase (ND-PDSW) and actin regulator Enabled (Ena). The same RNAi lines were used to determine their effect during regeneration of X-ray-damaged larval wing discs. Cells translocate during this process, but it remained unknown whether they do so by directed cell divisions, by cell migration or both. We found that RNAi targeting Rac2, MAPk-AK2 and RdgA disrupted cell translocation during wing disc regeneration, but RNAi against Ena and ND-PDSW had little effect. We conclude that, in Drosophila, cell movements in development and regeneration have common as well as distinct genetic requirements.
Collapse
Affiliation(s)
- Monn Monn Myat
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Dheveline Louis
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Andreas Mavrommatis
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Latoya Collins
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Jamal Mattis
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Michelle Ledru
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Shilpi Verghese
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
- University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, 13001 East 17th Place, Aurora, CO 80045, USA
| |
Collapse
|
57
|
Abstract
Gastropod shell morphologies are famously diverse but generally share a common geometry, the logarithmic coil. Variations on this morphology have been modeled mathematically and computationally but the developmental biology of shell morphogenesis remains poorly understood. Here we characterize the organization and growth patterns of the shell-secreting epithelium of the larval shell of the basket whelk Tritia (also known as Ilyanassa). Despite the larval shell's relative simplicity, we find a surprisingly complex organization of the shell margin in terms of rows and zones of cells. We examined cell division patterns with EdU incorporation assays and found two growth zones within the shell margin. In the more anterior aperture growth zone, we find that inferred division angles are biased to lie parallel to the shell edge, and these divisions occur more on the margin's left side. In the more posterior mantle epithelium growth zone, inferred divisions are significantly biased to the right, relative to the anterior-posterior axis. These growth zones, and the left-right asymmetries in cleavage patterns they display, can explain the major modes of shell morphogenesis at the level of cellular behavior. In a gastropod with a different coiling geometry, Planorbella sp., we find similar shell margin organization and growth zones as Tritia, but different left-right asymmetries than we observed in the helically coiled shell of Tritia These results indicate that differential growth patterns in the mantle edge epithelium contribute to shell shape in gastropod shells and identify cellular mechanisms that may vary to generate shell diversity in evolution.
Collapse
Affiliation(s)
- Adam B Johnson
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Nina S Fogel
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY 14627
| |
Collapse
|
58
|
Zhou Z, Alégot H, Irvine KD. Oriented Cell Divisions Are Not Required for Drosophila Wing Shape. Curr Biol 2019; 29:856-864.e3. [PMID: 30799243 DOI: 10.1016/j.cub.2019.01.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/21/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022]
Abstract
Formation of correctly shaped organs is vital for normal function. The Drosophila wing has an elongated shape, which has been attributed in part to a preferential orientation of mitotic spindles along the proximal-distal axis [1, 2]. Orientation of mitotic spindles is believed to be a fundamental morphogenetic mechanism in multicellular organisms [3-6]. A contribution of spindle orientation to wing shape was inferred from observations that mutation of Dachsous-Fat pathway genes results in both rounder wings and loss of the normal proximal-distal bias in spindle orientation [1, 2, 7]. To directly evaluate the potential contribution of spindle orientation to wing morphogenesis, we assessed the consequences of loss of the Drosophila NuMA homolog Mud, which interacts with the dynein complex and has a conserved role in spindle orientation [8, 9]. Loss of Mud randomizes spindle orientation but does not alter wing shape. Analysis of growth and cell dynamics in developing discs and in ex vivo culture suggests that the absence of oriented cell divisions is compensated for by an increased contribution of cell rearrangements to wing shape. Our results indicate that oriented cell divisions are not required for wing morphogenesis, nor are they required for the morphogenesis of other Drosophila appendages. Moreover, our results suggest that normal organ shape is not achieved through locally specifying and then summing up individual cell behaviors, like oriented cell division. Instead, wing shape might be specified through tissue-wide stresses that dictate an overall arrangement of cells without specifying the individual cell behaviors needed to achieve it.
Collapse
Affiliation(s)
- Zhenru Zhou
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Herve Alégot
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
59
|
Stooke-Vaughan GA, Campàs O. Physical control of tissue morphogenesis across scales. Curr Opin Genet Dev 2018; 51:111-119. [PMID: 30390520 DOI: 10.1016/j.gde.2018.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
During embryogenesis, tissues and organs are progressively shaped into their functional morphologies. While the information about tissue and organ shape is encoded genetically, the sculpting of embryonic structures in the 3D space is ultimately a physical process. The control of physical quantities involved in tissue morphogenesis originates at cellular and subcellular scales, but it is their emergent behavior at supracellular scales that guides morphogenetic events. In this review, we highlight the physical quantities that can be spatiotemporally tuned at supracellular scales to sculpt tissues and organs during embryonic development of animal species, and connect them to the cellular and molecular mechanisms controlling them.
Collapse
Affiliation(s)
- Georgina A Stooke-Vaughan
- Department of Mechanical Engineering, University of California, Santa Barbara, California, United States
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, California, United States; California NanoSystems Institute, University of California, Santa Barbara, California, United States; Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, California, United States; Center for Bioengineering, University of California, Santa Barbara, United States.
| |
Collapse
|
60
|
Polarized microtubule dynamics directs cell mechanics and coordinates forces during epithelial morphogenesis. Nat Cell Biol 2018; 20:1126-1133. [PMID: 30202051 DOI: 10.1038/s41556-018-0193-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/09/2018] [Indexed: 11/08/2022]
Abstract
Coordinated rearrangements of cytoskeletal structures are the principal source of forces that govern cell and tissue morphogenesis1,2. However, unlike for actin-based mechanical forces, our knowledge about the contribution of forces originating from other cytoskeletal components remains scarce. Here, we establish microtubules as central components of cell mechanics during tissue morphogenesis. We find that individual cells are mechanically autonomous during early Drosophila wing epithelium development. Each cell contains a polarized apical non-centrosomal microtubule cytoskeleton that bears compressive forces, whereby acute elimination of microtubule-based forces leads to cell shortening. We further establish that the Fat planar cell polarity (Ft-PCP) signalling pathway3,4 couples microtubules at adherens junctions (AJs) and patterns microtubule-based forces across a tissue via polarized transcellular stability, thus revealing a molecular mechanism bridging single cell and tissue mechanics. Together, these results provide a physical basis to explain how global patterning of microtubules controls cell mechanics to coordinate collective cell behaviour during tissue remodelling. These results also offer alternative paradigms towards the interplay of contractile and protrusive cytoskeletal forces at the single cell and tissue levels.
Collapse
|
61
|
Adachi H, Matsuda K, Niimi T, Inoue Y, Kondo S, Gotoh H. Anisotropy of cell division and epithelial sheet bending via apical constriction shape the complex folding pattern of beetle horn primordia. Mech Dev 2018; 152:32-37. [DOI: 10.1016/j.mod.2018.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 11/29/2022]
|
62
|
Wu M. Mechanisms of Trabecular Formation and Specification During Cardiogenesis. Pediatr Cardiol 2018; 39:1082-1089. [PMID: 29594501 PMCID: PMC6164162 DOI: 10.1007/s00246-018-1868-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/14/2018] [Indexed: 01/08/2023]
Abstract
Trabecular morphogenesis is a key morphologic event during cardiogenesis and contributes to the formation of a competent ventricular wall. Lack of trabeculation results in embryonic lethality. The trabecular morphogenesis is a multistep process that includes, but is not limited to, trabecular initiation, proliferation/growth, specification, and compaction. Although a number of signaling molecules have been implicated in regulating trabeculation, the cellular processes underlying mammalian trabecular formation are not fully understood. Recent works show that the myocardium displays polarity, and oriented cell division (OCD) and directional migration of the cardiomyocytes in the monolayer myocardium are required for trabecular initiation and formation. Furthermore, perpendicular OCD is an extrinsic asymmetric cell division that contributes to trabecular specification, and is a mechanism that causes the trabecular cardiomyocytes to be distinct from the cardiomyocytes in compact zone. Once the coronary vasculature system starts to function in the embryonic heart, the trabeculae will coalesce with the compact zone to thicken the heart wall, and abnormal compaction will lead to left ventricular non-compaction (LVNC) and heart failure. There are many reviews about compaction and LVNC. In this review, we will focus on the roles of myocardial polarity and OCD in trabecular initiation, formation, and specification.
Collapse
Affiliation(s)
- Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, 43 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
63
|
De Las Heras JM, García-Cortés C, Foronda D, Pastor-Pareja JC, Shashidhara LS, Sánchez-Herrero E. The Drosophila Hox gene Ultrabithorax controls appendage shape by regulating extracellular matrix dynamics. Development 2018; 145:dev.161844. [PMID: 29853618 DOI: 10.1242/dev.161844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/17/2018] [Indexed: 12/19/2022]
Abstract
Although the specific form of an organ is frequently important for its function, the mechanisms underlying organ shape are largely unknown. In Drosophila, the wings and halteres, homologous appendages of the second and third thoracic segments, respectively, bear different forms: wings are flat, whereas halteres are globular, and yet both characteristic shapes are essential for a normal flight. The Hox gene Ultrabithorax (Ubx) governs the difference between wing and haltere development, but how Ubx function in the appendages prevents or allows flat or globular shapes is unknown. Here, we show that Ubx downregulates Matrix metalloproteinase 1 (Mmp1) expression in the haltere pouch at early pupal stage, which in turn prevents the rapid clearance of Collagen IV compared with the wing disc. This difference is instrumental in determining cell shape changes, expansion of the disc and apposition of dorsal and ventral layers, all of these phenotypic traits being characteristic of wing pouch development. Our results suggest that Ubx regulates organ shape by controlling Mmp1 expression, and the extent and timing of extracellular matrix degradation.
Collapse
Affiliation(s)
- José M De Las Heras
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | - Celia García-Cortés
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | - David Foronda
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | | | - L S Shashidhara
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
64
|
Abstract
Quantitative genetic variation in morphology is pervasive in all species and is the basis for the evolution of differences among species. The measurement of morphological form in adults is now beginning to be combined with comparable measurements of form during development. Here we compare the shape of the developing wing to its adult form in a holometabolous insect, Drosophila melanogaster. We used protein expression patterns to measure shape in the developing precursors of the final adult wing. Three developmental stages were studied: late larval third instar, post-pupariation and in the adult fly. We studied wild-type animals in addition to mutants of two genes (shf and ds) that have known effects on adult wing shape and size. Despite experimental noise related to the difficulty of comparing developing structures, we found consistent differences in wing shape and size at each developmental stage between genotypes. Quantitative comparisons of variation arising at different developmental stages with the variation in the final structure enable us to determine when variation arises, and to generate hypotheses about the causes of that variation. In addition we provide linear rules allowing us to link wing morphology in the larva, with wing morphology in the pupa. Our approach provides a framework to analyze quantitative morphological variation in the developing fly wing. This framework should help to characterize the natural variation of the larval and pupal wing shape, and to measure the contribution of the processes occurring during these developmental stages to the natural variation in adult wing morphology.
Collapse
|
65
|
Diaz-de-la-Loza MDC, Ray RP, Ganguly PS, Alt S, Davis JR, Hoppe A, Tapon N, Salbreux G, Thompson BJ. Apical and Basal Matrix Remodeling Control Epithelial Morphogenesis. Dev Cell 2018; 46:23-39.e5. [PMID: 29974861 PMCID: PMC6035286 DOI: 10.1016/j.devcel.2018.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 04/04/2018] [Accepted: 06/07/2018] [Indexed: 01/28/2023]
Abstract
Epithelial tissues can elongate in two dimensions by polarized cell intercalation, oriented cell division, or cell shape change, owing to local or global actomyosin contractile forces acting in the plane of the tissue. In addition, epithelia can undergo morphogenetic change in three dimensions. We show that elongation of the wings and legs of Drosophila involves a columnar-to-cuboidal cell shape change that reduces cell height and expands cell width. Remodeling of the apical extracellular matrix by the Stubble protease and basal matrix by MMP1/2 proteases induces wing and leg elongation. Matrix remodeling does not occur in the haltere, a limb that fails to elongate. Limb elongation is made anisotropic by planar polarized Myosin-II, which drives convergent extension along the proximal-distal axis. Subsequently, Myosin-II relocalizes to lateral membranes to accelerate columnar-to-cuboidal transition and isotropic tissue expansion. Thus, matrix remodeling induces dynamic changes in actomyosin contractility to drive epithelial morphogenesis in three dimensions.
Collapse
Affiliation(s)
| | - Robert P Ray
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Poulami S Ganguly
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Silvanus Alt
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin-Buch 13125, Germany
| | - John R Davis
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andreas Hoppe
- Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| | - Nic Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Guillaume Salbreux
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Barry J Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
66
|
Laminin β2 Chain Regulates Retinal Progenitor Cell Mitotic Spindle Orientation via Dystroglycan. J Neurosci 2018; 38:5996-6010. [PMID: 29853630 DOI: 10.1523/jneurosci.0551-18.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 01/27/2023] Open
Abstract
Vertebrate retinal development follows a pattern during which retinal progenitor cells (RPCs) give rise to all retinal cell types in a highly conserved temporal sequence. RPC proliferation and cell cycle exit are tightly coordinated to ensure proper and timely production of each of the retinal cell types. Extracellular matrix (ECM) plays an important role in eye development, influencing RPC proliferation and differentiation. In this study, we demonstrate that laminins, key ECM components, in the inner limiting membrane, control mitotic spindle orientation by providing environmental cues to the RPCs. In vivo deletion of laminin β2 in mice of both sexes results in a loss RPC basal processes and contact with the ECM, leading to a shift of the mitotic spindle pole orientation toward asymmetric cell divisions. This leads to decreased proliferation and premature RPC pool depletion, resulting in overproduction of rod photoreceptors at the expense of bipolar cells and Müller glia. Moreover, we show that deletion of laminin β2 leads to disruption and mislocalization of its receptors: dystroglycan and β1-integrin. Addition of exogenous β2-containing laminins to laminin β2-deficient retinal explants stabilizes the RPC basal processes and directs their mitotic spindle orientation toward symmetric divisions, leading to increased RPC proliferation, as well as restores proper receptor localization at the retinal surface. Finally, functional blocking of dystroglycan in wild-type retinal explants phenocopies laminin β2 ablation. Our data suggest that dystroglycan-mediated signaling between RPCs and the ECM is of key importance in controlling critical developmental events during retinogenesis.SIGNIFICANCE STATEMENT The mechanisms governing retinogenesis are subject to both intrinsic and extrinsic signaling cues. Although the role of intrinsic signaling has been the subject of many studies, our understanding of the role of the microenvironment in retinal development remains unclear. Using a combination of in vivo and ex vivo approaches, we demonstrate that laminins, key extracellular matrix components, provide signaling cues that control retinal progenitor cell attachment to the basement membrane, mitotic axis, proliferation, and fate adoption. Moreover, we identify, for the first time, dystroglycan as the receptor responsible for directing retinal progenitor cell mitotic spindle orientation. Our data suggest a mechanism where dystroglycan-mediated signaling between the cell and the extracellular matrix controls the proliferative potential of progenitors in the developing CNS.
Collapse
|
67
|
Nijhout HF, McKenna KZ. Wing morphogenesis in Lepidoptera. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:88-94. [PMID: 29786506 DOI: 10.1016/j.pbiomolbio.2018.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 01/21/2023]
Abstract
The wings of Lepidoptera develop from imaginal disks that are made up of a simple two-layered epithelium whose structure is always congruent with the final adult wing. It is therefore possible to map every point on the imaginal disk to a location on the adult wing throughout the period of growth and morphogenesis. The wings of different species of Lepidoptera differ greatly in both size and shape, yet it is possible to fate-map homologous locations on the developing wing disks and explicitly monitor the growth, size, and shape of the wing, or any of its regions, throughout the entire ontogeny of the wing. The wing achieves its final form through spatially patterned cell divisions, oriented cell divisions, physical constraints on directional growth by an actin network between the wing veins, and by patterned cell death. Each of these factors contributes differently to morphogenesis and to the development of species-specific differences in wing shape. The final shape of the wing is sculpted out of the much larger imaginal disk by a pattern of programmed cell death that removes all cells distal to the bordering lacuna, and is responsible for the detailed outline of the wing.
Collapse
|
68
|
Gao B, Ajima R, Yang W, Li C, Song H, Anderson MJ, Liu RR, Lewandoski MB, Yamaguchi TP, Yang Y. Coordinated directional outgrowth and pattern formation by integration of Wnt5a and Fgf signaling in planar cell polarity. Development 2018; 145:dev.163824. [PMID: 29615464 DOI: 10.1242/dev.163824] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/19/2018] [Indexed: 12/28/2022]
Abstract
Embryonic morphogenesis of a complex organism requires proper regulation of patterning and directional growth. Planar cell polarity (PCP) signaling is emerging as a crucial evolutionarily conserved mechanism whereby directional information is conveyed. PCP is thought to be established by global cues, and recent studies have revealed an instructive role of a Wnt signaling gradient in epithelial tissues of both invertebrates and vertebrates. However, it remains unclear whether Wnt/PCP signaling is regulated in a coordinated manner with embryonic patterning during morphogenesis. Here, in mouse developing limbs, we find that apical ectoderm ridge-derived Fgfs required for limb patterning regulate PCP along the proximal-distal axis in a Wnt5a-dependent manner. We demonstrate with genetic evidence that the Wnt5a gradient acts as a global cue that is instructive in establishing PCP in the limb mesenchyme, and that Wnt5a also plays a permissive role to allow Fgf signaling to orient PCP. Our results indicate that limb morphogenesis is regulated by coordination of directional growth and patterning through integration of Wnt5a and Fgf signaling.
Collapse
Affiliation(s)
- Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China .,Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Rieko Ajima
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Wei Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chunyu Li
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.,Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Hai Song
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Matthew J Anderson
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Robert R Liu
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Mark B Lewandoski
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Yingzi Yang
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA .,Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
69
|
Wolff C, Tinevez JY, Pietzsch T, Stamataki E, Harich B, Guignard L, Preibisch S, Shorte S, Keller PJ, Tomancak P, Pavlopoulos A. Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb. eLife 2018; 7:34410. [PMID: 29595475 PMCID: PMC5929908 DOI: 10.7554/elife.34410] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/26/2018] [Indexed: 12/11/2022] Open
Abstract
During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic. During early life, animals develop from a single fertilized egg cell to hundreds, millions or even trillions of cells. These cells specialize to do different tasks; forming different tissues and organs like muscle, skin, lungs and liver. For more than a century, scientists have strived to understand the details of how animal cells become different and specialize, and have created many new techniques and technologies to help them achieve this goal. Limbs – such as arms, legs and wings – form from small lumps of cells called limb buds. Scientists use the shrimp-like crustacean, Parhyale hawaiensis, to study development, including limb growth. This species is useful because it is easy to grow, manipulate and observe its developing young in the laboratory. Understanding how its limbs develop offers important new insights into how limbs develop in other animals too. Wolff, Tinevez, Pietzsch et al. have now combined advanced microscopy with custom computer software, called Massive Multi-view Tracker (MaMuT) to investigate this. As limbs develop in Parhyale, the MaMuT software tracks how cells behave, and how they are organized. This analysis revealed that for cells to produce a limb bud, they need to split at an early stage into separate groups. These groups are organized along two body axes, one that goes from head to tail, and one that runs from back to belly. The limb grows perpendicular to these main body axes, along a new ‘proximal-distal’ axis that goes from nearest to furthest from the body. Wolff et al. found that the cells that contribute to the extremities of the limb divide faster than the ones that stay closer to the body. Finally, the results show that when cells in a limb divide, they mostly divide along the proximal-distal axis, producing one cell that is further from the body than the other. These cell activities may help limbs to get longer as they grow. Notably, the groups of cells seen by Wolff et al. were expressing genes that had previously been identified in developing limbs. This helps to validate the new results and to identify which active genes control the behaviors of the analyzed cells. These findings reveal new ways to study animal development. This approach could have many research uses and may help to link the mechanisms of cell biology to their effects. It could also contribute to new understanding of developmental and genetic conditions that affect human health.
Collapse
Affiliation(s)
- Carsten Wolff
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Tobias Pietzsch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Evangelia Stamataki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Benjamin Harich
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Léo Guignard
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stephan Preibisch
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
70
|
Tang Z, Hu Y, Wang Z, Jiang K, Zhan C, Marshall WF, Tang N. Mechanical Forces Program the Orientation of Cell Division during Airway Tube Morphogenesis. Dev Cell 2018; 44:313-325.e5. [PMID: 29337000 DOI: 10.1016/j.devcel.2017.12.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/13/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022]
Abstract
Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis.
Collapse
Affiliation(s)
- Zan Tang
- College of Life Sciences, Peking University, Beijing 100871, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Yucheng Hu
- Zhou Pei-yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
| | - Zheng Wang
- National Institute of Biological Sciences, Beijing 102206, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Kewu Jiang
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Cheng Zhan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
71
|
Sandquist JC, Larson ME, Woolner S, Ding Z, Bement WM. An interaction between myosin-10 and the cell cycle regulator Wee1 links spindle dynamics to mitotic progression in epithelia. J Cell Biol 2018; 217:849-859. [PMID: 29321170 PMCID: PMC5839792 DOI: 10.1083/jcb.201708072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/20/2017] [Accepted: 12/06/2017] [Indexed: 01/02/2023] Open
Abstract
Proper spindle orientation must be achieved before anaphase onset, but whether and how cells link spindle position to anaphase onset is unknown. Sandquist, Larson, et al. identify a novel interaction between the motor protein myosin-10 and the cell cycle regulator wee1 that is proposed to help coordinate preanaphase spindle dynamics and positioning with mitotic exit. Anaphase in epithelia typically does not ensue until after spindles have achieved a characteristic position and orientation, but how or even if cells link spindle position to anaphase onset is unknown. Here, we show that myosin-10 (Myo10), a motor protein involved in epithelial spindle dynamics, binds to Wee1, a conserved regulator of cyclin-dependent kinase 1 (Cdk1). Wee1 inhibition accelerates progression through metaphase and disrupts normal spindle dynamics, whereas perturbing Myo10 function delays anaphase onset in a Wee1-dependent manner. Moreover, Myo10 perturbation increases Wee1-mediated inhibitory phosphorylation on Cdk1, which, unexpectedly, concentrates at cell–cell junctions. Based on these and other results, we propose a model in which the Myo10–Wee1 interaction coordinates attainment of spindle position and orientation with anaphase onset.
Collapse
Affiliation(s)
- Joshua C Sandquist
- Biology Department, Grinnell College, Grinnell, IA .,Department of Zoology, University of Wisconsin-Madison, Madison, WI
| | - Matthew E Larson
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI.,Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI
| | - Sarah Woolner
- Department of Zoology, University of Wisconsin-Madison, Madison, WI.,Wellcome Trust Centre for Cell-Matrix Research, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, England, UK
| | - Zhiwei Ding
- Biology Department, Grinnell College, Grinnell, IA
| | - William M Bement
- Department of Zoology, University of Wisconsin-Madison, Madison, WI .,Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI.,Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
72
|
Kumar JP. The fly eye: Through the looking glass. Dev Dyn 2017; 247:111-123. [PMID: 28856763 DOI: 10.1002/dvdy.24585] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
The developing eye-antennal disc of Drosophila melanogaster has been studied for more than a century, and it has been used as a model system to study diverse processes, such as tissue specification, organ growth, programmed cell death, compartment boundaries, pattern formation, cell fate specification, and planar cell polarity. The findings that have come out of these studies have informed our understanding of basic developmental processes as well as human disease. For example, the isolation of a white-eyed fly ultimately led to a greater appreciation of the role that sex chromosomes play in development, sex determination, and sex linked genetic disorders. Similarly, the discovery of the Sevenless receptor tyrosine kinase pathway not only revealed how the fate of the R7 photoreceptor is selected but it also helped our understanding of how disruptions in similar biochemical pathways result in tumorigenesis and cancer onset. In this article, I will discuss some underappreciated areas of fly eye development that are fertile for investigation and are ripe for producing exciting new breakthroughs. The topics covered here include organ shape, growth control, inductive signaling, and right-left symmetry. Developmental Dynamics 247:111-123, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
73
|
Dye NA, Popović M, Spannl S, Etournay R, Kainmüller D, Ghosh S, Myers EW, Jülicher F, Eaton S. Cell dynamics underlying oriented growth of the Drosophila wing imaginal disc. Development 2017; 144:4406-4421. [PMID: 29038308 DOI: 10.1242/dev.155069] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/05/2017] [Indexed: 12/30/2022]
Abstract
Quantitative analysis of the dynamic cellular mechanisms shaping the Drosophila wing during its larval growth phase has been limited, impeding our ability to understand how morphogen patterns regulate tissue shape. Such analysis requires explants to be imaged under conditions that maintain both growth and patterning, as well as methods to quantify how much cellular behaviors change tissue shape. Here, we demonstrate a key requirement for the steroid hormone 20-hydroxyecdysone (20E) in the maintenance of numerous patterning systems in vivo and in explant culture. We find that low concentrations of 20E support prolonged proliferation in explanted wing discs in the absence of insulin, incidentally providing novel insight into the hormonal regulation of imaginal growth. We use 20E-containing media to observe growth directly and to apply recently developed methods for quantitatively decomposing tissue shape changes into cellular contributions. We discover that whereas cell divisions drive tissue expansion along one axis, their contribution to expansion along the orthogonal axis is cancelled by cell rearrangements and cell shape changes. This finding raises the possibility that anisotropic mechanical constraints contribute to growth orientation in the wing disc.
Collapse
Affiliation(s)
- Natalie A Dye
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Stephanie Spannl
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Raphaël Etournay
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Unité de Génétique et Physiologie de l'Audition UMRS 1120, Département de Neurosciences, Institut Pasteur, 75015 Paris, France
| | - Dagmar Kainmüller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Janelia Farm Research Campus, 19700 Helix Dr, Ashburn, VA 20147, USA
| | - Suhrid Ghosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany .,Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany .,Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47/49, 01309 Dresden, Germany
| |
Collapse
|
74
|
Difference in Dachsous Levels between Migrating Cells Coordinates the Direction of Collective Cell Migration. Dev Cell 2017; 42:479-497.e10. [DOI: 10.1016/j.devcel.2017.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/19/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022]
|
75
|
Jülicher F, Eaton S. Emergence of tissue shape changes from collective cell behaviours. Semin Cell Dev Biol 2017; 67:103-112. [DOI: 10.1016/j.semcdb.2017.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 12/09/2016] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
|
76
|
Stooke-Vaughan GA, Davidson LA, Woolner S. Xenopus as a model for studies in mechanical stress and cell division. Genesis 2017; 55. [PMID: 28095623 DOI: 10.1002/dvg.23004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 01/03/2023]
Abstract
We exist in a physical world, and cells within biological tissues must respond appropriately to both environmental forces and forces generated within the tissue to ensure normal development and homeostasis. Cell division is required for normal tissue growth and maintenance, but both the direction and rate of cell division must be tightly controlled to avoid diseases of over-proliferation such as cancer. Recent studies have shown that mechanical cues can cause mitotic entry and orient the mitotic spindle, suggesting that physical force could play a role in patterning tissue growth. However, to fully understand how mechanics guides cells in vivo, it is necessary to assess the interaction of mechanical strain and cell division in a whole tissue context. In this mini-review we first summarise the body of work linking mechanics and cell division, before looking at the advantages that the Xenopus embryo can offer as a model organism for understanding: (1) the mechanical environment during embryogenesis, and (2) factors important for cell division. Finally, we introduce a novel method for applying a reproducible strain to Xenopus embryonic tissue and assessing subsequent cell divisions.
Collapse
Affiliation(s)
- Georgina A Stooke-Vaughan
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Sarah Woolner
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
77
|
Qin X, Park BO, Liu J, Chen B, Choesmel-Cadamuro V, Belguise K, Heo WD, Wang X. Cell-matrix adhesion and cell-cell adhesion differentially control basal myosin oscillation and Drosophila egg chamber elongation. Nat Commun 2017; 8:14708. [PMID: 28406187 PMCID: PMC5399299 DOI: 10.1038/ncomms14708] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/19/2017] [Indexed: 01/22/2023] Open
Abstract
Pulsatile actomyosin contractility, important in tissue morphogenesis, has been studied mainly in apical but less in basal domains. Basal myosin oscillation underlying egg chamber elongation is regulated by both cell–matrix and cell–cell adhesions. However, the mechanism by which these two adhesions govern basal myosin oscillation and tissue elongation is unknown. Here we demonstrate that cell–matrix adhesion positively regulates basal junctional Rho1 activity and medio-basal ROCK and myosin activities, thus strongly controlling tissue elongation. Differently, cell–cell adhesion governs basal myosin oscillation through controlling medio-basal distributions of both ROCK and myosin signals, which are related to the spatial limitations of cell–matrix adhesion and stress fibres. Contrary to cell–matrix adhesion, cell–cell adhesion weakly affects tissue elongation. In vivo optogenetic protein inhibition spatiotemporally confirms the different effects of these two adhesions on basal myosin oscillation. This study highlights the activity and distribution controls of basal myosin contractility mediated by cell–matrix and cell–cell adhesions, respectively, during tissue morphogenesis. Pulsatile actomyosin contractility during tissue morphogenesis has been mainly studied in apical domains but less is known about the contribution of the basal domain. Here the authors show differential influence of cell-matrix and cell-cell adhesions in regulating oscillations and tissue elongation.
Collapse
Affiliation(s)
- Xiang Qin
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Byung Ouk Park
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jiaying Liu
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Bing Chen
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France.,Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Valerie Choesmel-Cadamuro
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Karine Belguise
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Won Do Heo
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Xiaobo Wang
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| |
Collapse
|
78
|
Bergstralh DT, Dawney NS, St Johnston D. Spindle orientation: a question of complex positioning. Development 2017; 144:1137-1145. [DOI: 10.1242/dev.140764] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The direction in which a cell divides is determined by the orientation of its mitotic spindle at metaphase. Spindle orientation is therefore important for a wide range of developmental processes, ranging from germline stem cell division to epithelial tissue homeostasis and regeneration. In multiple cell types in multiple animals, spindle orientation is controlled by a conserved biological machine that mediates a pulling force on astral microtubules. Restricting the localization of this machine to only specific regions of the cortex can thus determine how the mitotic spindle is oriented. As we review here, recent findings based on studies in tunicate, worm, fly and vertebrate cells have revealed that the mechanisms for mediating this restriction are surprisingly diverse.
Collapse
Affiliation(s)
- Dan T. Bergstralh
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Nicole S. Dawney
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
79
|
|
80
|
Montes AJ, Morata G. Homeostatic response to blocking cell division in Drosophila imaginal discs: Role of the Fat/Dachsous (Ft/Ds) pathway. Dev Biol 2017; 424:113-123. [PMID: 28300568 DOI: 10.1016/j.ydbio.2017.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/28/2022]
Abstract
One major problem in developmental biology is the identification of the mechanisms that control the final size of tissues and organs. We are addressing this issue in the imaginal discs of Drosophila by analysing the response to blocking cell division in large domains in the wing and leg discs. The affected domains may be zones of restricted lineage like compartments, or zones of open lineage that may integrate cells from the surrounding territory. Our results reveal the existence of a powerful homeostatic mechanism that can compensate for gross differences in growth rates and builds structures of normal size. This mechanism functions at the level of whole discs, inducing additional cell proliferation to generate the cells that populate the cell division-arrested territory and generating an active recruitment process to integrate those cells. The activation of this response mechanism is mediated by alterations in the normal activity of PCP genes of the Fat/Ds system: in discs mutant for dachs, ds or four jointed the response mechanism is not activated.
Collapse
Affiliation(s)
| | - Ginés Morata
- Centro de Biología Molecular CSIC-UAM, Madrid, Spain.
| |
Collapse
|
81
|
Differential Regulation of Cyclin E by Yorkie-Scalloped Signaling in Organ Development. G3-GENES GENOMES GENETICS 2017; 7:1049-1060. [PMID: 28143945 PMCID: PMC5345706 DOI: 10.1534/g3.117.039065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue integrity and homeostasis are accomplished through strict spatial and temporal regulation of cell growth and proliferation during development. Various signaling pathways have emerged as major growth regulators across metazoans; yet, how differential growth within a tissue is spatiotemporally coordinated remains largely unclear. Here, we report a role of a growth modulator Yorkie (Yki), the Drosophila homolog of Yes-associated protein (YAP), that differentially regulates its targets in Drosophila wing imaginal discs; whereby Yki interacts with its transcriptional partner, Scalloped (Sd), the homolog of the TEAD/TEF family transcription factor in mammals, to control an essential cell cycle regulator Cyclin E (CycE). Interestingly, when Yki was coexpressed with Fizzy-related (Fzr), a Drosophila endocycle inducer and homolog of Cdh1 in mammals, surrounding hinge cells displayed larger nuclear size than distal pouch cells. The observed size difference is attributable to differential regulation of CycE, a target of Yki and Sd, the latter of which can directly bind to CycE regulatory sequences, and is expressed only in the pouch region of the wing disc starting from the late second-instar larval stage. During earlier stages of larval development, when Sd expression was not detected in the wing disc, coexpression of Fzr and Yki did not cause size differences between cells along the proximal–distal axis of the disc. We show that ectopic CycE promoted cell proliferation and apoptosis, and inhibited transcriptional activity of Yki targets. These findings suggest that spatiotemporal expression of transcription factor Sd induces differential growth regulation by Yki during wing disc development, highlighting coordination between Yki and CycE to control growth and maintain homeostasis.
Collapse
|
82
|
Thieleke-Matos C, Osório DS, Carvalho AX, Morais-de-Sá E. Emerging Mechanisms and Roles for Asymmetric Cytokinesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:297-345. [PMID: 28526136 DOI: 10.1016/bs.ircmb.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokinesis completes cell division by physically separating the contents of the mother cell between the two daughter cells. This event requires the highly coordinated reorganization of the cytoskeleton within a precise window of time to ensure faithful genomic segregation. In addition, recent progress in the field highlighted the importance of cytokinesis in providing particularly important cues in the context of multicellular tissues. The organization of the cytokinetic machinery and the asymmetric localization or inheritance of the midbody remnants is critical to define the spatial distribution of mechanical and biochemical signals. After a brief overview of the conserved steps of animal cytokinesis, we review the mechanisms controlling polarized cytokinesis focusing on the challenges of epithelial cytokinesis. Finally, we discuss the significance of these asymmetries in defining embryonic body axes, determining cell fate, and ensuring the correct propagation of epithelial organization during proliferation.
Collapse
Affiliation(s)
- C Thieleke-Matos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - D S Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - A X Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - E Morais-de-Sá
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
83
|
Rebocho AB, Southam P, Kennaway JR, Bangham JA, Coen E. Generation of shape complexity through tissue conflict resolution. eLife 2017; 6:e20156. [PMID: 28166865 PMCID: PMC5295819 DOI: 10.7554/elife.20156] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/02/2017] [Indexed: 12/22/2022] Open
Abstract
Out-of-plane tissue deformations are key morphogenetic events during plant and animal development that generate 3D shapes, such as flowers or limbs. However, the mechanisms by which spatiotemporal patterns of gene expression modify cellular behaviours to generate such deformations remain to be established. We use the Snapdragon flower as a model system to address this problem. Combining cellular analysis with tissue-level modelling, we show that an orthogonal pattern of growth orientations plays a key role in generating out-of-plane deformations. This growth pattern is most likely oriented by a polarity field, highlighted by PIN1 protein localisation, and is modulated by dorsoventral gene activity. The orthogonal growth pattern interacts with other patterns of differential growth to create tissue conflicts that shape the flower. Similar shape changes can be generated by contraction as well as growth, suggesting tissue conflict resolution provides a flexible morphogenetic mechanism for generating shape diversity in plants and animals.
Collapse
Affiliation(s)
- Alexandra B Rebocho
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, England
| | - Paul Southam
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, England
| | - J Richard Kennaway
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, England
| | - J Andrew Bangham
- School of Computational Sciences, University of East Anglia, Norwich, England
| | - Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, England
| |
Collapse
|
84
|
Larson ME, Bement WM. Automated mitotic spindle tracking suggests a link between spindle dynamics, spindle orientation, and anaphase onset in epithelial cells. Mol Biol Cell 2017; 28:746-759. [PMID: 28100633 PMCID: PMC5349782 DOI: 10.1091/mbc.e16-06-0355] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/28/2016] [Accepted: 01/11/2017] [Indexed: 12/11/2022] Open
Abstract
Proper spindle positioning at anaphase onset is essential for normal tissue organization and function. Here we develop automated spindle-tracking software and apply it to characterize mitotic spindle dynamics in the Xenopus laevis embryonic epithelium. We find that metaphase spindles first undergo a sustained rotation that brings them on-axis with their final orientation. This sustained rotation is followed by a set of striking stereotyped rotational oscillations that bring the spindle into near contact with the cortex and then move it rapidly away from the cortex. These oscillations begin to subside soon before anaphase onset. Metrics extracted from the automatically tracked spindles indicate that final spindle position is determined largely by cell morphology and that spindles consistently center themselves in the XY-plane before anaphase onset. Finally, analysis of the relationship between spindle oscillations and spindle position relative to the cortex reveals an association between cortical contact and anaphase onset. We conclude that metaphase spindles in epithelia engage in a stereotyped "dance," that this dance culminates in proper spindle positioning and orientation, and that completion of the dance is linked to anaphase onset.
Collapse
Affiliation(s)
- Matthew E Larson
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI 53706 .,Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - William M Bement
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI 53706 .,Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706.,Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
85
|
|
86
|
Abstract
Asymmetric cell division (ACD) controls cell fate decisions in model organisms such as Drosophila and C. elegans and has recently emerged as a mediator of T cell fate and hematopoiesis. The most appropriate methods for assessing ACD in T cells are still evolving. Here we describe the methods currently applied to monitor and measure ACD of developing and activated T cells. We provide an overview of approaches for capturing cells in the process of cytokinesis in vivo, ex vivo, or during in vitro culture. We provide methods for in vitro fixed immunofluorescent staining and for time-lapse analysis. We provide an overview of the different approaches for quantification of ACD of lymphocytes, discuss the pitfalls and concerns in interpretation of these analyses, and provide detailed methods for the quantification of ACD in our group.
Collapse
Affiliation(s)
- Mirren Charnley
- Faculty of Science, Engineering and Technology, Centre for Micro-Photonics, Swinburne University of Technology, Mail No H74, PO Box 218, Hawthorn, VIC, 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC, 3002, Australia
- Faculty of Science, Engineering and Technology, Biointerface Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Sarah M Russell
- Faculty of Science, Engineering and Technology, Centre for Micro-Photonics, Swinburne University of Technology, Mail No H74, PO Box 218, Hawthorn, VIC, 3122, Australia.
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC, 3002, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
- Department of Pathology, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
87
|
Kale A, Rimesso G, Baker NE. Local Cell Death Changes the Orientation of Cell Division in the Developing Drosophila Wing Imaginal Disc Without Using Fat or Dachsous as Orienting Signals. PLoS One 2016; 11:e0167637. [PMID: 28030539 PMCID: PMC5193341 DOI: 10.1371/journal.pone.0167637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
Drosophila imaginal disc cells exhibit preferred cell division orientations according to location within the disc. These orientations are altered if cell death occurs within the epithelium, such as is caused by cell competition or by genotypes affecting cell survival. Both normal cell division orientations, and their orientations after cell death, depend on the Fat-Dachsous pathway of planar cell polarity (PCP). The hypothesis that cell death initiates a planar polarity signal was investigated. When clones homozygous for the pineapple eye (pie) mutation were made to initiate cell death, neither Dachsous nor Fat was required in pie cells for the re-orientation of nearby cells, indicating a distinct signal for this PCP pathway. Dpp and Wg were also not needed for pie clones to re-orient cell division. Cell shapes were evaluated in wild type and mosaic wing discs to assess mechanical consequences of cell loss. Although proximal wing disc cells and cells close to the dorso-ventral boundary were elongated in their preferred cell division axes in wild type discs, cell shapes in much of the wing pouch were symmetrical on average and did not predict their preferred division axis. Cells in pie mutant clones were slightly larger than their normal counterparts, consistent with mechanical stretching following cell loss, but no bias in cell shape was detected in the surrounding cells. These findings indicate that an unidentified signal influences PCP-dependent cell division orientation in imaginal discs.
Collapse
Affiliation(s)
- Abhijit Kale
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NYC, NY, United States of America
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NYC, NY, United States of America
| | - Nicholas E. Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NYC, NY, United States of America
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NYC, NY, United States of America
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NYC, NY, United States of America
- * E-mail:
| |
Collapse
|
88
|
Yamashita S, Michiue T. Boundary propagation of planar cell polarity is robust against cell packing pattern. J Theor Biol 2016; 410:44-54. [PMID: 27647257 DOI: 10.1016/j.jtbi.2016.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022]
Abstract
Planar cell polarity is an important property of epithelial tissue. The boundary propagation model was proposed as the mechanism of PCP induction, while it has been doubted whether it can induce PCP on wide tissue. Using simulation, a set of proteins can be shown to induce PCP, but it does not explain why and how the set can induce PCP. In this study, we made theoretical model and simulation model to explore when and how the boundary propagation induce PCP. We incorporated multipolar cell in our model. Intracellular interactions have been thought to amplify polarity of a cell, but we propose instead that they are to keep a cell-cell interface polarized, and bipolarity of cell is obtained as a result. We show that the boundary propagation can propagate polarity as long as average size of local cell group is constant and levels of PCP proteins are balanced in every cell. Therefore, this model provide an explanation for PCP induction on a tissue with multiple cell types.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Tatsuo Michiue
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
89
|
Eder D, Aegerter C, Basler K. Forces controlling organ growth and size. Mech Dev 2016; 144:53-61. [PMID: 27913118 DOI: 10.1016/j.mod.2016.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/02/2016] [Accepted: 11/24/2016] [Indexed: 12/25/2022]
Abstract
One of the fundamental questions in developmental biology is what determines the final size and shape of an organ. Recent research strongly emphasizes that besides cell-cell communication, biophysical principals govern organ development. The architecture and mechanics of a tissue guide cellular processes such as movement, growth or differentiation. Furthermore, mechanical cues do not only regulate processes at a cellular level but also provide constant feedback about size and shape on a tissue scale. Here we review several models and experimental systems which are contributing to our understanding of the roles mechanical forces play during organ development. One of the best understood processes is how the remodeling of bones is driven by mechanical load. Culture systems of single cells and of cellular monolayers provide further insights into the growth promoting capacity of mechanical cues. We focus on the Drosophila wing imaginal disc, a well-established model system for growth regulation. We discuss theoretical models that invoke mechanical feedback loops for growth regulation and experimental studies providing empirical support. Future progress in this exciting field will require the development of new tools to precisely measure and modify forces in living tissue systems.
Collapse
Affiliation(s)
- Dominik Eder
- Institute of Molecular Life Sciences, University of Zurich, CH-8057, Switzerland; Institute of Physics, University of Zurich, CH-8057, Switzerland
| | | | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, CH-8057, Switzerland.
| |
Collapse
|
90
|
Long Term Ex Vivo Culture and Live Imaging of Drosophila Larval Imaginal Discs. PLoS One 2016; 11:e0163744. [PMID: 27685172 PMCID: PMC5042436 DOI: 10.1371/journal.pone.0163744] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/13/2016] [Indexed: 12/27/2022] Open
Abstract
Continuous imaging of live tissues provides clear temporal sequence of biological events. The Drosophila imaginal discs have been popular experimental subjects for the study of a wide variety of biological phenomena, but long term culture that allows normal development has not been satisfactory. Here we report a culture method that can sustain normal development for 18 hours and allows live imaging. The method is validated in multiple discs and for cell proliferation, differentiation and migration. However, it does not support disc growth and cannot support cell proliferation for more than 7 to 12 hr. We monitored the cellular behavior of retinal basal glia in the developing eye disc and found that distinct glia type has distinct properties of proliferation and migration. The live imaging provided direct proof that wrapping glia differentiated from existing glia after migrating to the anterior front, and unexpectedly found that they undergo endoreplication before wrapping axons, and their nuclei migrate up and down along the axons. UV-induced specific labeling of a single carpet glia also showed that the two carpet glia membrane do not overlap and suggests a tiling or repulsion mechanism between the two cells. These findings demonstrated the usefulness of an ex vivo culture method and live imaging.
Collapse
|
91
|
Firmino J, Rocancourt D, Saadaoui M, Moreau C, Gros J. Cell Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick. Dev Cell 2016; 36:249-61. [PMID: 26859350 DOI: 10.1016/j.devcel.2016.01.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/19/2015] [Accepted: 01/09/2016] [Indexed: 12/25/2022]
Abstract
During early embryonic development, cells are organized as cohesive epithelial sheets that are continuously growing and remodeled without losing their integrity, giving rise to a wide array of tissue shapes. Here, using live imaging in chick embryo, we investigate how epithelial cells rearrange during gastrulation. We find that cell division is a major rearrangement driver that powers dramatic epithelial cell intercalation events. We show that these cell division-mediated intercalations, which represent the majority of epithelial rearrangements within the early embryo, are absolutely necessary for the spatial patterning of gastrulation movements. Furthermore, we demonstrate that these intercalation events result from overall low cortical actomyosin accumulation within the epithelial cells of the embryo, which enables dividing cells to remodel junctions in their vicinity. These findings uncover a role for cell division as coordinator of epithelial growth and remodeling that might underlie various developmental, homeostatic, or pathological processes in amniotes.
Collapse
Affiliation(s)
- Joao Firmino
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS URA2578, rue du Dr Roux, 75015 Paris, France
| | - Didier Rocancourt
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS URA2578, rue du Dr Roux, 75015 Paris, France
| | - Mehdi Saadaoui
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS URA2578, rue du Dr Roux, 75015 Paris, France
| | - Chloe Moreau
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS URA2578, rue du Dr Roux, 75015 Paris, France; University Pierre et Marie Curie, Cellule Pasteur UPMC, rue du Dr Roux, 75015 Paris, France
| | - Jerome Gros
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS URA2578, rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
92
|
di Pietro F, Echard A, Morin X. Regulation of mitotic spindle orientation: an integrated view. EMBO Rep 2016; 17:1106-30. [PMID: 27432284 DOI: 10.15252/embr.201642292] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN-independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation.
Collapse
Affiliation(s)
- Florencia di Pietro
- Cell Division and Neurogenesis Laboratory, Ecole Normale Supérieure CNRS Inserm Institut de Biologie de l'Ecole Normale Supérieure (IBENS) PSL Research University, Paris, France Institute of Doctoral Studies (IFD), Sorbonne Universités Université Pierre et Marie Curie-Université Paris 6, Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Laboratory, Cell Biology and Infection Department, Institut Pasteur, Paris, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3691, Paris, France
| | - Xavier Morin
- Cell Division and Neurogenesis Laboratory, Ecole Normale Supérieure CNRS Inserm Institut de Biologie de l'Ecole Normale Supérieure (IBENS) PSL Research University, Paris, France
| |
Collapse
|
93
|
Maintenance of the Epithelial Barrier and Remodeling of Cell-Cell Junctions during Cytokinesis. Curr Biol 2016; 26:1829-42. [PMID: 27345163 DOI: 10.1016/j.cub.2016.05.036] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 01/08/2023]
Abstract
Epithelial integrity and barrier function must be maintained during the complex cell shape changes that occur during cytokinesis in vertebrate epithelial tissue. Here, we investigate how adherens junctions and bicellular and tricellular tight junctions are maintained and remodeled during cell division in the Xenopus laevis embryo. We find that epithelial barrier function is not disrupted during cytokinesis and is mediated by sustained tight junctions. Using fluorescence recovery after photobleaching (FRAP), we demonstrate that adherens junction proteins are stabilized at the cleavage furrow by increased tension. We find that Vinculin is recruited to the adherens junction at the cleavage furrow, and that inhibiting recruitment of Vinculin by expressing a dominant-negative mutant increases the rate of furrow ingression. Furthermore, we show that cells neighboring the cleavage plane are pulled between the daughter cells, making a new interface between neighbors, and two new tricellular tight junctions flank the midbody following cytokinesis. Our data provide new insight into how epithelial integrity and barrier function are maintained throughout cytokinesis in vertebrate epithelial tissue.
Collapse
|
94
|
Li J, Miao L, Shieh D, Spiotto E, Li J, Zhou B, Paul A, Schwartz RJ, Firulli AB, Singer HA, Huang G, Wu M. Single-Cell Lineage Tracing Reveals that Oriented Cell Division Contributes to Trabecular Morphogenesis and Regional Specification. Cell Rep 2016; 15:158-170. [PMID: 27052172 DOI: 10.1016/j.celrep.2016.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/20/2016] [Accepted: 02/26/2016] [Indexed: 01/07/2023] Open
Abstract
The cardiac trabeculae are sheet-like structures extending from the myocardium that function to increase surface area. A lack of trabeculation causes embryonic lethality due to compromised cardiac function. To understand the cellular and molecular mechanisms of trabecular formation, we genetically labeled individual cardiomyocytes prior to trabeculation via the brainbow multicolor system and traced and analyzed the labeled cells during trabeculation by whole-embryo clearing and imaging. The clones derived from labeled single cells displayed four different geometric patterns that are derived from different patterns of oriented cell division (OCD) and migration. Of the four types of clones, the inner, transmural, and mixed clones contributed to trabecular cardiomyocytes. Further studies showed that perpendicular OCD is an extrinsic asymmetric cell division that putatively contributes to trabecular regional specification. Furthermore, N-Cadherin deletion in labeled clones disrupted the clonal patterns. In summary, our data demonstrate that OCD contributes to trabecular morphogenesis and specification.
Collapse
Affiliation(s)
- Jingjing Li
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Lianjie Miao
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - David Shieh
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Ernest Spiotto
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Jian Li
- Key Laboratory of Molecular Medicine, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Antoni Paul
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Robert J Schwartz
- Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Anthony B Firulli
- Riley Heart Research Center, Indiana University, Indianapolis, IN 46202, USA
| | - Harold A Singer
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Guoying Huang
- Key Laboratory of Molecular Medicine, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Mingfu Wu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
95
|
Persistence of RNAi-Mediated Knockdown in Drosophila Complicates Mosaic Analysis Yet Enables Highly Sensitive Lineage Tracing. Genetics 2016; 203:109-18. [PMID: 26984059 PMCID: PMC4858766 DOI: 10.1534/genetics.116.187062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/09/2016] [Indexed: 01/04/2023] Open
Abstract
RNA interference (RNAi) has emerged as a powerful way of reducing gene function in Drosophila melanogaster tissues. By expressing synthetic short hairpin RNAs (shRNAs) using the Gal4/UAS system, knockdown is efficiently achieved in specific tissues or in clones of marked cells. Here we show that knockdown by shRNAs is so potent and persistent that even transient exposure of cells to shRNAs can reduce gene function in their descendants. When using the FLP-out Gal4 method, in some instances we observed unmarked “shadow RNAi” clones adjacent to Gal4-expressing clones, which may have resulted from brief Gal4 expression following recombination but prior to cell division. Similarly, Gal4 driver lines with dynamic expression patterns can generate shadow RNAi cells after their activity has ceased in those cells. Importantly, these effects can lead to erroneous conclusions regarding the cell autonomy of knockdown phenotypes. We have investigated the basis of this phenomenon and suggested experimental designs for eliminating ambiguities in interpretation. We have also exploited the persistence of shRNA-mediated knockdown to design a sensitive lineage-tracing method, i-TRACE, which is capable of detecting even low levels of past reporter expression. Using i-TRACE, we demonstrate transient infidelities in the expression of some cell-identity markers near compartment boundaries in the wing imaginal disc.
Collapse
|
96
|
Vollmer J, Fried P, Sánchez-Aragón M, Lopes CS, Casares F, Iber D. A quantitative analysis of growth control in the Drosophila eye disc. Development 2016; 143:1482-90. [PMID: 26965369 DOI: 10.1242/dev.129775] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 02/29/2016] [Indexed: 01/03/2023]
Abstract
The size and shape of organs is species specific, and even in species in which organ size is strongly influenced by environmental cues, such as nutrition or temperature, it follows defined rules. Therefore, mechanisms must exist to ensure a tight control of organ size within a given species, while being flexible enough to allow for the evolution of different organ sizes in different species. We combined computational modeling and quantitative measurements to analyze growth control in the Drosophila eye disc. We find that the area growth rate declines inversely proportional to the increasing total eye disc area. We identify two growth laws that are consistent with the growth data and that would explain the extraordinary robustness and evolutionary plasticity of the growth process and thus of the final adult eye size. These two growth laws correspond to very different control mechanisms and we discuss how each of these laws constrains the set of candidate biological mechanisms for growth control in the Drosophila eye disc.
Collapse
Affiliation(s)
- Jannik Vollmer
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, Basel 4058, Switzerland Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, Basel 4058, Switzerland
| | - Patrick Fried
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, Basel 4058, Switzerland Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, Basel 4058, Switzerland
| | - Max Sánchez-Aragón
- Department of Gene Regulation and Morphogenesis, CABD, CSIC and Universidad Pablo de Olavide, Campus UPO, Seville 41013, Spain
| | - Carla S Lopes
- Department of Gene Regulation and Morphogenesis, CABD, CSIC and Universidad Pablo de Olavide, Campus UPO, Seville 41013, Spain
| | - Fernando Casares
- Department of Gene Regulation and Morphogenesis, CABD, CSIC and Universidad Pablo de Olavide, Campus UPO, Seville 41013, Spain
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, Basel 4058, Switzerland Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, Basel 4058, Switzerland
| |
Collapse
|
97
|
Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis. Nature 2016; 530:495-8. [PMID: 26886796 PMCID: PMC5450930 DOI: 10.1038/nature16970] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/05/2016] [Indexed: 12/24/2022]
Abstract
The orientation of cell division along the interphase cell long-axis, the century old Hertwig’s rule, has profound roles in tissue proliferation, morphogenesis, architecture and mechanics1,2. In epithelial tissues, the shape of the interphase cell is influenced by cell adhesion, mechanical stress, neighbour topology, and planar polarity pathways3–12. At mitosis, epithelial cells usually round up to ensure faithful chromosome segregation and to promote morphogenesis1. The mechanisms underlying interphase cell shape sensing in tissues are therefore unknown. We found that in Drosophila epithelia, tricellular junctions (TCJ) localize microtubule force generators, orienting cell division via the Dynein associated protein Mud independently of the classical Pins/Gαi pathway. Moreover, as cells round up during mitosis, TCJs serve as spatial landmarks, encoding information about interphase cell shape anisotropy to orient division in the rounded mitotic cell. Finally, experimental and simulation data show that shape and mechanical strain sensing by the TCJ emerge from a general geometric property of TCJ distributions in epithelial tissues. Thus, in addition to their function as epithelial barrier structures, TCJs serve as polarity cues promoting geometry and mechanical sensing in epithelial tissues.
Collapse
|
98
|
Tosi S, Milán M. Developing Epithelia: What the Eye Cannot Grasp. Dev Cell 2016; 36:7-8. [PMID: 26766439 DOI: 10.1016/j.devcel.2015.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this issue of Developmental Cell, Heller et al. (2016) introduce EpiTools, a new open-source image analysis toolkit that provides user-friendly graphical interfaces to perform automatic cell-based measurements from fluorescence microscopy time-lapse images of growing epithelia.
Collapse
Affiliation(s)
- Sébastien Tosi
- Advanced Digital Microscopy, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| | - Marco Milán
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
99
|
Bosveld F, Guirao B, Wang Z, Rivière M, Bonnet I, Graner F, Bellaïche Y. Modulation of junction tension by tumor-suppressors and proto-oncogenes regulates cell-cell contacts. Development 2016; 143:623-34. [DOI: 10.1242/dev.127993] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022]
Abstract
Tumor-suppressor and proto-oncogenes play critical roles in tissue proliferation. Furthermore, deregulation of their functions is deleterious to tissue architecture and can result in the sorting of somatic rounded clones minimizing their contact with surrounding wild-type (wt) cells. Defects in somatic clones shape correlate with defects in proliferation, cell affinity, cell-cell adhesion, oriented cell division and cortical elasticity. Combining genetics, live-imaging, laser ablation and computer simulations, we aim to analyze whether distinct or similar mechanisms can account for the common role of tumor-suppressor and proto-oncogenes in cell-cell contact regulation. In Drosophila epithelia, Fat (Ft) and Dachsous (Ds) tumor-suppressors regulate cell proliferation, tissue morphogenesis, planar cell polarity and junction tension. By analyzing the time evolution of ft mutant cells and clones, we show that ft clones reduce their cell-cell contact with surrounding wt tissue in the absence of concomitant cell divisions and over-proliferation. This contact reduction depends on opposite changes of junction tensions in the clone bulk and its boundary with neighboring wt tissue. More generally, either clone bulk or boundary junction tensions is modulated by the activation of Yorkie, Myc and Ras yielding similar contact reductions with wt cells. Together our data highlight mechanical roles for proto-oncogene and tumor-suppressor pathways in cell-cell interactions.
Collapse
Affiliation(s)
- Floris Bosveld
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Boris Guirao
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Zhimin Wang
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Mathieu Rivière
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Present address: Matière et Systèmes Complexes, Université Paris Diderot, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Isabelle Bonnet
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Present address: Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR 168, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - François Graner
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Present address: Matière et Systèmes Complexes, Université Paris Diderot, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Yohanns Bellaïche
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
100
|
Guirao B, Rigaud SU, Bosveld F, Bailles A, López-Gay J, Ishihara S, Sugimura K, Graner F, Bellaïche Y. Unified quantitative characterization of epithelial tissue development. eLife 2015; 4. [PMID: 26653285 PMCID: PMC4811803 DOI: 10.7554/elife.08519] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/03/2015] [Indexed: 12/20/2022] Open
Abstract
Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. DOI:http://dx.doi.org/10.7554/eLife.08519.001 In animals, the final size and shape of each tissue is determined by the precise control of when, where and how much individual cells grow, divide, move and die. An important challenge in biology is to understand how the behaviors of each individual cell can act together to generate a large and reproducible change at the scale of entire tissues and organs. Here, Guirao et al. have developed a new approach to provide maps that reveal how much each cell process contributes to the development of tissues. A caterpillar becoming a butterfly is a famous example of insect ‘metamorphosis’. The fruit fly offers another example of such tissue development: within five days, a rice grain-like maggot morphs into an adult fly with long antennae, legs and wings. Guirao et al. used a microscope to observe cells over a period of several hours during the metamorphosis of the adult fruit fly wings and thorax (the region between the neck and abdomen). In both regions, Guirao et al. showed that all the cell processes participate in the formation of the adult tissue. Cell division, cell death, and changes in cell size affect the size of the tissue, while cell division, cell rearrangements, and changes in cell shape alter the shape of the tissue. The relative contributions of these cell processes varied a lot in both space and time. Further experiments then used mutant flies with defects in cell division to analyse the impact of cell division on the other cell processes and the eventual shape of the tissue. Finally, Guirao et al. showed that there are unexpected interactions between the patterns of tissue growth, cell division and the mechanical forces in the tissue. These findings provide a new approach to uncover how animals from different species can have such a variety of shapes and sizes, even though they each start life as a single cell. Ultimately, this may also aid efforts to understand how certain diseases affect the development of tissues. DOI:http://dx.doi.org/10.7554/eLife.08519.002
Collapse
Affiliation(s)
- Boris Guirao
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| | - Stéphane U Rigaud
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| | - Floris Bosveld
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| | - Anaïs Bailles
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| | - Jesús López-Gay
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| | - Shuji Ishihara
- Department of Physics, School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Kaoru Sugimura
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Tokyo, Japan
| | - François Graner
- Laboratoire Matière et Systèmes Complexes (CNRS UMR7057), Université Paris-Diderot, Paris, France
| | - Yohanns Bellaïche
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| |
Collapse
|