51
|
Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem Sci 2011; 36:633-41. [PMID: 21975038 DOI: 10.1016/j.tibs.2011.09.001] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 01/03/2023]
Abstract
Arginine methylation governs important cellular processes that impact growth and proliferation, as well as differentiation and development. Through their ability to catalyze symmetric or asymmetric methylation of histone and non-histone proteins, members of the protein arginine methyltransferase (PRMT) family regulate chromatin structure and expression of a wide spectrum of target genes. Unlike other PRMTs, PRMT5 works in concert with a variety of cellular proteins including ATP-dependent chromatin remodelers and co-repressors to induce epigenetic silencing. Recent work also implicates PRMT5 in the control of growth-promoting and pro-survival pathways, which demonstrates its versatility as an enzyme involved in both epigenetic regulation of anti-cancer target genes and organelle biogenesis. These studies not only provide insight into the molecular mechanisms by which PRMT5 contributes to growth control, but also justify therapeutic targeting of PRMT5.
Collapse
|
52
|
Chen C, Nott TJ, Jin J, Pawson T. Deciphering arginine methylation: Tudor tells the tale. Nat Rev Mol Cell Biol 2011; 12:629-42. [PMID: 21915143 DOI: 10.1038/nrm3185] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins can be modified by post-translational modifications such as phosphorylation, methylation, acetylation and ubiquitylation, creating binding sites for specific protein domains. Methylation has pivotal roles in the formation of complexes that are involved in cellular regulation, including in the generation of small RNAs. Arginine methylation was discovered half a century ago, but the ability of methylarginine sites to serve as binding motifs for members of the Tudor protein family, and the functional significance of the protein-protein interactions that are mediated by Tudor domains, has only recently been appreciated. Tudor proteins are now known to be present in PIWI complexes, where they are thought to interact with methylated PIWI proteins and regulate the PIWI-interacting RNA (piRNA) pathway in the germ line.
Collapse
Affiliation(s)
- Chen Chen
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | | | | | |
Collapse
|
53
|
Periodic expression of Sm proteins parallels formation of nuclear Cajal bodies and cytoplasmic snRNP-rich bodies. Histochem Cell Biol 2011; 136:527-41. [PMID: 21904826 PMCID: PMC3192945 DOI: 10.1007/s00418-011-0861-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2011] [Indexed: 11/26/2022]
Abstract
Small nuclear ribonucleoproteins (snRNPs) play a fundamental role in pre-mRNA processing in the nucleus. The biogenesis of snRNPs involves a sequence of events that occurs in both the nucleus and cytoplasm. Despite the wealth of biochemical information about the cytoplasmic assembly of snRNPs, little is known about the spatial organization of snRNPs in the cytoplasm. In the cytoplasm of larch microsporocytes, a cyclic appearance of bodies containing small nuclear RNA (snRNA) and Sm proteins was observed during anther meiosis. We observed a correlation between the occurrence of cytoplasmic snRNP bodies, the levels of Sm proteins, and the dynamic formation of Cajal bodies. Larch microsporocytes were used for these studies. This model is characterized by natural fluctuations in the level of RNA metabolism, in which periods of high transcriptional activity are separated from periods of low transcriptional activity. In designing experiments, the authors considered the differences between the nuclear and cytoplasmic phases of snRNP maturation and generated a hypothesis about the direct participation of Sm proteins in a molecular switch triggering the formation of Cajal bodies.
Collapse
|
54
|
Kibanov MV, Egorova KS, Ryazansky SS, Sokolova OA, Kotov AA, Olenkina OM, Stolyarenko AD, Gvozdev VA, Olenina LV. A novel organelle, the piNG-body, in the nuage of Drosophila male germ cells is associated with piRNA-mediated gene silencing. Mol Biol Cell 2011; 22:3410-9. [PMID: 21775629 PMCID: PMC3172265 DOI: 10.1091/mbc.e11-02-0168] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel perinuclear nuage organelle, the piNG-body, is associated with piRNA silencing in testes of Drosophila. This body contains the known ovarian nuage proteins Vasa, Aub, AGO3, Tud, Spn-E, Bel, Squ, and Cuff, as well as AGO1. Proteins of the PIWI subfamily Aub and AGO3 associated with the germline-specific perinuclear granules (nuage) are involved in the silencing of retrotransposons and other selfish repetitive elements in the Drosophila genome. PIWI proteins and their 25- to 30-nt PIWI-interacting RNA (piRNAs) are considered as key participants of the piRNA pathway. Using immunostaining, we found a large, nuage-associated organelle in the testes, the piNG-body (piRNA nuage giant body), which was significantly more massive than an ordinary nuage granule. This body contains known ovarian nuage proteins, including Vasa, Aub, AGO3, Tud, Spn-E, Bel, Squ, and Cuff, as well as AGO1, the key component of the microRNA pathway. piNG-bodies emerge at the primary spermatocyte stage of spermatogenesis during the period of active transcription. Aub, Vasa, and Tud are located at the periphery of the piNG-body, whereas AGO3 is found in its core. Mutational analysis revealed that Vasa, Aub, and AGO3 were crucial for both the maintenance of the piNG-body structure and the silencing of selfish Stellate repeats. The piNG-body destruction caused by csul mutations that abolish specific posttranslational symmetrical arginine methylation of PIWI proteins is accompanied by strong derepression of Stellate genes known to be silenced via the piRNA pathway.
Collapse
Affiliation(s)
- Mikhail V Kibanov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Moscow, 123182, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Yu MC. The Role of Protein Arginine Methylation in mRNP Dynamics. Mol Biol Int 2011; 2011:163827. [PMID: 22091396 PMCID: PMC3195771 DOI: 10.4061/2011/163827] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/12/2011] [Indexed: 12/13/2022] Open
Abstract
In eukaryotes, messenger RNA biogenesis depends on the ordered and precise assembly of a nuclear messenger ribonucleoprotein particle (mRNP) during transcription. This process requires a well-orchestrated and dynamic sequence of molecular recognition events by specific RNA-binding proteins. Arginine methylation is a posttranslational modification found in a plethora of RNA-binding proteins responsible for mRNP biogenesis. These RNA-binding proteins include both heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins. In this paper, I discuss the mechanisms of action by which arginine methylation modulates various facets of mRNP biogenesis, and how the collective consequences of this modification impart the specificity required to generate a mature, translational- and export-competent mRNP.
Collapse
Affiliation(s)
- Michael C Yu
- Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY 14260, USA
| |
Collapse
|
56
|
Liu L, Qi H, Wang J, Lin H. PAPI, a novel TUDOR-domain protein, complexes with AGO3, ME31B and TRAL in the nuage to silence transposition. Development 2011; 138:1863-73. [PMID: 21447556 DOI: 10.1242/dev.059287] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nuage is a germline-specific perinuclear structure that remains functionally elusive. Recently, the nuage in Drosophila was shown to contain two of the three PIWI proteins - Aubergine and Argonaute 3 (AGO3) - that are essential for germline development. The PIWI proteins bind to PIWI-interacting RNAs (piRNAs) and function in epigenetic regulation and transposon control. Here, we report a novel nuage component, PAPI (Partner of PIWIs), that contains a TUDOR domain and interacts with all three PIWI proteins via symmetrically dimethylated arginine residues in their N-terminal domain. In adult ovaries, PAPI is mainly cytoplasmic and enriched in the nuage, where it partially colocalizes with AGO3. The localization of PAPI to the nuage does not require the arginine methyltransferase dPRMT5 or AGO3. However, AGO3 is largely delocalized from the nuage and becomes destabilized in the absence of PAPI or dPRMT5, indicating that PAPI recruits PIWI proteins to the nuage to assemble piRNA pathway components. As expected, papi deficiency leads to transposon activation, phenocopying piRNA mutants. This further suggests that PAPI is involved in the piRNA pathway for transposon silencing. Moreover, AGO3 and PAPI associate with the P body component TRAL/ME31B complex in the nuage and transposon activation is observed in tral mutant ovaries. This suggests a physical and functional interaction in the nuage between the piRNA pathway components and the mRNA-degrading P-body components in transposon silencing. Overall, our study reveals a function of the nuage in safeguarding the germline genome against deleterious retrotransposition via the piRNA pathway.
Collapse
Affiliation(s)
- Li Liu
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06509, USA
| | | | | | | |
Collapse
|
57
|
Hartmann B, Castelo R, Miñana B, Peden E, Blanchette M, Rio DC, Singh R, Valcárcel J. Distinct regulatory programs establish widespread sex-specific alternative splicing in Drosophila melanogaster. RNA (NEW YORK, N.Y.) 2011; 17:453-468. [PMID: 21233220 PMCID: PMC3039145 DOI: 10.1261/rna.2460411] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/22/2010] [Indexed: 05/30/2023]
Abstract
In Drosophila melanogaster, female-specific expression of Sex-lethal (SXL) and Transformer (TRA) proteins controls sex-specific alternative splicing and/or translation of a handful of regulatory genes responsible for sexual differentiation and behavior. Recent findings in 2009 by Telonis-Scott et al. document widespread sex-biased alternative splicing in fruitflies, including instances of tissue-restricted sex-specific splicing. Here we report results arguing that some of these novel sex-specific splicing events are regulated by mechanisms distinct from those established by female-specific expression of SXL and TRA. Bioinformatic analysis of SXL/TRA binding sites, experimental analysis of sex-specific splicing in S2 and Kc cells lines and of the effects of SXL knockdown in Kc cells indicate that SXL-dependent and SXL-independent regulatory mechanisms coexist within the same cell. Additional determinants of sex-specific splicing can be provided by sex-specific differences in the expression of RNA binding proteins, including Hrp40/Squid. We report that sex-specific alternative splicing of the gene hrp40/squid leads to sex-specific differences in the levels of this hnRNP protein. The significant overlap between sex-regulated alternative splicing changes and those induced by knockdown of hrp40/squid and the presence of related sequence motifs enriched near subsets of Hrp40/Squid-regulated and sex-regulated splice sites indicate that this protein contributes to sex-specific splicing regulation. A significant fraction of sex-specific splicing differences are absent in germline-less tudor mutant flies. Intriguingly, these include alternative splicing events that are differentially spliced in tissues distant from the germline. Collectively, our results reveal that distinct genetic programs control widespread sex-specific splicing in Drosophila melanogaster.
Collapse
|
58
|
Zhang Z, Zhang S, Zhang Y, Wang X, Li D, Li Q, Yue M, Li Q, Zhang YE, Xu Y, Xue Y, Chong K, Bao S. Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. THE PLANT CELL 2011; 23:396-411. [PMID: 21258002 PMCID: PMC3051234 DOI: 10.1105/tpc.110.081356] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/15/2010] [Accepted: 01/04/2011] [Indexed: 05/19/2023]
Abstract
Plants adapt their growth and development in response to perceived salt stress. Although DELLA-dependent growth restraint is thought to be an integration of the plant's response to salt stress, little is known about how histone modification confers salt stress and, in turn, affects development. Here, we report that floral initiator Shk1 kinase binding protein1 (SKB1) and histone4 arginine3 (H4R3) symmetric dimethylation (H4R3sme2) integrate responses to plant developmental progress and salt stress. Mutation of SKB1 results in salt hypersensitivity, late flowering, and growth retardation. SKB1 associates with chromatin and thereby increases the H4R3sme2 level to suppress the transcription of FLOWERING LOCUS C (FLC) and a number of stress-responsive genes. During salt stress, the H4R3sme2 level is reduced, as a consequence of SKB1 disassociating from chromatin to induce the expression of FLC and the stress-responsive genes but increasing the methylation of small nuclear ribonucleoprotein Sm-like4 (LSM4). Splicing defects are observed in the skb1 and lsm4 mutants, which are sensitive to salt. We propose that SKB1 mediates plant development and the salt response by altering the methylation status of H4R3sme2 and LSM4 and linking transcription to pre-mRNA splicing.
Collapse
Affiliation(s)
- Zhaoliang Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Shupei Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Wang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan Li
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiuling Li
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Minghui Yue
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Qun Li
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-e Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunyuan Xu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yongbiao Xue
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- National Plant Gene Research Centre, Beijing 100101, China
| | - Kang Chong
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Plant Gene Research Centre, Beijing 100101, China
| | - Shilai Bao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
59
|
Vourekas A, Kirino Y, Mourelatos Z. Elective affinities: a Tudor-Aubergine tale of germline partnership. Genes Dev 2010; 24:1963-6. [PMID: 20844011 DOI: 10.1101/gad.1977010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Drosophila melanogaster and many other metazoans, the specification of germ cells requires cytoplasmic inheritance of maternally synthesized RNA and protein determinants, which are assembled in electron-dense cytoplasmic structures known as germ or polar granules, found at the posterior end of the oocytes. Recent studies have shown that the formation of germ granules is dependent on the interaction of proteins containing tudor domains with the piwi-interacting RNA (piRNA)-binding Piwi proteins, and such interactions are dependent on symmetrically dimethylated arginines (sDMAs) of Piwi proteins. Tudor-Piwi interactions are crucial and are conserved in the germ cells of sexually reproducing animals, including mammals. In the September 1, 2010, issue of Genes & Development, Liu and colleagues (pp. 1876-1881) use a combination of genetics, biochemistry, and crystallography to uncover the molecular and structural details of how Tudor recognizes and binds the sDMAs of the Piwi protein Aubergine.
Collapse
Affiliation(s)
- Anastassios Vourekas
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
60
|
Sanchez SE, Petrillo E, Beckwith EJ, Zhang X, Rugnone ML, Hernando CE, Cuevas JC, Godoy Herz MA, Depetris-Chauvin A, Simpson CG, Brown JWS, Cerdán PD, Borevitz JO, Mas P, Ceriani MF, Kornblihtt AR, Yanovsky MJ. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 2010; 468:112-6. [PMID: 20962777 DOI: 10.1038/nature09470] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 09/01/2010] [Indexed: 12/11/2022]
Abstract
Circadian rhythms allow organisms to time biological processes to the most appropriate phases of the day-night cycle. Post-transcriptional regulation is emerging as an important component of circadian networks, but the molecular mechanisms linking the circadian clock to the control of RNA processing are largely unknown. Here we show that PROTEIN ARGININE METHYL TRANSFERASE 5 (PRMT5), which transfers methyl groups to arginine residues present in histones and Sm spliceosomal proteins, links the circadian clock to the control of alternative splicing in plants. Mutations in PRMT5 impair several circadian rhythms in Arabidopsis thaliana and this phenotype is caused, at least in part, by a strong alteration in alternative splicing of the core-clock gene PSEUDO RESPONSE REGULATOR 9 (PRR9). Furthermore, genome-wide studies show that PRMT5 contributes to the regulation of many pre-messenger-RNA splicing events, probably by modulating 5'-splice-site recognition. PRMT5 expression shows daily and circadian oscillations, and this contributes to the mediation of the circadian regulation of expression and alternative splicing of a subset of genes. Circadian rhythms in locomotor activity are also disrupted in dart5-1, a mutant affected in the Drosophila melanogaster PRMT5 homologue, and this is associated with alterations in splicing of the core-clock gene period and several clock-associated genes. Our results demonstrate a key role for PRMT5 in the regulation of alternative splicing and indicate that the interplay between the circadian clock and the regulation of alternative splicing by PRMT5 constitutes a common mechanism that helps organisms to synchronize physiological processes with daily changes in environmental conditions.
Collapse
Affiliation(s)
- Sabrina E Sanchez
- IFEVA, Facultad de Agronomía, UBA-CONICET, C1417DSE Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Proc Natl Acad Sci U S A 2010; 107:19114-9. [PMID: 20956294 DOI: 10.1073/pnas.1009669107] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein arginine methylation, one of the most abundant and important posttranslational modifications, is involved in a multitude of biological processes in eukaryotes, such as transcriptional regulation and RNA processing. Symmetric arginine dimethylation is required for snRNP biogenesis and is assumed to be essential for pre-mRNA splicing; however, except for in vitro evidence, whether it affects splicing in vivo remains elusive. Mutation in an Arabidopsis symmetric arginine dimethyltransferase, AtPRMT5, causes pleiotropic developmental defects, including late flowering, but the underlying molecular mechanism is largely unknown. Here we show that AtPRMT5 methylates a wide spectrum of substrates, including some RNA binding or processing factors and U snRNP AtSmD1, D3, and AtLSm4 proteins, which are involved in RNA metabolism. RNA-seq analyses reveal that AtPRMT5 deficiency causes splicing defects in hundreds of genes involved in multiple biological processes. The splicing defects are identified in transcripts of several RNA processing factors involved in regulating flowering time. In particular, splicing defects at the flowering regulator flowering locus KH domain (FLK) in atprmt5 mutants reduce its functional transcript and protein levels, resulting in the up-regulation of a flowering repressor flowering locus C (FLC) and consequently late flowering. Taken together, our findings uncover an essential role for arginine methylation in proper pre-mRNA splicing that impacts diverse developmental processes.
Collapse
|
62
|
Guo S, Bao S. srGAP2 arginine methylation regulates cell migration and cell spreading through promoting dimerization. J Biol Chem 2010; 285:35133-41. [PMID: 20810653 DOI: 10.1074/jbc.m110.153429] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Slit-Robo GTPase-activating proteins (srGAPs) are critical for neuronal migration through inactivation of Rho GTPases Cdc42, Rac1, and RhoA. Here we report that srGAP2 physically interacts with protein arginine methyltransferase 5 (PRMT5). srGAP2 localizes to the cytoplasm and plasma membrane protrusion. srGAP2 knockdown reduces cell adhesion spreading and increases cell migration, but has no effect on cell proliferation. PRMT5 binds to the N terminus of srGAP2 (225-538 aa) and methylates its C-terminal arginine residue Arg-927. The methylation mutant srGAP2-R927A fails to rescue the cell spreading rate, is unable to localize to the plasma membrane leading edge, and perturbs srGAP2 homodimer formation mediated by the F-BAR domain. These results suggest that srGAP2 arginine methylation plays important roles in cell spreading and cell migration through influencing membrane protrusion.
Collapse
Affiliation(s)
- Shaoshi Guo
- Key Laboratory of Molecular and Developmental Biology, Center for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
63
|
Arkov AL, Ramos A. Building RNA-protein granules: insight from the germline. Trends Cell Biol 2010; 20:482-90. [PMID: 20541937 PMCID: PMC2929181 DOI: 10.1016/j.tcb.2010.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 11/30/2022]
Abstract
The germline originates from primordial embryonic germ cells which give rise to sperm and egg cells and consequently, to the next generation. Germ cells of many organisms contain electron-dense granules that comprise RNA and proteins indispensable for germline development. Here we review recent reports that provide important insights into the structure and function of crucial RNA and protein components of the granules, including DEAD-box helicases, Tudor domain proteins, Piwi/Argonaute proteins and piRNA. Collectively, these components function in translational control, remodeling of ribonucleoprotein complexes and transposon silencing. Furthermore, they interact with each other by means of conserved structural modules and post-translationally modified amino acids. These data suggest a widespread use of several protein motifs in germline development and further our understanding of other ribonucleoprotein structures, for example, processing bodies and neuronal granules.
Collapse
Affiliation(s)
- Alexey L Arkov
- Department of Biological Sciences, Murray State University, 2112 Biology Building, Murray, KY 42071, USA.
| | | |
Collapse
|
64
|
Anne J. Arginine methylation of SmB is required for Drosophila germ cell development. Development 2010; 137:2819-28. [PMID: 20659974 DOI: 10.1242/dev.052944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sm proteins constitute the common core of spliceosomal small nuclear ribonucleoproteins. Although Sm proteins are known to be methylated at specific arginine residues within the C-terminal arginine-glycine dipeptide (RG) repeats, the biological relevance of these modifications remains unknown. In this study, a tissue-specific function of arginine methylation of the SmB protein was identified in Drosophila. Analysis of the distribution of SmB during oogenesis revealed that this protein accumulates at the posterior pole of the oocyte, a cytoplasmic region containing the polar granules, which are necessary for the formation of primordial germ cells. The pole plasm localisation of SmB requires the methylation of arginine residues in its RG repeats by the Capsuléen-Valois methylosome complex. Functional studies showed that the methylation of these arginine residues is essential for distinct processes of the germline life cycle, including germ cell formation, migration and differentiation. In particular, the methylation of a subset of these arginine residues appears essential for the anchoring of the polar granules at the posterior cortex of the oocyte, whereas the methylation of another subset controls germ cell migration during embryogenesis. These results demonstrate a crucial role of arginine methylation in directing the subcellular localisation of SmB and that this modification contributes specifically to the establishment and development of germ cells.
Collapse
Affiliation(s)
- Joël Anne
- Department of Developmental Genetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, Heidelberg, Germany.
| |
Collapse
|
65
|
Gonsalvez GB, Rajendra TK, Wen Y, Praveen K, Matera AG. Sm proteins specify germ cell fate by facilitating oskar mRNA localization. Development 2010; 137:2341-51. [PMID: 20570937 DOI: 10.1242/dev.042721] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sm and Sm-like proteins are RNA-binding factors found in all three domains of life. Eukaryotic Sm proteins play essential roles in pre-mRNA splicing, forming the cores of spliceosomal small nuclear ribonucleoproteins (snRNPs). Recently, Sm proteins have been implicated in the specification of germ cells. However, a mechanistic understanding of their involvement in germline specification is lacking and a germline-specific RNA target has not been identified. We demonstrate that Drosophila SmB and SmD3 are specific components of the oskar messenger ribonucleoprotein (mRNP), proper localization of which is required for establishing germline fate and embryonic patterning. Importantly, oskar mRNA is delocalized in females harboring a hypomorphic mutation in SmD3, and embryos from mutant mothers are defective in germline specification. We conclude that Sm proteins function to establish the germline in Drosophila, at least in part by mediating oskar mRNA localization.
Collapse
Affiliation(s)
- Graydon B Gonsalvez
- Departments of Biology and Genetics, Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | | | | | | | | |
Collapse
|
66
|
Zhou Z, Sun X, Zou Z, Sun L, Zhang T, Guo S, Wen Y, Liu L, Wang Y, Qin J, Li L, Gong W, Bao S. PRMT5 regulates Golgi apparatus structure through methylation of the golgin GM130. Cell Res 2010; 20:1023-33. [PMID: 20421892 DOI: 10.1038/cr.2010.56] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maintenance of the Golgi apparatus (GA) structure and function depends on Golgi matrix proteins. The posttranslational modification of Golgi proteins such as phosphorylation of members of the golgin and GRASP families is important for determining Golgi architecture. Some Golgi proteins including golgin-84 are also known to be methylated, but the function of golgin methylation remains unclear. Here, we show that the protein arginine methyltransferase 5 (PRMT5) localizes to the GA and forms complexes with several components involved in GA ribbon formation and vesicle tethering. PRMT5 interacts with the golgin GM130, and depletion of PRMT5 causes defects in Golgi ribbon formation. Furthermore, PRMT5 methylates N-terminal arginines in GM130, and such arginine methylation appears critical for GA ribbon formation. Our findings reveal a molecular mechanism by which PRMT5-dependent arginine methylation of GM130 controls the maintenance of GA architecture.
Collapse
Affiliation(s)
- Zhongwei Zhou
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Siomi MC, Mannen T, Siomi H. How does the royal family of Tudor rule the PIWI-interacting RNA pathway? Genes Dev 2010; 24:636-46. [PMID: 20360382 DOI: 10.1101/gad.1899210] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PIWI (P-element-induced wimpy testis) proteins are a subset of the Argonaute proteins and are expressed predominantly in the germlines of a variety of organisms, including Drosophila and mammals. PIWI proteins associate specifically with PIWI-interacting RNAs (piRNAs), small RNAs that are also expressed predominantly in germlines, and silence transposable DNA elements and other genes showing complementarities to the sequences of associated piRNAs. This mechanism helps to maintain the integrity of the genome and the development of gametes. PIWI proteins have been shown recently to contain symmetrical dimethyl arginines (sDMAs), and this modification is mediated by the methyltransferase PRMT5 (also known as Dart5 or Capsuleen). It was then demonstrated that multiple members of the Tudor (Tud) family of proteins, which are necessary for gametogenesis in both flies and mice, associate with PIWI proteins specifically through sDMAs in various but particular combinations. Although Tud domains in Tud family members are known to be sDMA-binding modules, involvement of the Tudor family at the molecular level in the piRNA pathway has only recently come into focus.
Collapse
Affiliation(s)
- Mikiko C Siomi
- Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
68
|
Ewen-Campen B, Schwager EE, Extavour CGM. The molecular machinery of germ line specification. Mol Reprod Dev 2010; 77:3-18. [PMID: 19790240 DOI: 10.1002/mrd.21091] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germ cells occupy a unique position in animal reproduction, development, and evolution. In sexually reproducing animals, only they can produce gametes and contribute genetically to subsequent generations. Nonetheless, germ line specification during embryogenesis is conceptually the same as the specification of any somatic cell type: germ cells must activate a specific gene regulatory network in order to differentiate and go through gametogenesis. While many genes with critical roles in the germ line have been characterized with respect to expression pattern and genetic interactions, it is the molecular interactions of the relevant gene products that are ultimately responsible for germ cell differentiation. This review summarizes the current state of knowledge on the molecular functions and biochemical connections between germ line gene products. We find that homologous genes often interact physically with the same conserved molecular partners across the metazoans. We also point out cases of nonhomologous genes from different species whose gene products play analogous biological roles in the germ line. We suggest a preliminary molecular definition of an ancestral "pluripotency module" that could have been modified during metazoan evolution to become specific to the germ line.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
69
|
Kirino Y, Vourekas A, Kim N, de Lima Alves F, Rappsilber J, Klein PS, Jongens TA, Mourelatos Z. Arginine methylation of vasa protein is conserved across phyla. J Biol Chem 2010; 285:8148-54. [PMID: 20080973 DOI: 10.1074/jbc.m109.089821] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent studies have uncovered an unexpected relationship between factors that are essential for germline development in Drosophila melanogaster: the arginine protein methyltransferase 5 (dPRMT5/Csul/Dart5) and its cofactor Valois, methylate the Piwi family protein Aub, enabling it to bind Tudor. The RNA helicase Vasa is another essential protein in germline development. Here, we report that mouse (mouse Vasa homolog), Xenopus laevis, and D. melanogaster Vasa proteins contain both symmetrical and asymmetrical dimethylarginines. We find that dPRMT5 is required for the production of sDMAs of Vasa in vivo. Furthermore, we find that the mouse Vasa homolog associates with Tudor domain-containing proteins, Tdrd1 and Tdrd6, as well as the Piwi proteins, Mili and Miwi. Arginine methylation is thus emerging as a conserved and pivotal post-translational modification of proteins that is essential for germline development.
Collapse
Affiliation(s)
- Yohei Kirino
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Nishida KM, Okada TN, Kawamura T, Mituyama T, Kawamura Y, Inagaki S, Huang H, Chen D, Kodama T, Siomi H, Siomi MC. Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J 2010; 28:3820-31. [PMID: 19959991 DOI: 10.1038/emboj.2009.365] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 11/10/2009] [Indexed: 12/25/2022] Open
Abstract
In Drosophila, the PIWI proteins, Aubergine (Aub), AGO3, and Piwi are expressed in germlines and function in silencing transposons by associating with PIWI-interacting RNAs (piRNAs). Recent studies show that PIWI proteins contain symmetric dimethyl-arginines (sDMAs) and that dPRMT5/Capsuleen/DART5 is the modifying enzyme. Here, we show that Tudor (Tud), one of Tud domain-containing proteins, associates with Aub and AGO3, specifically through their sDMA modifications and that these three proteins form heteromeric complexes. piRNA precursor-like molecules are detected in these complexes. The expression levels of Aub and AGO3, along with their degree of sDMA modification, were not changed by tud mutations. However, the population of transposon-derived piRNAs associated with Aub and AGO3 was altered by tud mutations, whereas the total amounts of small RNAs on Aub and AGO3 was increased. Loss of dprmt5 did not change the stability of Aub, but impaired its association with Tud and lowered piRNA association with Aub. Thus, in germline cells, piRNAs are quality-controlled by dPRMT5 that modifies PIWI proteins, in tight association with Tud.
Collapse
Affiliation(s)
- Kazumichi M Nishida
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Kirino Y, Vourekas A, Sayed N, de Lima Alves F, Thomson T, Lasko P, Rappsilber J, Jongens TA, Mourelatos Z. Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. RNA (NEW YORK, N.Y.) 2010; 16:70-8. [PMID: 19926723 PMCID: PMC2802038 DOI: 10.1261/rna.1869710] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 10/05/2009] [Indexed: 05/24/2023]
Abstract
Piwi proteins such as Drosophila Aubergine (Aub) and mouse Miwi are essential for germline development and for primordial germ cell (PGC) specification. They bind piRNAs and contain symmetrically dimethylated arginines (sDMAs), catalyzed by dPRMT5. PGC specification in Drosophila requires maternal inheritance of cytoplasmic factors, including Aub, dPRMT5, and Tudor (Tud), that are concentrated in the germ plasm at the posterior end of the oocyte. Here we show that Miwi binds to Tdrd6 and Aub binds to Tudor, in an sDMA-dependent manner, demonstrating that binding of sDMA-modified Piwi proteins with Tudor-domain proteins is an evolutionarily conserved interaction in germ cells. We report that in Drosophila tud(1) mutants, the piRNA pathway is intact and most transposons are not de-repressed. However, the localization of Aub in the germ plasm is severely reduced. These findings indicate that germ plasm assembly requires sDMA modification of Aub by dPRMT5, which, in turn, is required for binding to Tudor. Our study also suggests that the function of the piRNA pathway in PGC specification may be independent of its role in transposon control.
Collapse
Affiliation(s)
- Yohei Kirino
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine,Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Liu N, Han H, Lasko P. Vasa promotes Drosophila germline stem cell differentiation by activating mei-P26 translation by directly interacting with a (U)-rich motif in its 3' UTR. Genes Dev 2009; 23:2742-52. [PMID: 19952109 DOI: 10.1101/gad.1820709] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vasa (Vas) is a DEAD-box RNA-binding protein required in Drosophila at several steps of oogenesis and for primordial germ cell (PGC) specification. Vas associates with eukaryotic initiation factor 5B (eIF5B), and this interaction has been implicated in translational activation of gurken mRNA in the oocyte. Vas is expressed in all ovarian germline cells, and aspects of the vas-null phenotype suggest a function in regulating the balance between germline stem cells (GSCs) and their fate-restricted descendants. We used a biochemical approach to recover Vas-associated mRNAs and obtained mei-P26, whose product represses microRNA activity and promotes GSC differentiation. We found that vas and mei-P26 mutants interact, and that mei-P26 translation is substantially reduced in vas mutant cells. In vitro, Vas protein bound specifically to a (U)-rich motif in the mei-P26 3' untranslated region (UTR), and Vas-dependent regulation of GFP-mei-P26 transgenes in vivo was dependent on the same (U)-rich 3' UTR domain. The ability of Vas to activate mei-P26 expression in vivo was abrogated by a mutation that greatly reduces its interaction with eIF5B. Taken together, our data support the conclusion that Vas promotes germ cell differentiation by directly activating mei-P26 translation in early-stage committed cells.
Collapse
Affiliation(s)
- Niankun Liu
- Department of Biology, Developmental Biology Research Initiative, and Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | | | |
Collapse
|
73
|
Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi. Proc Natl Acad Sci U S A 2009; 106:20336-41. [PMID: 19918066 DOI: 10.1073/pnas.0911640106] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tudor domains are protein modules that mediate protein-protein interactions, potentially by binding to methylated ligands. A group of germline specific single and multiTudor domain containing proteins (TDRDs) represented by drosophila Tudor and its mammalian orthologs Tdrd1, Tdrd4/RNF17, and Tdrd6 play evolutionarily conserved roles in germinal granule/nuage formation and germ cell specification and differentiation. However, their physiological ligands, and the biochemical and structural basis for ligand recognition, are largely unclear. Here, by immunoprecipitation of endogenous murine Piwi proteins (Miwi and Mili) and proteomic analysis of complexes related to the piRNA pathway, we show that the TDRD group of Tudor proteins are physiological binding partners of Piwi family proteins. In addition, mass spectrometry indicates that arginine residues in RG repeats at the N-termini of Miwi and Mili are methylated in vivo. Notably, we found that Tdrkh/Tdrd2, a novel single Tudor domain containing protein identified in the Miwi complex, is expressed in the cytoplasm of male germ cells and directly associates with Miwi. Mutagenesis studies mapped the Miwi-Tdrkh interaction to the very N-terminal RG/RA repeats of Miwi and showed that the Tdrkh Tudor domain is critical for binding. Furthermore, we have solved the crystal structure of the Tdrkh Tudor domain, which revealed an aromatic binding pocket and negatively charged binding surface appropriate for accommodating methylated arginine. Our findings identify a methylation-directed protein interaction mechanism in germ cells mediated by germline Tudor domains and methylated Piwi family proteins, and suggest a complex mode of regulating the organization and function of Piwi proteins in piRNA silencing pathways.
Collapse
|
74
|
Pesiridis GS, Diamond E, Van Duyne GD. Role of pICLn in methylation of Sm proteins by PRMT5. J Biol Chem 2009; 284:21347-59. [PMID: 19520849 PMCID: PMC2755859 DOI: 10.1074/jbc.m109.015578] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/10/2009] [Indexed: 11/25/2022] Open
Abstract
pICln is an essential, highly conserved 26-kDa protein whose functions include binding to Sm proteins in the cytoplasm of human cells and mediating the ordered and regulated assembly of the cell's RNA-splicing machinery by the survival motor neurons complex. pICln also interacts with PRMT5, the enzyme responsible for generating symmetric dimethylarginine modifications on the carboxyl-terminal regions of three of the canonical Sm proteins. To better understand the role of pICln in these cellular processes, we have investigated the properties of pICln and pICln.Sm complexes and the effects that pICln has on the methyltransferase activity of PRMT5. We find that pICln is a monomer in solution, binds with high affinity (K(d) approximately 160 nm) to SmD3-SmB, and forms 1:1 complexes with Sm proteins and Sm protein subcomplexes. The data support an end-capping model of pICln binding that supports current views of how pICln prevents Sm oligomerization on illicit RNA substrates. We have found that by co-expression with pICln, recombinant PRMT5 can be produced in a soluble, active form. PRMT5 alone has promiscuous activity toward a variety of known substrates. In the presence of pICln, however, PRMT5 methylation of Sm proteins is stimulated, but methylation of histones is inhibited. We have also found that mutations in pICln that do not affect Sm protein binding can still have a profound effect on the methyltransferase activity of the PRMT5 complex. Together, the data provide insights into pICln function and represent an important starting point for biochemical analyses of PRMT5.
Collapse
Affiliation(s)
- G. Scott Pesiridis
- From the Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Evan Diamond
- From the Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Gregory D. Van Duyne
- From the Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
75
|
Chen W, Cao M, Yang Y, Nagahama Y, Zhao H. Expression pattern of prmt5 in adult fish and embryos of medaka, Oryzias latipes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:325-332. [PMID: 19578939 DOI: 10.1007/s10695-008-9233-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 05/09/2008] [Indexed: 05/28/2023]
Abstract
DNA methylation is an important biochemical epigenetic determinant of gene expression in cells and therefore actively involved in gene regulation, chromosomal conformation, and protein activity. Protein arginine methyltransferases (PRMTs) play a major role in the methylation of proteins that have an arginine residue, catalyzing both the asymmetric dimethylation of arginine (aDMA) and symmetric dimethylation of arginine (sDMA). PRMT5, a type II PRMT which catalyzes sDMA, has been shown to have a pivotal role in pole plasm assembly and germ cell development in Drosophila and also to be an associate factor of Blimp1 for germ cell development in mouse. Here, we report a homolog of prmt5 identified in medaka, Oryzias latipes, which was detected in the brain, gill, muscle, heart, liver, spleen, intestine, testis and ovary of adult fish by reverse transcriptase-PCR. The expression of prmt5 in the gonads is restricted to oocytes of the ovary, spermatogonia, and spermatocytes of testis. The prmt5 transcripts were detected as early as the one-cell stage and in all the tissues of embryos during embryogenesis. In summary, prmt5 is a maternal determinant factor of embryogenesis of medaka, possibly playing an important role in oogenesis and spermatogenesis in adult medaka.
Collapse
Affiliation(s)
- W Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Huazhong Normal University, Wuhan, 430079, China
| | | | | | | | | |
Collapse
|
76
|
Golam Mostafa M, Sugimoto T, Hiyoshi M, Kawasaki H, Kubo H, Matsumoto K, Abe SI, Takamune K. Xtr, a plural tudor domain-containing protein, coexists with FRGY2 both in cytoplasmic mRNP particle and germ plasm in Xenopus embryo: Its possible role in translational regulation of maternal mRNAs. Dev Growth Differ 2009; 51:595-605. [DOI: 10.1111/j.1440-169x.2009.01121.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
77
|
Abstract
Mechanisms of neuronal mRNA localization and translation are of considerable biological interest. Spatially regulated mRNA translation contributes to cell-fate decisions and axon guidance during development, as well as to long-term synaptic plasticity in adulthood. The Fragile-X Mental Retardation protein (FMRP/dFMR1) is one of the best-studied neuronal translational control molecules and here we describe the identification and early characterization of proteins likely to function in the dFMR1 pathway. Induction of the dFMR1 in sevenless-expressing cells of the Drosophila eye causes a disorganized (rough) eye through a mechanism that requires residues necessary for dFMR1/FMRP's translational repressor function. Several mutations in dco, orb2, pAbp, rm62, and smD3 genes dominantly suppress the sev-dfmr1 rough-eye phenotype, suggesting that they are required for dFMR1-mediated processes. The encoded proteins localize to dFMR1-containing neuronal mRNPs in neurites of cultured neurons, and/or have an effect on dendritic branching predicted for bona fide neuronal translational repressors. Genetic mosaic analyses indicate that dco, orb2, rm62, smD3, and dfmr1 are dispensable for translational repression of hid, a microRNA target gene, known to be repressed in wing discs by the bantam miRNA. Thus, the encoded proteins may function as miRNA- and/or mRNA-specific translational regulators in vivo.
Collapse
|
78
|
Reuter M, Chuma S, Tanaka T, Franz T, Stark A, Pillai RS. Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat Struct Mol Biol 2009; 16:639-46. [PMID: 19465913 DOI: 10.1038/nsmb.1615] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 05/06/2009] [Indexed: 12/18/2022]
Abstract
Piwi proteins and their associated Piwi-interacting RNAs (piRNAs) are implicated in transposon silencing in the mouse germ line. There is currently little information on additional proteins in the murine Piwi complex and how they might regulate the entry of transcripts that accumulate as piRNAs in the Piwi ribonucleoprotein (piRNP). We isolated Mili-containing complexes from adult mouse testes and identified Tudor domain-containing protein-1 (Tdrd1) as a factor specifically associated with the Mili piRNP throughout spermatogenesis. Complex formation is promoted by the recognition of symmetrically dimethylated arginines at the N terminus of Mili by the tudor domains of Tdrd1. Similar to a Mili mutant, mice lacking Tdrd1 show derepression of L1 transposons accompanied by a loss of DNA methylation at their regulatory elements and delocalization of Miwi2 from the nucleus to the cytoplasm. Finally, we show that Mili piRNPs devoid of Tdrd1 accept the entry of abundant cellular transcripts into the piRNA pathway and accumulate piRNAs with a profile that is drastically different from that of the wild type. Our data suggest that Tdrd1 ensures the entry of correct transcripts into the normal piRNA pool.
Collapse
Affiliation(s)
- Michael Reuter
- European Molecular Biology Laboratory, Grenoble Outstation, France
| | | | | | | | | | | |
Collapse
|
79
|
Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S, Klein PS, Rigoutsos I, Jongens TA, Mourelatos Z. Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat Cell Biol 2009; 11:652-8. [PMID: 19377467 PMCID: PMC2746449 DOI: 10.1038/ncb1872] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 01/30/2009] [Indexed: 11/09/2022]
Abstract
Piwi family proteins are essential for germline development and bind piwi-interacting RNAs (piRNAs). The grandchildless gene aub of Drosophila melanogaster encodes the piRNA-binding protein Aubergine (Aub), which is essential for formation of primordial germ cells (PGCs). Here we report that Piwi family proteins of mouse, Xenopus laevis and Drosophila contain symmetrical dimethylarginines (sDMAs). We found that Piwi proteins are expressed in Xenopus oocytes and we identified numerous Xenopus piRNAs. We report that the Drosophila homologue of protein methyltransferase 5 (dPRMT5, csul/dart5), which is also the product of a grandchildless gene, is required for arginine methylation of Drosophila Piwi, Ago3 and Aub proteins in vivo. Loss of dPRMT5 activity led to a reduction in the levels of piRNAs, Ago3 and Aub proteins, and accumulation of retrotransposons in the Drosophila ovary. Our studies explain the relationship between aub and dPRMT5 (csul/dart5) genes by demonstrating that dPRMT5 is the enzyme that methylates Aub. Our findings underscore the significance of sDMA modification of Piwi proteins in the germline and suggest an interacting pathway of genes that are required for piRNA function and PGC specification.
Collapse
Affiliation(s)
- Yohei Kirino
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Namwoo Kim
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Mariàngels de Planell-Saguer
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Eugene Khandros
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Stephanie Chiorean
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Peter S. Klein
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Isidore Rigoutsos
- Bioinformatics and Pattern Discovery Group, IBM TJ Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Thomas A. Jongens
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
80
|
Eckert D, Biermann K, Nettersheim D, Gillis AJM, Steger K, Jäck HM, Müller AM, Looijenga LHJ, Schorle H. Expression of BLIMP1/PRMT5 and concurrent histone H2A/H4 arginine 3 dimethylation in fetal germ cells, CIS/IGCNU and germ cell tumors. BMC DEVELOPMENTAL BIOLOGY 2008; 8:106. [PMID: 18992153 PMCID: PMC2613889 DOI: 10.1186/1471-213x-8-106] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 11/07/2008] [Indexed: 01/04/2023]
Abstract
BACKGROUND Most testicular germ cell tumors arise from intratubular germ cell neoplasia unclassified (IGCNU, also referred to as carcinoma in situ), which is thought to originate from a transformed primordial germ cell (PGC)/gonocyte, the fetal germ cell. Analyses of the molecular profile of IGCNU and seminoma show similarities to the expression profile of fetal germ cells/gonocytes. In murine PGCs, expression and interaction of Blimp1 and Prmt5 results in arginine 3 dimethylation of histone H2A and H4. This imposes epigenetic modifications leading to transcriptional repression in mouse PGCs enabling them to escape the somatic differentiation program during migration, while expressing markers of pluripotency. RESULTS In the present study, we show that BLIMP1 and PRMT5 were expressed and arginine dimethylation of histones H2A and H4 was detected in human male gonocytes at weeks 12-19 of gestation, indicating a role of this mechanism in human fetal germ cell development as well. Moreover, BLIMP1/PRMT5 and histone H2A and H4 arginine 3 dimethylation was present in IGCNU and most seminomas, while downregulated in embryonal carcinoma (EC) and other nonseminomatous tumors. CONCLUSION These data reveal similarities in marker expression and histone modification between murine and human PGCs. Moreover, we speculate that the histone H2A and H4 arginine 3 dimethylation might be the mechanism by which IGCNU and seminoma maintain the undifferentiated state while loss of these histone modifications leads to somatic differentiation observed in nonseminomatous tumors.
Collapse
Affiliation(s)
- Dawid Eckert
- Department of Developmental Pathology, Institute of Pathology, University of Bonn, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Thomson T, Liu N, Arkov A, Lehmann R, Lasko P. Isolation of new polar granule components in Drosophila reveals P body and ER associated proteins. Mech Dev 2008; 125:865-73. [PMID: 18590813 PMCID: PMC2570953 DOI: 10.1016/j.mod.2008.06.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 05/16/2008] [Accepted: 06/04/2008] [Indexed: 11/22/2022]
Abstract
Germ plasm, a specialized cytoplasm present at the posterior of the early Drosophila embryo, is necessary and sufficient for germ cell formation. Germ plasm is rich in mitochondria and contains electron dense structures called polar granules. To identify novel polar granule components we isolated proteins that associate in early embryos with Vasa (VAS) and Tudor (TUD), two known polar granule associated molecules. We identified Maternal expression at 31B (ME31B), eIF4A, Aubergine (AUB) and Transitional Endoplasmic Reticulum 94 (TER94) as components of both VAS and TUD complexes and confirmed their localization to polar granules by immuno-electron microscopy. ME31B, eIF4A and AUB are also present in processing (P) bodies, suggesting that polar granules, which are necessary for germ line formation, might be related to P bodies. Our recovery of ER associated proteins TER94 and ME31B confirms that polar granules are closely linked to the translational machinery and to mRNP assembly.
Collapse
Affiliation(s)
- Travis Thomson
- Department of Biology and Developmental Biology Research Initiative, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, H3A 1B1, Canada
| | - Niankun Liu
- Department of Biology and Developmental Biology Research Initiative, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, H3A 1B1, Canada
| | - Alexey Arkov
- Developmental Genetics Program, HHMI, Kimmel Center of Biology and Medicine at the Skirball Institute, Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Ruth Lehmann
- Developmental Genetics Program, HHMI, Kimmel Center of Biology and Medicine at the Skirball Institute, Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Paul Lasko
- Department of Biology and Developmental Biology Research Initiative, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, H3A 1B1, Canada
| |
Collapse
|
82
|
Goulet I, Boisvenue S, Mokas S, Mazroui R, Côté J. TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules. Hum Mol Genet 2008; 17:3055-74. [PMID: 18632687 PMCID: PMC2536506 DOI: 10.1093/hmg/ddn203] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous work has demonstrated that the Tudor domain of the ‘survival of motor neuron’ protein and the Tudor domain-containing protein 3 (TDRD3) are highly similar and that they both have the ability to interact with arginine-methylated polypeptides. TDRD3 has been identified among genes whose overexpression has a strong predictive value for poor prognosis of estrogen receptor-negative breast cancers, although its precise function remains unknown. TDRD3 is a modular protein, and in addition to its Tudor domain, it harbors a putative nucleic acid recognition motif and a ubiquitin-associated domain. We report here that TDRD3 localizes predominantly to the cytoplasm, where it co-sediments with the fragile X mental retardation protein on actively translating polyribosomes. We also demonstrate that TDRD3 accumulates into stress granules (SGs) in response to various cellular stresses. Strikingly, the Tudor domain of TDRD3 was found to be both required and sufficient for its recruitment to SGs, and the methyl-binding surface in the Tudor domain is important for this process. Pull down experiments identified five novel TDRD3 interacting partners, most of which are potentially methylated RNA-binding proteins. Our findings revealed that two of these proteins, SERPINE1 mRNA-binding protein 1 and DEAD/H box-3 (a gene often deleted in Sertoli-cell-only syndrome), are also novel constituents of cytoplasmic SGs. Taken together, we report the first characterization of TDRD3 and its functional interaction with at least two proteins implicated in human genetic diseases and present evidence supporting a role for arginine methylation in the regulation of SG dynamics.
Collapse
Affiliation(s)
- Isabelle Goulet
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | |
Collapse
|
83
|
Evolution of an RNP assembly system: a minimal SMN complex facilitates formation of UsnRNPs in Drosophila melanogaster. Proc Natl Acad Sci U S A 2008; 105:10045-50. [PMID: 18621711 DOI: 10.1073/pnas.0802287105] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In vertebrates, assembly of spliceosomal uridine-rich small nuclear ribonucleoproteins (UsnRNPs) is mediated by the SMN complex, a macromolecular entity composed of the proteins SMN and Gemins 2-8. Here we have studied the evolution of this machinery using complete genome assemblies of multiple model organisms. The SMN complex has gained complexity in evolution by a blockwise addition of Gemins onto an ancestral core complex composed of SMN and Gemin2. In contrast to this overall evolutionary trend to more complexity in metazoans, orthologs of most Gemins are missing in dipterans. In accordance with these bioinformatic data a previously undescribed biochemical purification strategy elucidated that the dipteran Drosophila melanogaster contains an SMN complex of remarkable simplicity. Surprisingly, this minimal complex not only mediates the assembly reaction in a manner very similar to its vertebrate counterpart, but also prevents misassembly onto nontarget RNAs. Our data suggest that only a minority of Gemins are required for the assembly reaction per se, whereas others may serve additional functions in the context of UsnRNP biogenesis. The evolution of the SMN complex is an interesting example of how the simplification of a biochemical process contributes to genome compaction.
Collapse
|
84
|
Gonsalvez GB, Praveen K, Hicks AJ, Tian L, Matera AG. Sm protein methylation is dispensable for snRNP assembly in Drosophila melanogaster. RNA (NEW YORK, N.Y.) 2008; 14:878-87. [PMID: 18369183 PMCID: PMC2327358 DOI: 10.1261/rna.940708] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/30/2008] [Indexed: 05/26/2023]
Abstract
Sm proteins form stable ribonucleoprotein (RNP) complexes with small nuclear (sn)RNAs and are core components of the eukaryotic spliceosome. In vivo, the assembly of Sm proteins onto snRNAs requires the survival motor neurons (SMN) complex. Several reports have shown that SMN protein binds with high affinity to symmetric dimethylarginine (sDMA) residues present on the C-terminal tails of SmB, SmD1, and SmD3. This post-translational modification is thought to play a crucial role in snRNP assembly. In human cells, two distinct protein arginine methyltransferases (PRMT5 and PRMT7) are required for snRNP biogenesis. However, in Drosophila, loss of Dart5 (the fruit fly PRMT5 ortholog) has little effect on snRNP assembly, and homozygous mutants are completely viable. To resolve these apparent differences, we examined this topic in detail and found that Drosophila Sm proteins are also methylated by two methyltransferases, Dart5/PRMT5 and Dart7/PRMT7. Unlike dart5, we found that dart7 is an essential gene. However, the lethality associated with loss of Dart7 protein is apparently unrelated to defects in snRNP assembly. To conclusively test the requirement for sDMA modification of Sm proteins in Drosophila snRNP assembly, we constructed a fly strain that exclusively expresses an isoform of SmD1 that cannot be sDMA modified. Interestingly, these flies were viable, and snRNP assays revealed no defects in comparison to wild type. In contrast, dart5 mutants displayed a strong synthetic lethal phenotype in the presence of a hypomorphic Smn mutation. We therefore conclude that dart5 is required for viability when SMN is limiting.
Collapse
Affiliation(s)
- Graydon B Gonsalvez
- Department of Biology, Program in Molecular Biology and Biotechnology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | | | |
Collapse
|
85
|
Neuenkirchen N, Chari A, Fischer U. Deciphering the assembly pathway of Sm-class U snRNPs. FEBS Lett 2008; 582:1997-2003. [DOI: 10.1016/j.febslet.2008.03.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/09/2008] [Accepted: 03/10/2008] [Indexed: 11/16/2022]
|
86
|
Teng Y, Girvan AC, Casson LK, Pierce WM, Qian M, Thomas SD, Bates PJ. AS1411 alters the localization of a complex containing protein arginine methyltransferase 5 and nucleolin. Cancer Res 2007; 67:10491-500. [PMID: 17974993 DOI: 10.1158/0008-5472.can-06-4206] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AS1411 is a quadruplex-forming oligonucleotide aptamer that targets nucleolin. It is currently in clinical trials as a treatment for various cancers. We have proposed that AS1411 inhibits cancer cell proliferation by affecting the activities of certain nucleolin-containing complexes. Here, we report that protein arginine methyltransferase 5 (PRMT5), an enzyme that catalyzes the formation of symmetrical dimethylarginine (sDMA), is a nucleolin-associated protein whose localization and activity are altered by AS1411. Levels of PRMT5 were found to be decreased in the nucleus of AS1411-treated DU145 human prostate cancer cells, but increased in the cytoplasm. These changes were dependent on nucleolin and were not observed in cells pretreated with nucleolin-specific small interfering RNA. Treatment with AS1411 altered levels of PRMT5 activity (assessed by sDMA levels) in accord with changes in its localization. In addition, our data indicate that nucleolin itself is a substrate for PRMT5 and that distribution of sDMA-modified nucleolin is altered by AS1411. Because histone arginine methylation by PRMT5 causes transcriptional repression, we also examined expression of selected PRMT5 target genes in AS1411-treated cells. For some genes, including cyclin E2 and tumor suppressor ST7, a significant up-regulation was noted, which corresponded with decreased PRMT5 association with the gene promoter. We conclude that nucleolin is a novel binding partner and substrate for PRMT5, and that AS1411 causes relocalization of the nucleolin-PRMT5 complex from the nucleus to the cytoplasm. Consequently, the nuclear activity of PRMT5 is decreased, leading to derepression of some PRMT5 target genes, which may contribute to the biological effects of AS1411.
Collapse
Affiliation(s)
- Yun Teng
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202-1756, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Gonsalvez GB, Tian L, Ospina JK, Boisvert FM, Lamond AI, Matera AG. Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. ACTA ACUST UNITED AC 2007; 178:733-40. [PMID: 17709427 PMCID: PMC2064538 DOI: 10.1083/jcb.200702147] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small nuclear ribonucleoproteins (snRNPs) are core components of the spliceosome. The U1, U2, U4, and U5 snRNPs each contain a common set of seven Sm proteins. Three of these Sm proteins are posttranslationally modified to contain symmetric dimethylarginine (sDMA) residues within their C-terminal tails. However, the precise function of this modification in the snRNP biogenesis pathway is unclear. Several lines of evidence suggest that the methyltransferase protein arginine methyltransferase 5 (PRMT5) is responsible for sDMA modification of Sm proteins. We found that in human cells, PRMT5 and a newly discovered type II methyltransferase, PRMT7, are each required for Sm protein sDMA modification. Furthermore, we show that the two enzymes function nonredundantly in Sm protein methylation. Lastly, we provide in vivo evidence demonstrating that Sm protein sDMA modification is required for snRNP biogenesis in human cells.
Collapse
Affiliation(s)
- Graydon B Gonsalvez
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
88
|
McGraw S, Vigneault C, Sirard MA. Temporal expression of factors involved in chromatin remodeling and in gene regulation during early bovine in vitro embryo development. Reproduction 2007; 133:597-608. [PMID: 17379654 DOI: 10.1530/rep-06-0251] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Distinct epigenetic modification events regulate gene expression and chromatin structure during the period between the immature oocyte and the blastocyst. Throughout this developmental period, important methylation fluctuations occur on genomic DNA and histones. Finding single or combinations of factors, which are at work during this period is essential to understand the entire epigenetic process. With this in mind, we assessed the precise temporal expression profile, during preimplantation embryo development, of 15 key regulators involved in RNA, DNA or histone methylation, chromatin modification or silencing and transcription regulation. To achieve this, real-time RT-PCR was used to quantify the mRNA levels of ATF7IP, DMAP1, EHMT1, EHMT2, HELLS, JARID1A, JARID1B, JMJD1A, JMJD2A, LSD1, MeCP2, METTL3, PRMT2, PRMT5 and RCOR2, in the oocyte and throughout in vitro bovine embryo development. Our results demonstrate that all the 15 key regulators were present to different degrees in the developmental stages tested, and they can be divided into three different groups depending on their respective mRNA profile.
Collapse
Affiliation(s)
- Serge McGraw
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
89
|
Pasternack DA, Sayegh J, Clarke S, Read LK. Evolutionarily divergent type II protein arginine methyltransferase in Trypanosoma brucei. EUKARYOTIC CELL 2007; 6:1665-81. [PMID: 17601874 PMCID: PMC2043365 DOI: 10.1128/ec.00133-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein arginine methylation is a posttranslational modification that impacts cellular functions, such as RNA processing, transcription, DNA repair, and signal transduction. The majority of our knowledge regarding arginine methylation derives from studies of yeast and mammals. Here, we describe a protein arginine N-methyltransferase (PRMT), TbPRMT5, from the early-branching eukaryote Trypanosoma brucei. TbPRMT5 shares the greatest sequence similarity with PRMT5 and Skb1 type II enzymes from humans and Schizosaccharomyces pombe, respectively, although it is significantly divergent at the amino acid level from its mammalian and yeast counterparts. Recombinant TbPRMT5 displays broad substrate specificity in vitro, including methylation of a mitochondrial-gene-regulatory protein, RBP16. TbPRMT5 catalyzes the formation of omega-N(G)-monomethylarginine and symmetric omega-N(G),N(G')-dimethylarginine and does not require trypanosome cofactors for this activity. These data establish that type II PRMTs evolved early in the eukaryotic lineage. In vivo, TbPRMT5 is constitutively expressed in the bloodstream form and procyclic-form (insect host) life stages of the parasite and localizes to the cytoplasm. Genetic disruption via RNA interference in procyclic-form trypanosomes indicates that TbPRMT5 is not essential for growth in this life cycle stage. TbPRMT5-TAP ectopically expressed in procyclic-form trypanosomes is present in high-molecular-weight complexes and associates with an RG domain-containing DEAD box protein related to yeast Ded1 and two kinetoplastid-specific proteins. Thus, TbPRMT5 is likely to be involved in novel methylation-regulated functions in trypanosomes, some of which may include RNA processing and/or translation.
Collapse
Affiliation(s)
- Deborah A Pasternack
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York School of Medicine, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
90
|
Liu JL, Gall JG. U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc Natl Acad Sci U S A 2007; 104:11655-9. [PMID: 17595295 PMCID: PMC1899408 DOI: 10.1073/pnas.0704977104] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Uridine-rich small nuclear ribonucleoproteins (U snRNPs) are involved in key steps of pre-mRNA processing in the nucleus of eukaryotic cells. U snRNPs are enriched in the nucleus in discrete organelles that include speckles, Cajal bodies, and histone locus bodies. However, most U snRNPs are assembled in the cytoplasm, not in the nucleus. Despite extensive biochemical information, little is known about the spatial organization of U snRNPs in the cytoplasm. Here we show that U snRNPs in Drosophila are concentrated in discrete cytoplasmic structures, which we call U bodies, because they contain the major U snRNPs. In addition to snRNPs, U bodies contain essential snRNP assembly factors, suggesting that U bodies are sites for assembly or storage of snRNPs before their import into the nucleus. U bodies invariably associate with P bodies, which are involved in RNA surveillance and decay. Genetic disruption of P body components affects the organization of U bodies, suggesting that the two cytoplasmic bodies may cooperate in regulating aspects of snRNP metabolism. The identification of U bodies provides an opportunity to correlate specific biochemical steps of snRNP biogenesis with structural features of the cytoplasm.
Collapse
Affiliation(s)
- Ji-Long Liu
- Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218
| | - Joseph G. Gall
- Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
91
|
Abstract
Specification of germ cells in mice occurs relatively late in embryonic development. It is initiated by signals that induce expression of Blimp1, a key regulator of the germ cell, in a few epiblast cells of early postimplantation embryos. Blimp1 represses the incipient somatic program in these cells and promotes progression toward the germ cell fate. Blimp1 may also have a role in the maintenance of early germ cell characteristics by ensuring their escape from the somatic fate as well as possible reversion to pluripotent stem cells.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|
92
|
Pellizzoni L. Chaperoning ribonucleoprotein biogenesis in health and disease. EMBO Rep 2007; 8:340-5. [PMID: 17401408 PMCID: PMC1852756 DOI: 10.1038/sj.embor.7400941] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 01/31/2007] [Indexed: 12/11/2022] Open
Abstract
The survival motor neuron (SMN) protein is part of a macromolecular complex that functions in the biogenesis of small nuclear ribonucleoproteins (snRNPs)--the essential components of the pre-messenger RNA splicing machinery--as well as probably other RNPs. Reduced levels of SMN expression cause the inherited motor neuron disease spinal muscular atrophy (SMA). Knowledge of the composition, interactions and functions of the SMN complex has advanced greatly in recent years. The emerging picture is that the SMN complex acts as a macromolecular chaperone of RNPs to increase the efficiency and fidelity of RNA-protein interactions in vivo, and to provide an opportunity for these interactions to be regulated. In addition, it seems that RNA metabolism deficiencies underlie SMA. Here, a dual dysfunction hypothesis is presented in which two mechanistically and temporally distinct defects--that are dependent on the extent of SMN reduction in SMA--affect the homeostasis of specific messenger RNAs encoding proteins essential for motor neuron development and function.
Collapse
Affiliation(s)
- Livio Pellizzoni
- Dulbecco Telethon Institute, Institute of Cell Biology (CNR), Via E. Ramarini 32, 00016 Monterotondo Scalo, Rome, Italy.
| |
Collapse
|
93
|
Abstract
Genetic and epigenetic mechanisms regulate the transition from the totipotent zygote to pluripotent primitive ectoderm cells in the inner cell mass of mouse blastocysts. These pluripotent cells can be propagated indefinitely in vitro, underpinned by a unique epigenetic state. Following implantation of the blastocyst, diverse epigenetic modifiers control differentiation of pluripotent epiblast cells into somatic cells, while specification of germ cells requires repression of the somatic program. Regenerating totipotency during development of germ cells entails re-expression of pluripotency-specific genes and extensive erasure of epigenetic modifications. Increasing knowledge of key underlying mechanisms heightens prospects for creating pluripotent cells directly from adult somatic cells.
Collapse
Affiliation(s)
- M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | | | | |
Collapse
|
94
|
Anne J, Ollo R, Ephrussi A, Mechler BM. Arginine methyltransferase Capsuleen is essential for methylation of spliceosomal Sm proteins and germ cell formation in Drosophila. Development 2007; 134:137-46. [PMID: 17164419 DOI: 10.1242/dev.02687] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although arginine modification has been implicated in a number of cellular processes, the in vivo requirement of protein arginine methyltransferases (PRMTs) in specific biological processes remain to be clarified. In this study we characterize the Drosophila PRMT Capsuléen, homologous to human PRMT5. During Drosophila oogenesis, catalytic activity of Capsuléen is necessary for both the assembly of the nuage surrounding nurse cell nuclei and the formation of the pole plasm at the posterior end of the oocyte. In particular, we show that the nuage and pole plasm localization of Tudor, an essential component for germ cell formation, are abolished in csul mutant germ cells. We identify the spliceosomal Sm proteins as in vivo substrates of Capsuléen and demonstrate that Capsuléen, together with its associated protein Valois, is essential for the synthesis of symmetric di-methylated arginyl residues in Sm proteins. Finally, we show that Tudor can be targeted to the nuage in the absence of Sm methylation by Capsuléen, indicating that Tudor localization and Sm methylation are separate processes. Our results thus reveal the role of a PRMT in protein localization in germ cells.
Collapse
Affiliation(s)
- Joël Anne
- Department of Developmental Genetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
95
|
Abstract
Oocytes and sperm are some of the most differentiated cells in our bodies, yet they generate all cell types after fertilization. Accumulating evidence suggests that this extraordinary potential is conferred to germ cells from the time of their formation during embryogenesis. In this Review, we describe common themes emerging from the study of germ cells in vertebrates and invertebrates. Transcriptional repression, chromatin remodeling, and an emphasis on posttranscriptional gene regulation preserve the totipotent genome of germ cells through generations.
Collapse
Affiliation(s)
- Geraldine Seydoux
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| | | |
Collapse
|
96
|
Carissimi C, Saieva L, Gabanella F, Pellizzoni L. Gemin8 is required for the architecture and function of the survival motor neuron complex. J Biol Chem 2006; 281:37009-16. [PMID: 17023415 DOI: 10.1074/jbc.m607505200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) in higher eukaryotes requires the functions of several cellular proteins and includes nuclear as well as cytoplasmic phases. In the cytoplasm, a macromolecular complex containing the survival motor neuron (SMN) protein, Gemin2-8 and Unrip mediates the ATP-dependent assembly of Sm proteins and snRNAs into snRNPs. To carry out snRNP assembly, the SMN complex binds directly to both Sm proteins and snRNAs; however, the contribution of the individual components of the SMN complex to its composition, interactions, and function is poorly characterized. Here, we have investigated the functional role of Gemin8 using novel monoclonal antibodies against components of the SMN complex and RNA interference experiments. We show that Gemin6, Gemin7, and Unrip form a stable cytoplasmic complex whose association with SMN requires Gemin8. Gemin8 binds directly to SMN and mediates its interaction with the Gemin6/Gemin7 heterodimer. Importantly, loss of Gemin6, Gemin7, and Unrip interaction with SMN as a result of Gemin8 knockdown affects snRNP assembly by impairing the SMN complex association with Sm proteins but not with snRNAs. These results reveal the essential role of Gemin8 for the proper structural organization of the SMN complex and the involvement of the heteromeric subunit containing Gemin6, Gemin7, Gemin8, and Unrip in the recruitment of Sm proteins to the snRNP assembly pathway.
Collapse
Affiliation(s)
- Claudia Carissimi
- Dulbecco Telethon Institute, Institute of Cell Biology, Consiglio Nazionale delle Ricerche, Monterotondo Scalo, Rome 00016, Italy
| | | | | | | |
Collapse
|
97
|
Arkov AL, Wang JYS, Ramos A, Lehmann R. The role of Tudor domains in germline development and polar granule architecture. Development 2006; 133:4053-62. [PMID: 16971472 DOI: 10.1242/dev.02572] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tudor domains are found in many organisms and have been implicated in protein-protein interactions in which methylated protein substrates bind to these domains. Here, we present evidence for the involvement of specific Tudor domains in germline development. Drosophila Tudor, the founder of the Tudor domain family, contains 11 Tudor domains and is a component of polar granules and nuage, electron-dense organelles characteristic of the germline in many organisms, including mammals. In this study, we investigated whether the 11 Tudor domains fulfil specific functions for polar granule assembly, germ cell formation and abdomen formation. We find that even a small number of non-overlapping Tudor domains or a substantial reduction in overall Tudor protein is sufficient for abdomen development. In stark contrast, we find a requirement for specific Tudor domains in germ cell formation, Tudor localization and polar granule architecture. Combining genetic analysis with structural modeling of specific Tudor domains, we propose that these domains serve as ;docking platforms' for polar granule assembly.
Collapse
Affiliation(s)
- Alexey L Arkov
- Developmental Genetics Program, HHMI, Skirball Institute at New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|