51
|
Moyen NE, Crane RL, Somero GN, Denny MW. A single heat-stress bout induces rapid and prolonged heat acclimation in the California mussel, Mytilus californianus. Proc Biol Sci 2020; 287:20202561. [PMID: 33290677 DOI: 10.1098/rspb.2020.2561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Climate change is not only causing steady increases in average global temperatures but also increasing the frequency with which extreme heating events occur. These extreme events may be pivotal in determining the ability of organisms to persist in their current habitats. Thus, it is important to understand how quickly an organism's heat tolerance can be gained and lost relative to the frequency with which extreme heating events occur in the field. We show that the California mussel, Mytilus californianus-a sessile intertidal species that experiences extreme temperature fluctuations and cannot behaviourally thermoregulate-can quickly (in 24-48 h) acquire improved heat tolerance after exposure to a single sublethal heat-stress bout (2 h at 30 or 35°C) and then maintain this improved tolerance for up to three weeks without further exposure to elevated temperatures. This adaptive response improved survival rates by approximately 75% under extreme heat-stress bouts (2 h at 40°C). To interpret these laboratory findings in an ecological context, we evaluated 4 years of mussel body temperatures recorded in the field. The majority (approx. 64%) of consecutive heat-stress bouts were separated by 24-48 h, but several consecutive heat bouts were separated by as much as 22 days. Thus, the ability of M. californianus to maintain improved heat tolerance for up to three weeks after a single sublethal heat-stress bout significantly improves their probability of survival, as approximately 33% of consecutive heat events are separated by 3-22 days. As a sessile animal, mussels likely evolved the capability to rapidly gain and slowly lose heat tolerance to survive the intermittent, and often unpredictable, heat events in the intertidal zone. This adaptive strategy will likely prove beneficial under the extreme heat events predicted with climate change.
Collapse
Affiliation(s)
- Nicole E Moyen
- Hopkins Marine Station, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Rachel L Crane
- Hopkins Marine Station, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - George N Somero
- Hopkins Marine Station, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Mark W Denny
- Hopkins Marine Station, Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
52
|
Boroda AV, Kipryushina YO, Odintsova NA. The effects of cold stress on Mytilus species in the natural environment. Cell Stress Chaperones 2020; 25:821-832. [PMID: 32297161 PMCID: PMC7591686 DOI: 10.1007/s12192-020-01109-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022] Open
Abstract
Environmental stressors induce changes in marine mussels from molecular (e.g., neurotransmitter and chaperone concentration, and expression of immune- and heat-shock protein-related genes) to physiological (e.g., filtration and heart rates, the number of circulating hemocytes) levels. Temperature directly affects the biogeographic distribution of mussels. Chaperones might form an essential part of endogenous protective mechanisms for the adaptation of these animals to low temperatures in nature. Here, we review the available studies dealing with cold stress responses of Mytilidae family members in their natural environment.
Collapse
Affiliation(s)
- Andrey Victorovich Boroda
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky Krai, 690041, Russia.
| | - Yulia Olegovna Kipryushina
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky Krai, 690041, Russia
| | - Nelly Adolphovna Odintsova
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky Krai, 690041, Russia
| |
Collapse
|
53
|
Hui TY, Dong YW, Han GD, Lau SLY, Cheng MCF, Meepoka C, Ganmanee M, Williams GA. Timing Metabolic Depression: Predicting Thermal Stress in Extreme Intertidal Environments. Am Nat 2020; 196:501-511. [DOI: 10.1086/710339] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
54
|
Feidantsis K, Giantsis IA, Vratsistas A, Makri S, Pappa AZ, Drosopoulou E, Anestis A, Mavridou E, Exadactylos A, Vafidis D, Michaelidis B. Correlation between intermediary metabolism, Hsp gene expression, and oxidative stress-related proteins in long-term thermal-stressed Mytilus galloprovincialis. Am J Physiol Regul Integr Comp Physiol 2020; 319:R264-R281. [DOI: 10.1152/ajpregu.00066.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Long-term exposure of Mytilus galloprovincialis to temperatures beyond 26°C triggers mussel mortality. The present study aimed to integratively illustrate the correlation between intermediary metabolism, hsp gene expression, and oxidative stress-related proteins in long-term thermally stressed Mytilus galloprovincialis and whether they are affected by thermal stress magnitude and duration. We accordingly evaluated the gene expression profiles, in the posterior adductor muscle (PAM) and the mantle, concerning heat shock protein 70 and 90 ( hsp70 and hsp90), and the antioxidant defense indicators Mn-SOD, Cu/Zn-SOD, catalase, glutathione S-transferase, and the metallothioneins mt-10 and mt-20. Moreover, we determined antioxidant enzyme activities, oxidative stress through lipid peroxidation, and activities of intermediary metabolism enzymes. The pattern of changes in relative mRNA expression levels indicate that mussels are able to sense thermal stress even when exposed to 22°C and before mussel mortality is initiated. Data indicate a close correlation between the magnitude and duration of thermal stress with lipid peroxidation levels and changes in the activity of antioxidant enzymes and the enzymes of intermediary metabolism. The gene expression and increase in the activities of antioxidant enzymes support a scenario, according to which exposure to 24°C might trigger reactive oxygen species (ROS) production, which is closely correlated with anaerobic metabolism under hypometabolic conditions. Increase and maintenance of oxidative stress in conjunction with energy balance disturbance seem to trigger mussel mortality after long-term exposure at temperatures beyond 26°C. Eventually, in the context of preparation for oxidative stress, certain hypotheses and models are suggested, integrating the several steps of cellular stress response.
Collapse
Affiliation(s)
- Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - Andreas Vratsistas
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavroula Makri
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasia-Zoi Pappa
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Anestis
- Laboratory of Hygiene, Division of Biological Sciences and Preventive Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Mavridou
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Exadactylos
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Dimitrios Vafidis
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
55
|
Mat AM, Sarrazin J, Markov GV, Apremont V, Dubreuil C, Eché C, Fabioux C, Klopp C, Sarradin PM, Tanguy A, Huvet A, Matabos M. Biological rhythms in the deep-sea hydrothermal mussel Bathymodiolus azoricus. Nat Commun 2020; 11:3454. [PMID: 32651383 PMCID: PMC7351958 DOI: 10.1038/s41467-020-17284-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/17/2020] [Indexed: 11/22/2022] Open
Abstract
Biological rhythms are a fundamental property of life. The deep ocean covers 66% of our planet surface and is one of the largest biomes. The deep sea has long been considered as an arrhythmic environment because sunlight is totally absent below 1,000 m depth. In the present study, we have sequenced the temporal transcriptomes of a deep-sea species, the ecosystem-structuring vent mussel Bathymodiolus azoricus. We reveal that tidal cycles predominate in the transcriptome and physiology of mussels fixed directly at hydrothermal vents at 1,688 m depth at the Mid-Atlantic Ridge, whereas daily cycles prevail in mussels sampled after laboratory acclimation. We identify B. azoricus canonical circadian clock genes, and show that oscillations observed in deep-sea mussels could be either a direct response to environmental stimulus, or be driven endogenously by one or more biological clocks. This work generates in situ insights into temporal organisation in a deep-sea organism. Little is known about gene expression of organisms in the deep sea, partially owing to constraints on sampling these organisms in situ. Here the authors circumvent this problem, fixing tissue of a deep-sea mussel at 1,688 m in depth, and later analyzing transcriptomes to reveal gene expression patterns showing tidal oscillations.
Collapse
Affiliation(s)
- Audrey M Mat
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France. .,Ifremer, EEP, F-29280, Plouzané, France.
| | | | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Vincent Apremont
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France.,Ifremer, EEP, F-29280, Plouzané, France
| | | | - Camille Eché
- GeT-PlaGe, Genotoul, INRA Auzeville, Auzeville, France
| | - Caroline Fabioux
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | | | | - Arnaud Tanguy
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, Team ABICE, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Arnaud Huvet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | |
Collapse
|
56
|
Moyen NE, Somero GN, Denny MW. Mussel acclimatization to high, variable temperatures is lost slowly upon transfer to benign conditions. J Exp Biol 2020; 223:jeb222893. [PMID: 32457061 DOI: 10.1242/jeb.222893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Climate change is increasing the temperature variability animals face, and thermal acclimatization allows animals to adjust adaptively to this variability. Although the rate of heat acclimatization has received some study, little is known about how long these adaptive changes remain without continuing exposure to heat stress. This study explored the rate at which field acclimatization states are lost when temperature variability is minimized during constant submersion. California mussels (Mytilus californianus) with different acclimatization states were collected from high- and low-zone sites (∼12 versus ∼5°C daily temperature ranges, respectively) and then kept submerged at 15°C for 8 weeks. Each week, the cardiac thermal performance of mussels was measured as a metric of acclimatization state: critical (Tcrit) and flatline (Tflat) temperatures were recorded. Over 8 weeks of constant submersion, the mean Tcrit of high-zone mussels decreased by 1.07°C from baseline, but low-zone mussels' mean Tcrit was unchanged. High- and low-zone mussels' mean maximum heart rate (HR) and resting HR decreased ∼12 and 35%, respectively. Tflat was unchanged in both groups. These data suggest that Tcrit and HR are more physiologically plastic in response to the narrowing of an animal's daily temperature range than Tflat is, and that an animal's prior acclimatization state (high versus low) influences the acclimatory capacity of Tcrit Approximately 2 months were required for the cardiac thermal performance of the high-zone mussels to reach that of the low-zone mussels, suggesting that acclimatization to high and variable temperatures may persist long enough to enable these animals to cope with intermittent bouts of heat stress.
Collapse
Affiliation(s)
- Nicole E Moyen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 94305, USA
| | - George N Somero
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 94305, USA
| | - Mark W Denny
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 94305, USA
| |
Collapse
|
57
|
Nie H, Wang H, Jiang K, Yan X. Transcriptome analysis reveals differential immune related genes expression in Ruditapes philippinarum under hypoxia stress: potential HIF and NF-κB crosstalk in immune responses in clam. BMC Genomics 2020; 21:318. [PMID: 32326883 PMCID: PMC7181582 DOI: 10.1186/s12864-020-6734-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background Hypoxia is an important environmental stressor in aquatic ecosystems, with increasingly impacts on global biodiversity. Benthic communities are the most sensitive parts of the coastal ecosystem to eutrophication and resulting hypoxia. As a filter-feeding organism living in the seafloor sediment, Ruditapes philippinarum represents an excellent “sentinel” species to assess the quality of marine environment. In order to gain insight into the molecular response and acclimatization mechanisms to hypoxia stress in marine invertebrates, we examined hypoxia-induced changes in immune-related gene expression and gene pathways involved in hypoxia regulation of R. philippinarum. Results We investigated the response of the Manila clam R. philippinarum to hypoxia under experimental conditions and focused on the analysis of the differential expression patterns of specific genes associated with hypoxia response by RNA-seq and time course qPCR analysis. A total of 75 genes were captured significantly differentially expressed, and were categorized into antioxidant/oxidative stress response, chaperones/heat shock proteins, immune alteration, and cell proliferation/apoptosis. Fourteen hypoxia responsive genes were validated significantly up/down regulated at different time 0, 2, 5, and 8 d in gills of R. philippinarum in hypoxia challenged group. Functional enrichment analysis revealed the HIF signaling pathway and NF-κB signaling pathway play pivotal roles in hypoxia tolerance and resistance in R. philippinarum. Conclusion The HIF signaling pathway and NF-κB signaling pathway play a critical role in hypoxia tolerance and resistance in Manila clam. The immune and defense related genes and pathways obtained here gain a fundamental understanding of the hypoxia stress in marine bivalves and provide important insights into the physiological acclimation, immune response and defense activity under hypoxia challenge. The reduced metabolism is a consequence of counterbalancing investments in immune defense against other physiological processes.
Collapse
Affiliation(s)
- Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China. .,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| | - Huamin Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Kunyin Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China. .,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
58
|
Han G, Wang W, Dong Y. Effects of balancing selection and microhabitat temperature variations on heat tolerance of the intertidal black mussel Septifer virgatus. Integr Zool 2020; 15:416-427. [PMID: 32297470 DOI: 10.1111/1749-4877.12439] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Realistic assessments of the impacts of global warming on population extinction risk are likely to require an integrated analysis of the roles of standing genetic variation, microhabitat thermal complexity, and the inter-individual variation of heat tolerance due to both genetic differences and seasonal acclimatization effects. Here, we examine whether balancing selection and microhabitat temperature heterogeneity can interact to enhance the population persistence to thermal stress for the black mussel Septifer virgatus. We deployed biomimetic data loggers on the shore to measure the microhabitat-specific thermal variation from June 2014 to April 2016. Thermal tolerance of specimens was indexed by measuring effects of temperature on heart rate. Genotyping of specimens was performed using double digestion restriction association RADSeq (ddRADseq). Our results show that inter-individual variations in thermal tolerance correlate significantly with genetic differences at some specific gene loci, and that heterozygotes have higher thermal tolerances than homozygotes. The observed seasonal changes in genotype frequency suggest that these loci are under balancing selection. The ability of thermally resistant heterozygotes to survive in sun-exposed microhabitats acts to balance the loss of homozygotes during summer and enable the persistence of genetic polymorphisms. Population persistence of the mussel is also facilitated by the micro-scale variation in temperature, which provides refugia from thermal stress. Our results emphasize that inter-individual variation in thermal tolerance and in microhabitat heterogeneity in temperature are important for the persistence of populations in rocky shore habitats.
Collapse
Affiliation(s)
- Guodong Han
- The Dongshan Marine Observation and Research Station of Fujian province (Xiamen University), Fujian, 363000, China.,College of Life Science, Yantai University, Shandong, 264005, China
| | - Wei Wang
- The Dongshan Marine Observation and Research Station of Fujian province (Xiamen University), Fujian, 363000, China
| | - Yunwei Dong
- The Dongshan Marine Observation and Research Station of Fujian province (Xiamen University), Fujian, 363000, China.,Fisheries College, Ocean University of China, Shandong, 266003, China
| |
Collapse
|
59
|
Collins CL, Burnett NP, Ramsey MJ, Wagner K, Zippay ML. Physiological responses to heat stress in an invasive mussel Mytilus galloprovincialis depend on tidal habitat. MARINE ENVIRONMENTAL RESEARCH 2020; 154:104849. [PMID: 32056704 DOI: 10.1016/j.marenvres.2019.104849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Mussels are ecologically important organisms that can survive in subtidal and intertidal zones where they experience thermal stress. We know little about how mussels from different tidal habitats respond to thermal stress. We used the mussel Mytilus galloprovincialis from separate subtidal and intertidal populations to test whether heart rate and indicators of potential aerobic (citrate synthase activity) and anaerobic (cytosolic malate dehydrogenase activity) metabolic capacity are affected by increased temperatures while exposed to air or submerged in water. Subtidal mussels were affected by warming when submerged in water (decreased heart rate) but showed no effect in air. In contrast, intertidal mussels were affected by exposure to air (increased anaerobic capacity) but not by warming. Overall, physiological responses of mussels to thermal stress were dependent on their tidal habitat. These results highlight the importance of considering the natural habitat of mussels when assessing their responses to environmental challenges.
Collapse
Affiliation(s)
- Christina L Collins
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA, 94928, USA
| | - Nicholas P Burnett
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Matthew J Ramsey
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA, 94928, USA
| | - Kaitlyn Wagner
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA, 94928, USA
| | - Mackenzie L Zippay
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA, 94928, USA.
| |
Collapse
|
60
|
Somero GN. The cellular stress response and temperature: Function, regulation, and evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:379-397. [PMID: 31944627 DOI: 10.1002/jez.2344] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/11/2019] [Accepted: 01/02/2020] [Indexed: 01/18/2023]
Abstract
The cellular stress response (CSR) is critical for enabling organisms to cope with thermal damage to proteins, nucleic acids, and membranes. It is a graded response whose properties vary with the degree of cellular damage. Molecular damage has positive, as well as negative, function-perturbing effects. Positive effects include crucial regulatory interactions that orchestrate involvement of the different components of the CSR. Thermally unfolded proteins signal for rapid initiation of transcription of genes encoding heat shock proteins (HSPs), central elements of the heat shock response (HSR). Thermal disruption of messenger RNA (mRNA) secondary structures in untranslated regions leads to the culling of the mRNA pool: thermally labile mRNAs for housekeeping proteins are degraded by exonucleases; heat-resistant mRNAs for stress proteins like HSPs then can monopolize the translational apparatus. Thus, proteins and RNA function as "cellular thermometers," and evolved differences in their thermal stabilities enable rapid initiation of the CSR whenever cell temperature rises significantly above the normal thermal range of a species. Covalent DNA damage, which may result from increased production of reactive oxygen species, is temperature-dependent; its extent may determine cellular survival. High levels of stress that exceed capacities for molecular repair can lead to proteolysis, inhibition of cell division, and programmed cell death (apoptosis). Onset of these processes may occur later in the stress period, after initiation of the HSR, to allow HSPs opportunity to restore protein homeostasis. Delay of these energy costly processes may also result from shortfalls in availability of adenosine triphosphate and reducing power during times of peak stress.
Collapse
Affiliation(s)
- George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| |
Collapse
|
61
|
Dowd WW, Denny MW. A series of unfortunate events: characterizing the contingent nature of physiological extremes using long-term environmental records. Proc Biol Sci 2020; 287:20192333. [PMID: 31937220 PMCID: PMC7003452 DOI: 10.1098/rspb.2019.2333] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/09/2019] [Indexed: 11/12/2022] Open
Abstract
Accelerating shifts in global climate have focused the attention of ecologists and physiologists on extreme environmental events. However, the dynamic process of physiological acclimatization complicates study of these events' consequences. Depending on the range of plasticity and the amplitude and speed of environmental variation, physiology can be either in tune with the surroundings or dangerously out of synch. We implement a modified quantitative approach to identifying extreme events in environmental records, proposing that organisms are stressed by deviations of the environment from the current level of acclimatization, rather than by the environment's absolute state. This approach facilitates an unambiguous null model for the consequences of environmental variation, identifying a unique subset of events as 'extremes'. Specifically, it allows one to examine how both the temporal extent (the acclimatization window) and type of an environmental signal affect the magnitude and timing of extreme environmental events. For example, if physiology responds to the moving average of past conditions, a longer acclimatization window generally results in greater imposed stress. If instead physiology responds to historical maxima, longer acclimatization windows reduce imposed stress, albeit perhaps at greater constitutive cost. This approach should be further informed and tested with empirical experiments addressing the history-dependent nature of acclimatization.
Collapse
Affiliation(s)
- W. Wesley Dowd
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Mark W. Denny
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
62
|
Tartarotti B, Sommaruga R, Saul N. Contrasting diurnal patterns in antioxidant capacities, but not in expression of stress protein genes among copepod populations from clear versus glacially fed alpine and subalpine lakes. JOURNAL OF PLANKTON RESEARCH 2019; 41:897-908. [PMID: 31920209 PMCID: PMC6946086 DOI: 10.1093/plankt/fbz061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Short-term changes in environmental conditions largely influence planktonic organisms, but their responses will depend on the habitat characteristics. Here we studied diurnal patterns in antioxidative metabolites (lipophilic and hydrophilic antioxidant capacities) and in the expression of stress protein genes (heat shock proteins, hsp) of copepods to identify short-term stress responses in clear and turbid alpine lakes, as well as in less transparent subalpine ones. Cyclops abyssorum tatricus showed diurnal variation in antioxidant capacities with maxima around noon in clear, but not in glacially fed, turbid lakes. Low fluctuations of these metabolites were also observed in another copepod, Acanthodiaptomus denticornis. Although levels of hsp genes differed between populations living in clear or glacially fed lakes, there was no diurnal rhythmicity in gene expression. Our data show that when planktonic organisms may be at greatest risk of oxidative damage, such as during the daytime in high UV radiation environments, they activate antioxidant responses. Conversely, in less transparent lakes, the physiological response seems to be unnecessary. The difference in gene expression levels suggests an ecological, albeit not acute, role of these genes in copepods experiencing daily environmental fluctuations.
Collapse
Affiliation(s)
- Barbara Tartarotti
- Lake and Glacier Research Group, Department of Ecology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ruben Sommaruga
- Lake and Glacier Research Group, Department of Ecology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Nadine Saul
- Molecular Genetics Group, Institute of Biology, Humboldt University of Berlin, 10115 Berlin, Germany
| |
Collapse
|
63
|
Miller LP, Dowd WW. Repeatable patterns of small-scale spatial variation in intertidal mussel beds and their implications for responses to climate change. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110516. [DOI: 10.1016/j.cbpa.2019.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
|
64
|
|
65
|
Ho PT, Rhee H, Kim J, Seo C, Park JK, Young CR, Won YJ. Impacts of Salt Stress on Locomotor and Transcriptomic Responses in the Intertidal Gastropod Batillaria attramentaria. THE BIOLOGICAL BULLETIN 2019; 236:224-241. [PMID: 31167089 DOI: 10.1086/703186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Salinity is one of the most crucial environmental factors that structures biogeographic boundaries of aquatic organisms, affecting distribution, abundance, and behavior. However, the association between behavior and gene regulation underlying acclimation to changes in salinity remains poorly understood. In this study, we investigated the effects of salinity stress on behavior (movement distance) and patterns of gene expression (using RNA sequencing) of the intertidal gastropod Batillaria attramentaria. We examined responses to short-term (1-hour) and long-term (30-day) acclimation to a range of salinities (43, 33 [control], 23, 13, and 3 psu). We found that the intertidal B. attramentaria is able to tolerate a broad range of salinity from 13 to 43 psu but not the acute low salinity of 3 psu. Behavioral experiments showed that salt stress significantly influenced snails' movement, with lower salinity resulting in shorter movement distance. Transcriptomic analyses revealed critical metabolic pathways and genes potentially involved in acclimation to salinity stress, including ionic and osmotic regulation, signal and hormonal transduction pathways, water exchange, cell protection, and gene regulation or epigenetic modification. In general, our study presents a robust, integrative laboratory-based approach to investigate the effects of salt stress on a nonmodel gastropod facing detrimental consequences of environmental change. The current genetic results provide a wealth of reference data for further research on mechanisms of ionic and osmotic regulation and adaptive evolution of this coastal gastropod.
Collapse
Key Words
- AICC, corrected Akaike Information Criterion
- ATP, adenosine triphosphate
- DEG, differentially expressed gene
- FAA, free amino acid
- FDR, false discovery rate
- GABA, gamma-aminobutyric acid
- Hsp, heat shock protein
- LMM, linear mixed-effects model
- MDS, multidimensional scaling
- RNA-Seq, RNA sequencing.
- fc, fold change
Collapse
|
66
|
Circatidal gene expression in the mangrove cricket Apteronemobius asahinai. Sci Rep 2019; 9:3719. [PMID: 30842498 PMCID: PMC6403293 DOI: 10.1038/s41598-019-40197-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/08/2019] [Indexed: 11/11/2022] Open
Abstract
The mangrove cricket Apteronemobius asahinai is endemic to mangrove forest floors. It shows circatidal rhythmicity, with a 12.6-h period of locomotor activity under constant conditions. Its free-running activity also has a circadian component; i.e. it is more active during the subjective night than during the day. In this study, we investigated rhythmic gene expression under constant darkness by RNA sequencing to identify genes controlled by the biological clock. Samples collected every 3 h for 48 h were analysed (one cricket per time-point). We identified 284 significant circatidal cycling transcripts (period length 12–15 h). Almost half of them were annotated with known genes in the NCBI nr database, including enzymes related to metabolic processes and molecular chaperones. There were less transcripts with circadian rhythmicity than with circatidal rhythmicity, and the expression of core circadian clock genes did not show significant rhythmicity. This may reflect the nature of the mangrove cricket or may be due to the paucity of the sampling repeats: only two periods for circadian cycle with no replications. We evaluated for the first time the rhythmic transcriptome of an insect that shows circatidal rhythmic activity; our findings will contribute to future studies of circatidal clock genes.
Collapse
|
67
|
Toxicity of diatom-derived polyunsaturated aldehyde mixtures on sea urchin Paracentrotus lividus development. Sci Rep 2019; 9:517. [PMID: 30679744 PMCID: PMC6345956 DOI: 10.1038/s41598-018-37546-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Diatom-derived polyunsaturated aldehydes (PUAs), decadienal, heptadienal and octadienal, derive from the oxidation of fatty acids and have cytotoxic and anticancer effects. PUAs, tested separately, induce malformations in sea urchin Paracentrotus lividus embryos. Decadienal induces the worst malformations and lowest survival rates. Interestingly, decadienal, heptadienal and octadienal place in motion several genes to counteract their negative effects. To date, no studies are available reporting on the effects of PUA mixtures on marine invertebrates. Here we test binary and ternary mixtures on embryonic development of P. lividus. Our findings demonstrate that mixtures of PUAs act (i) at morphological level in synergistic way, being much more severe compared to individual PUAs; (ii) at molecular level also reveal an additive effect, affecting almost all fifty genes, previously tested using individual PUAs. This study is relevant from an ecological point of view since diatoms are a major food source for both pelagic and benthic organisms. This work opens new perspectives for understanding the molecular mechanisms that marine organisms use in reacting to environmental natural toxin mixtures such as diatom PUAs.
Collapse
|
68
|
Han GD, Cartwright SR, Ganmanee M, Chan BKK, Adzis KAA, Hutchinson N, Wang J, Hui TY, Williams GA, Dong YW. High thermal stress responses of Echinolittorina snails at their range edge predict population vulnerability to future warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:763-771. [PMID: 30092533 DOI: 10.1016/j.scitotenv.2018.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Populations at the edge of their species' distribution ranges are typically living at the physiological extreme of the environmental conditions they can tolerate. As a species' response to global change is likely to be largely determined by its physiological performance, subsequent changes in environmental conditions can profoundly influence populations at range edges, resulting in range extensions or retractions. To understand the differential physiological performance among populations at their distribution range edge and center, we measured levels of mRNA for heat shock protein 70 (hsp70) as an indicator of temperature sensitivity in two high-shore littorinid snails, Echinolittorina malaccana and E. radiata, between 1°N to 36°N along the NW Pacific coast. These Echinolittorina snails are extremely heat-tolerant and frequently experience environmental temperatures in excess of 55 °C when emersed. It was assumed that animals exhibiting high temperature sensitivity will synthesize higher levels of mRNA, which will thus lead to higher energetic costs for thermal defense. Populations showed significant geographic variation in temperature sensitivity along their range. Snails at the northern range edge of E. malaccana and southern range edge of E. radiata exhibited higher levels of hsp70 expression than individuals collected from populations at the center of their respective ranges. The high levels of hsp70 mRNA in populations at the edge of a species' distribution range may serve as an adaptive response to locally stressful thermal environments, suggesting populations at the edge of their distribution range are potentially more sensitive to future global warming.
Collapse
Affiliation(s)
- Guo-Dong Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Stephen R Cartwright
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Monthon Ganmanee
- Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Benny K K Chan
- Research Centre for Biodiversity, Academia Sinica, Taipei 115, Taiwan
| | - Kee A A Adzis
- Marine Ecosystem Research Center, National University of Malaysia, 43600 UKM Bangi, Malaysia; SEAlutions Sdn Bhd, B-11-1, Viva building, No 378, Jalan Ipoh, 51200 Kuala Lumpur, Malaysia
| | - Neil Hutchinson
- TropWATER-Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University Singapore, 149 Sims Drive, Singapore 387380, Singapore
| | - Jie Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Tommy Y Hui
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Gray A Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region.
| | - Yun-Wei Dong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
69
|
Moyen NE, Somero GN, Denny MW. Impact of heating rate on cardiac thermal tolerance in the California mussel, Mytilus californianus. J Exp Biol 2019; 222:jeb.203166. [DOI: 10.1242/jeb.203166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/01/2019] [Indexed: 01/06/2023]
Abstract
Intertidal communities of wave-swept rocky shores have served as a powerful model system for experiments in ecology, and mussels (the dominant competitor for space in the mid-intertidal zone) play a central role in determining community structure in this physically stressful habitat. Consequently, our ability to account for mussels’ physiological responses to thermal stress affects ecologists’ abilities to predict the impacts of a warming climate on this ecosystem. Here, we examine the effect of heating rate on cardiac thermal tolerance in the ribbed mussel, Mytilus californianus, comparing populations from high and low sites in the intertidal zone where emersion duration leads to different mean daily heating rates. Two temperature-related cardiac variables were examined: 1) the critical temperature (Hcrit) at which heart rate (HR) precipitously declines, and 2) flatline temperature (FLT) where HR reaches zero. Mussels were heated in air at slow, moderate, and fast rates, and heart rate was measured via an infrared sensor affixed to the shell. Faster heating rates significantly increased Hcrit in high-, but not low-zone mussels, and Hcrit was higher in high vs. - mussels, especially at the fastest heating rate. By contrast, FLT did not differ between zones, and was minimally affected by heating rate. Since heating rate significantly impacted high- but not low-zone mussels’ cardiac thermal tolerance, realistic zone-specific heating rates must be used in laboratory tests if those tests are to provide accurate information for ecological models attempting to predict the effects of increasing temperature on intertidal communities.
Collapse
Affiliation(s)
- Nicole E. Moyen
- Hopkins Marine Station, Department of Biology, Stanford University, USA
| | - George N. Somero
- Hopkins Marine Station, Department of Biology, Stanford University, USA
| | - Mark W. Denny
- Hopkins Marine Station, Department of Biology, Stanford University, USA
| |
Collapse
|
70
|
Multifunctional behaviour in a sandy shore crab enhances performance in extreme intertidal environments. Oecologia 2018; 189:79-89. [DOI: 10.1007/s00442-018-4299-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
|
71
|
Li A, Li L, Wang W, Song K, Zhang G. Transcriptomics and Fitness Data Reveal Adaptive Plasticity of Thermal Tolerance in Oysters Inhabiting Different Tidal Zones. Front Physiol 2018; 9:825. [PMID: 30210351 PMCID: PMC6120431 DOI: 10.3389/fphys.2018.00825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/12/2018] [Indexed: 11/21/2022] Open
Abstract
Fine-scale adaptive evolution is always constrained by strong gene flow at vertical level in marine organisms. Rapid environmental fluctuations and phenotypic plasticity through optimization of fitness-related traits in organisms play important roles in shaping intraspecific divergence. The coastal systems experience strong variations in multiple abiotic environmental factors, especially the temperature. We used a typical intertidal species, Pacific oyster (Crassostrea gigas), to investigate the interaction between plasticity and adaptive evolution. We collected intertidal and subtidal oysters from two ecological niches and carried out common garden experiments for one generation. We identified fine-scale vertical adaptive divergence between intertidal and subtidal F1 progeny at both sites, based on different hierarchical phenotypes, including morphological, physiological, and molecular traits. We further quantified the global plasticity to thermal stress through transcriptomic analysis. The intertidal oysters exhibited slow growth rate. However, they showed high survival and metabolic rates under heat stress, indicating vertically fine-scale phenotypic adaptive mechanisms and evolutionary trade-offs between growth and thermal tolerance. Transcriptomic analysis confirmed that the intertidal oysters have evolved high plasticity. The genes were classified into three types: evolutionarily divergent, concordantly plastic, and adaptive plastic genes. The evolved divergence between intertidal and subtidal oysters for these gene sets showed a significant positive correlation with plastic changes of subtidal populations in response to high temperature. Furthermore, the intertidal oysters exhibited delayed large-scale increase in expressional plasticity than that in subtidal counterparts. The same direction between plasticity and selection suggests that the oysters have evolved adaptive plasticity. This implies that adaptive plasticity facilitates the oyster to adapt to severe intertidal zones. The oysters exposed to strong environmental variability are thermal tolerant and have high adaptive potential to face the current global warming. Our findings will not only provide new insights into the significant role of plasticity in adaptive evolution that can be extended to other marine invertebrates, but also provide basic information for oyster resources conservation and reef reestablishment.
Collapse
Affiliation(s)
- Ao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kai Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
72
|
DENNY MW. Survival in spatially variable thermal environments: Consequences of induced thermal defense. Integr Zool 2018; 13:392-410. [DOI: 10.1111/1749-4877.12308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Mark W. DENNY
- Hopkins Marine Station of Stanford University; Pacific Grove California USA
| |
Collapse
|
73
|
Saarman NP, Kober KM, Simison WB, Pogson GH. Sequence-Based Analysis of Thermal Adaptation and Protein Energy Landscapes in an Invasive Blue Mussel (Mytilus galloprovincialis). Genome Biol Evol 2018; 9:2739-2751. [PMID: 28985307 PMCID: PMC5647807 DOI: 10.1093/gbe/evx190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2017] [Indexed: 12/12/2022] Open
Abstract
Adaptive responses to thermal stress in poikilotherms plays an important role in determining competitive ability and species distributions. Amino acid substitutions that affect protein stability and modify the thermal optima of orthologous proteins may be particularly important in this context. Here, we examine a set of 2,770 protein-coding genes to determine if proteins in a highly invasive heat tolerant blue mussel (Mytilus galloprovincialis) contain signals of adaptive increases in protein stability relative to orthologs in a more cold tolerant M. trossulus. Such thermal adaptations might help to explain, mechanistically, the success with which the invasive marine mussel M. galloprovincialis has displaced native species in contact zones in the eastern (California) and western (Japan) Pacific. We tested for stabilizing amino acid substitutions in warm tolerant M. galloprovincialis relative to cold tolerant M. trossulus with a generalized linear model that compares in silico estimates of recent changes in protein stability among closely related congeners. Fixed substitutions in M. galloprovincialis were 3,180.0 calories per mol per substitution more stabilizing at genes with both elevated dN/dS ratios and transcriptional responses to heat stress, and 705.8 calories per mol per substitution more stabilizing across all 2,770 loci investigated. Amino acid substitutions concentrated in a small number of genes were more stabilizing in M. galloprovincialis compared with cold tolerant M. trossulus. We also tested for, but did not find, enrichment of a priori GO terms in genes with elevated dN/dS ratios in M. galloprovincialis. This might indicate that selection for thermodynamic stability is generic across all lineages, and suggests that the high change in estimated protein stability that we observed in M. galloprovincialis is driven by selection for extra stabilizing substitutions, rather than by higher incidence of selection in a greater number of genes in this lineage. Nonetheless, our finding of more stabilizing amino acid changes in the warm adapted lineage is important because it suggests that adaption for thermal stability has contributed to M. galloprovincialis’ superior tolerance to heat stress, and that pairing tests for positive selection and tests for transcriptional response to heat stress can identify candidates of protein stability adaptation.
Collapse
Affiliation(s)
- Norah P Saarman
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz.,Department of Ecology and Evolutionary Biology, Yale University
| | - Kord M Kober
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz.,Department of Physiological Nursing, University of California, San Francisco.,Institute for Computational Health Sciences, University of California, San Francisco
| | - W Brian Simison
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California
| | - Grant H Pogson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz
| |
Collapse
|
74
|
Truebano M, Fenner P, Tills O, Rundle SD, Rezende EL. Thermal strategies vary with life history stage. J Exp Biol 2018; 221:jeb.171629. [DOI: 10.1242/jeb.171629] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/14/2018] [Indexed: 01/08/2023]
Abstract
ABSTRACT
With both global surface temperatures and the incidence and intensity of extreme temperature events projected to increase, the assessment of species' sensitivity to chronic and acute changes in temperature has become crucial. Sensitivity predictions are based predominantly on adult responses, despite the fact that early life stages may be more vulnerable to thermal challenge. Here, we compared the sensitivity of different life history stages of the intertidal gastropod Littorina obtusata using thermal death time curves, which incorporate the intensity and duration of heat stress, and used these to calculate upper critical thermal limits (CTmax) and sensitivity to temperature change (z). Early (larval) life stages had both a lower CTmax and a lower z than adults, suggesting they are less good at withstanding short-term extreme thermal challenges but better able to survive moderate temperatures in the long term. This result supports the predicted trade-off between acute and chronic tolerance to thermal stress, and is consistent with the different thermal challenges that these stages encounter in the intertidal zone. We conclude that different life history stages employ different thermal strategies that may be adaptive. Our findings caution against the use of predictions of the impact of global warming that are based on only adult responses and, hence, which may underestimate vulnerability.
Collapse
Affiliation(s)
- Manuela Truebano
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - Phillip Fenner
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - Oliver Tills
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - Simon D. Rundle
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - Enrico L. Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability, Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 6513677, Chile
| |
Collapse
|
75
|
Castellano GC, Lopes EM, Ventura CRR, Freire CA. Early time course of variation in coelomic fluid ionic concentrations in sea urchins abruptly exposed to hypo- and hyper-osmotic salinity challenges: Role of size and cross-section area of test holes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 327:542-550. [PMID: 29368803 DOI: 10.1002/jez.2138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 11/09/2022]
Abstract
Echinoderms are restricted to the marine environment and are osmoconformer invertebrates. However, some species live in unstable environments. Especially those species, and those of larger body size, tend to show variable, albeit transient, ionic gradients between their coelomic fluid and external seawater. In order to further examine how sea urchin size relates to apparent ionic permeability of their body wall/epithelia, specimens of Echinometra lucunter, Lytechinus variegatus, Paracentrotus gaimardi, and Arbacia lixula-A. lixula of two distinct populations, Rio de Janeiro and Santa Catarina-were abruptly transferred from 35 psu to either 25 or 45 psu. Sodium, chloride, magnesium, and potassium concentrations were assayed in their coelomic fluids after 0, 1, 2, and 3 hr of exposure. Relative area of putative permeable (i.e., cross section areas of soft tissues, or test holes) surfaces (PPS) was estimated in empty tests as the sum of the peristomial area (oral hole in the empty test) and the total cross-section area of ambulacral holes, divided by the total volume (TV) of the test. L. variegatus and E. lucunter, the largest species, had PPS/TV values similar to that of the much smaller P. gaimardi. A. lixula was the "most putatively-permeable and conformer" among them all, especially urchins from the Santa Catarina population. Internal ionic levels equilibrated faster with external water in 45 than in 25, and differences among ions were observed. Body size is relevant, among many other factors, to aid conformers such as sea urchins to dwell in intertidal unstable habitats.
Collapse
Affiliation(s)
| | - Elinia Medeiros Lopes
- Department of Invertebrates, Museu Nacional/Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Renato Rezende Ventura
- Department of Invertebrates, Museu Nacional/Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
76
|
Gleason LU, Miller LP, Winnikoff JR, Somero GN, Yancey PH, Bratz D, Dowd WW. Thermal history and gape of individual Mytilus californianus correlate with oxidative damage and thermoprotective osmolytes. J Exp Biol 2017; 220:4292-4304. [DOI: 10.1242/jeb.168450] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/24/2017] [Indexed: 12/22/2022]
Abstract
ABSTRACT
The ability of animals to cope with environmental stress depends – in part – on past experience, yet knowledge of the factors influencing an individual's physiology in nature remains underdeveloped. We used an individual monitoring system to record body temperature and valve gaping behavior of rocky intertidal zone mussels (Mytilus californianus). Thirty individuals were selected from two mussel beds (wave-exposed and wave-protected) that differ in thermal regime. Instrumented mussels were deployed at two intertidal heights (near the lower and upper edges of the mussel zone) and in a continuously submerged tidepool. Following a 23-day monitoring period, measures of oxidative damage to DNA and lipids, antioxidant capacities (catalase activity and peroxyl radical scavenging) and tissue contents of organic osmolytes were obtained from gill tissue of each individual. Univariate and multivariate analyses indicated that inter-individual variation in cumulative thermal stress is a predominant driver of physiological variation. Thermal history over the outplant period was positively correlated with oxidative DNA damage. Thermal history was also positively correlated with tissue contents of taurine, a thermoprotectant osmolyte, and with activity of the antioxidant enzyme catalase. Origin site differences, possibly indicative of developmental plasticity, were only significant for catalase activity. Gaping behavior was positively correlated with tissue contents of two osmolytes. Overall, these results are some of the first to clearly demonstrate relationships between inter-individual variation in recent experience in the field and inter-individual physiological variation, in this case within mussel beds. Such micro-scale, environmentally mediated physiological differences should be considered in attempts to forecast biological responses to a changing environment.
Collapse
Affiliation(s)
- Lani U. Gleason
- Loyola Marymount University, Department of Biology, 1 LMU Drive, Los Angeles, CA 90045, USA
| | - Luke P. Miller
- San Jose State University, Department of Biological Sciences, One Washington Square, San Jose, CA 95192, USA
| | - Jacob R. Winnikoff
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | - George N. Somero
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | - Paul H. Yancey
- Whitman College, Biology Department, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| | - Dylan Bratz
- Whitman College, Biology Department, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| | - W. Wesley Dowd
- Loyola Marymount University, Department of Biology, 1 LMU Drive, Los Angeles, CA 90045, USA
- Washington State University, School of Biological Sciences, PO Box 644236, Pullman, WA 99164, USA
| |
Collapse
|
77
|
Passow CN, Henpita C, Shaw JH, Quackenbush CR, Warren WC, Schartl M, Arias-Rodriguez L, Kelley JL, Tobler M. The roles of plasticity and evolutionary change in shaping gene expression variation in natural populations of extremophile fish. Mol Ecol 2017; 26:6384-6399. [PMID: 28926156 DOI: 10.1111/mec.14360] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/22/2022]
Abstract
The notorious plasticity of gene expression responses and the complexity of environmental gradients complicate the identification of adaptive differences in gene regulation among populations. We combined transcriptome analyses in nature with common-garden and exposure experiments to establish cause-effect relationships between the presence of a physiochemical stressor and expression differences, as well as to test how evolutionary change and plasticity interact to shape gene expression variation in natural systems. We studied two evolutionarily independent population pairs of an extremophile fish (Poecilia mexicana) living in toxic, hydrogen sulphide (H2 S)-rich springs and adjacent nontoxic habitats and assessed genomewide expression patterns of wild-caught and common-garden-raised individuals exposed to different concentrations of H2 S. We found that 7.7% of genes that were differentially expressed between sulphidic and nonsulphidic ecotypes remained differentially expressed in the laboratory, indicating that sources of selection other than H2 S-or plastic responses to other environmental factors-contribute substantially to gene expression patterns observed in the wild. Concordantly differentially expressed genes in the wild and the laboratory were primarily associated with H2 S detoxification, sulphur processing and metabolic physiology. While shared, ancestral plasticity played a minor role in shaping gene expression variation observed in nature, we documented evidence for evolved population differences in the constitutive expression as well as the H2 S inducibility of candidate genes. Mechanisms underlying gene expression variation also varied substantially across the two ecotype pairs. These results provide a springboard for studying evolutionary modifications of gene regulatory mechanisms that underlie expression variation in locally adapted populations.
Collapse
Affiliation(s)
| | - Chathurika Henpita
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jennifer H Shaw
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Corey R Quackenbush
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | - Manfred Schartl
- Physiological Chemistry, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg, Germany.,Hagler Institute for Advanced Studies and Department of Biology, Texas A&M University, College Station, TX, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, México
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
78
|
HAN G, ZHANG S, DONG Y. Anaerobic metabolism and thermal tolerance: The importance of opine pathways on survival of a gastropod after cardiac dysfunction. Integr Zool 2017; 12:361-370. [DOI: 10.1111/1749-4877.12229] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Guodong HAN
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences; Xiamen University; Xiamen China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Xiamen University; Xiamen China
| | - Shu ZHANG
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences; Xiamen University; Xiamen China
| | - Yunwei DONG
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences; Xiamen University; Xiamen China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Xiamen University; Xiamen China
| |
Collapse
|
79
|
Drake MJ, Miller NA, Todgham AE. The role of stochastic thermal environments in modulating the thermal physiology of an intertidal limpet, Lottia digitalis. J Exp Biol 2017; 220:3072-3083. [DOI: 10.1242/jeb.159020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022]
Abstract
ABSTRACT
Much of our understanding of the thermal physiology of intertidal organisms comes from experiments with animals acclimated under constant conditions and exposed to a single heat stress. In nature, however, the thermal environment is more complex. Aerial exposure and the unpredictable nature of thermal stress during low tides may be critical factors in defining the thermal physiology of intertidal organisms. In the fingered limpet, Lottia digitalis, we investigated whether upper temperature tolerance and thermal sensitivity were influenced by the pattern of fluctuation with which thermal stress was applied. Specifically, we examined whether there was a differential response (measured as cardiac performance) to repeated heat stress of a constant and predictable magnitude compared with heat stress applied in a stochastic and unpredictable nature. We also investigated differences in cellular metabolism and damage following immersion for insights into biochemical mechanisms of tolerance. Upper temperature tolerance increased with aerial exposure, but no significant differences were found between predictable treatments of varying magnitudes (13°C versus 24°C versus 32°C). Significant differences in thermal tolerance were found between unpredictable trials with different heating patterns. There were no significant differences among treatments in basal citrate synthase activity, glycogen content, oxidative stress or antioxidants. Our results suggest that aerial exposure and recent thermal history, paired with relief from high low-tide temperatures, are important factors modulating the capacity of limpets to deal with thermal stress.
Collapse
Affiliation(s)
- Madeline J. Drake
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| | - Nathan A. Miller
- Romberg Tiburon Center for Environmental Studies, San Francisco State University, Tiburon, CA 94920, USA
| | - Anne E. Todgham
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
80
|
Banni M, Sforzini S, Arlt VM, Barranger A, Dallas LJ, Oliveri C, Aminot Y, Pacchioni B, Millino C, Lanfranchi G, Readman JW, Moore MN, Viarengo A, Jha AN. Assessing the impact of Benzo[a]pyrene on Marine Mussels: Application of a novel targeted low density microarray complementing classical biomarker responses. PLoS One 2017. [PMID: 28651000 PMCID: PMC5484464 DOI: 10.1371/journal.pone.0178460] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite the increasing use of mussels in environmental monitoring and ecotoxicological studies, their genomes and gene functions have not been thoroughly explored. Several cDNA microarrays were recently proposed for Mytilus spp., but putatively identified partial transcripts have rendered the generation of robust transcriptional responses difficult in terms of pathway identification. We developed a new low density oligonucleotide microarray with 465 probes covering the same number of genes. Target genes were selected to cover most of the well-known biological processes in the stress response documented over the last decade in bivalve species at the cellular and tissue levels. Our new ‘STressREsponse Microarray’ (STREM) platform consists of eight sub-arrays with three replicates for each target in each sub-array. To assess the potential use of the new array, we tested the effect of the ubiquitous environmental pollutant benzo[a]pyrene (B[a]P) at 5, 50, and 100 μg/L on two target tissues, the gills and digestive gland, of Mytilus galloprovincialis exposed invivo for three days. Bioaccumulation of B[a]P was also determined demonstrating exposure in both tissues. In addition to the well-known effects of B[a]P on DNA metabolism and oxidative stress, the new array data provided clues about the implication of other biological processes, such as cytoskeleton, immune response, adhesion to substrate, and mitochondrial activities. Transcriptional data were confirmed using qRT-PCR. We further investigated cellular functions and possible alterations related to biological processes highlighted by the microarray data using oxidative stress biomarkers (Lipofuscin content) and the assessment of genotoxicity. DNA damage, as measured by the alkaline comet assay, increased as a function of dose.DNA adducts measurements using 32P-postlabeling method also showed the presence of bulky DNA adducts (i.e. dG-N2-BPDE). Lipofiscin content increased significantly in B[a]P exposed mussels. Immunohistochemical analysis of tubulin and actin showed changes in cytoskeleton organisation. Our results adopting an integrated approach confirmed that the combination of newly developed transcriptomic approcah, classical biomarkers along with chemical analysis of water and tissue samples should be considered for environmental bioimonitoring and ecotoxicological studies to obtain holistic information to assess the impact of contaminants on the biota.
Collapse
Affiliation(s)
- Mohamed Banni
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
- Laboratory of Biochemistry and Environmental Toxicology, ISA chott-Mariem, Sousse University, Sousse, Tunisia
- * E-mail: (MB); (ANJ)
| | - Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Volker M. Arlt
- Analytical and Environmental Sciences Division, King's College London, MRC-PHE Centre for Environmental & Health, London, United Kingdom
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King’s College London in partnership with Public Health England, London, United Kingdom
| | - Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Lorna J. Dallas
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Caterina Oliveri
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Yann Aminot
- Centre for Chemical Sciences, University of Plymouth, Plymouth, United Kingdom
| | | | | | | | - James W. Readman
- Centre for Chemical Sciences, University of Plymouth, Plymouth, United Kingdom
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, United Kingdom
| | - Michael N. Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, United Kingdom
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, United Kingdom
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
- * E-mail: (MB); (ANJ)
| |
Collapse
|
81
|
Chen H, Xin L, Song X, Wang L, Wang W, Liu Z, Zhang H, Wang L, Zhou Z, Qiu L, Song L. A norepinephrine-responsive miRNA directly promotes CgHSP90AA1 expression in oyster haemocytes during desiccation. FISH & SHELLFISH IMMUNOLOGY 2017; 64:297-307. [PMID: 28286314 DOI: 10.1016/j.fsi.2017.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Oyster Crassostrea gigas is one model mollusc inhabiting in the intertidal zone and is frequently stressed by desiccation. The adaptation mechanism of oyster to environmental stress involves multiple levels, and miRNA is one of the most important regulators in post-transcriptional level. In the present study, an oyster norepinephrine-responsive miRNA cgi-miR-365 was proved to contribute to the host adaptation against desiccation by directly promoting the expression of CgHSP90AA1. Briefly, a significant increase of cgi-miR-365 was observed from the first day after aerial exposure and the up-regulation was vigorously repressed when oysters were injected with adrenoceptors antagonists. A total of 15 genes involved in biological regulation, metabolic process and response to stimulus were predicted to be modulated by cgi-miR-365. Among these genes, CgHSP90AA1 was up-regulated significantly during desiccation and could be down-regulated after simultaneous injection of adrenoceptors antagonists. The interaction between cgi-miR-365 and CgHSP90AA1 was subsequently verified in vitro, and a significant promotion of CgHSP90AA1 transcripts was observed after overexpressing cgi-miR-365 in either in vitro luciferase reporter assay or primarily cultured haemocytes. Meanwhile, CgHSP90AA1 transcripts decreased in vivo when cgi-miR-365 was repressed by its inhibitor during desiccation. Collectively, it was suggested that cgi-miR-365 could be induced by norepinephrine during desiccation and promote CgHSP90AA1 expression directly after binding to its 3'-UTR, which would provide new evidence in miRNA-mediated adaptation mechanism in oysters against intertidal stress.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
82
|
Boukadida K, Cachot J, Clérandeaux C, Gourves PY, Banni M. Early and efficient induction of antioxidant defense system in Mytilus galloprovincialis embryos exposed to metals and heat stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:105-112. [PMID: 28033516 DOI: 10.1016/j.ecoenv.2016.12.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED The present study aims to elucidate the stress response of early life stages of Mytilus galloprovincialis to the combine effects of selected metals and elevated temperature. For this purpose, we investigated the response of a large panel of oxidative stress markers such as catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) activities and lipid peroxidation (thiobarbituric acid reactive substrates (TBARS) concentration) and metallothionein accumulation (MT) as well as selected gene transcription level and metal accumulation in mussels larvae exposed to a sub-lethal concentration of Cu (9.54µg/L), Ag (2.55µg/L) and mixture of the two metals (Cu (6.67µg/L)+Ag (1.47µg/L)) along with a temperature gradient (18, 20 and 22°C) for 48h. Cu and Ag applied as single or mixture were differentially accumulated in mussel larvae according to the exposure temperature. Sod, cat, gst and mt-10 gene transcription levels showed an important increase in larvae exposed to Cu, Ag or to the mix compared to the control condition at 18°C. The same pattern but with higher induction levels was recorded in larvae co-exposed to metals at 20°C. At 22°C, a significant decrease in mRNA abundance of cat, gst and sod and a significant up-regulation of mts targets (mt10 and mt20) were observed. RESULTS suggest that co-exposure to metals and moderate elevated temperature (20 and 22°C) significantly increased the antioxidant enzyme activities of catalase (CAT), and glutathione-S-transferase (GST) and caused an increase of metal and metallothionein concentrations. In contrast, no significant change in lipid peroxidation products measured as TBARS content was observed indicating a protective response of anti-oxidative system. This study provides first evidences of the early and efficient protective response of antioxidant defense mechanisms in mussel's early life stages facing in multi stressors situations.
Collapse
Affiliation(s)
- Khouloud Boukadida
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042, Sousse, Tunisia; University Bordeaux I, Laboratory of Oceanic and Continental Environments and Paleoenvironments, EPOC, UMR 5805, F-33400, Talence, France
| | - Jérôme Cachot
- University Bordeaux I, Laboratory of Oceanic and Continental Environments and Paleoenvironments, EPOC, UMR 5805, F-33400, Talence, France
| | - Christelle Clérandeaux
- University Bordeaux I, Laboratory of Oceanic and Continental Environments and Paleoenvironments, EPOC, UMR 5805, F-33400, Talence, France
| | - Pierre-Yves Gourves
- University Bordeaux I, Laboratory of Oceanic and Continental Environments and Paleoenvironments, EPOC, UMR 5805, F-33400, Talence, France
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042, Sousse, Tunisia; Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25 G, 15100, Alessandria, Italy.
| |
Collapse
|
83
|
Ruiz-Jones LJ, Palumbi SR. Tidal heat pulses on a reef trigger a fine-tuned transcriptional response in corals to maintain homeostasis. SCIENCE ADVANCES 2017; 3:e1601298. [PMID: 28345029 PMCID: PMC5342658 DOI: 10.1126/sciadv.1601298] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 01/30/2017] [Indexed: 05/20/2023]
Abstract
For reef-building corals, extreme stress exposure can result in loss of endosymbionts, leaving colonies bleached. However, corals in some habitats are commonly exposed to natural cycles of sub-bleaching stress, often leading to higher stress tolerance. We monitored transcription in the tabletop coral Acropora hyacinthus daily for 17 days over a strong tidal cycle that included extreme temperature spikes, and show that increases in temperature above 30.5°C triggered a strong transcriptional response. The transcriptomic time series data allowed us to identify a set of genes with coordinated expression that were activated only on days with strong tides, high temperature, and large diel pH and oxygen changes. The responsive genes are enriched for gene products essential to the unfolded protein response, an ancient cellular response to endoplasmic reticulum stress. After the temporary heat pulses passed, expression of these genes immediately decreased, suggesting that homeostasis was restored to the endoplasmic reticulum. In a laboratory temperature stress experiment, we found that the expression of these environmentally responsive genes increased as corals bleached, showing that the unfolded protein response becomes more intense during more severe stress. Our results point to the unfolded protein response as a first line of defense that acroporid corals use when coping with environmental stress on the reef, thus enhancing our understanding of coral stress physiology during a time of major concern for reefs.
Collapse
|
84
|
Velez C, Figueira E, Soares AMVM, Freitas R. Effects of seawater temperature increase on economically relevant native and introduced clam species. MARINE ENVIRONMENTAL RESEARCH 2017; 123:62-70. [PMID: 27951468 DOI: 10.1016/j.marenvres.2016.11.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/25/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
As a consequence of climate change, global warming is expected to increase during the 21st century. Taking this into account, the impact of rising temperatures on the native Ruditapes decussatus and introduced R. philippinarum bivalve species was assessed, through biochemical and mRNA transcription analyses. Our findings showed that at 21 °C the electron transport system and antioxidant enzyme activity, as well as the expression of Hsp70 gene were induced in R. decussatus when compared with 17 °C. On the other hand, at 25 °C results suggested that R. decussatus closed their valves during short periods, as a behavioral strategy, down-regulating the expression of genes associated with mitochondrial metabolism (Cox-1 and 16S) and chaperone function (Hsp70) compared with organisms at 17 °C. In addition, the introduced species (R. philippinarum) increased the electron transport system and antioxidant activities, as well as gene expression of antioxidant enzymes and molecular chaperone (Hsp70) at 21 °C. However, antioxidant mechanisms were not enough to prevent lipid membrane damages at 21 °C. At 25 °C R. philippinarum presented increased electron transport system and antioxidant activity, as well as the expression of genes associated with apoptosis regulation and molecular chaperone. Overall, the present findings indicate that in a global warming scenario both species are able to induce different mechanisms to mitigate the impacts of temperature increase.
Collapse
Affiliation(s)
- Cátia Velez
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
85
|
Gracey AY, Connor K. Transcriptional and metabolomic characterization of spontaneous metabolic cycles in Mytilus californianus under subtidal conditions. Mar Genomics 2016; 30:35-41. [DOI: 10.1016/j.margen.2016.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
|
86
|
Helmuth B, Choi F, Matzelle A, Torossian JL, Morello SL, Mislan KAS, Yamane L, Strickland D, Szathmary PL, Gilman SE, Tockstein A, Hilbish TJ, Burrows MT, Power AM, Gosling E, Mieszkowska N, Harley CDG, Nishizaki M, Carrington E, Menge B, Petes L, Foley MM, Johnson A, Poole M, Noble MM, Richmond EL, Robart M, Robinson J, Sapp J, Sones J, Broitman BR, Denny MW, Mach KJ, Miller LP, O'Donnell M, Ross P, Hofmann GE, Zippay M, Blanchette C, Macfarlan JA, Carpizo-Ituarte E, Ruttenberg B, Peña Mejía CE, McQuaid CD, Lathlean J, Monaco CJ, Nicastro KR, Zardi G. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors. Sci Data 2016; 3:160087. [PMID: 27727238 PMCID: PMC5058338 DOI: 10.1038/sdata.2016.87] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/30/2016] [Indexed: 11/12/2022] Open
Abstract
At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10–30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0–2.5 °C, during daily fluctuations that often exceeded 15°–20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.
Collapse
Affiliation(s)
- Brian Helmuth
- Northeastern University, Marine Science Center, 430 Nahant Rd., Nahant, Massachusetts 01908, USA
| | - Francis Choi
- Northeastern University, Marine Science Center, 430 Nahant Rd., Nahant, Massachusetts 01908, USA
| | - Allison Matzelle
- Northeastern University, Marine Science Center, 430 Nahant Rd., Nahant, Massachusetts 01908, USA
| | - Jessica L Torossian
- Northeastern University, Marine Science Center, 430 Nahant Rd., Nahant, Massachusetts 01908, USA
| | | | - K A S Mislan
- University of Washington, School of Oceanography, Seattle, Washington 98195, USA
| | - Lauren Yamane
- University of California, Davis, Department of Wildlife, Fish, and Conservation Biology, Davis, California 95616, USA
| | - Denise Strickland
- University of South Carolina, Department of Biological Sciences, Columbia, South Carolina 29208, USA
| | - P Lauren Szathmary
- University of South Carolina, Department of Biological Sciences, Columbia, South Carolina 29208, USA
| | - Sarah E Gilman
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, California 91711, USA
| | - Alyson Tockstein
- University of South Carolina, Department of Biological Sciences, Columbia, South Carolina 29208, USA
| | - Thomas J Hilbish
- University of South Carolina, Department of Biological Sciences, Columbia, South Carolina 29208, USA
| | - Michael T Burrows
- Scottish Association for Marine Science, Oban, Argyll PA37 1QA, Scotland
| | - Anne Marie Power
- Anne Marie Power, School of Natural Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Elizabeth Gosling
- School of Life Sciences, Galway-Mayo Institute of Technology, Galway H91 T8NW, Ireland
| | - Nova Mieszkowska
- Marine Biological Association of the United Kingdom, Plymouth, Devon PL1 2PB, UK
| | - Christopher D G Harley
- University of British Columbia, Department of Zoology and Biodiversity Research Centre, Vancouver, British Columbia, Canada V6T1Z4
| | - Michael Nishizaki
- University of Washington, Department of Biology, Seattle, Washington 98195, USA
| | - Emily Carrington
- University of Washington, Department of Biology, Seattle, Washington 98195, USA
| | - Bruce Menge
- Oregon State University, Department of Integrative Biology, Corvallis, Oregon 97331, USA
| | - Laura Petes
- Oregon State University, Department of Integrative Biology, Corvallis, Oregon 97331, USA
| | - Melissa M Foley
- Oregon State University, Department of Integrative Biology, Corvallis, Oregon 97331, USA
| | - Angela Johnson
- Oregon State University, Department of Integrative Biology, Corvallis, Oregon 97331, USA
| | - Megan Poole
- Oregon State University, Department of Integrative Biology, Corvallis, Oregon 97331, USA
| | - Mae M Noble
- Oregon State University, Department of Integrative Biology, Corvallis, Oregon 97331, USA
| | - Erin L Richmond
- Oregon State University, Department of Integrative Biology, Corvallis, Oregon 97331, USA
| | - Matt Robart
- Oregon State University, Department of Integrative Biology, Corvallis, Oregon 97331, USA
| | - Jonathan Robinson
- Oregon State University, Department of Integrative Biology, Corvallis, Oregon 97331, USA
| | - Jerod Sapp
- Oregon State University, Department of Integrative Biology, Corvallis, Oregon 97331, USA
| | - Jackie Sones
- University of California, Davis, Bodega Marine Reserve, Bodega Bay, California 94923, USA
| | | | - Mark W Denny
- Stanford University, Hopkins Marine Station, Pacific Grove, California 93950, USA
| | - Katharine J Mach
- Stanford University, Hopkins Marine Station, Pacific Grove, California 93950, USA
| | - Luke P Miller
- Stanford University, Hopkins Marine Station, Pacific Grove, California 93950, USA
| | - Michael O'Donnell
- Stanford University, Hopkins Marine Station, Pacific Grove, California 93950, USA
| | - Philip Ross
- University of Waikato, Environmental Research Institute, Tauranga 3110, New Zealand
| | - Gretchen E Hofmann
- University of California Santa Barbara, Marine Science Institute, Santa Barbara, California 93106, USA
| | - Mackenzie Zippay
- University of California Santa Barbara, Marine Science Institute, Santa Barbara, California 93106, USA
| | - Carol Blanchette
- University of California Santa Barbara, Marine Science Institute, Santa Barbara, California 93106, USA
| | - J A Macfarlan
- University of California Santa Barbara, Marine Science Institute, Santa Barbara, California 93106, USA
| | - Eugenio Carpizo-Ituarte
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Ensenada, Baja California 22860, Mexico
| | - Benjamin Ruttenberg
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Ensenada, Baja California 22860, Mexico
| | - Carlos E Peña Mejía
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Ensenada, Baja California 22860, Mexico
| | - Christopher D McQuaid
- Rhodes University, Department of Zoology and Entomology, Grahamstown 6140, South Africa
| | - Justin Lathlean
- Rhodes University, Department of Zoology and Entomology, Grahamstown 6140, South Africa
| | - Cristián J Monaco
- Rhodes University, Department of Zoology and Entomology, Grahamstown 6140, South Africa
| | - Katy R Nicastro
- Rhodes University, Department of Zoology and Entomology, Grahamstown 6140, South Africa
| | - Gerardo Zardi
- Rhodes University, Department of Zoology and Entomology, Grahamstown 6140, South Africa
| |
Collapse
|
87
|
Connor KM, Sung A, Garcia NS, Gracey AY, German DP. Modulation of digestive physiology and biochemistry in Mytilus californianus in response to feeding level acclimation and microhabitat. Biol Open 2016; 5:1200-10. [PMID: 27402963 PMCID: PMC5051655 DOI: 10.1242/bio.019430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The intertidal mussel Mytilus californianus is a critical foundation species that is exposed to fluctuations in the environment along tidal- and wave-exposure gradients. We investigated feeding and digestion in mussels under laboratory conditions and across environmental gradients in the field. We assessed whether mussels adopt a rate-maximization (higher ingestion and lower assimilation) or a yield-maximization acquisition (lower ingestion and higher assimilation) strategy under laboratory conditions by measuring feeding physiology and digestive enzyme activities. We used digestive enzyme activity to define resource acquisition strategies in laboratory studies, then measured digestive enzyme activities in three microhabitats at the extreme ends of the tidal- and wave-exposure gradients within a stretch of shore (<20 m) projected sea-ward. Our laboratory results indicated that mussels benefit from a high assimilation efficiency when food concentration is low and have a low assimilation efficiency when food concentration is high. Additionally, enzyme activities of carbohydrases amylase, laminarinase and cellulase were elevated when food concentration was high. The protease trypsin, however, did not increase with increasing food concentration. In field conditions, low-shore mussels surprisingly did not have high enzyme activities. Rather, high-shore mussels exhibited higher cellulase activities than low-shore mussels. Similarly, trypsin activity in the high-shore-wave-sheltered microhabitat was higher than that in high-shore-wave-exposed. As expected, mussels experienced increasing thermal stress as a function of reduced submergence from low to high shore and shelter from wave-splash. Our findings suggest that mussels compensate for limited feeding opportunities and thermal stress by modulating digestive enzyme activities.
Collapse
Affiliation(s)
- Kwasi M Connor
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Aaron Sung
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Nathan S Garcia
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - Andrew Y Gracey
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Donovan P German
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
88
|
Logan CA, Buckley BA. Transcriptomic responses to environmental temperature in eurythermal and stenothermal fishes. ACTA ACUST UNITED AC 2016; 218:1915-24. [PMID: 26085668 DOI: 10.1242/jeb.114397] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ectothermic species like fishes differ greatly in the thermal ranges they tolerate; some eurythermal species may encounter temperature ranges in excess of 25°C, whereas stenothermal species in polar and tropical waters live at essentially constant temperatures. Thermal specialization comes with fitness trade-offs and as temperature increases due to global warming, the physiological basis of specialization and thermal plasticity has become of great interest. Over the past 50 years, comparative physiologists have studied the physiological and molecular differences between stenothermal and eurythermal fishes. It is now well known that many stenothermal fishes have lost an inducible heat shock response (HSR). Recent advances in transcriptomics have now made it possible to examine genome-wide changes in gene expression (GE) in non-model ecologically important fish, broadening our view beyond the HSR to regulation of genes involved in hundreds of other cellular processes. Here, we review the major findings from transcriptomic studies of extreme eurythermal and stenothermal fishes in response to acute and long-term exposure to temperature, both time scales being critically important for predicting climate change responses. We consider possible molecular adaptations that underlie eurythermy and stenothermy in teleosts. Furthermore, we highlight the challenges that still face the field of comparative environmental genomics and suggest fruitful paths of future investigation.
Collapse
Affiliation(s)
- Cheryl A Logan
- Division of Science and Environmental Policy, California State University, Monterey Bay, Seaside, CA 93955, USA
| | - Bradley A Buckley
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97207, USA
| |
Collapse
|
89
|
Mat AM, Perrigault M, Massabuau JC, Tran D. Role and expression of cry1 in the adductor muscle of the oyster Crassostrea gigas during daily and tidal valve activity rhythms. Chronobiol Int 2016; 33:949-63. [PMID: 27246263 DOI: 10.1080/07420528.2016.1181645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cryptochromes are flavin- and pterin-containing photoreceptors of the cryptochrome/photolyase family. They play critical roles in organisms, among are which light-dependent and light-independent roles in biological rhythms. The present work aimed at describing a cryptochrome gene in the oyster Crassostrea gigas by (i) a characterization and phylogenetic analysis and (ii) by studying its expression in the relationship to rhythmic valve behavior in different entrainment regimes. Cryptochrome expression was focused on the adductor muscle of the oyster, the effector of the valve behavior. The results suggest involvement of Cgcry1 in oyster rhythmicity as a sensor of environmental zeitgebers, associated with circadian rhythms and potentially to tidal activity. The characterized gene belongs to type 1 cryptochrome/insect-type cry. Additionally, Cgcry1 presented a daily oscillation under L:D entrainment, which disappeared in constant darkness. Transcript expression of Cgcry1 also oscillated at tidal frequency under tidal entrainment and in constant darkness. Finally, exposure of tidally entrained oysters to saxitoxin (STX)-producing alga Alexandrium minutum induced a dose effect response in oysters by first altering Cgcry1 expression and then the behavior of oysters with increasing concentrations of toxins. This study initiates the characterization of the molecular clock in the oyster C. gigas and its interactions with environmental zeitgebers.
Collapse
Affiliation(s)
- Audrey M Mat
- a University of Bordeaux, EPOC, UMR 5805 , Arcachon , France
| | | | - Jean-Charles Massabuau
- a University of Bordeaux, EPOC, UMR 5805 , Arcachon , France.,b CNRS, EPOC, UMR 5805 , Arcachon , France
| | - Damien Tran
- a University of Bordeaux, EPOC, UMR 5805 , Arcachon , France.,b CNRS, EPOC, UMR 5805 , Arcachon , France
| |
Collapse
|
90
|
Chabot CC, Ramberg-Pihl NC, Watson WH. Circalunidian clocks control tidal rhythms of locomotion in the American horseshoe crab, Limulus polyphemus. MARINE AND FRESHWATER BEHAVIOUR AND PHYSIOLOGY 2016; 49:75-91. [PMID: 27559270 PMCID: PMC4993286 DOI: 10.1080/10236244.2015.1127679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
While many intertidal animals exhibit circatidal rhythms, the nature of the underlying endogenous clocks that control these rhythms has been controversial. In this study American horseshoe crabs, Limulus polyphemus, were used to test the circalunidian hypothesis by exposing them to four different tidal regimes. Overall, the results obtained support the circalunidian hypothesis: each of the twice-daily rhythms of activity appears to be controlled by a separate clock, each with an endogenous period of approximately 24.8h. First, spontaneous "skipping" of one of the daily bouts was observed under several different conditions. Second, the presence of two bouts of activity/day, with different periods, was observed. Lastly, we were able to separately synchronize bouts of activity to two artificial tidal regimes with different periods. These results, taken together, argue in favor of two separate circalunidian clocks in Limulus, each of which controls one of the two bouts of their daily tidal activity rhythms.
Collapse
Affiliation(s)
- Christopher C. Chabot
- Department of Biological Sciences, MSC#64, Plymouth State University, Plymouth, NH 03264, NH
| | - Nicole C. Ramberg-Pihl
- Department of Biological Sciences, MSC#64, Plymouth State University, Plymouth, NH 03264, NH
| | - Winsor H. Watson
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
91
|
Bjelde BE, Miller NA, Stillman JH, Todgham AE. The Role of Oxygen in Determining Upper Thermal Limits in Lottia digitalis under Air Exposure and Submersion. Physiol Biochem Zool 2015; 88:483-93. [PMID: 26658246 DOI: 10.1086/682220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oxygen limitation of aerobic metabolism is hypothesized to drive organismal thermal tolerance limits. Differences in oxygen availability in air and water may underlie observed differences in upper thermal tolerance of intertidal limpets if oxygen is limiting in submerged environments. We explored how cardiac performance (heart rate, breakpoint temperature [BPT], flat-line temperature [FLT], and temperature sensitivity) was affected by hyperoxia and hypoxia in the finger limpet, Lottia digitalis, under air exposure and submersion. Upper thermal tolerance limits were unchanged by increasing availability of oxygen, although air-exposed limpets were able to maintain cardiac function to higher temperatures than submerged limpets. Maximum heart rate did not increase with greater partial pressure of oxygen (Po2), suggesting that tissue Po2 levels are likely maximized during normoxia. Hypoxia reduced breakpoint BPTs and FLTs in air-exposed and submerged limpets and accentuated the difference in BPTs between the two groups through greater reductions in BPT in submerged limpets. Differences in respiratory structures and the degree to which thermal limits are already maximized may play significant roles in determining how oxygen availability influences upper temperature tolerance.
Collapse
Affiliation(s)
- Brittany E Bjelde
- Department of Biology, San Francisco State University, San Francisco, California 94132; 2Department of Animal Science, University of California, Davis, California 95616; 3Romberg Tiburon Center for Environmental Studies, San Francisco State University, Tiburon, California 94920; 4Department of Integrative Biology, University of California, Berkeley, California 94720
| | | | | | | |
Collapse
|
92
|
Chandramouli KH, Al-Aqeel S, Ryu T, Zhang H, Seridi L, Ghosheh Y, Qian PY, Ravasi T. Transcriptome and proteome dynamics in larvae of the barnacle Balanus Amphitrite from the Red Sea. BMC Genomics 2015; 16:1063. [PMID: 26666348 PMCID: PMC4678614 DOI: 10.1186/s12864-015-2262-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/30/2015] [Indexed: 11/11/2022] Open
Abstract
Background The barnacle Balanus amphitrite is widely distributed in marine shallow and tidal waters, and has significant economic and ecological importance. Nauplii, the first larval stage of most crustaceans, are extremely abundant in the marine zooplankton. However, a lack of genome information has hindered elucidation of the molecular mechanisms of development, settlement and survival strategies in extreme marine environments. We sequenced and constructed the genome dataset for nauplii to obtain comprehensive larval genetic information. We also investigated iTRAQ-based protein expression patterns to reveal the molecular basis of nauplii development, and to gain information on larval survival strategies in the Red Sea marine environment. Results A nauplii larval transcript dataset, containing 92,117 predicted open reading frames (ORFs), was constructed and used as a reference for the proteome analysis. Genes related to translation, oxidative phosphorylation and cytoskeletal development were highly abundant. We observed remarkable plasticity in the proteome of Red Sea larvae. The proteins associated with development, stress responses and osmoregulation showed the most significant differences between the two larval populations studied. The synergistic overexpression of heat shock and osmoregulatory proteins may facilitate larval survival in intertidal habitats or in extreme environments. Conclusions We presented, for the first time, comprehensive transcriptome and proteome datasets for Red Sea nauplii. The datasets provide a foundation for future investigations focused on the survival mechanisms of other crustaceans in extreme marine environments. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2262-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kondethimmanahalli H Chandramouli
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Sarah Al-Aqeel
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Taewoo Ryu
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Huoming Zhang
- Bioscience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Loqmane Seridi
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Yanal Ghosheh
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong.
| | - Timothy Ravasi
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia. .,Division of Applied Mathematics and Computer Sciences, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
93
|
Artigaud S, Richard J, Thorne MAS, Lavaud R, Flye-Sainte-Marie J, Jean F, Peck LS, Clark MS, Pichereau V. Deciphering the molecular adaptation of the king scallop (Pecten maximus) to heat stress using transcriptomics and proteomics. BMC Genomics 2015; 16:988. [PMID: 26596422 PMCID: PMC4657243 DOI: 10.1186/s12864-015-2132-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/22/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The capacity of marine species to survive chronic heat stress underpins their ability to survive warming oceans as a result of climate change. In this study RNA-Seq and 2-DE proteomics were employed to decipher the molecular response of the sub-tidal bivalve Pecten maximus, to elevated temperatures. RESULTS Individuals were maintained at three different temperatures (15, 21 and 25 °C) for 56 days, representing control conditions, maximum environmental temperature and extreme warming, with individuals sampled at seven time points. The scallops thrived at 21 °C, but suffered a reduction in condition at 25 °C. RNA-Seq analyses produced 26,064 assembled contigs, of which 531 were differentially expressed, with putative annotation assigned to 177 transcripts. The proteomic approach identified 24 differentially expressed proteins, with nine identified by mass spectrometry. Network analysis of these results indicated a pivotal role for GAPDH and AP-1 signalling pathways. Data also suggested a remodelling of the cell structure, as revealed by the differential expression of genes involved in the cytoskeleton and cell membrane and a reduction in DNA repair. They also indicated the diversion of energetic metabolism towards the mobilization of lipid energy reserves to fuel the increased metabolic rate at the higher temperature. CONCLUSIONS This work provides preliminary insights into the response of P. maximus to chronic heat stress and provides a basis for future studies examining the tipping points and energetic trade-offs of scallop culture in warming oceans.
Collapse
Affiliation(s)
- Sébastien Artigaud
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Joëlle Richard
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Romain Lavaud
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Jonathan Flye-Sainte-Marie
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Fred Jean
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Vianney Pichereau
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| |
Collapse
|
94
|
McCarthy ID, Nicholls R, Malham SK, Whiteley NM. Validation of the flooding dose technique to determine fractional rates of protein synthesis in a model bivalve species, the blue mussel (Mytilus edulis L.). Comp Biochem Physiol A Mol Integr Physiol 2015; 191:166-173. [PMID: 26497279 DOI: 10.1016/j.cbpa.2015.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
For the first time, use of the flooding dose technique using (3)H-Phenylalanine is validated for measuring whole-animal and tissue-specific rates of protein synthesis in the blue mussel Mytilus edulis (61mm shell length; 4.0g fresh body mass). Following injection, the phenylalanine-specific radioactivities in the gill, mantle and whole-animal free pools were elevated within one hour and remained elevated and stable for up to 6h following injection of (3)H-phenylalanine into the posterior adductor muscle. Incorporation of (3)H-phenylalanine into body protein was linear over time following injection and the non-significant intercepts for the regressions suggested incorporation into body protein occurred rapidly after injection. These results validate the technique for measuring rates of protein synthesis in mussels. There were no differences in the calculated rates following 1-6h incubation in gill, mantle or whole-animal and fractional rates of protein synthesis from the combined time course data were 9.5±0.8%d(-1) for the gill, 2.5±0.3%d(-1) for the mantle and 2.6±0.3%d(-1) for the whole-animal, respectively (mean values±SEM). The whole-animal absolute rate of protein synthesis was calculated as 18.9±0.6mg protein day(-1). The use of this technique in measuring one of the major components of maintenance metabolism and growth will provide a valuable and convenient tool in furthering our understanding of the protein metabolism and energetics of this keystone marine invertebrate and its ability to adjust and respond to fluctuations, such as that expected as a result of climate change.
Collapse
Affiliation(s)
- Ian D McCarthy
- School of Ocean Sciences, College of Natural Sciences, Bangor University, Askew Street, Menai Bridge, Anglesey, LL59 5AB, UK; Laboratorio de Manejo, Ecologia e Conservação Marinha, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico 191, Cidade Universitária, 05508-120 São Paulo SP, Brazil.
| | - Ruth Nicholls
- School of Ocean Sciences, College of Natural Sciences, Bangor University, Askew Street, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Shelagh K Malham
- School of Ocean Sciences, College of Natural Sciences, Bangor University, Askew Street, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Nia M Whiteley
- School of Biological Sciences, College of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
95
|
|
96
|
Saarman NP, Pogson GH. Introgression between invasive and native blue mussels (genusMytilus) in the central California hybrid zone. Mol Ecol 2015; 24:4723-38. [DOI: 10.1111/mec.13340] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Norah P. Saarman
- Department of Ecology and Evolutionary Biology; Yale University; PO Box 208106 New Haven CT 06520-8106 USA
| | - Grant H. Pogson
- Department of Ecology and Evolutionary Biology; UC Santa Cruz; Santa Cruz CA 95064 USA
| |
Collapse
|
97
|
Zou Y, Wei XM, Weng HW, Li HY, Liu JS, Yang WD. Expression profile of eight glutathione S-transferase genes in Crassostrea ariakensis after exposure to DSP toxins producing dinoflagellate Prorocentrum lima. Toxicon 2015; 105:45-55. [PMID: 26335360 DOI: 10.1016/j.toxicon.2015.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 08/10/2015] [Accepted: 08/26/2015] [Indexed: 01/17/2023]
Abstract
In this study, changes in eight GSTs mRNA level including GST-α, GST-σ, GST-ω, GST-π, GST-μ, GST-ρ, GST-θ and microsomal GST (mGST) in the oyster Crassostrea ariakensis after exposure to Prorocentrum lima have been evaluated by quantitative real-time PCR. Additionally, the contents of five GST isoforms were detected by ELISA. After exposure to P. lima at density of 2 × 10(5) cells/L, mGST mRNA significantly increased in gill, while GST-σ was induced in digestive gland. After exposure to P. lima at density of 2 × 10(6) cells/L, GST-ω and mGST expressions increased in gill, whereas GST-α and GST-σ were induced in digestive gland. The GST content and activity in oysters exposed to P. lima also showed a different pattern when the different isoforms and organs were compared. After exposure to P. lima (2 × 10(6) cell/L), GST-π increased in gill but decreased in digestive gland. The total GST enzyme activity increased in gill, while remained unchanged in digestive gland. These various regulation of GST gene expressions indicated that the GSTs isoenzymes might play divergent physiological roles in the detoxification of DSP toxins in C. ariakensis.
Collapse
Affiliation(s)
- Ying Zou
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiao-Meng Wei
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui-Wen Weng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
98
|
Lockwood BL, Connor KM, Gracey AY. The environmentally tuned transcriptomes of Mytilus mussels. J Exp Biol 2015; 218:1822-33. [DOI: 10.1242/jeb.118190] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT
Transcriptomics is a powerful tool for elucidating the molecular mechanisms that underlie the ability of organisms to survive and thrive in dynamic and changing environments. Here, we review the major contributions in this field, and we focus on studies of mussels in the genus Mytilus, which are well-established models for the study of ecological physiology in fluctuating environments. Our review is organized into four main sections. First, we illustrate how the abiotic forces of the intertidal environment drive the rhythmic coupling of gene expression to diel and tidal cycles in Mytilus californianus. Second, we discuss the challenges and pitfalls of conducting transcriptomic studies in field-acclimatized animals. Third, we examine the link between transcriptomic responses to environmental stress and biogeographic distributions in blue mussels, Mytilus trossulus and Mytilus galloprovincialis. Fourth, we present a comparison of transcriptomic datasets and identify 175 genes that share common responses to heat stress across Mytilus species. Taken together, these studies demonstrate that transcriptomics can provide an informative snapshot of the physiological state of an organism within an environmental context. In a comparative framework, transcriptomics can reveal how natural selection has shaped patterns of transcriptional regulation that may ultimately influence biogeography.
Collapse
Affiliation(s)
- Brent L. Lockwood
- Department of Biology, University of Vermont, 120 Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA
| | - Kwasi M. Connor
- Marine Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Andrew Y. Gracey
- Marine Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| |
Collapse
|
99
|
Nishizaki MT, Barron S, Carew E. Thermal stress increases fluctuating asymmetry in marine mussels: environmental variation and developmental instability. Ecosphere 2015. [DOI: 10.1890/es14-00399.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
100
|
Frey DL, Gagnon P. Thermal and hydrodynamic environments mediate individual and aggregative feeding of a functionally important omnivore in reef communities. PLoS One 2015; 10:e0118583. [PMID: 25774674 PMCID: PMC4361626 DOI: 10.1371/journal.pone.0118583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/21/2015] [Indexed: 11/18/2022] Open
Abstract
In eastern Canada, the destruction of kelp beds by dense aggregations (fronts) of the omnivorous green sea urchin, Strongylocentrotus droebachiensis, is a key determinant of the structure and dynamics of shallow reef communities. Recent studies suggest that hydrodynamic forces, but not sea temperature, determine the strength of urchin-kelp interactions, which deviates from the tenets of the metabolic theory of ecology (MTE). We tested the hypothesis that water temperature can predict short-term kelp bed destruction by S. droebachiensis in calm hydrodynamic environments. Specifically, we experimentally determined relationships among water temperature, body size, and individual feeding in the absence of waves, as well as among wave velocity, season, and aggregative feeding. We quantified variation in kelp-bed boundary dynamics, sea temperature, and wave height over three months at one subtidal site in Newfoundland to test the validity of thermal tipping ranges and regression equations derived from laboratory results. Consistent with the MTE, individual feeding during early summer (June-July) obeyed a non-linear, size- and temperature-dependent relationship: feeding in large urchins was consistently highest and positively correlated with temperature <12°C and dropped within and above the 12-15°C tipping range. This relationship was more apparent in large than small urchins. Observed and expected rates of kelp loss based on sea temperature and urchin density and size structure at the front were highly correlated and differed by one order of magnitude. The present study speaks to the importance of considering body size and natural variation in sea temperature in studies of urchin-kelp interactions. It provides the first compelling evidence that sea temperature, and not only hydrodynamic forces, can predict kelp bed destruction by urchin fronts in shallow reef communities. Studying urchin-seaweed-predator interactions within the conceptual foundations of the MTE holds high potential for improving capacity to predict and manage shifts in marine food web structure and productivity.
Collapse
Affiliation(s)
- Desta L. Frey
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada, A1C 5S7
| | - Patrick Gagnon
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada, A1C 5S7
| |
Collapse
|