51
|
Dekens MPS, Fontinha BM, Gallach M, Pflügler S, Tessmar‐Raible K. Melanopsin elevates locomotor activity during the wake state of the diurnal zebrafish. EMBO Rep 2022; 23:e51528. [PMID: 35233929 PMCID: PMC9066073 DOI: 10.15252/embr.202051528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Mammalian and fish pineals play a key role in adapting behaviour to the ambient light conditions through the release of melatonin. In mice, light inhibits nocturnal locomotor activity via the non‐visual photoreceptor Melanopsin. In contrast to the extensively studied function of Melanopsin in the indirect regulation of the rodent pineal, its role in the intrinsically photosensitive zebrafish pineal has not been elucidated. Therefore, it is not evident if the light signalling mechanism is conserved between distant vertebrates, and how Melanopsin could affect diurnal behaviour. A double knockout of melanopsins (opn4.1‐opn4xb) was generated in the diurnal zebrafish, which manifests attenuated locomotor activity during the wake state. Transcriptome sequencing gave insight into pathways downstream of Melanopsin, implying that sustained repression of the melatonin pathway is required to elevate locomotor activity during the diurnal wake state. Moreover, we show that light induces locomotor activity during the diurnal wake state in an intensity‐dependent manner. These observations suggest a common Melanopsin‐driven mechanism between zebrafish and mammals, while the diurnal and nocturnal chronotypes are inversely regulated downstream of melatonin.
Collapse
Affiliation(s)
- Marcus P S Dekens
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Bruno M Fontinha
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Miguel Gallach
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Max Perutz Laboratory Centre for Integrative Bioinformatics University of Vienna and Medical University of Vienna Vienna Austria
| | - Sandra Pflügler
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Kristin Tessmar‐Raible
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Research Platform “Marine Rhythms of Life” University of Vienna Vienna Austria
| |
Collapse
|
52
|
Banerjee S, Ranspach LE, Luo X, Cianciolo LT, Fogerty J, Perkins BD, Thummel R. Vision and sensorimotor defects associated with loss of Vps11 function in a zebrafish model of genetic leukoencephalopathy. Sci Rep 2022; 12:3511. [PMID: 35241734 PMCID: PMC8894412 DOI: 10.1038/s41598-022-07448-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/17/2022] [Indexed: 12/05/2022] Open
Abstract
Genetic Leukoencephalopathies (gLEs) are heritable white matter disorders that cause progressive neurological abnormalities. A founder mutation in the human endolysosomal trafficking protein VPS11 has been identified in Ashkenazi Jewish patients manifesting classic gLE symptoms of hypomyelination, developmental delay, motor and systemic deficits. In this study, we characterized the visual and sensorimotor function of two zebrafish vps11 mutant lines: the previously reported vps11(plt), and a new vps11(-/-) null mutant line, using behavioral analysis to track larval motor responses to visual and acoustic stimuli. We found that mutant larvae from both vps11(plt) and vps11(-/-) lines were able to visually distinguish light and dark, but showed a progressive loss of a normal sensorimotor response to visual stimuli from 5 days post fertilization (dpf) to 7dpf. Additionally, optokinetic response analysis performed at 5dpf indicated that the mutants were significantly visually impaired. Both mutant lines also displayed a progressively lower sensorimotor response to a singular acoustic stimulus from 5-7dpf. Next, we tested the habituation response of the mutant lines to series of acoustic taps. We found both mutant lines habituated faster than their siblings, and that vps11(plt) mutants habituated faster than the vps11(-/-) mutants. Together, these data suggest that loss of Vps11 function results in progressive visual and sensorimotor abnormalities in the zebrafish vps11(plt) and vps11(-/-) mutant lines. This is the first study to characterize behavioral deficits in a vertebrate model of Vps11-dependent gLE. The mutants and behavioral assays described here could be a valuable model system in which to test potential pharmacological interventions for gLE.
Collapse
Affiliation(s)
- Shreya Banerjee
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lillian E Ranspach
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xixia Luo
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lauren T Cianciolo
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph Fogerty
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brian D Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
53
|
Kedia S, Marder E. Blue light responses in Cancer borealis stomatogastric ganglion neurons. Curr Biol 2022; 32:1439-1445.e3. [PMID: 35148862 PMCID: PMC8967796 DOI: 10.1016/j.cub.2022.01.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
Abstract
In many animals, the daily cycling of light is a key environmental cue, encoded in part by specialized light-sensitive neurons without visual functions. We serendipitously discovered innate light-responsiveness while imaging the extensively studied stomatogastric ganglion (STG) of the crab, Cancer borealis. The STG houses a motor circuit that controls the rhythmic contractions of the foregut, and the system has facilitated deep understanding of circuit function and neuromodulation. We illuminated the crab STG in vitro with different wavelengths and amplitudes of light and found a dose-dependent increase in neuronal activity upon exposure to blue light (λ460-500 nm). The response was elevated in the absence of neuromodulatory inputs to the STG. The pacemaker kernel that drives the network rhythm was responsive to light when synaptically isolated, and light shifted the threshold for slow wave and spike activity in the hyperpolarized direction, accounting for the increased activity patterns. Cryptochromes are evolutionarily conserved blue-light photoreceptors that are involved in circadian behaviors.1 Their activation by light can lead to enhanced neuronal activity.2 We identified cryptochrome sequences in the C. borealis transcriptome as potential mediators of this response and confirmed their expression in pyloric dilator (PD) neurons, which are part of the pacemaker kernel, by single-cell RNA-seq analysis.
Collapse
Affiliation(s)
- Sonal Kedia
- Volen Center and Biology Department, MS 013, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | - Eve Marder
- Volen Center and Biology Department, MS 013, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
54
|
Cardiac forces regulate zebrafish heart valve delamination by modulating Nfat signaling. PLoS Biol 2022; 20:e3001505. [PMID: 35030171 PMCID: PMC8794269 DOI: 10.1371/journal.pbio.3001505] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/27/2022] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
In the clinic, most cases of congenital heart valve defects are thought to arise through errors that occur after the endothelial–mesenchymal transition (EndoMT) stage of valve development. Although mechanical forces caused by heartbeat are essential modulators of cardiovascular development, their role in these later developmental events is poorly understood. To address this question, we used the zebrafish superior atrioventricular valve (AV) as a model. We found that cellularized cushions of the superior atrioventricular canal (AVC) morph into valve leaflets via mesenchymal–endothelial transition (MEndoT) and tissue sheet delamination. Defects in delamination result in thickened, hyperplastic valves, and reduced heart function. Mechanical, chemical, and genetic perturbation of cardiac forces showed that mechanical stimuli are important regulators of valve delamination. Mechanistically, we show that forces modulate Nfatc activity to control delamination. Together, our results establish the cellular and molecular signature of cardiac valve delamination in vivo and demonstrate the continuous regulatory role of mechanical forces and blood flow during valve formation. Why do developing zebrafish atrioventricular heart valves become hyperplastic under certain hemodynamic conditions? This study suggests that part of the answer lies in how the mechanosensitive Nfat pathway regulates the valve mesenchymal-to-endothelial transition.
Collapse
|
55
|
Effect of pre-hatch incubator lights on the ontogeny of CNS opsins and photoreceptors in the Pekin duck. Poult Sci 2022; 101:101699. [PMID: 35176701 PMCID: PMC8857459 DOI: 10.1016/j.psj.2022.101699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 02/02/2023] Open
Abstract
Incubated eggs with and without light had no effect on post-hatch production. Light does not influence the ontogeny of retinal rod and cone photoreceptors. Brain OPN4 mRNA is increased the later stages of embryonic development.
The Pekin duck is a valuable agricultural commodity globally and in the United States. Pekin ducks are seasonal breeders; they are sensitive to light and thus, research on the neuroendocrine and behavioral responses are needed to maximize production and to improve their welfare. There is compelling evidence that specific wavelengths of light may adversely alter the growth and welfare of meat (grow out) ducks. However, despite a birds’ dependence upon light, in commercial poultry hatcheries, incubators almost exclusively hold eggs in the dark. Therefore, our objective was to determine the effects of lighting on the expression of retina photoreceptors (RPs) and deep brain photoreceptors (DBPs) during duck embryological development. Two groups of ducks were raised with and without light over 21 d from egg laying, embryonic day 0. Brain and retinal tissues were collected at embryonic days 3, 7, 11, 16, and 21 of a 24 d incubation period. qRT-PCR was performed on RPs (OPN1LW, OPN2SW, OPN1SW, MAFA, RHO, and RBP3) and the DBP OPN4M from retinal and brain samples, respectively. We find that the presence and absence of light during pre-hatch incubation, had no influence on the expression of any retinal photoreceptor. However, a late embryological increase in DBP OPN4M expression was observed. Taken together, the impact of light during pre-hatch incubation does not impact the overall post-hatch production. However, future directions should explore how OPN4M pre-hatch activation impacts Pekin duck post-hatch development and growth.
Collapse
|
56
|
Accumulation, Depuration, and Biological Effects of Polystyrene Microplastic Spheres and Adsorbed Cadmium and Benzo(a)pyrene on the Mussel Mytilus galloprovincialis. TOXICS 2022; 10:toxics10010018. [PMID: 35051060 PMCID: PMC8780594 DOI: 10.3390/toxics10010018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/04/2022]
Abstract
Filter feeders are target species for microplastic (MP) pollution, as particles can accumulate in the digestive system, disturbing feeding processes and becoming internalized in tissues. MPs may also carry pathogens or pollutants present in the environment. This work assessed the influence of polystyrene (PS) MP size and concentration on accumulation and depuration time and the role of MPs as vectors for metallic (Cd) and organic (benzo(a)pyrene, BaP) pollutants. One-day exposure to pristine MPs induced a concentration-dependent accumulation in the digestive gland (in the stomach and duct lumen), and after 3-day depuration, 45 µm MPs appeared between gill filaments, while 4.5 µm MPs also occurred within gill filaments. After 3-day exposure to contaminated 4.5 µm MPs, mussels showed increased BaP levels whilst Cd accumulation did not occur. Here, PS showed higher affinity to BaP than to Cd. Three-day exposure to pristine or contaminated MPs did not provoke significant alterations in antioxidant and peroxisomal enzyme activities in the gills and digestive gland nor in lysosomal membrane stability. Exposure to dissolved contaminants and to MP-BaP caused histological alterations in the digestive gland. In conclusion, these short-term studies suggest that MPs are ingested and internalized in a size-dependent manner and act as carriers of the persistent organic pollutant BaP.
Collapse
|
57
|
Ma H, Yang MS, Zhang YT, Qiu HT, You XX, Chen SX, Hong WS. Expressions of melanopsins in telencephalon imply their function in synchronizing semilunar spawning rhythm in the mudskipper Boleophthalmus pectinirostris. Gen Comp Endocrinol 2022; 315:113926. [PMID: 34653434 DOI: 10.1016/j.ygcen.2021.113926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/22/2021] [Accepted: 10/09/2021] [Indexed: 11/04/2022]
Abstract
The mudskipper Boleophthalmus pectinirostris inhabits intertidal mudflats, exhibiting semilunar reproductive rhythms. To investigate whether melanopsin is possibly involved in the synchronization of the semilunar spawning rhythm in the female mudskipper, we first cloned all four melanopsin subtypes (opn4m1, opn4m3, opn4x1, opn4x2) in B. pectinirostris. Results from RTq-PCR showed that significantly higher transcription levels of all four melanopsin subtypes were observed in the eyes rather than other tissues. In brain, all four melanopsin subtypes were also detectable in different regions, including the telencephalon, in which the expression of melanopsin has not been reported in other teleosts. The transcription levels of opn4m3 and opn4x1 in the telencephalon exhibited a daily fluctuation pattern. When females entered the spawning season, opn4m1 and opn4x1 transcript levels increased significantly in the telencephalon. During the spawning season, the transcript levels of opn4m3 and opn4x1 in the telencephalon appeared to have a cyclic pattern associated with semilunar periodicity, exhibiting two cycles with a peak around the first or the last lunar quarters. Results from ISH showed that, opn4x1 mRNA was localized in the medial of dorsal telencephalic area, dorsal nucleus of ventral telencephalic area (Vd), ventral nucleus of ventral telencephalic area (Vv), anterior part of parvocellular preoptic nucleus, magnocellular part of the magnocellular preoptic nucleus (PMmc), habenular and ventral zone of hypothalamus. Intriguingly, gnrh3 mRNA was also located in Vd, Vv and PMmc. Taken together, our results suggested that melanopsins, e.g. opn4x1, expressed in the telencephalon might mediate semilunar spawning activity in the female mudskipper.
Collapse
Affiliation(s)
- He Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ming Shu Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yu Ting Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Heng Tong Qiu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xin Xin You
- Shenzhen Key Laboratory of Marine Genomics, Marine and Fisheries Institute, BGI-Shenzhen, Shenzhen 518083, China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China.
| | - Wan Shu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
58
|
Eilertsen M, Clokie BGJ, Ebbesson LOE, Tanase C, Migaud H, Helvik JV. Neural activation in photosensitive brain regions of Atlantic salmon (Salmo salar) after light stimulation. PLoS One 2021; 16:e0258007. [PMID: 34587204 PMCID: PMC8480854 DOI: 10.1371/journal.pone.0258007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/16/2021] [Indexed: 11/24/2022] Open
Abstract
Photoreceptive inputs to the teleost brain are perceived as image of the visual world and as photo-modulation of neuroendocrine and neuronal signals. The retina and pineal organ are major receptive organs with projections to various parts of the brain, but in the past decades deep brain photoreceptors have emerged as candidates for photoreceptive inputs, either independent or in combination with projections from light sensory organs. This study aimed to test the effects of narrow bandwidth light using light-emitting diodes technology on brain neural activity through putative opsin stimulation in Atlantic salmon. The expression of c-fos, a known marker of neural activity, was compared in situ between dark-adapted salmon parr and following light stimulation with different wavelengths. c-fos expression increased with duration of light stimulation and the strongest signal was obtained in fish exposed to light for 120 minutes. Distinct and specific brain regions were activated following dark to light stimulation, such as the habenula, suprachiasmatic nucleus, thalamus, and hypothalamus. The c-fos expression was overlapping with photoreceptors expressing melanopsin and/or vertebrate ancient opsin, suggesting a potential direct activation by light. Interestingly in the habenula, a distinct ring of vertebrate ancient opsin and melanopsin expressing cells is overlapping with c-fos expression after neural activation. Salmon exposed to different spectra had neural activation in similar brain regions. The most apparent difference was melanopsin expression in the lateral cells of the lateral tuberal nuclus in the hypothalamus, which appeared to be specifically activated by red light. Light-stimulated neuronal activity in the deep brain was limited to subpopulations of neurons, mainly in regions with neuronal modulation activity, retinal and pineal innervations and known presence of nonvisual photoreceptors. The overlapping expression patterns of c-fos and nonvisual opsins support direct light stimulation of deep brain photoreceptors and the importance of these systems in light induced brain activity.
Collapse
Affiliation(s)
- Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- * E-mail:
| | - Benjamin G. J. Clokie
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Lars O. E. Ebbesson
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Norce, Bergen, Norway
| | | | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
59
|
Burton AH, Bai Q, Burton EA. Sinusoidal analysis reveals a non-linear and dopamine-dependent relationship between ambient illumination and motor activity in larval zebrafish. Neurosci Lett 2021; 761:136121. [PMID: 34293416 DOI: 10.1016/j.neulet.2021.136121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Larval zebrafish show stereotyped motor responses to changes in ambient illumination. The responses can be evaluated in 96-well plates, and are used widely to assess neurological function in zebrafish models. However, the square-wave (on/off) light stimuli commonly employed in these studies do not allow analysis of the relationship between motor activity and illumination intensity or its rate of change. To address this limitation, we measured larval zebrafish motor function while ambient illumination was modulated sinusoidally. Motor activity varied robustly and reproducibly in antiphase with illumination. The relationship between mean swimming speed (dependent variable) and illuminance (independent variable) was described most closely by a power function, and was influenced dynamically by the proportional rate of change of illuminance. Several predictions from this model were verified experimentally by testing responses to sinusoidal illumination waveforms that were amplitude-, phase-, or offset-modulated, or transformed by a power function. At concentrations ≤5 μM, the dopamine D2 receptor inverse agonist haloperidol selectively abrogated the motor response to decreasing Illuminance without altering baseline activity in bright light, suggesting that dopamine is essential for illuminance-dependent motor function. These data contribute to understanding the environmental determinants of motor activity in zebrafish larvae, suggest experimental opportunities to elucidate underlying neural mechanisms, and potentially provide an assay of dopaminergic function for chemical and genetic screening applications.
Collapse
Affiliation(s)
| | - Qing Bai
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward A Burton
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
60
|
Optogenetic Manipulation of Olfactory Responses in Transgenic Zebrafish: A Neurobiological and Behavioral Study. Int J Mol Sci 2021; 22:ijms22137191. [PMID: 34281244 PMCID: PMC8269104 DOI: 10.3390/ijms22137191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/01/2021] [Indexed: 11/18/2022] Open
Abstract
Olfaction is an important neural system for survival and fundamental behaviors such as predator avoidance, food finding, memory formation, reproduction, and social communication. However, the neural circuits and pathways associated with the olfactory system in various behaviors are not fully understood. Recent advances in optogenetics, high-resolution in vivo imaging, and reconstructions of neuronal circuits have created new opportunities to understand such neural circuits. Here, we generated a transgenic zebrafish to manipulate olfactory signal optically, expressing the Channelrhodopsin (ChR2) under the control of the olfactory specific promoter, omp. We observed light-induced neuronal activity of olfactory system in the transgenic fish by examining c-fos expression, and a calcium indicator suggesting that blue light stimulation caused activation of olfactory neurons in a non-invasive manner. To examine whether the photo-activation of olfactory sensory neurons affect behavior of zebrafish larvae, we devised a behavioral choice paradigm and tested how zebrafish larvae choose between two conflicting sensory cues, an aversive odor or the naturally preferred phototaxis. We found that when the conflicting cues (the preferred light and aversive odor) were presented together simultaneously, zebrafish larvae swam away from the aversive odor. However, the transgenic fish with photo-activation were insensitive to the aversive odor and exhibited olfactory desensitization upon optical stimulation of ChR2. These results show that an aversive olfactory stimulus can override phototaxis, and that olfaction is important in decision making in zebrafish. This new transgenic model will be useful for the analysis of olfaction related behaviors and for the dissection of underlying neural circuits.
Collapse
|
61
|
Faria M, Prats E, Rosas Ramírez JR, Bellot M, Bedrossiantz J, Pagano M, Valls A, Gomez-Canela C, Porta JM, Mestres J, Garcia-Reyero N, Faggio C, Gómez Oliván LM, Raldua D. Androgenic activation, impairment of the monoaminergic system and altered behavior in zebrafish larvae exposed to environmental concentrations of fenitrothion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145671. [PMID: 33621872 DOI: 10.1016/j.scitotenv.2021.145671] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Fenitrothion is an organophosphorus insecticide usually found in aquatic ecosystems at concentrations in the range of low ng/L. In this manuscript we show that 24 h exposure to environmental concentrations of fenitrothion, from ng/L to low μg/L, altered basal locomotor activity, visual-motor response and acoustic/vibrational escape response of zebrafish larvae. Furthermore, fenitrothion and expression of gap43a, gfap, atp2b1a, and mbp exhibited a significant non-monotonic concentration-response relationship. Once determined that environmental concentrations of fenitrothion were neurotoxic for zebrafish larvae, a computational analysis identified potential protein targets of this compound. Some of the predictions, including interactions with acetylcholinesterase, monoamine-oxidases and androgen receptor (AR), were experimentally validated. Binding to AR was the most suitable candidate for molecular initiating event, as indicated by both the up-regulation of cyp19a1b and sult2st3 and the non-monotonic relationship found between fenitrothion and the observed responses. Finally, when the integrity of the monoaminergic system was evaluated, altered levels of L-DOPA, DOPAC, HVA and 5-HIAA were found, as well as a significant up-regulation of slc18a2 expression at the lowest concentrations of fenitrothion. These data strongly suggest that concentrations of fenitrothion commonly found in aquatic ecosystems present a significant environmental risk for fish communities.
Collapse
Affiliation(s)
- Melissa Faria
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Jonathan Ricardo Rosas Ramírez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Maria Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Agata-Messina, Italy
| | - Arnau Valls
- Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
| | - Cristian Gomez-Canela
- Department of Analytical Chemistry and Applied (Chromatography section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Josep M Porta
- Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
| | - Jordi Mestres
- Systems Pharmacology, Research Group on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Parc de Recerca Biomèdica, Chemotargets SL, Parc Científic de Barcelona, Barcelona, Spain
| | - Natalia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Agata-Messina, Italy
| | - Leobardo Manuel Gómez Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Demetrio Raldua
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
62
|
Pharmacological Modulation of Serotonin Levels in Zebrafish Larvae: Lessons for Identifying Environmental Neurotoxicants Targeting the Serotonergic System. TOXICS 2021; 9:toxics9060118. [PMID: 34070577 PMCID: PMC8227033 DOI: 10.3390/toxics9060118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 01/17/2023]
Abstract
This study examines the effects of acute pharmacological modulation of the serotonergic system over zebrafish larvae’s cognitive, basic, and defense locomotor behaviors, using a medium to high throughput screening assay. Furthermore, the relationship between behavior, enzyme activity related to neurotransmitter metabolism, neurotransmitter levels, and gene expression was also determined. Modulation of larvae serotonergic system was accomplished by 24 h exposure to single and opposite pharmacodynamics co-exposure to three model psychopharmaceuticals with antagonistic and agonistic serotonin signaling properties: 2.5 mM 4-Chloro-DL-phenylalanine (PCPA) and 5 µM deprenyl and 0.5 µM fluoxetine, respectively. Similar behavioral outcome was observed for deprenyl and fluoxetine, which was reflected as hypolocomotion, decrease in larvae defensive responses, and cognitive impairment. Contrarily, PCPA induced hyperlocomotion and increase in larvae escape response. Deprenyl exposure effects were more pronounced at a lower level of organization than fluoxetine, with complete inhibition of monoamine oxidase (MAO) activity, dramatic increase of 5-HT and dopamine (DA) levels, and downregulation of serotonin synthesis and transporter genes. PCPA showed mainly effects over serotonin and dopamine’s main degradation metabolites. Finally, co-exposure between agonistic and antagonist serotonin signaling drugs reviled full recovery of zebrafish impaired locomotor and defense responses, 5-HT synthesis gene expression, and partial recovery of 5-HT levels. The findings of this study suggest that zebrafish larvae can be highly sensitive and a useful vertebrate model for short-term exposure to serotonin signaling changes.
Collapse
|
63
|
Venkatraman P, Mills-Henry I, Padmanabhan KR, Pascuzzi P, Hassan M, Zhang J, Zhang X, Ma P, Pang CP, Dowling JE, Zhang M, Leung YF. Rods Contribute to Visual Behavior in Larval Zebrafish. Invest Ophthalmol Vis Sci 2021; 61:11. [PMID: 33049059 PMCID: PMC7571310 DOI: 10.1167/iovs.61.12.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Although zebrafish rods begin to develop as early as 2 days postfertilization (dpf), they are not deemed anatomically mature and functional until 15 to 21 dpf. A recent study detected a small electroretinogram (ERG) from rods in a cone mutant called no optokinetic response f (nof) at 5 dpf, suggesting that young rods are functional. Whether they can mediate behavioral responses in larvae is unknown. Methods We first confirmed rod function by measuring nof ERGs under photopic and scotopic illumination at 6 dpf. We evaluated the role of rods in visual behaviors using two different assays: the visual-motor response (VMR) and optokinetic response (OKR). We measured responses from wild-type (WT) larvae and nof mutants under photopic and scotopic illuminations at 6 dpf. Results Nof mutants lacked a photopic ERG. However, after prolonged dark adaptation, they displayed scotopic ERGs. Compared with WT larvae, the nof mutants displayed reduced VMRs. The VMR difference during light onset gradually diminished with decreased illumination and became nearly identical at lower light intensities. Additionally, light-adapted nof mutants did not display an OKR, whereas dark-adapted nof mutants displayed scotopic OKRs. Conclusions Because the nof mutants lacked a photopic ERG but displayed scotopic ERGs after dark adaptation, the mutants clearly had functional rods. WT larvae and the nof mutants displayed comparable scotopic light-On VMRs and scotopic OKRs after dark adaptation, suggesting that these responses were driven primarily by rods. Together, these observations indicate that rods contribute to zebrafish visual behaviors as early as 6 dpf.
Collapse
Affiliation(s)
- Prahatha Venkatraman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States
| | - Ishara Mills-Henry
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States
| | | | - Pete Pascuzzi
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States.,Purdue University Libraries, Purdue University, West Lafayette, Indiana, United States
| | - Menna Hassan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States
| | - Jingyi Zhang
- Center for Statistical Science, Tsinghua University, Beijing, China
| | - Xinlian Zhang
- Department of Statistics, University of Georgia, Athens, Georgia, United States
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, Georgia, United States
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong.,Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - John E Dowling
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, West Lafayette, Indiana, United States.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, United States
| |
Collapse
|
64
|
Discovery of a body-wide photosensory array that matures in an adult-like animal and mediates eye-brain-independent movement and arousal. Proc Natl Acad Sci U S A 2021; 118:2021426118. [PMID: 33941643 DOI: 10.1073/pnas.2021426118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ability to respond to light has profoundly shaped life. Animals with eyes overwhelmingly rely on their visual circuits for mediating light-induced coordinated movements. Building on previously reported behaviors, we report the discovery of an organized, eye-independent (extraocular), body-wide photosensory framework that allows even a head-removed animal to move like an intact animal. Despite possessing sensitive cerebral eyes and a centralized brain that controls most behaviors, head-removed planarians show acute, coordinated ultraviolet-A (UV-A) aversive phototaxis. We find this eye-brain-independent phototaxis is mediated by two noncanonical rhabdomeric opsins, the first known function for this newly classified opsin-clade. We uncover a unique array of dual-opsin-expressing photoreceptor cells that line the periphery of animal body, are proximal to a body-wide nerve net, and mediate UV-A phototaxis by engaging multiple modes of locomotion. Unlike embryonically developing cerebral eyes that are functional when animals hatch, the body-wide photosensory array matures postembryonically in "adult-like animals." Notably, apart from head-removed phototaxis, the body-wide, extraocular sensory organization also impacts physiology of intact animals. Low-dose UV-A, but not visible light (ocular-stimulus), is able to arouse intact worms that have naturally cycled to an inactive/rest-like state. This wavelength selective, low-light arousal of resting animals is noncanonical-opsin dependent but eye independent. Our discovery of an autonomous, multifunctional, late-maturing, organized body-wide photosensory system establishes a paradigm in sensory biology and evolution of light sensing.
Collapse
|
65
|
Wang X, Li X, Wang Y, Qin Y, Yan B, Martyniuk CJ. A comprehensive review of strobilurin fungicide toxicity in aquatic species: Emphasis on mode of action from the zebrafish model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116671. [PMID: 33582629 DOI: 10.1016/j.envpol.2021.116671] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Strobilurins are popular fungicides used in agriculture on a global scale. Due to their widespread use as agrochemicals, they can enter aquatic environments at concentrations that can elicit adverse effects in organisms. This review synthesizes the current state of knowledge regarding the toxic effects of strobilurin fungicides on aquatic species, including algal species, Daphnia magna, and fish species, to determine risk to aquatic organisms and ecosystems. Data show that the toxicities of strobilurins vary widely across aquatic species. Strobilurins bind cytochrome bc1 in mitochondrial complex III in fungi, and as such, research in aquatic species has focused on mitochondria-related endpoints following exposures to strobilurins. In fish, studies into the activities of mitochondrial complexes and the expression of genes involved in the electron transfer chain have been conducted, converging on the theme that mitochondrial complexes and their enzymes are impaired by strobilurins. In general, the order of toxicity of strobilurins for fish species are pyraoxystrobin > pyraclostrobin ≈ trifloxystrobin > picoxystrobin > kresoxim-methyl > fluoxastrobin > azoxystrobin. In addition to mitochondrial toxicity, studies also report genotoxicity, immunotoxicity, cardiotoxicity, neurotoxicity, and endocrine disruption, and each of these events can potentially impact whole organism-level processes such as development, reproduction, and behavior. Screening data from the US Environmental Protection Agency ToxCast database supports the hypothesis that these fungicides may act as endocrine disruptors, and high throughput data suggest estrogen receptor alpha and thyroid hormone receptor beta can be activated by some strobilurins. It is recommended that studies investigate the potential for endocrine disruption by strobilurins more thoroughly in aquatic species. Based on molecular, physiological, and developmental outcomes, a proposed adverse outcome pathway is presented with complex III inhibition in the electron transfer chain as a molecular initiating event. This review comprehensively addresses sub-lethal toxicity mechanisms of strobilurin fungicides, important as the detection of strobilurins in aquatic environments suggests exposure risks in wildlife.
Collapse
Affiliation(s)
- Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoyu Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yue Wang
- The New Hope Liuhe Co., Ltd., Qingdao, China
| | - Yingju Qin
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
66
|
Fitzgerald JA, Könemann S, Krümpelmann L, Županič A, Vom Berg C. Approaches to Test the Neurotoxicity of Environmental Contaminants in the Zebrafish Model: From Behavior to Molecular Mechanisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:989-1006. [PMID: 33270929 DOI: 10.1002/etc.4951] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/15/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The occurrence of neuroactive chemicals in the aquatic environment is on the rise and poses a potential threat to aquatic biota of currently unpredictable outcome. In particular, subtle changes caused by these chemicals to an organism's sensation or behavior are difficult to tackle with current test systems that focus on rodents or with in vitro test systems that omit whole-animal responses. In recent years, the zebrafish (Danio rerio) has become a popular model organism for toxicological studies and testing strategies, such as the standardized use of zebrafish early life stages in the Organisation for Economic Co-operation and Development's guideline 236. In terms of neurotoxicity, the zebrafish provides a powerful model to investigate changes to the nervous system from several different angles, offering the ability to tackle the mechanisms of action of chemicals in detail. The mechanistic understanding gained through the analysis of this model species provides a good basic knowledge of how neuroactive chemicals might interact with a teleost nervous system. Such information can help infer potential effects occurring to other species exposed to neuroactive chemicals in their aquatic environment and predicting potential risks of a chemical for the aquatic ecosystem. In the present article, we highlight approaches ranging from behavioral to structural, functional, and molecular analysis of the larval zebrafish nervous system, providing a holistic view of potential neurotoxic outcomes. Environ Toxicol Chem 2021;40:989-1006. © 2020 SETAC.
Collapse
Affiliation(s)
- Jennifer A Fitzgerald
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Sarah Könemann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- EPF Lausanne, School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland
| | - Laura Krümpelmann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Anže Županič
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- National Institute of Biology, Ljubljana, Slovenia
| | - Colette Vom Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
67
|
Kitahashi T, Kurokawa D, Ogiso S, Suzuki N, Ando H. Light-induced and circadian expressions of melanopsin genes opn4xa and opn4xb in the eyes of juvenile grass puffer Takifugu alboplumbeus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:191-202. [PMID: 33559801 DOI: 10.1007/s10695-020-00901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Animals regulate a variety of aspects of physiology according to environmental light conditions via nonvisual opsins such as melanopsin. In order to study photic regulation of fish physiology, expression changes of the genes for melanopsin (opn4xa and opn4xb) and effects of light on them were examined in juvenile grass puffer Takifugu alboplumbeus using quantitative real-time PCR. In the brain of juvenile fish, no significant diurnal nor circadian changes were observed in opn4x mRNA levels. On the other hand, in the eyes, the mRNA level of opn4xa showed a significant diurnal rhythm with a peak at Zeitgeber time (ZT) 4, while no apparent circadian changes were observed. The mRNA level of opn4xb in the eyes showed a diurnal change similar to that of opn4xa, while it showed a significant circadian change. Furthermore, continuous exposure to light during a subjective night significantly increased the mRNA levels of opn4xa in the eyes at ZT24, suggesting that light induces gene expression of opn4xa in the eyes and that the induction occurs only during the night-day transition period. These results suggest that Opn4xa and Opn4xb play differential roles in the eyes of juvenile grass puffer to mediate the physiological effects of environmental light information.
Collapse
Affiliation(s)
- Takashi Kitahashi
- Sado Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, 87 Tassha, Sado-shi, Niigata, 952-2135, Japan.
- , Toda-cho 5-33-17, Moriguchi-shi, 570-0014, Osaka, Japan.
| | - Daisuke Kurokawa
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan
| | - Shouzo Ogiso
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, 4-1 Mu, Ogi, Noto-cho, Ishikawa, 927-0553, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, 4-1 Mu, Ogi, Noto-cho, Ishikawa, 927-0553, Japan
| | - Hironori Ando
- Sado Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, 87 Tassha, Sado-shi, Niigata, 952-2135, Japan
| |
Collapse
|
68
|
Wang K, Hinz J, Zhang Y, Thiele TR, Arrenberg AB. Parallel Channels for Motion Feature Extraction in the Pretectum and Tectum of Larval Zebrafish. Cell Rep 2021; 30:442-453.e6. [PMID: 31940488 DOI: 10.1016/j.celrep.2019.12.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/27/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022] Open
Abstract
Non-cortical visual areas in vertebrate brains extract relevant stimulus features, such as motion, object size, and location, to support diverse behavioral tasks. The optic tectum and pretectum, two primary visual areas in zebrafish, are involved in motion processing, and yet their differential neural representation of behaviorally relevant visual features is unclear. Here, we characterize receptive fields (RFs) of motion-sensitive neurons in the diencephalon and midbrain. We show that RFs of many pretectal neurons are large and sample the lower visual field, whereas RFs of tectal neurons are mostly small-size selective and sample the upper nasal visual field more densely. Furthermore, optomotor swimming can reliably be evoked by presenting forward motion in the lower temporal visual field alone, matching the lower visual field bias of the pretectum. Thus, tectum and pretectum extract different visual features from distinct regions of visual space, which is likely a result of their adaptations to hunting and optomotor behavior, respectively.
Collapse
Affiliation(s)
- Kun Wang
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Julian Hinz
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Yue Zhang
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Tod R Thiele
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
69
|
Weitekamp CA, Kvasnicka A, Keely SP, Brinkman NE, Howey XM, Gaballah S, Phelps D, Catron T, Zurlinden T, Wheaton E, Tal T. Monoassociation with bacterial isolates reveals the role of colonization, community complexity and abundance on locomotor behavior in larval zebrafish. Anim Microbiome 2021; 3:12. [PMID: 33499997 PMCID: PMC7818562 DOI: 10.1186/s42523-020-00069-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background Across taxa, animals with depleted intestinal microbiomes show disrupted behavioral phenotypes. Axenic (i.e., microbe-free) mice, zebrafish, and fruit flies exhibit increased locomotor behavior, or hyperactivity. The mechanism through which bacteria interact with host cells to trigger normal neurobehavioral development in larval zebrafish is not well understood. Here, we monoassociated zebrafish with either one of six different zebrafish-associated bacteria, mixtures of these host-associates, or with an environmental bacterial isolate. Results As predicted, the axenic cohort was hyperactive. Monoassociation with three different host-associated bacterial species, as well as with the mixtures, resulted in control-like locomotor behavior. Monoassociation with one host-associate and the environmental isolate resulted in the hyperactive phenotype characteristic of axenic larvae, while monoassociation with two other host-associated bacteria partially blocked this phenotype. Furthermore, we found an inverse relationship between the total concentration of bacteria per larvae and locomotor behavior. Lastly, in the axenic and associated cohorts, but not in the larvae with complex communities, we detected unexpected bacteria, some of which may be present as facultative predators. Conclusions These data support a growing body of evidence that individual species of bacteria can have different effects on host behavior, potentially related to their success at intestinal colonization. Specific to the zebrafish model, our results suggest that differences in the composition of microbes in fish facilities could affect the results of behavioral assays within pharmacological and toxicological studies. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-020-00069-x.
Collapse
Affiliation(s)
| | - Allison Kvasnicka
- Oak Ridge Institute for Science and Education, RTP, NC, USA.,, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Scott P Keely
- Center for Environmental Measurement and Modeling, US EPA, Cincinnati, OH, USA
| | - Nichole E Brinkman
- Center for Environmental Measurement and Modeling, US EPA, Cincinnati, OH, USA
| | - Xia Meng Howey
- Oak Ridge Institute for Science and Education, RTP, NC, USA.,, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Shaza Gaballah
- Oak Ridge Institute for Science and Education, RTP, NC, USA.,, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Drake Phelps
- Oak Ridge Institute for Science and Education, RTP, NC, USA.,, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Tara Catron
- Oak Ridge Institute for Science and Education, RTP, NC, USA.,, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Todd Zurlinden
- , Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Emily Wheaton
- Center for Environmental Measurement and Modeling, US EPA, Cincinnati, OH, USA
| | - Tamara Tal
- , Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA. .,Bioanalytical Ecotoxicology Department, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. .,Present Address: Bioanalytical Ecotoxicology Department, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
70
|
Parab S, Quick RE, Matsuoka RL. Endothelial cell-type-specific molecular requirements for angiogenesis drive fenestrated vessel development in the brain. eLife 2021; 10:64295. [PMID: 33459592 PMCID: PMC7840183 DOI: 10.7554/elife.64295] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial cells (vECs) in the brain exhibit structural and functional heterogeneity. Fenestrated, permeable brain vasculature mediates neuroendocrine function, body-fluid regulation, and neural immune responses; however, its vascular formation remains poorly understood. Here, we show that specific combinations of vascular endothelial growth factors (Vegfs) are required to selectively drive fenestrated vessel formation in the zebrafish myelencephalic choroid plexus (mCP). We found that the combined, but not individual, loss of Vegfab, Vegfc, and Vegfd causes severely impaired mCP vascularization with little effect on neighboring non-fenestrated brain vessel formation, demonstrating fenestrated-vEC-specific angiogenic requirements. This Vegfs-mediated vessel-selective patterning also involves Ccbe1. Expression analyses, cell-type-specific ablation, and paracrine activity-deficient vegfc mutant characterization suggest that vEC-autonomous Vegfc and meningeal fibroblast-derived Vegfab and Vegfd are critical for mCP vascularization. These results define molecular cues and cell types critical for directing fenestrated CP vascularization and indicate that vECs’ distinct molecular requirements for angiogenesis underlie brain vessel heterogeneity.
Collapse
Affiliation(s)
- Sweta Parab
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, United States.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States
| | - Rachael E Quick
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, United States.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States
| | - Ryota L Matsuoka
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, United States.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States
| |
Collapse
|
71
|
Comparative Analysis of Neurotoxicity of Six Phthalates in Zebrafish Embryos. TOXICS 2021; 9:toxics9010005. [PMID: 33430197 PMCID: PMC7825694 DOI: 10.3390/toxics9010005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
The effects and underlying mechanisms of phthalates on neurotoxicity remain unclear as compared with the potentials of these substances as endocrine disruptors. The locomotor activities of zebrafish embryos were investigated upon exposure to six phthalates: dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBzP), di-2-ethylhexyl phthalate (DEHP), di-n-octyl phthalate (DnOP), and diisononyl phthalate (DiNP). Moreover, changes in fluorescence intensity in the green fluorescent protein (GFP) transgenic (Tg) lines Tg(HuC:eGFP), Tg(sox10:eGFP), and Tg(mbp:GFP) were measured after exposure to six phthalates, and changes in the expression profiles of genes involved in the cholinergic (ache) and dopaminergic systems (dat, th, and drd1b) were assessed. Exposure to BBzP, DEHP, and DiNP affected larval behaviors, whereas exposure to DMP, DEP, and DnOP revealed no alterations. A reduced expression of Tg(HuC:eGFP) was observed upon exposure to BBzP, DEHP, and DiNP. The expression of Tg(sox10:eGFP) and Tg(mbp:GFP) was reduced only in response to BBzP and DiNP, respectively. Further, exposure to DiNP upregulated ache and drd1b. The upregulation of ache and downregulation of drd1b was observed in DEHP-exposed groups. Exposure to BBzP suppressed th expression. These observations indicate that exposure to phthalates impaired embryogenesis of the neurological system and neurochemicals in zebrafish embryos, although the detailed mechanisms varied among the individual phthalates. Further mechanistic studies are needed to better understand the causality between phthalate exposure and neurotoxicity.
Collapse
|
72
|
Fontinha BM, Zekoll T, Al-Rawi M, Gallach M, Reithofer F, Barker AJ, Hofbauer M, Fischer RM, von Haeseler A, Baier H, Tessmar-Raible K. TMT-Opsins differentially modulate medaka brain function in a context-dependent manner. PLoS Biol 2021; 19:e3001012. [PMID: 33411725 PMCID: PMC7837489 DOI: 10.1371/journal.pbio.3001012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/26/2021] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Vertebrate behavior is strongly influenced by light. Light receptors, encoded by functional opsin proteins, are present inside the vertebrate brain and peripheral tissues. This expression feature is present from fishes to human and appears to be particularly prominent in diurnal vertebrates. Despite their conserved widespread occurrence, the nonvisual functions of opsins are still largely enigmatic. This is even more apparent when considering the high number of opsins. Teleosts possess around 40 opsin genes, present from young developmental stages to adulthood. Many of these opsins have been shown to function as light receptors. This raises the question of whether this large number might mainly reflect functional redundancy or rather maximally enables teleosts to optimally use the complex light information present under water. We focus on tmt-opsin1b and tmt-opsin2, c-opsins with ancestral-type sequence features, conserved across several vertebrate phyla, expressed with partly similar expression in non-rod, non-cone, non-retinal-ganglion-cell brain tissues and with a similar spectral sensitivity. The characterization of the single mutants revealed age- and light-dependent behavioral changes, as well as an impact on the levels of the preprohormone sst1b and the voltage-gated sodium channel subunit scn12aa. The amount of daytime rest is affected independently of the eyes, pineal organ, and circadian clock in tmt-opsin1b mutants. We further focused on daytime behavior and the molecular changes in tmt-opsin1b/2 double mutants, and found that-despite their similar expression and spectral features-these opsins interact in part nonadditively. Specifically, double mutants complement molecular and behavioral phenotypes observed in single mutants in a partly age-dependent fashion. Our work provides a starting point to disentangle the highly complex interactions of vertebrate nonvisual opsins, suggesting that tmt-opsin-expressing cells together with other visual and nonvisual opsins provide detailed light information to the organism for behavioral fine-tuning. This work also provides a stepping stone to unravel how vertebrate species with conserved opsins, but living in different ecological niches, respond to similar light cues and how human-generated artificial light might impact on behavioral processes in natural environments.
Collapse
Affiliation(s)
- Bruno M. Fontinha
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Theresa Zekoll
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Mariam Al-Rawi
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Miguel Gallach
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Florian Reithofer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
| | | | - Maximilian Hofbauer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
- loopbio, Vienna, Austria
| | - Ruth M. Fischer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Arndt von Haeseler
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Herwig Baier
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
- FENS-Kavli Network of Excellence, Brussels, Belgium
| |
Collapse
|
73
|
Fernandes AM, Mearns DS, Donovan JC, Larsch J, Helmbrecht TO, Kölsch Y, Laurell E, Kawakami K, Dal Maschio M, Baier H. Neural circuitry for stimulus selection in the zebrafish visual system. Neuron 2020; 109:805-822.e6. [PMID: 33357384 DOI: 10.1016/j.neuron.2020.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 11/15/2022]
Abstract
When navigating the environment, animals need to prioritize responses to the most relevant stimuli. Although a theoretical framework for selective visual attention exists, its circuit implementation has remained obscure. Here we investigated how larval zebrafish select between simultaneously presented visual stimuli. We found that a mix of winner-take-all (WTA) and averaging strategies best simulates behavioral responses. We identified two circuits whose activity patterns predict the relative saliencies of competing visual objects. Stimuli presented to only one eye are selected by WTA computation in the inner retina. Binocularly presented stimuli, on the other hand, are processed by reciprocal, bilateral connections between the nucleus isthmi (NI) and the tectum. This interhemispheric computation leads to WTA or averaging responses. Optogenetic stimulation and laser ablation of NI neurons disrupt stimulus selection and behavioral action selection. Thus, depending on the relative locations of competing stimuli, a combination of retinotectal and isthmotectal circuits enables selective visual attention.
Collapse
Affiliation(s)
- António M Fernandes
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Duncan S Mearns
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Gradute School of Systemic Neurosciences, LMU BioCenter, Grosshaderner Strasse 2, 82152 Martinsried, Germany
| | - Joseph C Donovan
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Johannes Larsch
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Thomas O Helmbrecht
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Gradute School of Systemic Neurosciences, LMU BioCenter, Grosshaderner Strasse 2, 82152 Martinsried, Germany
| | - Yvonne Kölsch
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Gradute School of Systemic Neurosciences, LMU BioCenter, Grosshaderner Strasse 2, 82152 Martinsried, Germany
| | - Eva Laurell
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Marco Dal Maschio
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Herwig Baier
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| |
Collapse
|
74
|
Krylov VV, Izvekov EI, Pavlova VV, Pankova NA, Osipova EA. Circadian rhythms in zebrafish (Danio rerio) behaviour and the sources of their variability. Biol Rev Camb Philos Soc 2020; 96:785-797. [PMID: 33331134 DOI: 10.1111/brv.12678] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Over recent decades, changes in zebrafish (Danio rerio) behaviour have become popular quantitative indicators in biomedical studies. The circadian rhythms of behavioural processes in zebrafish are known to enable effective utilization of energy and resources, therefore attracting interest in zebrafish as a research model. This review covers a variety of circadian behaviours in this species, including diurnal rhythms of spawning, feeding, locomotor activity, shoaling, light/dark preference, and vertical position preference. Changes in circadian activity during zebrafish ontogeny are reviewed, including ageing-related alterations and chemically induced variations in rhythmicity patterns. Both exogenous and endogenous sources of inter-individual variability in zebrafish circadian behaviour are detailed. Additionally, we focus on different environmental factors with the potential to entrain circadian processes in zebrafish. This review describes two principal ways whereby diurnal behavioural rhythms can be entrained: (i) modulation of organismal physiological state, which can have masking or enhancing effects on behavioural endpoints related to endogenous circadian rhythms, and (ii) modulation of period and amplitude of the endogenous circadian rhythm due to competitive relationships between the primary and secondary zeitgebers. In addition, different peripheral oscillators in zebrafish can be entrained by diverse zeitgebers. This complicated orchestra of divergent influences may cause variability in zebrafish circadian behaviours, which should be given attention when planning behavioural studies.
Collapse
Affiliation(s)
- Viacheslav V Krylov
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Evgeny I Izvekov
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Vera V Pavlova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Natalia A Pankova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Elena A Osipova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| |
Collapse
|
75
|
Barker AJ, Helmbrecht TO, Grob AA, Baier H. Functional, molecular and morphological heterogeneity of superficial interneurons in the larval zebrafish tectum. J Comp Neurol 2020; 529:2159-2175. [PMID: 33278028 DOI: 10.1002/cne.25082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022]
Abstract
The superficial interneurons, SINs, of the zebrafish tectum, have been implicated in a range of visual functions, including size discrimination, directional selectivity, and looming-evoked escape. This raises the question if SIN subpopulations, despite their morphological similarities and shared anatomical position in the retinotectal processing stream, carry out diverse, task-specific functions in visual processing, or if they have simple tuning properties in common. Here we have further characterized the SINs through functional imaging, electrophysiological recordings, and neurotransmitter typing in two transgenic lines, the widely used Gal4s1156t and the recently reported LCRRH2-RH2-2:GFP. We found that about a third of the SINs strongly responded to changes in whole-field light levels, with a strong preference for OFF over ON stimuli. Interestingly, individual SINs were selectively tuned to a diverse range of narrow luminance decrements. Overall responses to whole-field luminance steps did not vary with the position of the SIN cell body along the depth of the tectal neuropil or with the orientation of its neurites. We ruled out the possibility that intrinsic photosensitivity of Gal4s1156t+ SINs contribute to the measured visual responses. We found that, while most SINs express GABAergic markers, a substantial minority express an excitatory neuronal marker, the vesicular glutamate transporter, expanding the possible roles of SIN function in the tectal circuitry. In conclusion, SINs represent a molecularly, morphologically, and functionally heterogeneous class of interneurons, with subpopulations that detect a range of specific visual features, to which we have now added narrow luminance decrements.
Collapse
Affiliation(s)
- Alison J Barker
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Munich, Germany
| | - Thomas O Helmbrecht
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Munich, Germany
| | - Aurélien A Grob
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Munich, Germany
| | - Herwig Baier
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Munich, Germany
| |
Collapse
|
76
|
Koenig JA, Acon Chen C, Shih TM. Development of a Larval Zebrafish Model for Acute Organophosphorus Nerve Agent and Pesticide Exposure and Therapeutic Evaluation. TOXICS 2020; 8:toxics8040106. [PMID: 33213094 PMCID: PMC7712847 DOI: 10.3390/toxics8040106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 01/03/2023]
Abstract
Organophosphorus compound exposure remains a present threat through agricultural accidents, warfare, or terrorist activity. The primary mechanism of organophosphorus toxicity is through inhibition of the enzyme acetylcholinesterase, with current emergency treatment including anticholinergics, benzodiazepines, and oxime reactivators. However, a need for more effective and broadly acting countermeasures remains. This study aimed to develop larval zebrafish as a high-throughput model for evaluating novel therapeutics against acute organophosphorus exposure. Larval zebrafish at six days post-fertilization were exposed to acute concentrations of seven organophosphorus compounds and treated with one of three oximes. Lethality studies indicated similar relative toxicity to that seen in the established rodent model, with chemical warfare agents proving more lethal than organophosphorus pesticides. Additionally, the organophosphorus-specific response for oxime reactivation of acetylcholinesterase was comparable to what has been previously reported. Behavioral studies measuring the visual motor response demonstrated greater efficacy for centrally acting oxime compounds than for those that are contained to the peripheral tissue. Overall, these results support the use of this larval zebrafish model as a high-throughput screening platform for evaluating novel treatments following acute organophosphorus exposure.
Collapse
Affiliation(s)
| | | | - Tsung-Ming Shih
- Correspondence: ; Tel.: +1-410-436-3414; Fax: +1-410-436-2690
| |
Collapse
|
77
|
Falcón J, Torriglia A, Attia D, Viénot F, Gronfier C, Behar-Cohen F, Martinsons C, Hicks D. Exposure to Artificial Light at Night and the Consequences for Flora, Fauna, and Ecosystems. Front Neurosci 2020; 14:602796. [PMID: 33304237 PMCID: PMC7701298 DOI: 10.3389/fnins.2020.602796] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
The present review draws together wide-ranging studies performed over the last decades that catalogue the effects of artificial-light-at-night (ALAN) upon living species and their environment. We provide an overview of the tremendous variety of light-detection strategies which have evolved in living organisms - unicellular, plants and animals, covering chloroplasts (plants), and the plethora of ocular and extra-ocular organs (animals). We describe the visual pigments which permit photo-detection, paying attention to their spectral characteristics, which extend from the ultraviolet into infrared. We discuss how organisms use light information in a way crucial for their development, growth and survival: phototropism, phototaxis, photoperiodism, and synchronization of circadian clocks. These aspects are treated in depth, as their perturbation underlies much of the disruptive effects of ALAN. The review goes into detail on circadian networks in living organisms, since these fundamental features are of critical importance in regulating the interface between environment and body. Especially, hormonal synthesis and secretion are often under circadian and circannual control, hence perturbation of the clock will lead to hormonal imbalance. The review addresses how the ubiquitous introduction of light-emitting diode technology may exacerbate, or in some cases reduce, the generalized ever-increasing light pollution. Numerous examples are given of how widespread exposure to ALAN is perturbing many aspects of plant and animal behaviour and survival: foraging, orientation, migration, seasonal reproduction, colonization and more. We examine the potential problems at the level of individual species and populations and extend the debate to the consequences for ecosystems. We stress, through a few examples, the synergistic harmful effects resulting from the impacts of ALAN combined with other anthropogenic pressures, which often impact the neuroendocrine loops in vertebrates. The article concludes by debating how these anthropogenic changes could be mitigated by more reasonable use of available technology - for example by restricting illumination to more essential areas and hours, directing lighting to avoid wasteful radiation and selecting spectral emissions, to reduce impact on circadian clocks. We end by discussing how society should take into account the potentially major consequences that ALAN has on the natural world and the repercussions for ongoing human health and welfare.
Collapse
Affiliation(s)
- Jack Falcón
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, Paris, France
| | - Alicia Torriglia
- Centre de Recherche des Cordeliers, INSERM U 1138, Ophtalmopole Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, Université de Paris - SU, Paris, France
| | - Dina Attia
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort, France
| | | | - Claude Gronfier
- Lyon Neuroscience Research Center (CRNL), Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM U 1138, Ophtalmopole Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, Université de Paris - SU, Paris, France
| | | | - David Hicks
- Inserm, CNRS, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
78
|
Integration of ocular and non-ocular photosensory information in the brain of the terrestrial slug Limax. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:907-919. [PMID: 33025057 DOI: 10.1007/s00359-020-01447-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
In the terrestrial slugs Limax, most of the photosensory information is thought to be acquired by an eye located on the superior tentacles, by which the slugs avoid light. Recent studies, however, suggested that the brain also plays a role as a photosensor in their negative phototaxis behavior. In the present study, we investigated how the photosensory information acquired by the eye and brain is integrated. The visual pathway in the brain was traced by incorporating tracer molecules from the cut end of an optic nerve, and commissural interactions were found in optic neuropiles located in the lateral regions of the cerebral ganglia. A cluster of neuronal cell bodies located near the dorsal surface of the cerebral ganglion had connections with the contralateral optic neuropile via gap junctions. Some of these neuronal cell bodies were Opn5A-immunoreactive, and contained numerous photic vesicle-like structures. Light-induced spikes were recorded extracellularly from the dorsal surface of these neuronal clusters, and they were synchronous with the spikes recorded from the cut end of the cerebral commissure. This study suggests that both the light information from the eye and the contralateral cerebral ganglion are integrated in the optic neuropile.
Collapse
|
79
|
Quan FB, Desban L, Mirat O, Kermarquer M, Roussel J, Koëth F, Marnas H, Djenoune L, Lejeune FX, Tostivint H, Wyart C. Somatostatin 1.1 contributes to the innate exploration of zebrafish larva. Sci Rep 2020; 10:15235. [PMID: 32943676 PMCID: PMC7499426 DOI: 10.1038/s41598-020-72039-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Pharmacological experiments indicate that neuropeptides can effectively tune neuronal activity and modulate locomotor output patterns. However, their functions in shaping innate locomotion often remain elusive. For example, somatostatin has been previously shown to induce locomotion when injected in the brain ventricles but to inhibit fictive locomotion when bath-applied in the spinal cord in vitro. Here, we investigated the role of somatostatin in innate locomotion through a genetic approach by knocking out somatostatin 1.1 (sst1.1) in zebrafish. We automated and carefully analyzed the kinematics of locomotion over a hundred of thousand bouts from hundreds of mutant and control sibling larvae. We found that the deletion of sst1.1 did not impact acousto-vestibular escape responses but led to abnormal exploration. sst1.1 mutant larvae swam over larger distance, at higher speed and performed larger tail bends, indicating that Somatostatin 1.1 inhibits spontaneous locomotion. Altogether our study demonstrates that Somatostatin 1.1 innately contributes to slowing down spontaneous locomotion.
Collapse
Affiliation(s)
- Feng B Quan
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
- Muséum National d'Histoire Naturelle (MNHN), CNRS UMR 7221, Paris, France
| | - Laura Desban
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Olivier Mirat
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Maxime Kermarquer
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Julian Roussel
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Fanny Koëth
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Hugo Marnas
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Lydia Djenoune
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - François-Xavier Lejeune
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle (MNHN), CNRS UMR 7221, Paris, France
| | - Claire Wyart
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
80
|
Hu Y, Zhao R, Poopal RK, Ren Z. Simultaneous eco-toxicity assessment technique using an online monitoring system: effects of different environmental factors on swimming behavior of zebrafish (Danio rerio). CHEMOSPHERE 2020; 255:126934. [PMID: 32387730 DOI: 10.1016/j.chemosphere.2020.126934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Environmental factors, such as photoperiod and temperature were the main limiting factors for the survival of organisms in the nature environment. Changes in environmental factors are well predicted but determining their effects on organisms are challenging hot topic in the field of eco-toxicology. Thus, technology based eco-toxicity assessment was focused worldwide. In this research, the effects of different temperatures (15 °C, 22 °C, 30 °C, 32 °C, and 35 °C) and photoperiods (dark and light periods) on the continuous behavior responses of Zebrafish (Danio rerio) were investigated using an online monitoring system (OMS). We designed a new fish chamber with sensors to measure the behavior responses of zebrafish under different conditions. Data obtained from the OMS could be assessed for factors such as difference in swimming behavior, circadian rhythm, and avoidance behavior using latest software (MATLAB). The observed behavior anomalies on zebrafish under different temperatures and continuous photoperiods were statically significant (p < 0.05). We conclude that the new designed fish chamber (behavior sensors) is good in sensing behavioral responses of zebrafish under different conditions. The fish behavior strength could be a potential biomarker to assess the effects of environmental factors. The present study would be a basic platform for assessing the effects of different stressors simultaneously on swimming behavior of zebrafish.
Collapse
Affiliation(s)
- Yongyuan Hu
- Institute of Environment and Ecology, Shandong Normal University, 250358, Jinan, PR China
| | - Ruibin Zhao
- Institute of Environment and Ecology, Shandong Normal University, 250358, Jinan, PR China
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, 250358, Jinan, PR China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, 250358, Jinan, PR China.
| |
Collapse
|
81
|
Zhang KX, D'Souza S, Upton BA, Kernodle S, Vemaraju S, Nayak G, Gaitonde KD, Holt AL, Linne CD, Smith AN, Petts NT, Batie M, Mukherjee R, Tiwari D, Buhr ED, Van Gelder RN, Gross C, Sweeney A, Sanchez-Gurmaches J, Seeley RJ, Lang RA. Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons. Nature 2020; 585:420-425. [PMID: 32879486 PMCID: PMC8130195 DOI: 10.1038/s41586-020-2683-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
The opsin family of G-protein-coupled receptors are used as light detectors in animals. Opsin 5 (also known as neuropsin or OPN5) is a highly conserved opsin that is sensitive to visible violet light1,2. In mice, OPN5 is a known photoreceptor in the retina3 and skin4 but is also expressed in the hypothalamic preoptic area (POA)5. Here we describe a light-sensing pathway in which POA neurons that express Opn5 regulate thermogenesis in brown adipose tissue (BAT). We show that Opn5 is expressed in glutamatergic warm-sensing POA neurons that receive synaptic input from several thermoregulatory nuclei. We further show that Opn5 POA neurons project to BAT and decrease its activity under chemogenetic stimulation. Opn5-null mice show overactive BAT, increased body temperature, and exaggerated thermogenesis when cold-challenged. Moreover, violet photostimulation during cold exposure acutely suppresses BAT temperature in wild-type mice but not in Opn5-null mice. Direct measurements of intracellular cAMP ex vivo show that Opn5 POA neurons increase cAMP when stimulated with violet light. This analysis thus identifies a violet light-sensitive deep brain photoreceptor that normally suppresses BAT thermogenesis.
Collapse
Affiliation(s)
- Kevin X Zhang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Shane D'Souza
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Brian A Upton
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Stace Kernodle
- Department of Surgery, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Shruti Vemaraju
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gowri Nayak
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kevin D Gaitonde
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Amanda L Holt
- Department of Physics, Yale University, New Haven, CT, USA
| | - Courtney D Linne
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - April N Smith
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nathan T Petts
- Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew Batie
- Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA, USA
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA, USA
- Department of Biological Structure, University of Washington Medical School, Seattle, WA, USA
- Department of Pathology, University of Washington Medical School, Seattle, WA, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Alison Sweeney
- Department of Physics, Yale University, New Haven, CT, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, School of Public Health, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Richard A Lang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
82
|
Chen J, Okimura K, Yoshimura T. Light and Hormones in Seasonal Regulation of Reproduction and Mood. Endocrinology 2020; 161:5879749. [PMID: 32738138 PMCID: PMC7442225 DOI: 10.1210/endocr/bqaa130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
Organisms that inhabit the temperate zone exhibit various seasonal adaptive behaviors, including reproduction, hibernation, molting, and migration. Day length, known as photoperiod, is the most noise-free and widely used environmental cue that enables animals to anticipate the oncoming seasons and adapt their physiologies accordingly. Although less clear, some human traits also exhibit seasonality, such as birthrate, mood, cognitive brain responses, and various diseases. However, the molecular basis for human seasonality is poorly understood. Herein, we first review the underlying mechanisms of seasonal adaptive strategies of animals, including seasonal reproduction and stress responses during the breeding season. We then briefly summarize our recent discovery of signaling pathways involved in the winter depression-like phenotype in medaka fish. We believe that exploring the regulation of seasonal traits in animal models will provide insight into human seasonality and aid in the understanding of human diseases such as seasonal affective disorder (SAD).
Collapse
Affiliation(s)
- Junfeng Chen
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kousuke Okimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
83
|
Rapid Effects of Selection on Brain-wide Activity and Behavior. Curr Biol 2020; 30:3647-3656.e3. [PMID: 32763165 DOI: 10.1016/j.cub.2020.06.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/19/2020] [Accepted: 06/24/2020] [Indexed: 11/21/2022]
Abstract
Interindividual variation in behavior and brain activity is universal and provides substrates for natural selection [1-9]. Selective pressures shift the expression of behavioral traits at the population level [10, 11], but the accompanying changes of the underlying neural circuitry have rarely been identified [12, 13]. Selection likely acts through the genetic and/or epigenetic underpinnings of neural activity controlling the selected behavior [14]. Endocrine and neuromodulatory systems participate in behavioral diversity and could provide the substrate for evolutionary modifications [15-21]. Here, we examined brain-wide patterns of activity in larval zebrafish selectively bred over two generations for extreme differences in habituation of the acoustic startle response (ASR) [22]. The ASR is an evolutionarily conserved defensive behavior induced by strong acoustic/vibrational stimuli. ASR habituation shows great individual variability that is stable over days and heritable [4, 22]. Selection for high ASR habituation leads to stronger sound-evoked activation of ASR-processing brain areas. In contrast, animals selected for low habituation displayed stronger spontaneous activity in ASR-processing centers. Ablation of dopaminergic tyrosine hydroxylase (TH) neurons decreased ASR sensitivity. Independently selected ASR habituation lineages link the effect of behavioral selection to dopaminergic caudal hypothalamus (HC) neurons [23]. High ASR habituation co-segregated with decreased spontaneous swimming phenotypes, but visual startle responses were unaffected. Furthermore, high- and low-habituation larvae differed in stress responses as adults. Thus, selective pressure over a couple of generations on ASR habituation behavior is able to induce substantial differences in brain activity, carrying along additional behaviors as piggyback traits that might further affect fitness in the wild. VIDEO ABSTRACT.
Collapse
|
84
|
Godoy R, Hua K, Kalyn M, Cusson VM, Anisman H, Ekker M. Dopaminergic neurons regenerate following chemogenetic ablation in the olfactory bulb of adult Zebrafish (Danio rerio). Sci Rep 2020; 10:12825. [PMID: 32733000 PMCID: PMC7393114 DOI: 10.1038/s41598-020-69734-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Adult zebrafish have the ability to regenerate cells of the central nervous system. However, few neuronal regeneration studies in adult zebrafish addressed their ability to regenerate specific types of neurons following cell specific ablation. We show here that treatment of transgenic Tg(dat:CFP-NTR) adult zebrafish with the prodrug metronidazole (Mtz) according to our administration regimen predominantly ablates dopamine (DA) neurons within the olfactory bulb (OB) of adult fish. Loss of DA neurons was accompanied by an impaired olfaction phenotype, as early as 1-week post-treatment, in which fish were unable to sense the presence of the repulsive stimulus cadaverine. The olfactory impairment was reversed within 45 days and coincided with the recovery of DA neuron counts in the OB. A multi-label pulse-chase analysis with BrdU and EdU over the first seventeen days-post Mtz exposure showed that newly formed DA neurons were recruited within the first nine days following exposure and led to functional and morphological recovery of the OB.
Collapse
Affiliation(s)
- Rafael Godoy
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Khang Hua
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Michael Kalyn
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Hymie Anisman
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
85
|
Tadres D, Louis M. PiVR: An affordable and versatile closed-loop platform to study unrestrained sensorimotor behavior. PLoS Biol 2020; 18:e3000712. [PMID: 32663220 PMCID: PMC7360024 DOI: 10.1371/journal.pbio.3000712] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Tools enabling closed-loop experiments are crucial to delineate causal relationships between the activity of genetically labeled neurons and specific behaviors. We developed the Raspberry Pi Virtual Reality (PiVR) system to conduct closed-loop optogenetic stimulation of neural functions in unrestrained animals. PiVR is an experimental platform that operates at high temporal resolution (70 Hz) with low latencies (<30 milliseconds), while being affordable (
Collapse
Affiliation(s)
- David Tadres
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Matthieu Louis
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
86
|
Visuomotor deficiency in panx1a knockout zebrafish is linked to dopaminergic signaling. Sci Rep 2020; 10:9538. [PMID: 32533080 PMCID: PMC7293225 DOI: 10.1038/s41598-020-66378-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Pannexin 1 (Panx1) forms ATP-permeable membrane channels that play roles in the nervous system. The analysis of roles in both standard and pathological conditions benefits from a model organism with rapid development and early onset of behaviors. Such a model was developed by ablating the zebrafish panx1a gene using TALEN technology. Here, RNA-seq analysis of 6 days post fertilization larvae were confirmed by Real-Time PCR and paired with testing visual-motor behavior and in vivo electrophysiology. Results demonstrated that loss of panx1a specifically affected the expression of gene classes representing the development of the visual system and visual processing. Abnormal swimming behavior in the dark and the expression regulation of pre-and postsynaptic biomarkers suggested changes in dopaminergic signaling. Indeed, altered visuomotor behavior in the absence of functional Panx1a was evoked through D1/D2-like receptor agonist treatment and rescued with the D2-like receptor antagonist Haloperidol. Local field potentials recorded from superficial areas of the optic tectum receiving input from the retina confirmed abnormal responses to visual stimuli, which resembled treatments with a dopamine receptor agonist or pharmacological blocking of Panx1a. We conclude that Panx1a functions are relevant at a time point when neuronal networks supporting visual-motor functions undergo modifications preparing for complex behaviors of freely swimming fish.
Collapse
|
87
|
Schredelseker T, Veit F, Dorsky RI, Driever W. Bsx Is Essential for Differentiation of Multiple Neuromodulatory Cell Populations in the Secondary Prosencephalon. Front Neurosci 2020; 14:525. [PMID: 32581684 PMCID: PMC7290237 DOI: 10.3389/fnins.2020.00525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/28/2020] [Indexed: 01/17/2023] Open
Abstract
The hypothalamus is characterized by great neuronal diversity, with many neuropeptides and other neuromodulators being expressed within its multiple anatomical domains. The regulatory networks directing hypothalamic development have been studied in detail, but, for many neuron types, control of differentiation is still not understood. The highly conserved Brain-specific homeobox (Bsx) transcription factor has previously been described in regulating Agrp and Npy expression in the hypothalamic arcuate nucleus (ARC) in mice. While Bsx is expressed in many more subregions of both tuberal and mamillary hypothalamus, the functions therein are not known. Using genetic analyses in zebrafish, we show that most bsx expression domains are dependent on Nkx2.1 and Nkx2.4 homeodomain transcription factors, while a subset depends on Otp. We show that the anatomical pattern of the ventral forebrain appears normal in bsx mutants, but that Bsx is necessary for the expression of many neuropeptide encoding genes, including agrp, penka, vip, trh, npb, and nts, in distinct hypothalamic anatomical domains. We also found Bsx to be critical for normal expression of two Crh family members, crhb and uts1, as well as crhbp, in the hypothalamus and the telencephalic septal region. Furthermore, we demonstrate a crucial role for Bsx in serotonergic, histaminergic and nitrergic neuron development in the hypothalamus. We conclude that Bsx is critical for the terminal differentiation of multiple neuromodulatory cell types in the forebrain.
Collapse
Affiliation(s)
- Theresa Schredelseker
- Developmental Biology, Institute Biology 1, Faculty of Biology, Albert Ludwig University of Freiburg, Freiburg im Breisgau, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Florian Veit
- Developmental Biology, Institute Biology 1, Faculty of Biology, Albert Ludwig University of Freiburg, Freiburg im Breisgau, Germany
| | - Richard I Dorsky
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, UT, United States
| | - Wolfgang Driever
- Developmental Biology, Institute Biology 1, Faculty of Biology, Albert Ludwig University of Freiburg, Freiburg im Breisgau, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
88
|
A Model to Study NMDA Receptors in Early Nervous System Development. J Neurosci 2020; 40:3631-3645. [PMID: 32245827 DOI: 10.1523/jneurosci.3025-19.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 11/21/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that play critical roles in neuronal development and nervous system function. Here, we developed a model to study NMDARs in early development in zebrafish, by generating CRISPR-mediated lesions in the NMDAR genes, grin1a and grin1b, which encode the obligatory GluN1 subunits. While receptors containing grin1a or grin1b show high Ca2+ permeability, like their mammalian counterpart, grin1a is expressed earlier and more broadly in development than grin1b Both grin1a -/- and grin1b -/- zebrafish are viable. Unlike in rodents, where the grin1 knockout is embryonic lethal, grin1 double-mutant fish (grin1a -/- ; grin1b -/-), which lack all NMDAR-mediated synaptic transmission, survive until ∼10 d dpf (days post fertilization), providing a unique opportunity to explore NMDAR function during development and in generating behaviors. Many behavioral defects in the grin1 double-mutant larvae, including abnormal evoked responses to light and acoustic stimuli, prey-capture deficits, and a failure to habituate to acoustic stimuli, are replicated by short-term treatment with the NMDAR antagonist MK-801, suggesting that they arise from acute effects of compromised NMDAR-mediated transmission. Other defects, however, such as periods of hyperactivity and alterations in place preference, are not phenocopied by MK-801, suggesting a developmental origin. Together, we have developed a unique model to study NMDARs in the developing vertebrate nervous system.SIGNIFICANCE STATEMENT Rapid communication between cells in the nervous system depends on ion channels that are directly activated by chemical neurotransmitters. One such ligand-gated ion channel, the NMDAR, impacts nearly all forms of nervous system function. It has been challenging, however, to study the prolonged absence of NMDARs in vertebrates, and hence their role in nervous system development, due to experimental limitations. Here, we demonstrate that zebrafish lacking all NMDAR transmission are viable through early development and are capable of a wide range of stereotypic behaviors. As such, this zebrafish model provides a unique opportunity to study the role of NMDAR in the development of the early vertebrate nervous system.
Collapse
|
89
|
Horstick EJ, Bayleyen Y, Burgess HA. Molecular and cellular determinants of motor asymmetry in zebrafish. Nat Commun 2020; 11:1170. [PMID: 32127541 PMCID: PMC7054361 DOI: 10.1038/s41467-020-14965-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/04/2020] [Indexed: 02/05/2023] Open
Abstract
Asymmetries in motor behavior, such as human hand preference, are observed throughout bilateria. However, neural substrates and developmental signaling pathways that impose underlying functional lateralization on a broadly symmetric nervous system are unknown. Here we report that in the absence of over-riding visual information, zebrafish larvae show intrinsic lateralized motor behavior that is mediated by a cluster of 60 posterior tuberculum (PT) neurons in the forebrain. PT neurons impose motor bias via a projection through the habenular commissure. Acquisition of left/right identity is disrupted by heterozygous mutations in mosaic eyes and mindbomb, genes that regulate Notch signaling. These results define the neuronal substrate for motor asymmetry in a vertebrate and support the idea that haploinsufficiency for genes in a core developmental pathway destabilizes left/right identity. Many animals show individual left/right biases in motor behaviour, but underlying neural substrates have proven elusive. Here the authors describe neurons that maintain individual, context-dependent lateralisation of swimming behaviour in zebrafish.
Collapse
Affiliation(s)
- Eric J Horstick
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA. .,Department of Biology, West Virginia University, Morgantown, WV, USA.
| | - Yared Bayleyen
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
| |
Collapse
|
90
|
Wang XH, Souders CL, Xavier P, Li XY, Yan B, Martyniuk CJ. The pyrethroid esfenvalerate induces hypoactivity and decreases dopamine transporter expression in embryonic/larval zebrafish (Danio rerio). CHEMOSPHERE 2020; 243:125416. [PMID: 31995874 DOI: 10.1016/j.chemosphere.2019.125416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Esfenvalerate is a pyrethroid insecticide used widely for agricultural and residential applications. This insecticide has been detected in aquatic environments at concentrations that can induce sub-lethal effects in organisms. In this study, zebrafish embryos were used to examine the effects of environmentally-relevant concentrations of esfenvalerate on development and behavior. It was hypothesized that esfenvalerate exposure would impair locomotion due to its effects on the central nervous system. We also measured mitochondrial bioenergetics and the expression of genes (dopamine system) as putative mechanisms of locomotor impairment. Concentrations of 0.02, 0.2 and 2 μg/L esfenvalerate did not induce significant mortality nor deformity in zebrafish, but there was an acceleration in hatching time for zebrafish exposed to 2 μg/L esfenvalerate. As an indicator of neurotoxicity, the Visual Motor Response (VMR) test was conducted with 5, 6, and 7 dpf zebrafish after continuous exposure, and higher concentrations were used (4 and 8 μg/L esfenvalerate) to better discern age-and dose dependent responses in behavior. Experiments revealed that, unlike the other stages, 6 dpf larvae showed evidence for hypo-activity with esfenvalerate, suggesting that different stages of larval development may show increased sensitivity to pyrethroid exposure. This may be related to age-dependent maturation of the central nervous system. We hypothesized that reduced larval activity may be associated with impaired production of ATP and the function of mitochondria at earlier life stages, however dramatic alterations in oxidative phosphorylation were not observed. Based on evidence that dopamine regulates behavior and studies showing that other pyrethroids affect dopamine system, we measured transcripts involved in dopaminergic signaling. We found that dopamine active transporter was down-regulated with 0.2 μg/L esfenvalerate. Lastly, we comprehensively summarize the current literature (>20 studies) regarding the toxicity of pyrethroids in zebrafish, which is a valuable resource to those studying these pesticides. This study demonstrates that esfenvalerate at environmentally-relevant levels induces hypoactivity that are dependent upon the age of the zebrafish, and these behavioral changes are hypothesized to be related to impaired dopamine signaling.
Collapse
Affiliation(s)
- Xiao H Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Priscilla Xavier
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Xiao Y Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
91
|
Morbiato E, Bilel S, Tirri M, Arfè R, Fantinati A, Savchuk S, Appolonova S, Frisoni P, Tagliaro F, Neri M, Grignolio S, Bertolucci C, Marti M. Potential of the zebrafish model for the forensic toxicology screening of NPS: A comparative study of the effects of APINAC and methiopropamine on the behavior of zebrafish larvae and mice. Neurotoxicology 2020; 78:36-46. [PMID: 32050087 DOI: 10.1016/j.neuro.2020.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 10/25/2022]
Abstract
The increased diffusion of the so-called novel psychoactive substances (NPS) and their continuous change in structure andconceivably activity has led to the need of a rapid screening method to detect their biological effects as early as possible after their appearance in the market. This problem is very felt in forensic pathology and toxicology, so the preclinical study is fundamental in the approach to clinical and autopsy cases of difficult interpretation intoxication. Zebrafish is a high-throughput suitable model to rapidly hypothesize potential aversive or beneficial effects of novel molecules. In the present study, we measured and compared the behavioral responses to two novel neuroactive drugs, namely APINAC, a new cannabimimetic drug, and methiopropamine (MPA), a methamphetamine-like compound, on zebrafish larvae (ZL) and adult mice. By using an innovative statistical approach (general additive models), it was found that the spontaneous locomotor activity was impaired by the two drugs in both species: the disruption extent varied in a dose-dependent and time-dependent manner. Sensorimotor function was also altered: i) the visual object response was reduced in mice treated with APINAC, whereas it was not after exposure to MPA; ii) the visual placing responses were reduced after treatment with both NPS in mice. Furthermore, the visual motor response detected in ZL showed a reduction after treatment with APINAC during light-dark and dark-light transition. The same pattern was found in the MPA exposed groups only at the dark-light transition, while at the transition from light to dark, the individuals showed an increased response. In conclusion, the present study highlighted the impairment of spontaneous motor and sensorimotor behavior induced by MPA and APINAC administration in both species, thus confirming the usefulness of ZL as a model for a rapid behavioural-based drug screening.
Collapse
Affiliation(s)
- Elisa Morbiato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - Sabrine Bilel
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Micaela Tirri
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Raffaella Arfè
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Institute of Public Health, Section of Legal Medicine, Catholic University, Rome, Italy
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Sergey Savchuk
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Svetlana Appolonova
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Paolo Frisoni
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Policlinico "G.B. Rossi", Verona, Italy; Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Margherita Neri
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | | | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - Matteo Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
92
|
Karpenko S, Wolf S, Lafaye J, Le Goc G, Panier T, Bormuth V, Candelier R, Debrégeas G. From behavior to circuit modeling of light-seeking navigation in zebrafish larvae. eLife 2020; 9:52882. [PMID: 31895038 PMCID: PMC6989119 DOI: 10.7554/elife.52882] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/02/2020] [Indexed: 01/18/2023] Open
Abstract
Bridging brain-scale circuit dynamics and organism-scale behavior is a central challenge in neuroscience. It requires the concurrent development of minimal behavioral and neural circuit models that can quantitatively capture basic sensorimotor operations. Here, we focus on light-seeking navigation in zebrafish larvae. Using a virtual reality assay, we first characterize how motor and visual stimulation sequences govern the selection of discrete swim-bout events that subserve the fish navigation in the presence of a distant light source. These mechanisms are combined into a comprehensive Markov-chain model of navigation that quantitatively predicts the stationary distribution of the fish’s body orientation under any given illumination profile. We then map this behavioral description onto a neuronal model of the ARTR, a small neural circuit involved in the orientation-selection of swim bouts. We demonstrate that this visually-biased decision-making circuit can capture the statistics of both spontaneous and contrast-driven navigation. All animals with the ability to move use sensory signals to help them navigate towards areas that seem better than their current location. Such areas might contain desirable things like food and mates, or they might allow an animal to escape from threats such as predators. But how the brain gives rise to this navigation behavior is unclear. Karpenko et al. have now obtained insights into the underlying mechanism by studying a behavior in zebrafish larvae called phototaxis. Phototaxis is the tendency to move in response to light. The advantage of using zebrafish larvae to study this behavior is that their brains are small and semi-transparent. This makes it possible to record the activity of almost every neuron. As a result, an individual’s brain activity can be mapped on to their behavior more precisely than in most other species. To probe how visual cues influence fish behavior, Karpenko et al. exposed individual fish to a carefully controlled virtual light source and then tracked their movements with a camera. The fish used two strategies to move towards the light. They selected their next movement based partly on the difference in the amount of light reaching each of their eyes, and partly on the change in overall brightness with each swim movement. Karpenko et al. used this information to build a numerical model of fish phototaxis, and to show how a simple brain circuit could generate this behavior. Species whose brains differ in size and structure may nevertheless develop similar strategies to perform similar tasks. By quantifying a generic behavior in a simple animal model, this study could provide insights into comparable behaviors in other species. In addition, the study suggests a simple mechanism for how animals select actions on the basis of sensory signals, which may also be relevant to other species and other tasks.
Collapse
Affiliation(s)
- Sophia Karpenko
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France.,Université Paris Sciences et Lettres, Paris, France
| | - Sebastien Wolf
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS UMR 8023 & PSL Research, Paris, France.,Institut de Biologie de l'Ecole Normale Supérieure, CNRS, INSERM, UMR 8197 & PSL Research, Paris, France
| | - Julie Lafaye
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Guillaume Le Goc
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Thomas Panier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Volker Bormuth
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Raphaël Candelier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Georges Debrégeas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| |
Collapse
|
93
|
A systems biology approach reveals neuronal and muscle developmental defects after chronic exposure to ionising radiation in zebrafish. Sci Rep 2019; 9:20241. [PMID: 31882844 PMCID: PMC6934629 DOI: 10.1038/s41598-019-56590-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/13/2019] [Indexed: 11/11/2022] Open
Abstract
Contamination of the environment after the Chernobyl and Fukushima Daiichi nuclear power plant (NPP) disasters led to the exposure of a large number of humans and wild animals to radioactive substances. However, the sub-lethal consequences induced by these absorbed radiological doses remain understudied and the long-term biological impacts largely unknown. We assessed the biological effects of chronic exposure to ionizing radiation (IR) on embryonic development by exposing zebrafish embryo from fertilization and up to 120 hours post-fertilization (hpf) at dose rates of 0.5 mGy/h, 5 mGy/h and 50 mGy/h, thereby encompassing the field of low dose rates defined at 6 mGy/h. Chronic exposure to IR altered larval behaviour in a light-dark locomotor test and affected cardiac activity at a dose rate as low as 0.5 mGy/h. The multi-omics analysis of transcriptome, proteome and transcription factor binding sites in the promoters of the deregulated genes, collectively points towards perturbations of neurogenesis, muscle development, and retinoic acid (RA) signaling after chronic exposure to IR. Whole-mount RNA in situ hybridization confirmed the impaired expression of the transcription factors her4.4 in the central nervous system and myogenin in the developing muscles of exposed embryos. At the organ level, the assessment of muscle histology by transmission electron microscopy (TEM) demonstrated myofibers disruption and altered neuromuscular junctions in exposed larvae at 5 mGy/h and 50 mGy/h. The integration of these multi-level data demonstrates that chronic exposure to low dose rates of IR has an impact on neuronal and muscle progenitor cells, that could lead to motility defects in free swimming larvae at 120 hpf. The mechanistic understanding of these effects allows us to propose a model where deregulation of RA signaling by chronic exposure to IR has pleiotropic effects on neurogenesis and muscle development.
Collapse
|
94
|
Simon N, Fujita S, Porter M, Yoshizawa M. Expression of extraocular opsin genes and light-dependent basal activity of blind cavefish. PeerJ 2019; 7:e8148. [PMID: 31871836 PMCID: PMC6924323 DOI: 10.7717/peerj.8148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/03/2019] [Indexed: 12/26/2022] Open
Abstract
Background Animals living in well-lit environments utilize optical stimuli for detecting visual information, regulating the homeostatic pacemaker, and controlling patterns of body pigmentation. In contrast, many subterranean animal species without optical stimuli have evolved regressed binocular eyes and body pigmentation. Interestingly, some fossorial and cave-dwelling animals with regressed eyes still respond to light. These light-dependent responses may be simply evolutionary residuals or they may be adaptive, where negative phototaxis provides avoidance of predator-rich surface environments. However, the relationship between these non-ocular light responses and the underlying light-sensing Opsin proteins has not been fully elucidated. Methods To highlight the potential functions of opsins in a blind subterranean animal, we used the Mexican cave tetra to investigate opsin gene expression in the eyes and several brain regions of both surface and cave-dwelling adults. We performed database surveys, expression analyses by quantitative reverse transcription PCR (RT-qPCR), and light-dependent locomotor activity analysis using pinealectomized fish, one of the high-opsin expressing organs of cavefish. Results Based on conservative criteria, we identified 33 opsin genes in the cavefish genome. Surveys of available RNAseq data found 26 of these expressed in the surface fish eye as compared to 24 expressed in cavefish extraocular tissues, 20 of which were expressed in the brain. RT-qPCR of 26 opsins in surface and cavefish eye and brain tissues showed the highest opsin-expressing tissue in cavefish was the pineal organ, which expressed exo-rhodopsin at 72.7% of the expression levels in surface fish pineal. However, a pinealectomy resulted in no change to the light-dependent locomotor activity in juvenile cavefish and surface fish. Therefore, we conclude that, after 20,000 or more years of evolution in darkness, cavefish light-dependent basal activity is regulated by a non-pineal extraocular organ.
Collapse
Affiliation(s)
- Noah Simon
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States of America.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Suguru Fujita
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Megan Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States of America
| | - Masato Yoshizawa
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States of America
| |
Collapse
|
95
|
Liu Y, Zhang W, Du X, Liu Y, Qu J, Liu X, Liu J, Zhang Q. Genome-wide identification of nonvisual opsin family reveals amplification of RPE-retinal G protein receptor gene (RGR) and offers novel insights into functions of RGR(s) in Paralichthys olivaceus (Paralichthyidae, Teleostei). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 334:25-36. [PMID: 31743605 DOI: 10.1002/jez.b.22914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/08/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Opsins play important roles in the image-forming visual pathways and numerous biological systems such as the biological clock and circadian rhythm. However, the nonvisual opsins involved in nonimage forming process are not clear to date. The aim of this study was to characterize nonvisual opsins in Paralichthys olivaceus. A total of 24 nonvisual opsin genes were identified. Expressions of these genes in eye, brain, heart, testis, and fin were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Testis contained a surprisingly large number of nonvisual opsins including Opn4m2, Tmt2a, Tmt3b, Opn3, RRH, Opn7a, and Opn7b. Syntenic and phylogenetic analyses confirmed that the RGRa and RGRb originated from the teleost-specific genome duplication (TSGD). qRT-PCR results demonstrated high RGRa and RGRb expression in the eye, while the expression levels in the brain, heart, testis, and fin were relatively weak. In situ hybridization results presented here revealed the presence of both RGRa and RGRb mRNA-positive signals in the ganglion cell layer but absence in the intracellular compartment of retinal pigment epithelium (RPE) and Müller glial cells. Therefore, we hypothesized that RGRa and RGRb had undergone subfunctionalization in P. olivaceus after TSGD. In conclusion, this study provides novel insights into the evolutionary fates of the RGR genes, still, further studies need to be done to explore the mechanism about the lack of RGR genes' expression in RPE.
Collapse
Affiliation(s)
- Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Wei Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Xinxin Du
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Xiaobing Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
96
|
Zindler F, Beedgen F, Braunbeck T. Time-course of coiling activity in zebrafish (Danio rerio) embryos exposed to ethanol as an endpoint for developmental neurotoxicity (DNT) - Hidden potential and underestimated challenges. CHEMOSPHERE 2019; 235:12-20. [PMID: 31254777 DOI: 10.1016/j.chemosphere.2019.06.154] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Detection of developmental neurotoxicity (DNT) has been recognized as a major challenge by regulatory bodies and science. In search of sensitive and specific test methods, spontaneous tail coiling of embryonic zebrafish has been recommended as a promising tool for identification of DNT-inducing chemicals. The present study was designed to develop a protocol for a prolonged test to study neurotoxicity during the entire development of coiling movement in zebrafish embryos. Ambient illumination was found to modulate coiling activity from the very onset of tail movements representing the earliest behavioral response to light possible in zebrafish. In the dark, embryos displayed increased coiling activity in a way known from photokinesis, a stereotypical element of the visual motor response. Elevated coiling activity during dark phases allows for the development of test strategies that integrate later coiling movements under the control of a further developed nervous system. Furthermore, zebrafish embryos were exposed to ethanol, and coiling activity was analyzed according to the new test protocol. Exposure of embryos to non-teratogenic concentrations of ethanol (0.4-1%) resulted in a delay of the onset of coiling activity and heartbeat. Moreover, ethanol produced a dose-dependent increase in coiling frequency at 26 h post-fertilization, indicating the involvement of neurotoxic mechanisms. Analysis of coiling activity during prolonged exposure allowed for (1) attributing effects on coiling activity to different mechanisms and (2) preventing false interpretation of results. Further research is needed to verify the potential of this test protocol to distinguish between different mechanisms of neurotoxicity.
Collapse
Affiliation(s)
- Florian Zindler
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany.
| | - Franziska Beedgen
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| |
Collapse
|
97
|
Souders CL, Davis RH, Qing H, Liang X, Febo M, Martyniuk CJ. The psychoactive cathinone derivative pyrovalerone alters locomotor activity and decreases dopamine receptor expression in zebrafish (Danio rerio). Brain Behav 2019; 9:e01420. [PMID: 31625691 PMCID: PMC6851804 DOI: 10.1002/brb3.1420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/27/2019] [Accepted: 09/06/2019] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Pyrovalerone (4-methyl-β-keto-prolintane) is a synthetic cathinone (beta-keto-amphetamine) derivative. Cathinones are a concern as drugs of abuse, as related street drugs such as methylenedioxypyrovalerone have garnered significant attention. The primary mechanism of action of cathinones is to inhibit reuptake transporters (dopamine and norepinephrine) in reward centers of the central nervous system. METHODS We measured bioenergetic, behavioral, and molecular responses to pyrovalerone (nM-µM) in zebrafish to evaluate its potential for neurotoxicity and neurological impairment. RESULTS Pyrovalerone did not induce any mortality in zebrafish larvae over a 3- and 24-hr period; however, seizures were prevalent at the highest dose tested (100 µM). Oxidative phosphorylation was not affected in the embryos, and there was no change in superoxide dismutase 1 expression. Following a 3-hr treatment to pyrovalerone (1-100 µM), larval zebrafish (6d) showed a dose-dependent decrease (70%-90%) in total distance moved in a visual motor response (VMR) test. We interrogated potential mechanisms related to the hypoactivity, focusing on the expression of dopamine-related transcripts as cathinones can modulate the dopamine system. Pyrovalerone decreased the expression levels of dopamine receptor D1 (~60%) in larval zebrafish but did not affect the expression of tyrosine hydroxylase, dopamine active transporter, or any other dopamine receptor subunit examined, suggesting that pyrovalerone may regulate the expression of dopamine receptors in a specific manner. DISCUSSION Further studies using zebrafish are expected to reveal new insight into molecular mechanisms and behavioral responses to cathinone derivates, and zebrafish may be a useful model for understanding the relationship between the dopamine system and bath salts.
Collapse
Affiliation(s)
- Christopher Laurence Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Robert H Davis
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Hua Qing
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Marcelo Febo
- Department of Psychiatry, Evelyn F. and William L. McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
98
|
Do MTH. Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior. Neuron 2019; 104:205-226. [PMID: 31647894 PMCID: PMC6944442 DOI: 10.1016/j.neuron.2019.07.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
The mammalian visual system encodes information over a remarkable breadth of spatiotemporal scales and light intensities. This performance originates with its complement of photoreceptors: the classic rods and cones, as well as the intrinsically photosensitive retinal ganglion cells (ipRGCs). IpRGCs capture light with a G-protein-coupled receptor called melanopsin, depolarize like photoreceptors of invertebrates such as Drosophila, discharge electrical spikes, and innervate dozens of brain areas to influence physiology, behavior, perception, and mood. Several visual responses rely on melanopsin to be sustained and maximal. Some require ipRGCs to occur at all. IpRGCs fulfill their roles using mechanisms that include an unusual conformation of the melanopsin protein, an extraordinarily slow phototransduction cascade, divisions of labor even among cells of a morphological type, and unorthodox configurations of circuitry. The study of ipRGCs has yielded insight into general topics that include photoreceptor evolution, cellular diversity, and the steps from biophysical mechanisms to behavior.
Collapse
Affiliation(s)
- Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
99
|
Wee CL, Song EY, Johnson RE, Ailani D, Randlett O, Kim JY, Nikitchenko M, Bahl A, Yang CT, Ahrens MB, Kawakami K, Engert F, Kunes S. A bidirectional network for appetite control in larval zebrafish. eLife 2019; 8:43775. [PMID: 31625906 PMCID: PMC6799978 DOI: 10.7554/elife.43775] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 09/09/2019] [Indexed: 12/23/2022] Open
Abstract
Medial and lateral hypothalamic loci are known to suppress and enhance appetite, respectively, but the dynamics and functional significance of their interaction have yet to be explored. Here we report that, in larval zebrafish, primarily serotonergic neurons of the ventromedial caudal hypothalamus (cH) become increasingly active during food deprivation, whereas activity in the lateral hypothalamus (LH) is reduced. Exposure to food sensory and consummatory cues reverses the activity patterns of these two nuclei, consistent with their representation of opposing internal hunger states. Baseline activity is restored as food-deprived animals return to satiety via voracious feeding. The antagonistic relationship and functional importance of cH and LH activity patterns were confirmed by targeted stimulation and ablation of cH neurons. Collectively, the data allow us to propose a model in which these hypothalamic nuclei regulate different phases of hunger and satiety and coordinate energy balance via antagonistic control of distinct behavioral outputs.
Collapse
Affiliation(s)
- Caroline Lei Wee
- Department of Molecular and Cell BiologyHarvard UniversityCambridgeUnited States
- Program in NeuroscienceHarvard UniversityBostonUnited States
| | - Erin Yue Song
- Department of Molecular and Cell BiologyHarvard UniversityCambridgeUnited States
| | - Robert Evan Johnson
- Department of Molecular and Cell BiologyHarvard UniversityCambridgeUnited States
- Program in NeuroscienceHarvard UniversityBostonUnited States
| | - Deepak Ailani
- Laboratory of Molecular and Developmental BiologyNational Institute of Genetics, Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies)MishimaJapan
| | - Owen Randlett
- Department of Molecular and Cell BiologyHarvard UniversityCambridgeUnited States
| | - Ji-Yoon Kim
- Department of Molecular and Cell BiologyHarvard UniversityCambridgeUnited States
| | - Maxim Nikitchenko
- Department of Molecular and Cell BiologyHarvard UniversityCambridgeUnited States
| | - Armin Bahl
- Department of Molecular and Cell BiologyHarvard UniversityCambridgeUnited States
| | - Chao-Tsung Yang
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Misha B Ahrens
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental BiologyNational Institute of Genetics, Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies)MishimaJapan
| | - Florian Engert
- Department of Molecular and Cell BiologyHarvard UniversityCambridgeUnited States
| | - Sam Kunes
- Department of Molecular and Cell BiologyHarvard UniversityCambridgeUnited States
| |
Collapse
|
100
|
Marquart GD, Tabor KM, Bergeron SA, Briggman KL, Burgess HA. Prepontine non-giant neurons drive flexible escape behavior in zebrafish. PLoS Biol 2019; 17:e3000480. [PMID: 31613896 PMCID: PMC6793939 DOI: 10.1371/journal.pbio.3000480] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/10/2019] [Indexed: 11/18/2022] Open
Abstract
Many species execute ballistic escape reactions to avoid imminent danger. Despite fast reaction times, responses are often highly regulated, reflecting a trade-off between costly motor actions and perceived threat level. However, how sensory cues are integrated within premotor escape circuits remains poorly understood. Here, we show that in zebrafish, less precipitous threats elicit a delayed escape, characterized by flexible trajectories, which are driven by a cluster of 38 prepontine neurons that are completely separate from the fast escape pathway. Whereas neurons that initiate rapid escapes receive direct auditory input and drive motor neurons, input and output pathways for delayed escapes are indirect, facilitating integration of cross-modal sensory information. These results show that rapid decision-making in the escape system is enabled by parallel pathways for ballistic responses and flexible delayed actions and defines a neuronal substrate for hierarchical choice in the vertebrate nervous system.
Collapse
Affiliation(s)
- Gregory D. Marquart
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
- Neuroscience and Cognitive Science Program, University of Maryland, Maryland, United States of America
| | - Kathryn M. Tabor
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Sadie A. Bergeron
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Kevin L. Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - Harold A. Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| |
Collapse
|