51
|
Sauerwald J, Backer W, Matzat T, Schnorrer F, Luschnig S. Matrix metalloproteinase 1 modulates invasive behavior of tracheal branches during entry into Drosophila flight muscles. eLife 2019; 8:48857. [PMID: 31577228 PMCID: PMC6795481 DOI: 10.7554/elife.48857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
Tubular networks like the vasculature extend branches throughout animal bodies, but how developing vessels interact with and invade tissues is not well understood. We investigated the underlying mechanisms using the developing tracheal tube network of Drosophila indirect flight muscles (IFMs) as a model. Live imaging revealed that tracheal sprouts invade IFMs directionally with growth-cone-like structures at branch tips. Ramification inside IFMs proceeds until tracheal branches fill the myotube. However, individual tracheal cells occupy largely separate territories, possibly mediated by cell-cell repulsion. Matrix metalloproteinase 1 (MMP1) is required in tracheal cells for normal invasion speed and for the dynamic organization of growth-cone-like branch tips. MMP1 remodels the CollagenIV-containing matrix around branch tips, which show differential matrix composition with low CollagenIV levels, while Laminin is present along tracheal branches. Thus, tracheal-derived MMP1 sustains branch invasion by modulating the dynamic behavior of sprouting branches as well as properties of the surrounding matrix.
Collapse
Affiliation(s)
- Julia Sauerwald
- Institute for Zoophysiology, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| | - Wilko Backer
- Institute for Zoophysiology, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| | - Till Matzat
- Institute for Zoophysiology, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| | | | - Stefan Luschnig
- Institute for Zoophysiology, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| |
Collapse
|
52
|
Dasbiswas K, Hu S, Bershadsky AD, Safran SA. Registry Kinetics of Myosin Motor Stacks Driven by Mechanical Force-Induced Actin Turnover. Biophys J 2019; 117:856-866. [PMID: 31427069 DOI: 10.1016/j.bpj.2019.07.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/13/2019] [Accepted: 07/23/2019] [Indexed: 01/26/2023] Open
Abstract
Actin filaments associated with myosin motors constitute the cytoskeletal force-generating machinery for many types of adherent cells. These actomyosin units are structurally ordered in muscle cells and, in particular, may be spatially registered across neighboring actin bundles. Such registry or stacking of myosin filaments have been recently observed in ordered actin bundles of even fibroblasts with super-resolution microscopy techniques. We introduce here a model for the dynamics of stacking arising from long-range mechanical interactions between actomyosin units through mutual contractile deformations of the intervening cytoskeletal network. The dynamics of registry involve two key processes: 1) polymerization and depolymerization of actin filaments and 2) remodeling of cross-linker-rich actin adhesion zones, both of which are, in principle, mechanosensitive. By calculating the elastic forces that drive registry and their effect on actin polymerization rates, we estimate a characteristic timescale of tens of minutes for registry to be established, in agreement with experimentally observed timescales for individual kinetic processes involved in myosin stack formation, which we track and quantify. This model elucidates the role of actin turnover dynamics in myosin stacking and explains the loss of stacks seen when actin assembly or disassembly and cross-linking is experimentally disrupted in fibroblasts.
Collapse
Affiliation(s)
- Kinjal Dasbiswas
- Department of Physics, University of California, Merced, California.
| | - Shiqiong Hu
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Samuel A Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
53
|
Chaturvedi D, Prabhakar S, Aggarwal A, Atreya KB, VijayRaghavan K. Adult Drosophila muscle morphometry through microCT reveals dynamics during ageing. Open Biol 2019; 9:190087. [PMID: 31238820 PMCID: PMC6597753 DOI: 10.1098/rsob.190087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Indirect flight muscles (IFMs) in adult Drosophila provide the key power stroke for wing beating. They also serve as a valuable model for studying muscle development. An age-dependent decline in Drosophila free flight has been documented, but its relation to gross muscle structure has not yet been explored satisfactorily. Such analyses are impeded by conventional histological preparations and imaging techniques that limit exact morphometry of flight muscles. In this study, we employ microCT scanning on a tissue preparation that retains muscle morphology under homeostatic conditions. Focusing on a subset of IFMs called the dorsal longitudinal muscles (DLMs), we find that DLM volumes increase with age, partially due to the increased separation between myofibrillar fascicles, in a sex-dependent manner. We have uncovered and quantified asymmetry in the size of these muscles on either side of the longitudinal midline. Measurements of this resolution and scale make substantive studies that test the connection between form and function possible. We also demonstrate the application of this method to other insect species making it a valuable tool for histological analysis of insect biodiversity.
Collapse
Affiliation(s)
- Dhananjay Chaturvedi
- 1 National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India
| | - Sunil Prabhakar
- 2 microCT and EM Facility, National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India
| | - Aman Aggarwal
- 1 National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India.,3 Manipal Academy of Higher Education , Manipal, Karnataka 576104 , India
| | - Krishan B Atreya
- 1 National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India
| | - K VijayRaghavan
- 1 National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India
| |
Collapse
|
54
|
Lemke SB, Weidemann T, Cost AL, Grashoff C, Schnorrer F. A small proportion of Talin molecules transmit forces at developing muscle attachments in vivo. PLoS Biol 2019; 17:e3000057. [PMID: 30917109 PMCID: PMC6453563 DOI: 10.1371/journal.pbio.3000057] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/08/2019] [Accepted: 03/08/2019] [Indexed: 11/19/2022] Open
Abstract
Cells in developing organisms are subjected to particular mechanical forces that shape tissues and instruct cell fate decisions. How these forces are sensed and transmitted at the molecular level is therefore an important question, one that has mainly been investigated in cultured cells in vitro. Here, we elucidate how mechanical forces are transmitted in an intact organism. We studied Drosophila muscle attachment sites, which experience high mechanical forces during development and require integrin-mediated adhesion for stable attachment to tendons. Therefore, we quantified molecular forces across the essential integrin-binding protein Talin, which links integrin to the actin cytoskeleton. Generating flies expressing 3 Förster resonance energy transfer (FRET)-based Talin tension sensors reporting different force levels between 1 and 11 piconewton (pN) enabled us to quantify physiologically relevant molecular forces. By measuring primary Drosophila muscle cells, we demonstrate that Drosophila Talin experiences mechanical forces in cell culture that are similar to those previously reported for Talin in mammalian cell lines. However, in vivo force measurements at developing flight muscle attachment sites revealed that average forces across Talin are comparatively low and decrease even further while attachments mature and tissue-level tension remains high. Concomitantly, the Talin concentration at attachment sites increases 5-fold as quantified by fluorescence correlation spectroscopy (FCS), suggesting that only a small proportion of Talin molecules are mechanically engaged at any given time. Reducing Talin levels at late stages of muscle development results in muscle–tendon rupture in the adult fly, likely as a result of active muscle contractions. We therefore propose that a large pool of adhesion molecules is required to share high tissue forces. As a result, less than 15% of the molecules experience detectable forces at developing muscle attachment sites at the same time. Our findings define an important new concept of how cells can adapt to changes in tissue mechanics to prevent mechanical failure in vivo. The protein Talin links the transmembrane cell adhesion molecule integrin to the actin cytoskeleton. Quantitative FRET-based force measurements across Talin in vivo reveal that only few Talin molecules are under force during the development of muscle attachment sites. Cells in our body are constantly exposed to mechanical forces, which they need to sense and react to. In previous studies, fluorescent force sensors were developed to demonstrate that individual proteins in adhesion structures of a cell experience forces in the piconewton (pN) range. However, these cells were analyzed in isolation in an artificial plastic or glass environment. Here, we explored forces on adhesion proteins in their natural environment within a developing animal and used the muscle–tendon tissue in the fruit fly Drosophila as a model system. We made genetically modified fly lines with force sensors or controls inserted into the gene that produces the essential adhesion protein Talin. Using these force sensor flies, we found that only a small proportion of all the Talin proteins (<15%) present at developing muscle–tendon attachments experience detectable forces at the same time. Nevertheless, a large amount of Talin is accumulated at these attachments during fly development. We found that this large Talin pool is important to prevent rupture of the muscle–tendon connection in adult flies that produce high muscle forces during flight. In conclusion, we demonstrated that a large pool of Talin proteins is required for stable muscle–tendon attachment, likely with the individual Talin molecules dynamically sharing the mechanical load.
Collapse
Affiliation(s)
- Sandra B. Lemke
- Max Planck Institute of Biochemistry, Martinsried, Germany
- * E-mail: (FS); (CG); (SBL)
| | | | - Anna-Lena Cost
- Max Planck Institute of Biochemistry, Martinsried, Germany
- University of Münster, Institute for Molecular Cell Biology, Münster, Germany
| | - Carsten Grashoff
- Max Planck Institute of Biochemistry, Martinsried, Germany
- University of Münster, Institute for Molecular Cell Biology, Münster, Germany
- * E-mail: (FS); (CG); (SBL)
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Aix Marseille University, CNRS, IBDM, Marseille, France
- * E-mail: (FS); (CG); (SBL)
| |
Collapse
|
55
|
Dasbiswas K, Hu S, Schnorrer F, Safran SA, Bershadsky AD. Ordering of myosin II filaments driven by mechanical forces: experiments and theory. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0114. [PMID: 29632266 DOI: 10.1098/rstb.2017.0114] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2017] [Indexed: 12/27/2022] Open
Abstract
Myosin II filaments form ordered superstructures in both cross-striated muscle and non-muscle cells. In cross-striated muscle, myosin II (thick) filaments, actin (thin) filaments and elastic titin filaments comprise the stereotypical contractile units of muscles called sarcomeres. Linear chains of sarcomeres, called myofibrils, are aligned laterally in registry to form cross-striated muscle cells. The experimentally observed dependence of the registered organization of myofibrils on extracellular matrix elasticity has been proposed to arise from the interactions of sarcomeric contractile elements (considered as force dipoles) through the matrix. Non-muscle cells form small bipolar filaments built of less than 30 myosin II molecules. These filaments are associated in registry forming superstructures ('stacks') orthogonal to actin filament bundles. Formation of myosin II filament stacks requires the myosin II ATPase activity and function of the actin filament crosslinking, polymerizing and depolymerizing proteins. We propose that the myosin II filaments embedded into elastic, intervening actin network (IVN) function as force dipoles that interact attractively through the IVN. This is in analogy with the theoretical picture developed for myofibrils where the elastic medium is now the actin cytoskeleton itself. Myosin stack formation in non-muscle cells provides a novel mechanism for the self-organization of the actin cytoskeleton at the level of the entire cell.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Kinjal Dasbiswas
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Shiqiong Hu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | - Samuel A Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore .,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
56
|
Kaya-Çopur A, Schnorrer F. RNA Interference Screening for Genes Regulating Drosophila Muscle Morphogenesis. Methods Mol Biol 2019; 1889:331-348. [PMID: 30367424 DOI: 10.1007/978-1-4939-8897-6_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
RNA interference (RNAi) is the method of choice to systematically test for gene function in an intact organism. The model organism Drosophila has the advantage that RNAi is cell autonomous, meaning it does not spread from one cell to the next. Hence, RNAi can be performed in a tissue-specific manner by expressing short or long inverted repeat constructs (hairpins) designed to target mRNAs from one specific target gene. This achieves tissue-specific knock-down of a target gene of choice. Here, we detail the methodology to test gene function in Drosophila muscle tissue by expressing hairpins in a muscle-specific manner using the GAL4-UAS system. We further discuss the systematic RNAi resource collections available which also permit large scale screens in a muscle-specific manner. The full power of such screens is revealed by combination of high-throughput assays followed by detailed morphological assays. Together, this chapter should be a practical guide to enable the reader to either test a few candidate genes, or large gene sets for particular functions in Drosophila muscle tissue and provide first insights into the biological process the gene might be important for in muscle.
Collapse
|
57
|
Perillo M, Folker ES. Specialized Positioning of Myonuclei Near Cell-Cell Junctions. Front Physiol 2018; 9:1531. [PMID: 30443220 PMCID: PMC6221937 DOI: 10.3389/fphys.2018.01531] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/11/2018] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscles are large cells with multiple nuclei that are precisely positioned. The importance of the correct nuclear position is highlighted by the correlation between mispositioned nuclei and muscle disease (Spiro et al., 1966; Gueneau et al., 2009). Myonuclei are generally considered to be equivalent and therefore how far nuclei are from their nearest neighbor is the primary measurement of nuclear positioning. However, skeletal muscles have two specialized cell-cell contacts, the neuromuscular (NMJ) and the myotendinous junction (MTJ). Using these cell-cell contacts as reference points, we have determined that there are at least two distinct populations of myonuclei whose position is uniquely regulated. The post-synaptic myonuclei (PSMs) near the NMJ, and the myonuclei near the myotendinous junction myonuclei (MJMs) have different spacing requirements compared to other myonuclei. The correct positioning of pairs of PSMs depends on the specific action of dynein and kinesin. Positions of the PSMs and MJMs relative to the junctions that define them depend on the KASH-domain protein, Klar. We also found that MJMs are positioned close to the MTJ as a consequence of muscle stretching. Our study defines for the first time that nuclei in skeletal muscles are not all equally positioned, and that subsets of distinct myonuclei have specialized rules that dictate their spacing.
Collapse
Affiliation(s)
| | - Eric S. Folker
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
58
|
Manieu C, Olivares GH, Vega-Macaya F, Valdivia M, Olguín P. Jitterbug/Filamin and Myosin-II form a complex in tendon cells required to maintain epithelial shape and polarity during musculoskeletal system development. Mech Dev 2018; 154:309-314. [PMID: 30213743 DOI: 10.1016/j.mod.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 01/16/2023]
Abstract
During musculoskeletal system development, mechanical tension is generated between muscles and tendon-cells. This tension is required for muscle differentiation and is counterbalanced by tendon-cells avoiding tissue deformation. Both, Jbug/Filamin, an actin-meshwork organizing protein, and non-muscle Myosin-II (Myo-II) are required to maintain the shape and cell orientation of the Drosophila notum epithelium during flight muscle attachment to tendon cells. Here we show that halving the genetic dose of Rho kinase (Drok), the main activator of Myosin-II, enhances the epithelial deformation and bristle orientation defects associated with jbug/Filamin knockdown. Drok and activated Myo-II localize at the apical cell junctions, tendon processes and are associated to the myotendinous junction. Further, we found that Jbug/Filamin co-distribute at tendon cells with activated Myo-II. Finally, we found that Jbug/Filamin and Myo-II are in the same molecular complex and that the actin-binding domain of Jbug/Filamin is necessary for this interaction. These data together suggest that Jbug/Filamin and Myo-II proteins may act together in tendon cells to balance the tension generated during development of muscles-tendon interaction, maintaining the shape and polarity of the Drosophila notum epithelium.
Collapse
Affiliation(s)
- Catalina Manieu
- Program in Human Genetics, Institute of Biomedical Sciences, Biomedical Neurosciences Institute, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gonzalo H Olivares
- Program in Human Genetics, Institute of Biomedical Sciences, Biomedical Neurosciences Institute, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Franco Vega-Macaya
- Program in Human Genetics, Institute of Biomedical Sciences, Biomedical Neurosciences Institute, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mauricio Valdivia
- Program in Human Genetics, Institute of Biomedical Sciences, Biomedical Neurosciences Institute, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Patricio Olguín
- Program in Human Genetics, Institute of Biomedical Sciences, Biomedical Neurosciences Institute, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
59
|
Richier B, Inoue Y, Dobramysl U, Friedlander J, Brown NH, Gallop JL. Integrin signaling downregulates filopodia during muscle-tendon attachment. J Cell Sci 2018; 131:jcs.217133. [PMID: 30054384 PMCID: PMC6127725 DOI: 10.1242/jcs.217133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/12/2018] [Indexed: 11/25/2022] Open
Abstract
Cells need to sense their environment to ensure accurate targeting to specific destinations. This occurs in developing muscles, which need to attach to tendon cells before muscle contractions can begin. Elongating myotube tips form filopodia, which are presumed to have sensory roles, and are later suppressed upon building the attachment site. Here, we use live imaging and quantitative image analysis of lateral transverse (LT) myotubes in Drosophila to show that filopodia suppression occurs as a result of integrin signaling. Loss of the integrin subunits αPS2 and βPS (also known as If and Mys, respectively, in flies) increased filopodia number and length at stages when they are normally suppressed. Conversely, inducing integrin signaling, achieved by the expression of constitutively dimerised βPS cytoplasmic domain (diβ), prematurely suppressed filopodia. We discovered that the integrin signal is transmitted through the protein G protein-coupled receptor kinase interacting ArfGAP (Git) and its downstream kinase p21-activated kinase (Pak). Absence of these proteins causes profuse filopodia and prevents the filopodial inhibition mediated by diβ. Thus, integrin signaling terminates the exploratory behavior of myotubes seeking tendons, enabling the actin machinery to focus on forming a strong attachment and assembling the contractile apparatus. Summary: Integrins signal through Git and Pak to downregulate filopodia when muscles reach their target attachment site in Drosophila.
Collapse
Affiliation(s)
- Benjamin Richier
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK.,Dept. of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Yoshiko Inoue
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK.,Dept. of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.,Dept. of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Ulrich Dobramysl
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK.,Dept. of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Jonathan Friedlander
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK.,Dept. of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Nicholas H Brown
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK.,Dept. of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Jennifer L Gallop
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK .,Dept. of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
60
|
Green HJ, Griffiths AGM, Ylänne J, Brown NH. Novel functions for integrin-associated proteins revealed by analysis of myofibril attachment in Drosophila. eLife 2018; 7:e35783. [PMID: 30028294 PMCID: PMC6092120 DOI: 10.7554/elife.35783] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/19/2018] [Indexed: 01/18/2023] Open
Abstract
We use the myotendinous junction of Drosophila flight muscles to explore why many integrin associated proteins (IAPs) are needed and how their function is coordinated. These muscles revealed new functions for IAPs not required for viability: Focal Adhesion Kinase (FAK), RSU1, tensin and vinculin. Genetic interactions demonstrated a balance between positive and negative activities, with vinculin and tensin positively regulating adhesion, while FAK inhibits elevation of integrin activity by tensin, and RSU1 keeps PINCH activity in check. The molecular composition of myofibril termini resolves into 4 distinct layers, one of which is built by a mechanotransduction cascade: vinculin facilitates mechanical opening of filamin, which works with the Arp2/3 activator WASH to build an actin-rich layer positioned between integrins and the first sarcomere. Thus, integration of IAP activity is needed to build the complex architecture of the myotendinous junction, linking the membrane anchor to the sarcomere.
Collapse
Affiliation(s)
- Hannah J Green
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
- Department of Biological and Environmental SciencesUniversity of JyväskyläJyväskyläFinland
- Nanoscience CenterUniversity of JyväskyläJyväskyläFinland
| | - Annabel GM Griffiths
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Jari Ylänne
- Department of Biological and Environmental SciencesUniversity of JyväskyläJyväskyläFinland
- Nanoscience CenterUniversity of JyväskyläJyväskyläFinland
| | - Nicholas H Brown
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
61
|
Franchi MV, Ruoss S, Valdivieso P, Mitchell KW, Smith K, Atherton PJ, Narici MV, Flück M. Regional regulation of focal adhesion kinase after concentric and eccentric loading is related to remodelling of human skeletal muscle. Acta Physiol (Oxf) 2018; 223:e13056. [PMID: 29438584 DOI: 10.1111/apha.13056] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/31/2022]
Abstract
AIMS We assessed focal adhesion kinase (FAK) response to concentric (CON) vs eccentric (ECC) resistance training (RT) at two vastus lateralis (VL) sites, and the relationships between FAK, muscle protein synthesis (MPS) and morphological remodelling. METHODS Six young males trained both legs unilaterally 3 times/week for 8 weeks; one leg performed CON RT, the contralateral performed ECC RT. Muscle biopsies were collected after training from VL mid-belly (MID) and distal (distal) sites at 0, 4, 8 weeks. Focal adhesion kinase content and activation were evaluated by immunoblotting. MPS was assessed by deuterium oxide tracer; morphological adaptations were evaluated by ultrasound and DXA. RESULTS pY397-FAK 8 weeks levels were ~4-fold greater after ECC at the distal site compared to CON (P < .05); pY397FAK to total FAK ratio was greater in ECC vs CON at 4 (~2.2-fold, P < .05) and 8 weeks (~9-fold, P < .001) at the distal site. Meta-vinculin was found transiently increased at 4 weeks at the distal site only after ECC RT. ECC presented greater fascicle length (Lf) increases (10.5% vs 4%), whereas CON showed greater in pennation angle (PA) changes (12.3% vs 2.1%). MPS did not differ between exercise types or muscle sites at all time points. distal pY397-FAK and pY397-FAK/FAK values correlated to changes in Lf at 8 weeks (r = .76, P < .01 and r = .66, P < .05 respectively). CONCLUSION Focal adhesion kinase phosphorylation was greater at 8 weeks after ECC RT and was muscle region-specific. FAK activity correlated to contraction-dependent architectural remodelling, suggesting a potential role of FAK in orienting muscle structural changes in response to distinct mechanical stimuli.
Collapse
Affiliation(s)
- M V Franchi
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- MRC-ARUK Centre for Musculoskeletal Ageing, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - S Ruoss
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - P Valdivieso
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - K W Mitchell
- MRC-ARUK Centre for Musculoskeletal Ageing, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - K Smith
- MRC-ARUK Centre for Musculoskeletal Ageing, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - P J Atherton
- MRC-ARUK Centre for Musculoskeletal Ageing, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - M V Narici
- MRC-ARUK Centre for Musculoskeletal Ageing, Royal Derby Hospital, University of Nottingham, Derby, UK
- Department of Biomedical Sciences, Institute of Physiology, University of Padua, Padua, Italy
| | - M Flück
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
62
|
Spletter ML, Barz C, Yeroslaviz A, Zhang X, Lemke SB, Bonnard A, Brunner E, Cardone G, Basler K, Habermann BH, Schnorrer F. A transcriptomics resource reveals a transcriptional transition during ordered sarcomere morphogenesis in flight muscle. eLife 2018; 7:34058. [PMID: 29846170 PMCID: PMC6005683 DOI: 10.7554/elife.34058] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/26/2018] [Indexed: 01/07/2023] Open
Abstract
Muscles organise pseudo-crystalline arrays of actin, myosin and titin filaments to build force-producing sarcomeres. To study sarcomerogenesis, we have generated a transcriptomics resource of developing Drosophila flight muscles and identified 40 distinct expression profile clusters. Strikingly, most sarcomeric components group in two clusters, which are strongly induced after all myofibrils have been assembled, indicating a transcriptional transition during myofibrillogenesis. Following myofibril assembly, many short sarcomeres are added to each myofibril. Subsequently, all sarcomeres mature, reaching 1.5 µm diameter and 3.2 µm length and acquiring stretch-sensitivity. The efficient induction of the transcriptional transition during myofibrillogenesis, including the transcriptional boost of sarcomeric components, requires in part the transcriptional regulator Spalt major. As a consequence of Spalt knock-down, sarcomere maturation is defective and fibers fail to gain stretch-sensitivity. Together, this defines an ordered sarcomere morphogenesis process under precise transcriptional control - a concept that may also apply to vertebrate muscle or heart development.
Collapse
Affiliation(s)
- Maria L Spletter
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Biomedical Center, Physiological ChemistryLudwig-Maximilians-Universität MünchenMartinsriedGermany
| | - Christiane Barz
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Assa Yeroslaviz
- Computational Biology GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Xu Zhang
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
| | - Sandra B Lemke
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Adrien Bonnard
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- Aix Marseille Univ, INSERM, TAGCMarseilleFrance
| | - Erich Brunner
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Giovanni Cardone
- Imaging FacilityMax Planck Institute of BiochemistryMartinsriedGermany
| | - Konrad Basler
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Bianca H Habermann
- Computational Biology GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- Aix Marseille Univ, INSERM, TAGCMarseilleFrance
| | - Frank Schnorrer
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
| |
Collapse
|
63
|
Camuglia JM, Mandigo TR, Moschella R, Mark J, Hudson CH, Sheen D, Folker ES. An RNAi based screen in Drosophila larvae identifies fascin as a regulator of myoblast fusion and myotendinous junction structure. Skelet Muscle 2018; 8:12. [PMID: 29625624 PMCID: PMC5889537 DOI: 10.1186/s13395-018-0159-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/22/2018] [Indexed: 02/08/2023] Open
Abstract
Background A strength of Drosophila as a model system is its utility as a tool to screen for novel regulators of various functional and developmental processes. However, the utility of Drosophila as a screening tool is dependent on the speed and simplicity of the assay used. Methods Here, we use larval locomotion as an assay to identify novel regulators of skeletal muscle function. We combined this assay with muscle-specific depletion of 82 genes to identify genes that impact muscle function by their expression in muscle cells. The data from the screen were supported with characterization of the muscle pattern in embryos and larvae that had disrupted expression of the strongest hit from the screen. Results With this assay, we showed that 12/82 tested genes regulate muscle function. Intriguingly, the disruption of five genes caused an increase in muscle function, illustrating that mechanisms that reduce muscle function exist and that the larval locomotion assay is sufficiently quantitative to identify conditions that both increase and decrease muscle function. We extended the data from this screen and tested the mechanism by which the strongest hit, fascin, impacted muscle function. Compared to controls, animals in which fascin expression was disrupted with either a mutant allele or muscle-specific expression of RNAi had fewer muscles, smaller muscles, muscles with fewer nuclei, and muscles with disrupted myotendinous junctions. However, expression of RNAi against fascin only after the muscle had finished embryonic development did not recapitulate any of these phenotypes. Conclusions These data suggest that muscle function is reduced due to impaired myoblast fusion, muscle growth, and muscle attachment. Together, these data demonstrate the utility of Drosophila larval locomotion as an assay for the identification of novel regulators of muscle development and implicate fascin as necessary for embryonic muscle development. Electronic supplementary material The online version of this article (10.1186/s13395-018-0159-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Torrey R Mandigo
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | | | - Jenna Mark
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | | | - Derek Sheen
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Eric S Folker
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
64
|
Loison O, Weitkunat M, Kaya-Çopur A, Nascimento Alves C, Matzat T, Spletter ML, Luschnig S, Brasselet S, Lenne PF, Schnorrer F. Polarization-resolved microscopy reveals a muscle myosin motor-independent mechanism of molecular actin ordering during sarcomere maturation. PLoS Biol 2018; 16:e2004718. [PMID: 29702642 PMCID: PMC5955565 DOI: 10.1371/journal.pbio.2004718] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/16/2018] [Accepted: 04/09/2018] [Indexed: 11/18/2022] Open
Abstract
Sarcomeres are stereotyped force-producing mini-machines of striated muscles. Each sarcomere contains a pseudocrystalline order of bipolar actin and myosin filaments, which are linked by titin filaments. During muscle development, these three filament types need to assemble into long periodic chains of sarcomeres called myofibrils. Initially, myofibrils contain immature sarcomeres, which gradually mature into their pseudocrystalline order. Despite the general importance, our understanding of myofibril assembly and sarcomere maturation in vivo is limited, in large part because determining the molecular order of protein components during muscle development remains challenging. Here, we applied polarization-resolved microscopy to determine the molecular order of actin during myofibrillogenesis in vivo. This method revealed that, concomitantly with mechanical tension buildup in the myotube, molecular actin order increases, preceding the formation of immature sarcomeres. Mechanistically, both muscle and nonmuscle myosin contribute to this actin order gain during early stages of myofibril assembly. Actin order continues to increase while myofibrils and sarcomeres mature. Muscle myosin motor activity is required for the regular and coordinated assembly of long myofibrils but not for the high actin order buildup during sarcomere maturation. This suggests that, in muscle, other actin-binding proteins are sufficient to locally bundle or cross-link actin into highly regular arrays.
Collapse
Affiliation(s)
| | - Manuela Weitkunat
- Max Planck Institute of Biochemistry, Muscle Dynamics Group, Martinsried, Germany
| | - Aynur Kaya-Çopur
- Max Planck Institute of Biochemistry, Muscle Dynamics Group, Martinsried, Germany
| | | | - Till Matzat
- Institute of Neurobiology and Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Münster, Münster, Germany
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Maria L. Spletter
- Max Planck Institute of Biochemistry, Muscle Dynamics Group, Martinsried, Germany
| | - Stefan Luschnig
- Institute of Neurobiology and Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Münster, Münster, Germany
| | - Sophie Brasselet
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | | | - Frank Schnorrer
- Aix Marseille Université, CNRS, IBDM, Marseille, France
- Max Planck Institute of Biochemistry, Muscle Dynamics Group, Martinsried, Germany
| |
Collapse
|
65
|
Auld AL, Roberts SA, Murphy CB, Camuglia JM, Folker ES. Aplip1, the Drosophila homolog of JIP1, regulates myonuclear positioning and muscle stability. J Cell Sci 2018; 131:jcs.205807. [PMID: 29487176 DOI: 10.1242/jcs.205807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/07/2018] [Indexed: 12/23/2022] Open
Abstract
During muscle development, myonuclei undergo a complex set of movements that result in evenly spaced nuclei throughout the muscle cell. In Drosophila, two separate pools of Kinesin and Dynein work in synchrony to drive this process. However, how these two pools are specified is not known. Here, we investigate the role of Aplip1 (the Drosophila homolog of JIP1, JIP1 is also known as MAPK8IP1), a known regulator of both Kinesin and Dynein, in myonuclear positioning. Aplip1 localizes to the myotendinous junction and has genetically separable roles in myonuclear positioning and muscle stability. In Aplip1 mutant embryos, there was an increase in the percentage of embryos that had both missing and collapsed muscles. Via a separate mechanism, we demonstrate that Aplip1 regulates both the final position of and the dynamic movements of myonuclei. Aplip1 genetically interacts with both Raps (also known as Pins) and Kinesin to position myonuclei. Furthermore, Dynein and Kinesin localization are disrupted in Aplip1 mutants suggesting that Aplip1-dependent nuclear positioning requires Dynein and Kinesin. Taken together, these data are consistent with Aplip1 having a function in the regulation of Dynein- and Kinesin-mediated pulling of nuclei from the muscle end.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alexander L Auld
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Sacha A Roberts
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Ciaran B Murphy
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Eric S Folker
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
66
|
Abstract
Muscles together with tendons and the skeleton enable animals including humans to move their body parts. Muscle morphogenesis is highly conserved from animals to humans. Therefore, the powerful Drosophila model system can be used to study concepts of muscle-tendon development that can also be applied to human muscle biology. Here, we describe in detail how morphogenesis of the adult muscle-tendon system can be easily imaged in living, developing Drosophila pupae. Hence, the method allows investigating proteins, cells and tissues in their physiological environment. In addition to a step-by-step protocol with helpful tips, we provide a comprehensive overview of fluorescently tagged marker proteins that are suitable for studying the muscle-tendon system. To highlight the versatile applications of the protocol, we show example movies ranging from visualization of long-term morphogenetic events – occurring on the time scale of hours and days – to visualization of short-term dynamic processes like muscle twitching occurring on time scale of seconds. Taken together, this protocol should enable the reader to design and perform live-imaging experiments for investigating muscle-tendon morphogenesis in the intact organism.
Collapse
Affiliation(s)
- Sandra B Lemke
- Muscle Dynamics Group, Max Planck Institute of Biochemistry;
| | - Frank Schnorrer
- Muscle Dynamics Group, Max Planck Institute of Biochemistry; Aix Marseille University, CNRS, IBDM;
| |
Collapse
|
67
|
Bulgakova NA, Wellmann J, Brown NH. Diverse integrin adhesion stoichiometries caused by varied actomyosin activity. Open Biol 2018; 7:rsob.160250. [PMID: 28446705 PMCID: PMC5413901 DOI: 10.1098/rsob.160250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/17/2017] [Indexed: 12/14/2022] Open
Abstract
Cells in an organism are subjected to numerous sources of external and internal forces, and are able to sense and respond to these forces. Integrin-mediated adhesion links the extracellular matrix outside cells to the cytoskeleton inside, and participates in sensing, transmitting and responding to forces. While integrin adhesion rapidly adapts to changes in forces in isolated migrating cells, it is not known whether similar or more complex responses occur within intact, developing tissues. Here, we studied changes in integrin adhesion composition upon different contractility conditions in Drosophila embryonic muscles. We discovered that all integrin adhesion components tested were still present at muscle attachment sites (MASs) when either cytoplasmic or muscle myosin II was genetically removed, suggesting a primary role of a developmental programme in the initial assembly of integrin adhesions. Contractility does, however, increase the levels of integrin adhesion components, suggesting a mechanism to balance the strength of muscle attachment to the force of muscle contraction. Perturbing contractility in distinct ways, by genetic removal of either cytoplasmic or muscle myosin II or eliminating muscle innervation, each caused unique alterations to the stoichiometry at MASs. This suggests that different integrin-associated proteins are added to counteract different kinds of force increase.
Collapse
Affiliation(s)
- Natalia A Bulgakova
- Department of Physiology, Development and Neuroscience and The Gurdon Institute, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Jutta Wellmann
- Department of Physiology, Development and Neuroscience and The Gurdon Institute, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience and The Gurdon Institute, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
68
|
Chopra A, Kutys ML, Zhang K, Polacheck WJ, Sheng CC, Luu RJ, Eyckmans J, Hinson JT, Seidman JG, Seidman CE, Chen CS. Force Generation via β-Cardiac Myosin, Titin, and α-Actinin Drives Cardiac Sarcomere Assembly from Cell-Matrix Adhesions. Dev Cell 2018; 44:87-96.e5. [PMID: 29316444 DOI: 10.1016/j.devcel.2017.12.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/16/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
Abstract
Truncating mutations in the sarcomere protein titin cause dilated cardiomyopathy due to sarcomere insufficiency. However, it remains mechanistically unclear how these mutations decrease sarcomere content in cardiomyocytes. Utilizing human induced pluripotent stem cell-derived cardiomyocytes, CRISPR/Cas9, and live microscopy, we characterize the fundamental mechanisms of human cardiac sarcomere formation. We observe that sarcomerogenesis initiates at protocostameres, sites of cell-extracellular matrix adhesion, where nucleation and centripetal assembly of α-actinin-2-containing fibers provide a template for the fusion of Z-disk precursors, Z bodies, and subsequent striation. We identify that β-cardiac myosin-titin-protocostamere form an essential mechanical connection that transmits forces required to direct α-actinin-2 centripetal fiber assembly and sarcomere formation. Titin propagates diastolic traction stresses from β-cardiac myosin, but not α-cardiac myosin or non-muscle myosin II, to protocostameres during sarcomerogenesis. Ablating protocostameres or decoupling titin from protocostameres abolishes sarcomere assembly. Together these results identify the mechanical and molecular components critical for human cardiac sarcomerogenesis.
Collapse
Affiliation(s)
- Anant Chopra
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Matthew L Kutys
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Kehan Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - William J Polacheck
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Calvin C Sheng
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rebeccah J Luu
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - J Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Cardiology Center, University of Connecticut Health, Farmington, CT 06030, USA.
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
69
|
Abstract
The skeletal muscle system is the largest organ in motile animals, constituting between 35 and 55% of the human body mass, and up to 75% of the body mass in flying organisms like Drosophila. The flight muscles alone in flying insects comprise up to 65% of total body mass. Not only is the musculature the largest organ system, it is also exquisitely complex, with single muscles existing in different shapes and sizes. These different morphologies allow for such different functions as the high-frequency beating of a wing in a hummingbird, the dilation of the pupil in a human eye, or the maintenance of posture in a giraffe's neck.
Collapse
Affiliation(s)
- Ingo Bothe
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mary K Baylies
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
70
|
Abstract
During embryogenesis, the musculoskeletal system develops while containing within itself a force generator in the form of the musculature. This generator becomes functional relatively early in development, exerting an increasing mechanical load on neighboring tissues as development proceeds. A growing body of evidence indicates that such mechanical forces can be translated into signals that combine with the genetic program of organogenesis. This unique situation presents both a major challenge and an opportunity to the other tissues of the musculoskeletal system, namely bones, joints, tendons, ligaments and the tissues connecting them. Here, we summarize the involvement of muscle-induced mechanical forces in the development of various vertebrate musculoskeletal components and their integration into one functional unit.
Collapse
Affiliation(s)
- Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
71
|
Gunage RD, Dhanyasi N, Reichert H, VijayRaghavan K. Drosophila adult muscle development and regeneration. Semin Cell Dev Biol 2017; 72:56-66. [DOI: 10.1016/j.semcdb.2017.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/08/2017] [Accepted: 11/11/2017] [Indexed: 12/13/2022]
|
72
|
Ricotti L, Trimmer B, Feinberg AW, Raman R, Parker KK, Bashir R, Sitti M, Martel S, Dario P, Menciassi A. Biohybrid actuators for robotics: A review of devices actuated by living cells. Sci Robot 2017; 2:2/12/eaaq0495. [PMID: 33157905 DOI: 10.1126/scirobotics.aaq0495] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
Actuation is essential for artificial machines to interact with their surrounding environment and to accomplish the functions for which they are designed. Over the past few decades, there has been considerable progress in developing new actuation technologies. However, controlled motion still represents a considerable bottleneck for many applications and hampers the development of advanced robots, especially at small length scales. Nature has solved this problem using molecular motors that, through living cells, are assembled into multiscale ensembles with integrated control systems. These systems can scale force production from piconewtons up to kilonewtons. By leveraging the performance of living cells and tissues and directly interfacing them with artificial components, it should be possible to exploit the intricacy and metabolic efficiency of biological actuation within artificial machines. We provide a survey of important advances in this biohybrid actuation paradigm.
Collapse
Affiliation(s)
- Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy.
| | - Barry Trimmer
- Department of Biology, Tufts University, Medford, MA 02153, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ritu Raman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Metin Sitti
- Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Sylvain Martel
- NanoRobotics Laboratory, Department of Computer and Software Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Paolo Dario
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| |
Collapse
|
73
|
Kanca O, Bellen HJ, Schnorrer F. Gene Tagging Strategies To Assess Protein Expression, Localization, and Function in Drosophila. Genetics 2017; 207:389-412. [PMID: 28978772 PMCID: PMC5629313 DOI: 10.1534/genetics.117.199968] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/13/2017] [Indexed: 01/15/2023] Open
Abstract
Analysis of gene function in complex organisms relies extensively on tools to detect the cellular and subcellular localization of gene products, especially proteins. Typically, immunostaining with antibodies provides these data. However, due to cost, time, and labor limitations, generating specific antibodies against all proteins of a complex organism is not feasible. Furthermore, antibodies do not enable live imaging studies of protein dynamics. Hence, tagging genes with standardized immunoepitopes or fluorescent tags that permit live imaging has become popular. Importantly, tagging genes present in large genomic clones or at their endogenous locus often reports proper expression, subcellular localization, and dynamics of the encoded protein. Moreover, these tagging approaches allow the generation of elegant protein removal strategies, standardization of visualization protocols, and permit protein interaction studies using mass spectrometry. Here, we summarize available genomic resources and techniques to tag genes and discuss relevant applications that are rarely, if at all, possible with antibodies.
Collapse
Affiliation(s)
- Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Howard Hughes Medical Institute, Houston, Texas 77030
| | - Frank Schnorrer
- Developmental Biology Institute of Marseille (IBDM), UMR 7288, CNRS, Aix-Marseille Université, 13288, France
| |
Collapse
|
74
|
Bonnet A, Lambert G, Ernest S, Dutrieux FX, Coulpier F, Lemoine S, Lobbardi R, Rosa FM. Quaking RNA-Binding Proteins Control Early Myofibril Formation by Modulating Tropomyosin. Dev Cell 2017; 42:527-541.e4. [PMID: 28867488 DOI: 10.1016/j.devcel.2017.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/26/2017] [Accepted: 08/03/2017] [Indexed: 10/24/2022]
Abstract
Skeletal muscle contraction is mediated by myofibrils, complex multi-molecular scaffolds structured into repeated units, the sarcomeres. Myofibril structure and function have been extensively studied, but the molecular processes regulating its formation within the differentiating muscle cell remain largely unknown. Here we show in zebrafish that genetic interference with the Quaking RNA-binding proteins disrupts the initial steps of myofibril assembly without affecting early muscle differentiation. Using RNA sequencing, we demonstrate that Quaking is required for accumulation of the muscle-specific tropomyosin-3 transcript, tpm3.12. Further functional analyses reveal that Tpm3.12 mediates Quaking control of myofibril formation. Moreover, we identified a Quaking-binding site in the 3' UTR of tpm3.12 transcript, which is required in vivo for tpm3.12 accumulation and myofibril formation. Our work uncovers a Quaking/Tpm3 pathway controlling de novo myofibril assembly. This unexpected developmental role for Tpm3 could be at the origin of muscle defects observed in human congenital myopathies associated with tpm3 mutation.
Collapse
Affiliation(s)
- Aline Bonnet
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France.
| | - Guillaume Lambert
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France
| | - Sylvain Ernest
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France
| | - François Xavier Dutrieux
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France
| | - Fanny Coulpier
- INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France; IBENS, Institut de Biologie de l'Ecole Normale Supérieure, Plateforme Génomique, 75005 Paris, France
| | - Sophie Lemoine
- INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France; IBENS, Institut de Biologie de l'Ecole Normale Supérieure, Plateforme Génomique, 75005 Paris, France
| | - Riadh Lobbardi
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France
| | - Frédéric Marc Rosa
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France.
| |
Collapse
|
75
|
Segal D. Live Imaging of Myogenesis in Indirect Flight Muscles in Drosophila. Bio Protoc 2017; 7:e2377. [PMID: 34541118 DOI: 10.21769/bioprotoc.2377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Accepted: 06/04/2017] [Indexed: 11/02/2022] Open
Abstract
The indirect flight muscles (IFMs) are the largest muscles in the fly, making up the bulk of the adult thorax. IFMs in Drosophila are generated during pupariation by fusion of hundreds of muscle precursor cells (myoblasts) with larval muscle templates (myotubes). Prominent features, including the large number of fusion events, the structural similarity to vertebrate muscles, and the amenability to the powerful genetic techniques of the Drosophila system make the IFMs an attractive system to study muscle cell fusion. Here we describe methods for live imaging of IFMs, both in intact pupae, and in isolated IFMs ex-vivo. The protocols elaborated upon here were used in the manuscript by ( Segal et al., 2016 ).
Collapse
Affiliation(s)
- Dagan Segal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
76
|
Mechanical forces during muscle development. Mech Dev 2017; 144:92-101. [DOI: 10.1016/j.mod.2016.11.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 01/09/2023]
|
77
|
Valdivia M, Vega-Macaya F, Olguín P. Mechanical Control of Myotendinous Junction Formation and Tendon Differentiation during Development. Front Cell Dev Biol 2017; 5:26. [PMID: 28386542 PMCID: PMC5362613 DOI: 10.3389/fcell.2017.00026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/07/2017] [Indexed: 01/01/2023] Open
Abstract
The development of the musculoskeletal system is a great model to study the interplay between chemical and mechanical inter-tissue signaling in cell adhesion, tissue morphogenesis and differentiation. In both vertebrates and invertebrates (e.g., Drosophila melanogaster) the formation of muscle-tendon interaction generates mechanical forces which are required for myotendinous junction maturation and tissue differentiation. In addition, these forces must be withstood by muscles and tendons in order to prevent detachment from each other, deformation or even losing their integrity. Extracellular matrix remodeling at the myotendinous junction is key to resist mechanical load generated by muscle contraction. Recent evidences in vertebrates indicate that mechanical forces generated during junction formation regulate chemical signaling leading to extracellular matrix remodeling, however, the mechanotransduction mechanisms associated to this response remains elusive. In addition to extracellular matrix remodeling, the ability of Drosophila tendon-cells to bear mechanical load depends on rearrangement of tendon cell cytoskeleton, thus studying the molecular mechanisms involved in this process is critical to understand the contribution of mechanical forces to the development of the musculoskeletal system. Here, we review recent findings regarding the role of chemical and mechanical signaling in myotendinous junction formation and tendon differentiation, and discuss molecular mechanisms of mechanotransduction that may allow tendon cells to withstand mechanical load during development of the musculoskeletal system.
Collapse
Affiliation(s)
- Mauricio Valdivia
- Program in Human Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Biomedical Neurosciences Institute, University of Chile Santiago, Chile
| | - Franco Vega-Macaya
- Program in Human Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Biomedical Neurosciences Institute, University of Chile Santiago, Chile
| | - Patricio Olguín
- Program in Human Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Biomedical Neurosciences Institute, University of Chile Santiago, Chile
| |
Collapse
|
78
|
Domsch K, Acs A, Obermeier C, Nguyen HT, Reim I. Identification of the essential protein domains for Mib2 function during the development of the Drosophila larval musculature and adult flight muscles. PLoS One 2017; 12:e0173733. [PMID: 28282454 PMCID: PMC5345843 DOI: 10.1371/journal.pone.0173733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/24/2017] [Indexed: 12/01/2022] Open
Abstract
The proper differentiation and maintenance of myofibers is fundamental to a functional musculature. Disruption of numerous mostly structural factors leads to perturbations of these processes. Among the limited number of known regulatory factors for these processes is Mind bomb2 (Mib2), a muscle-associated E3 ubiquitin ligase, which was previously established to be required for maintaining the integrity of larval muscles. In this study, we have examined the mechanistic aspects of Mib2 function by performing a detailed functional dissection of the Mib2 protein. We show that the ankyrin repeats, in its entirety, and the hitherto uncharacterized Mib-specific domains (MIB), are important for the major function of Mib2 in skeletal and visceral muscles in the Drosophila embryo. Furthermore, we characterize novel mib2 alleles that have arisen from a forward genetic screen aimed at identifying regulators of myogenesis. Two of these alleles are viable, but flightless hypomorphic mib2 mutants, and harbor missense mutations in the MIB domain and RING finger, respectively. Functional analysis of these new alleles, including in vivo imaging, demonstrates that Mib2 plays an additional important role in the development of adult thorax muscles, particularly in maintaining the larval templates for the dorsal longitudinal indirect flight muscles during metamorphosis.
Collapse
Affiliation(s)
- Katrin Domsch
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Acs
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Obermeier
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hanh T. Nguyen
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ingolf Reim
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
79
|
Weitkunat M, Brasse M, Bausch AR, Schnorrer F. Mechanical tension and spontaneous muscle twitching precede the formation of cross-striated muscle in vivo. Development 2017; 144:1261-1272. [PMID: 28174246 PMCID: PMC5399620 DOI: 10.1242/dev.140723] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/28/2017] [Indexed: 02/05/2023]
Abstract
Muscle forces are produced by repeated stereotypical actomyosin units called sarcomeres. Sarcomeres are chained into linear myofibrils spanning the entire muscle fiber. In mammalian body muscles, myofibrils are aligned laterally, resulting in their typical cross-striated morphology. Despite this detailed textbook knowledge about the adult muscle structure, it is still unclear how cross-striated myofibrils are built in vivo. Here, we investigate the morphogenesis of Drosophila abdominal muscles and establish them as an in vivo model for cross-striated muscle development. By performing live imaging, we find that long immature myofibrils lacking a periodic actomyosin pattern are built simultaneously in the entire muscle fiber and then align laterally to give mature cross-striated myofibrils. Interestingly, laser micro-lesion experiments demonstrate that mechanical tension precedes the formation of the immature myofibrils. Moreover, these immature myofibrils do generate spontaneous Ca2+-dependent contractions in vivo, which, when chemically blocked, result in cross-striation defects. Taken together, these results suggest a myofibrillogenesis model in which mechanical tension and spontaneous muscle twitching synchronize the simultaneous self-organization of different sarcomeric protein complexes to build highly regular cross-striated myofibrils spanning the length of large muscle fibers. Summary: In Drosophila, immature myofibrils are built simultaneously across an entire muscle fiber, and then self-organize in a manner dependent on spontaneous contractions and mechanical tension.
Collapse
Affiliation(s)
- Manuela Weitkunat
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Martina Brasse
- Lehrstuhl für Biophysik E27, Technische Universität München, James-Franck-Straße 1, Garching 85748, Germany
| | - Andreas R Bausch
- Lehrstuhl für Biophysik E27, Technische Universität München, James-Franck-Straße 1, Garching 85748, Germany
| | - Frank Schnorrer
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany .,Developmental Biology Institute of Marseille (IBDM), CNRS, UMR 7288, Aix-Marseille Université, Case 907, Parc Scientifique de Luminy, Marseille 13288, France
| |
Collapse
|
80
|
Pérez-Moreno JJ, Espina-Zambrano AG, García-Calderón CB, Estrada B. Kon-tiki/Perdido enhances PS2 integrin adhesion and localizes its ligand, Thrombospondin, in the myotendinous junction. J Cell Sci 2017; 130:950-962. [DOI: 10.1242/jcs.197459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022] Open
Abstract
Cell-extracellular matrix adhesion is mediated by cell receptors, mainly integrins and transmembrane proteoglycans, which can functionally interact. How these receptors are regulated and coordinated is largely unknown and key to understand cell adhesion in development. We show that the conserved transmembrane proteoglycan Kon-tiki/Perdido (Kon) interacts with αPS2βPS integrin to mediate muscle-tendon adhesion. Double mutant embryos for kon and inflated show a synergistic increase in muscle detachment. Furthermore, Kon modulates αPS2βPS signaling at the muscle attachment, since P-Fak is reduced in kon mutants. This reduction in integrin signaling can be rescued by the expression of a truncated Kon protein containing the transmembrane and extracellular domains, suggesting that these domains are sufficient to mediate this signaling. We show that these domains are sufficient to properly localize the αPS2βPS ligand, Thrombospondin, to the muscle attachment, and to partially rescue Kon dependent muscle-tendon adhesion. We propose that Kon can engage in a protein complex with αPS2βPS and enhance integrin-mediated signaling and adhesion by recruiting its ligand, which would increase integrin-binding affinity to the extracellular matrix, resulting in the consolidation of the myotendinous junction.
Collapse
Affiliation(s)
- J. J. Pérez-Moreno
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Seville, Spain
- Present address: Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - A. G. Espina-Zambrano
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Seville, Spain
| | - C. B. García-Calderón
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Seville, Spain
- Present address: Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - B. Estrada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Seville, Spain
| |
Collapse
|
81
|
|
82
|
A Zebrafish Model for a Human Myopathy Associated with Mutation of the Unconventional Myosin MYO18B. Genetics 2016; 205:725-735. [PMID: 27879346 DOI: 10.1534/genetics.116.192864] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/18/2016] [Indexed: 02/04/2023] Open
Abstract
Myosin 18B is an unconventional myosin that has been implicated in tumor progression in humans. In addition, loss-of-function mutations of the MYO18B gene have recently been identified in several patients exhibiting symptoms of nemaline myopathy. In mouse, mutation of Myo18B results in early developmental arrest associated with cardiomyopathy, precluding analysis of its effects on skeletal muscle development. The zebrafish, frozen (fro) mutant was identified as one of a group of immotile mutants in the 1996 Tübingen genetic screen. Mutant embryos display a loss of birefringency in their skeletal muscle, indicative of disrupted sarcomeric organization. Using meiotic mapping, we localized the fro locus to the previously unannotated zebrafish myo18b gene, the product of which shares close to 50% identity with its human ortholog. Transcription of myo18b is restricted to fast-twitch myocytes in the zebrafish embryo; consistent with this, fro mutant embryos exhibit defects specifically in their fast-twitch skeletal muscles. We show that sarcomeric assembly is blocked at an early stage in fro mutants, leading to the disorganized accumulation of actin, myosin, and α-actinin and a complete loss of myofibrillar organization in fast-twitch muscles.
Collapse
|
83
|
Abstract
Cells set up contractile actin arrays to drive various shape changes and to exert forces to their environment. To understand their assembly process, we present here a reconstituted contractile system, comprising F-actin and myosin II filaments, where we can control the local activation of myosin by light. By stimulating different symmetries, we show that the force balancing at the boundaries determine the shape changes as well as the dynamics of the global contraction. Spatially anisotropic attachment of initially isotropic networks leads to a self-organization of highly aligned contractile fibres, being reminiscent of the order formation in muscles or stress fibres. The observed shape changes and dynamics are fully recovered by a minimal physical model.
Collapse
|
84
|
Shwartz A, Dhanyasi N, Schejter ED, Shilo BZ. The Drosophila formin Fhos is a primary mediator of sarcomeric thin-filament array assembly. eLife 2016; 5. [PMID: 27731794 PMCID: PMC5061545 DOI: 10.7554/elife.16540] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/15/2016] [Indexed: 01/26/2023] Open
Abstract
Actin-based thin filament arrays constitute a fundamental core component of muscle sarcomeres. We have used formation of the Drosophila indirect flight musculature for studying the assembly and maturation of thin-filament arrays in a skeletal muscle model system. Employing GFP-tagged actin monomer incorporation, we identify several distinct phases in the dynamic construction of thin-filament arrays. This sequence includes assembly of nascent arrays after an initial period of intensive microfilament synthesis, followed by array elongation, primarily from filament pointed-ends, radial growth of the arrays via recruitment of peripheral filaments and continuous barbed-end turnover. Using genetic approaches we have identified Fhos, the single Drosophila homolog of the FHOD sub-family of formins, as a primary and versatile mediator of IFM thin-filament organization. Localization of Fhos to the barbed-ends of the arrays, achieved via a novel N-terminal domain, appears to be a critical aspect of its sarcomeric roles. DOI:http://dx.doi.org/10.7554/eLife.16540.001 Muscles owe their ability to contract to structural units called sarcomeres, and a single muscle fiber can contain many thousands of these structures, aligned one next to the other. Each mature sarcomere is made up of precisely arranged and intertwined thin filaments of actin and thicker bundles of motor proteins, surrounded by other proteins. Sliding the motors along the filaments provides the force needed to contract the muscle. However, it was far from clear how sarcomeres, especially the arrays of thin-filaments, are assembled from scratch in developing muscles. When the fruit fly Drosophila transforms from a larva into an adult, it needs to build muscles to move its newly forming wings. While smaller in size, these flight muscles closely resemble the skeletal muscles of animals with backbones, and therefore serve as a good model for muscle formation in general. New muscles require new sarcomeres too, and now Shwartz et al. have observed and monitored sarcomeres assembling in developing flight muscles of fruit flies, a process that takes about three days. The analysis made use of genetically engineered flies in which the gene for a fluorescently labeled version of actin, the building block of the thin filaments, could be switched on at specific points in time. Looking at how these green-glowing proteins become incorporated into the growing sarcomere revealed that the assembly process involves four different phases. First, a large store of unorganized and newly-made thin filaments is generated for future use. These filaments are then assembled into rudimentary structures in which the filaments are roughly aligned. Once these core structures are formed, the existing filaments are elongated, while additional filaments are brought in to expand the structure further. Finally, actin proteins are continuously added and removed at the part of the sarcomere where the thin filaments are anchored. Shwartz et al. went on to identify a protein termed Fhos as the chief player in the process. Fhos is a member of a family of proteins that are known to elongate and organize actin filaments in many different settings. Without Fhos, the thin-filament arrays cannot properly begin to assemble, and the subsequent steps of growth and expansion are blocked as well. The next challenges will be to understand what guides the initial stages in the assembly of the thin-filament array, and how the coordination between assembly of actin filament arrays and motor proteins is executed. It will also be important to determine how sarcomeres are maintained throughout the life of the organism when defective actin filaments are replaced, and which proteins are responsible for carrying out this process. DOI:http://dx.doi.org/10.7554/eLife.16540.002
Collapse
Affiliation(s)
- Arkadi Shwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nagaraju Dhanyasi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
85
|
Establishment of the Muscle-Tendon Junction During Thorax Morphogenesis in Drosophila Requires the Rho-Kinase. Genetics 2016; 204:1139-1149. [PMID: 27585845 DOI: 10.1534/genetics.116.189548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/16/2016] [Indexed: 01/21/2023] Open
Abstract
The assembly of the musculoskeletal system in Drosophila relies on the integration of chemical and mechanical signaling between the developing muscles with ectodermal cells specialized as "tendon cells." Mechanical tension generated at the junction of flight muscles and tendon cells of the notum epithelium is required for muscle morphogenesis, and is balanced by the epithelium in order to not deform. We report that Drosophila Rho kinase (DRok) is necessary in tendon cells to assemble stable myotendinous junctions (MTJ), which are required for muscle morphogenesis and survival. In addition, DRok is required in tendon cells to maintain epithelial shape and cell orientation in the notum, independently of chascon (chas). Loss of DRok function in tendon cells results in mis-orientation of tendon cell extensions and abnormal accumulation of Thrombospondin and βPS-integrin, which may cause abnormal myotendinous junction formation and muscle morphogenesis. This role does not depend exclusively on nonmuscular Myosin-II activation (Myo-II), indicating that other DRok targets are key in this process. We propose that DRok function in tendon cells is key to promote the establishment of MTJ attachment and to balance mechanical tension generated at the MTJ by muscle compaction.
Collapse
|
86
|
Segal D, Dhanyasi N, Schejter ED, Shilo BZ. Adhesion and Fusion of Muscle Cells Are Promoted by Filopodia. Dev Cell 2016; 38:291-304. [DOI: 10.1016/j.devcel.2016.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/10/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
|
87
|
Auld AL, Folker ES. Nucleus-dependent sarcomere assembly is mediated by the LINC complex. Mol Biol Cell 2016; 27:2351-9. [PMID: 27307582 PMCID: PMC4966977 DOI: 10.1091/mbc.e16-01-0021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/07/2016] [Indexed: 12/22/2022] Open
Abstract
Two defining characteristics of muscle cells are the many precisely positioned nuclei and the linearly arranged sarcomeres, yet the relationship between these two features is not known. We show that nuclear positioning precedes sarcomere formation. Furthermore, ZASP-GFP, a Z-line protein, colocalizes with F-actin in puncta at the cytoplasmic face of nuclei before sarcomere assembly. In embryos with mispositioned nuclei, ZASP-GFP is still recruited to the nuclei before its incorporation into sarcomeres. Furthermore, the first sarcomeres appear in positions close to the nuclei, regardless of nuclear position. These data suggest that the interaction between sarcomere proteins and nuclei is not dependent on properly positioned nuclei. Mechanistically, ZASP-GFP localization to the cytoplasmic face of the nucleus did require the linker of nucleoskeleton and cytoskeleton (LINC) complex. Muscle-specific depletion of klarsicht (nesprin) or klariod (SUN) blocked the recruitment of ZASP-GFP to the nucleus during the early stages of sarcomere assembly. As a result, sarcomeres were poorly formed and the general myofibril network was less stable, incomplete, and/or torn. These data suggest that the nucleus, through the LINC complex, is crucial for the proper assembly and stability of the sarcomere network.
Collapse
Affiliation(s)
| | - Eric S Folker
- Department of Biology, Boston College, Chestnut Hill, MA 02467
| |
Collapse
|
88
|
Freikamp A, Mehlich A, Klingner C, Grashoff C. Investigating piconewton forces in cells by FRET-based molecular force microscopy. J Struct Biol 2016; 197:37-42. [PMID: 26980477 DOI: 10.1016/j.jsb.2016.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 11/16/2022]
Abstract
The ability of cells to sense and respond to mechanical forces is crucial for a wide range of developmental and pathophysiological processes. The molecular mechanisms underlying cellular mechanotransduction, however, are largely unknown because suitable techniques to measure mechanical forces across individual molecules in cells have been missing. In this article, we highlight advances in the development of molecular force sensing techniques and discuss our recently expanded set of FRET-based tension sensors that allows the analysis of mechanical forces with piconewton sensitivity in cells. In addition, we provide a theoretical framework for the design of additional tension sensor modules with adjusted force sensitivity.
Collapse
Affiliation(s)
- Andrea Freikamp
- Max Planck Institute of Biochemistry, Group of Molecular Mechanotransduction, Martinsried D-82152, Germany
| | - Alexander Mehlich
- Technical University of Munich, Physics Department E22, Garching D-85748, Germany
| | - Christoph Klingner
- Max Planck Institute of Biochemistry, Group of Molecular Mechanotransduction, Martinsried D-82152, Germany
| | - Carsten Grashoff
- Max Planck Institute of Biochemistry, Group of Molecular Mechanotransduction, Martinsried D-82152, Germany.
| |
Collapse
|
89
|
Sarov M, Barz C, Jambor H, Hein MY, Schmied C, Suchold D, Stender B, Janosch S, K J VV, Krishnan RT, Krishnamoorthy A, Ferreira IRS, Ejsmont RK, Finkl K, Hasse S, Kämpfer P, Plewka N, Vinis E, Schloissnig S, Knust E, Hartenstein V, Mann M, Ramaswami M, VijayRaghavan K, Tomancak P, Schnorrer F. A genome-wide resource for the analysis of protein localisation in Drosophila. eLife 2016; 5:e12068. [PMID: 26896675 PMCID: PMC4805545 DOI: 10.7554/elife.12068] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/19/2016] [Indexed: 02/07/2023] Open
Abstract
The Drosophila genome contains >13000 protein-coding genes, the majority of which remain poorly investigated. Important reasons include the lack of antibodies or reporter constructs to visualise these proteins. Here, we present a genome-wide fosmid library of 10000 GFP-tagged clones, comprising tagged genes and most of their regulatory information. For 880 tagged proteins, we created transgenic lines, and for a total of 207 lines, we assessed protein expression and localisation in ovaries, embryos, pupae or adults by stainings and live imaging approaches. Importantly, we visualised many proteins at endogenous expression levels and found a large fraction of them localising to subcellular compartments. By applying genetic complementation tests, we estimate that about two-thirds of the tagged proteins are functional. Moreover, these tagged proteins enable interaction proteomics from developing pupae and adult flies. Taken together, this resource will boost systematic analysis of protein expression and localisation in various cellular and developmental contexts. DOI:http://dx.doi.org/10.7554/eLife.12068.001 The fruit fly Drosophila melanogaster is a popular model organism in biological research. Studies using Drosophila have led to important insights into human biology, because related proteins often fulfil similar roles in flies and humans. Thus, studying the role of a protein in Drosophila can teach us about what it might do in a human. To fulfil their biological roles, proteins often occupy particular locations inside cells, such as the cell’s nucleus or surface membrane. Many proteins are also only found in specific types of cell, such as neurons or muscle cells. A protein’s location thus provides clues about what it does, however cells contain many thousands of proteins and identifying the location of each one is a herculean task. Sarov et al. took on this challenge and developed a new resource to study the localisation of all Drosophila proteins during this animal’s development. First, genetic engineering was used to tag thousands of Drosophila proteins with a green fluorescent protein, so that they could be tracked under a microscope. Sarov et al. tagged about 10000 Drosophila proteins in bacteria, and then introduced almost 900 of them into flies to create genetically modified flies. Each fly line contains an extra copy of the tagged gene that codes for one tagged protein. About two-thirds of these tagged proteins appeared to work normally after they were introduced into flies. Sarov et al. then looked at over 200 of these fly lines in more detail and observed that many of the proteins were found in particular cell types and localized to specific parts of the cells. Video imaging of the tagged proteins in living fruit fly embryos and pupae revealed the proteins’ movements, while other techniques showed which proteins bind to the tagged proteins, and may therefore work together in protein complexes. This resource is openly available to the community, and so researchers can use it to study their favourite protein and gain new insights into how proteins work and are regulated during Drosophila development. Following on from this work, the next challenge will be to create more flies carrying tagged proteins, and to swap the green fluorescent tag with other experimentally useful tags. DOI:http://dx.doi.org/10.7554/eLife.12068.002
Collapse
Affiliation(s)
- Mihail Sarov
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Helena Jambor
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Marco Y Hein
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Dana Suchold
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Bettina Stender
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stephan Janosch
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Vinay Vikas K J
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - R T Krishnan
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Aishwarya Krishnamoorthy
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Irene R S Ferreira
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Katja Finkl
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne Hasse
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Philipp Kämpfer
- Heidelberg Institute of Theoretical Studies, Heidelberg, Germany
| | - Nicole Plewka
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Elisabeth Vinis
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | | | - Elisabeth Knust
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mani Ramaswami
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - K VijayRaghavan
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Pavel Tomancak
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Frank Schnorrer
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
90
|
Kuleesha Y, Puah WC, Wasser M. A model of muscle atrophy based on live microscopy of muscle remodelling in Drosophila metamorphosis. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150517. [PMID: 26998322 PMCID: PMC4785973 DOI: 10.1098/rsos.150517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
Genes controlling muscle size and survival play important roles in muscle wasting diseases. In Drosophila melanogaster metamorphosis, larval abdominal muscles undergo two developmental fates. While a doomed population is eliminated by cell death, another persistent group is remodelled and survives into adulthood. To identify and characterize genes involved in the development of remodelled muscles, we devised a workflow consisting of in vivo imaging, targeted gene perturbation and quantitative image analysis. We show that inhibition of TOR signalling and activation of autophagy promote developmental muscle atrophy in early, while TOR and yorkie activation are required for muscle growth in late pupation. We discovered changes in the localization of myonuclei during remodelling that involve anti-polar migration leading to central clustering followed by polar migration resulting in localization along the midline. We demonstrate that the Cathepsin L orthologue Cp1 is required for myonuclear clustering in mid, while autophagy contributes to central positioning of nuclei in late metamorphosis. In conclusion, studying muscle remodelling in metamorphosis can provide new insights into the cell biology of muscle wasting.
Collapse
Affiliation(s)
- Yadav Kuleesha
- Imaging Informatics Division, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, no. 07-01 Matrix, Singapore 138671, Republic of Singapore
- School of Computer Engineering, Nanyang Technological University, N4-2A-05, Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Wee Choo Puah
- Imaging Informatics Division, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, no. 07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Martin Wasser
- Imaging Informatics Division, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, no. 07-01 Matrix, Singapore 138671, Republic of Singapore
| |
Collapse
|
91
|
Tiwari P, Kumar A, Das RN, Malhotra V, VijayRaghavan K. A Tendon Cell Specific RNAi Screen Reveals Novel Candidates Essential for Muscle Tendon Interaction. PLoS One 2015; 10:e0140976. [PMID: 26488612 PMCID: PMC4619581 DOI: 10.1371/journal.pone.0140976] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/02/2015] [Indexed: 01/01/2023] Open
Abstract
Tendons are fibrous connective tissue which connect muscles to the skeletal elements thus acting as passive transmitters of force during locomotion and provide appropriate body posture. Tendon-derived cues, albeit poorly understood, are necessary for proper muscle guidance and attachment during development. In the present study, we used dorsal longitudinal muscles of Drosophila and their tendon attachment sites to unravel the molecular nature of interactions between muscles and tendons. We performed a genetic screen using RNAi-mediated knockdown in tendon cells to find out molecular players involved in the formation and maintenance of myotendinous junction and found 21 candidates out of 2507 RNAi lines screened. Of these, 19 were novel molecules in context of myotendinous system. Integrin-βPS and Talin, picked as candidates in this screen, are known to play important role in the cell-cell interaction and myotendinous junction formation validating our screen. We have found candidates with enzymatic function, transcription activity, cell adhesion, protein folding and intracellular transport function. Tango1, an ER exit protein involved in collagen secretion was identified as a candidate molecule involved in the formation of myotendinous junction. Tango1 knockdown was found to affect development of muscle attachment sites and formation of myotendinous junction. Tango1 was also found to be involved in secretion of Viking (Collagen type IV) and BM-40 from hemocytes and fat cells.
Collapse
Affiliation(s)
- Prabhat Tiwari
- National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bangalore, India
| | - Arun Kumar
- National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bangalore, India
| | - Rudra Nayan Das
- National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bangalore, India
| | | | - K. VijayRaghavan
- National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bangalore, India
- * E-mail:
| |
Collapse
|
92
|
Puah WC, Wasser M. Live imaging of muscles in Drosophila metamorphosis: Towards high-throughput gene identification and function analysis. Methods 2015; 96:103-117. [PMID: 26431669 DOI: 10.1016/j.ymeth.2015.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/16/2022] Open
Abstract
Time-lapse microscopy in developmental biology is an emerging tool for functional genomics. Phenotypic effects of gene perturbations can be studied non-invasively at multiple time points in chronological order. During metamorphosis of Drosophila melanogaster, time-lapse microscopy using fluorescent reporters allows visualization of alternative fates of larval muscles, which are a model for the study of genes related to muscle wasting. While doomed muscles enter hormone-induced programmed cell death, a smaller population of persistent muscles survives to adulthood and undergoes morphological remodeling that involves atrophy in early, and hypertrophy in late pupation. We developed a method that combines in vivo imaging, targeted gene perturbation and image analysis to identify and characterize genes involved in muscle development. Macrozoom microscopy helps to screen for interesting muscle phenotypes, while confocal microscopy in multiple locations over 4-5 days produces time-lapse images that are used to quantify changes in cell morphology. Performing a similar investigation using fixed pupal tissues would be too time-consuming and therefore impractical. We describe three applications of our pipeline. First, we show how quantitative microscopy can track and measure morphological changes of muscle throughout metamorphosis and analyze genes involved in atrophy. Second, our assay can help to identify genes that either promote or prevent histolysis of abdominal muscles. Third, we apply our approach to test new fluorescent proteins as live markers for muscle development. We describe mKO2 tagged Cysteine proteinase 1 (Cp1) and Troponin-I (TnI) as examples of proteins showing developmental changes in subcellular localization. Finally, we discuss strategies to improve throughput of our pipeline to permit genome-wide screens in the future.
Collapse
Affiliation(s)
- Wee Choo Puah
- Imaging Informatics Division, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore.
| | - Martin Wasser
- Imaging Informatics Division, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore.
| |
Collapse
|
93
|
Katzemich A, West RJH, Fukuzawa A, Sweeney ST, Gautel M, Sparrow J, Bullard B. Binding partners of the kinase domains in Drosophila obscurin and their effect on the structure of the flight muscle. J Cell Sci 2015; 128:3386-97. [PMID: 26251439 DOI: 10.1242/jcs.170639] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/27/2015] [Indexed: 01/15/2023] Open
Abstract
Drosophila obscurin (Unc-89) is a titin-like protein in the M-line of the muscle sarcomere. Obscurin has two kinase domains near the C-terminus, both of which are predicted to be inactive. We have identified proteins binding to the kinase domains. Kinase domain 1 bound Bällchen (Ball, an active kinase), and both kinase domains 1 and 2 bound MASK (a 400-kDa protein with ankyrin repeats). Ball was present in the Z-disc and M-line of the indirect flight muscle (IFM) and was diffusely distributed in the sarcomere. MASK was present in both the M-line and the Z-disc. Reducing expression of Ball or MASK by siRNA resulted in abnormalities in the IFM, including missing M-lines and multiple Z-discs. Obscurin was still present, suggesting that the kinase domains act as a scaffold binding Ball and MASK. Unlike obscurin in vertebrate skeletal muscle, Drosophila obscurin is necessary for the correct assembly of the IFM sarcomere. We show that Ball and MASK act downstream of obscurin, and both are needed for development of a well defined M-line and Z-disc. The proteins have not previously been identified in Drosophila muscle.
Collapse
Affiliation(s)
- Anja Katzemich
- Department of Biology, University of York, York YO10 5DD, UK
| | - Ryan J H West
- Department of Biology, University of York, York YO10 5DD, UK
| | - Atsushi Fukuzawa
- King's College BHF Centre, Cardiovascular Division, London SE1 1UL, UK
| | - Sean T Sweeney
- Department of Biology, University of York, York YO10 5DD, UK
| | - Mathias Gautel
- King's College BHF Centre, Cardiovascular Division, London SE1 1UL, UK
| | - John Sparrow
- Department of Biology, University of York, York YO10 5DD, UK
| | - Belinda Bullard
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
94
|
Sallimus and the Dynamics of Sarcomere Assembly in Drosophila Flight Muscles. J Mol Biol 2015; 427:2151-8. [DOI: 10.1016/j.jmb.2015.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 11/19/2022]
|
95
|
Maartens AP, Brown NH. The many faces of cell adhesion during Drosophila muscle development. Dev Biol 2015; 401:62-74. [DOI: 10.1016/j.ydbio.2014.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
96
|
Schulman VK, Dobi KC, Baylies MK. Morphogenesis of the somatic musculature in Drosophila melanogaster. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:313-34. [PMID: 25758712 DOI: 10.1002/wdev.180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 12/22/2022]
Abstract
In Drosophila melanogaster, the somatic muscle system is first formed during embryogenesis, giving rise to the larval musculature. Later during metamorphosis, this system is destroyed and replaced by an entirely new set of muscles in the adult fly. Proper formation of the larval and adult muscles is critical for basic survival functions such as hatching and crawling (in the larva), walking and flying (in the adult), and feeding (at both larval and adult stages). Myogenesis, from mononucleated muscle precursor cells to multinucleated functional muscles, is driven by a number of cellular processes that have begun to be mechanistically defined. Once the mesodermal cells destined for the myogenic lineage have been specified, individual myoblasts fuse together iteratively to form syncytial myofibers. Combining cytoplasmic contents demands a level of intracellular reorganization that, most notably, leads to redistribution of the myonuclei to maximize internuclear distance. Signaling from extending myofibers induces terminal tendon cell differentiation in the ectoderm, which results in secure muscle-tendon attachments that are critical for muscle contraction. Simultaneously, muscles become innervated and undergo sarcomerogenesis to establish the contractile apparatus that will facilitate movement. The cellular mechanisms governing these morphogenetic events share numerous parallels to mammalian development, and the basic unit of all muscle, the myofiber, is conserved from flies to mammals. Thus, studies of Drosophila myogenesis and comparisons to muscle development in other systems highlight conserved regulatory programs of biomedical relevance to general muscle biology and studies of muscle disease.
Collapse
Affiliation(s)
- Victoria K Schulman
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.,Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Krista C Dobi
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Mary K Baylies
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.,Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
97
|
Spletter ML, Barz C, Yeroslaviz A, Schönbauer C, Ferreira IRS, Sarov M, Gerlach D, Stark A, Habermann BH, Schnorrer F. The RNA-binding protein Arrest (Bruno) regulates alternative splicing to enable myofibril maturation in Drosophila flight muscle. EMBO Rep 2014; 16:178-91. [PMID: 25532219 PMCID: PMC4328745 DOI: 10.15252/embr.201439791] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila, fibrillar flight muscles (IFMs) enable flight, while tubular muscles mediate other body movements. Here, we use RNA-sequencing and isoform-specific reporters to show that spalt major (salm) determines fibrillar muscle physiology by regulating transcription and alternative splicing of a large set of sarcomeric proteins. We identify the RNA-binding protein Arrest (Aret, Bruno) as downstream of salm. Aret shuttles between the cytoplasm and nuclei and is essential for myofibril maturation and sarcomere growth of IFMs. Molecularly, Aret regulates IFM-specific splicing of various salm-dependent sarcomeric targets, including Stretchin and wupA (TnI), and thus maintains muscle fiber integrity. As Aret and its sarcomeric targets are evolutionarily conserved, similar principles may regulate mammalian muscle morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Mihail Sarov
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Daniel Gerlach
- Research Institute of Molecular Pathology (IMP) Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP) Vienna Biocenter (VBC), Vienna, Austria
| | | | | |
Collapse
|
98
|
Weitkunat M, Schnorrer F. A guide to study Drosophila muscle biology. Methods 2014; 68:2-14. [PMID: 24625467 DOI: 10.1016/j.ymeth.2014.02.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022] Open
Abstract
The development and molecular composition of muscle tissue is evolutionarily conserved. Drosophila is a powerful in vivo model system to investigate muscle morphogenesis and function. Here, we provide a short and comprehensive overview of the important developmental steps to build Drosophila body muscle in embryos, larvae and pupae. We describe key methods, including muscle histology, live imaging and genetics, to study these steps at various developmental stages and include simple behavioural assays to assess muscle function in larvae and adults. We list valuable antibodies and fly strains that can be used for these different methods. This overview should guide the reader to choose the best marker or the appropriate method to obtain high quality muscle morphogenesis data in Drosophila.
Collapse
Affiliation(s)
- Manuela Weitkunat
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|