51
|
Rickman DS, Schulte JH, Eilers M. The Expanding World of N-MYC–Driven Tumors. Cancer Discov 2018; 8:150-163. [DOI: 10.1158/2159-8290.cd-17-0273] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/04/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022]
|
52
|
Büchel G, Carstensen A, Mak KY, Roeschert I, Leen E, Sumara O, Hofstetter J, Herold S, Kalb J, Baluapuri A, Poon E, Kwok C, Chesler L, Maric HM, Rickman DS, Wolf E, Bayliss R, Walz S, Eilers M. Association with Aurora-A Controls N-MYC-Dependent Promoter Escape and Pause Release of RNA Polymerase II during the Cell Cycle. Cell Rep 2017; 21:3483-3497. [PMID: 29262328 PMCID: PMC5746598 DOI: 10.1016/j.celrep.2017.11.090] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/12/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
MYC proteins bind globally to active promoters and promote transcriptional elongation by RNA polymerase II (Pol II). To identify effector proteins that mediate this function, we performed mass spectrometry on N-MYC complexes in neuroblastoma cells. The analysis shows that N-MYC forms complexes with TFIIIC, TOP2A, and RAD21, a subunit of cohesin. N-MYC and TFIIIC bind to overlapping sites in thousands of Pol II promoters and intergenic regions. TFIIIC promotes association of RAD21 with N-MYC target sites and is required for N-MYC-dependent promoter escape and pause release of Pol II. Aurora-A competes with binding of TFIIIC and RAD21 to N-MYC in vitro and antagonizes association of TOP2A, TFIIIC, and RAD21 with N-MYC during S phase, blocking N-MYC-dependent release of Pol II from the promoter. Inhibition of Aurora-A in S phase restores RAD21 and TFIIIC binding to chromatin and partially restores N-MYC-dependent transcriptional elongation. We propose that complex formation with Aurora-A controls N-MYC function during the cell cycle.
Collapse
Affiliation(s)
- Gabriele Büchel
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Anne Carstensen
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ka-Yan Mak
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Isabelle Roeschert
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eoin Leen
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; University of Leicester, Leicester LE1 9HN, UK
| | - Olga Sumara
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
| | - Steffi Herold
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jacqueline Kalb
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Apoorva Baluapuri
- Cancer Systems Biology Group, Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
| | - Evon Poon
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd., Belmont, Sutton, Surrey SM2 5NG, UK
| | - Colin Kwok
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd., Belmont, Sutton, Surrey SM2 5NG, UK
| | - Louis Chesler
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd., Belmont, Sutton, Surrey SM2 5NG, UK
| | - Hans Michael Maric
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - David S Rickman
- Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, 413 E. 69(th) Street, New York, NY 10021, USA
| | - Elmar Wolf
- Cancer Systems Biology Group, Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
| | - Richard Bayliss
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; University of Leicester, Leicester LE1 9HN, UK
| | - Susanne Walz
- Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
53
|
Ma YX, Wang XL, Chen JQ, Li B, Hur EM, Saijilafu. Differential Roles of Glycogen Synthase Kinase 3 Subtypes Alpha and Beta in Cortical Development. Front Mol Neurosci 2017; 10:391. [PMID: 29234272 PMCID: PMC5712306 DOI: 10.3389/fnmol.2017.00391] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/09/2017] [Indexed: 11/13/2022] Open
Abstract
Glycogen synthase kinases 3 (GSK3) α and β are expressed in the nervous system, and disruption of GSK3 signaling has been implicated in a wide range of neurodevelopmental and psychiatric disorders. Although several studies have established a role of GSK3 signaling in the nervous system, much less is known about isoform-specific functions. Here, we have examined the role of GSK3α and GSK3β in the developing neocortex by performing in utero electroporation with specific small interfering RNAs targeting each isoform. We found that depletion of either GSK3α or GSK3β commonly promoted the proliferation of neural progenitor cells in the ventricular zone, but at later stages, knocking down of each isoform resulted in distinct outcomes. In particular, the transformation of radial progenitors to intermediate progenitor cells was promoted in GSK3α-depleted cells, but markedly prevented in GSK3β-depleted cells. Moreover, knocking down of GSK3β but not GSK3α prevented the generation of upper-layer Cux1+ neurons. Consistent with the distinct outcomes, protein levels of c-Myc and β-catenin, well-known substrates of GSK3, were differentially affected by depletion of GSK3α and GSK3β. Together, these results suggest that GSK3α and GSK3β might play distinct roles in the genesis and differentiation of neuronal lineage cells during neocortex development by differential regulation of downstream signaling pathways.
Collapse
Affiliation(s)
- Yan-Xia Ma
- Department of Orthopaedics, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, Suzhou, China
| | - Xiu-Li Wang
- Department of Orthopaedics, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jian-Quan Chen
- Department of Orthopaedics, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, Suzhou, China
| | - Bin Li
- Department of Orthopaedics, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, Suzhou, China
| | - Eun-Mi Hur
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, South Korea.,Department of Neuroscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Saijilafu
- Department of Orthopaedics, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, Suzhou, China
| |
Collapse
|
54
|
Brägelmann J, Böhm S, Guthrie MR, Mollaoglu G, Oliver TG, Sos ML. Family matters: How MYC family oncogenes impact small cell lung cancer. Cell Cycle 2017; 16:1489-1498. [PMID: 28737478 DOI: 10.1080/15384101.2017.1339849] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Small cell lung cancer (SCLC) is one of the most deadly cancers and currently lacks effective targeted treatment options. Recent advances in the molecular characterization of SCLC has provided novel insight into the biology of this disease and raises hope for a paradigm shift in the treatment of SCLC. We and others have identified activation of MYC as a driver of susceptibility to Aurora kinase inhibition in SCLC cells and tumors that translates into a therapeutic option for the targeted treatment of MYC-driven SCLC. While MYC shares major features with its paralogs MYCN and MYCL, the sensitivity to Aurora kinase inhibitors is unique for MYC-driven SCLC. In this review, we will compare the distinct molecular features of the 3 MYC family members and address the potential implications for targeted therapy of SCLC.
Collapse
Affiliation(s)
- Johannes Brägelmann
- a Molecular Pathology, Institute of Pathology, University of Cologne , Cologne , Germany.,b Department of Translational Genomics , Medical Faculty, University of Cologne , Cologne , Germany
| | - Stefanie Böhm
- a Molecular Pathology, Institute of Pathology, University of Cologne , Cologne , Germany.,b Department of Translational Genomics , Medical Faculty, University of Cologne , Cologne , Germany
| | - Matthew R Guthrie
- c Department of Oncological Sciences , University of Utah, Huntsman Cancer Institute , Salt Lake City , UT , USA
| | - Gurkan Mollaoglu
- c Department of Oncological Sciences , University of Utah, Huntsman Cancer Institute , Salt Lake City , UT , USA
| | - Trudy G Oliver
- c Department of Oncological Sciences , University of Utah, Huntsman Cancer Institute , Salt Lake City , UT , USA
| | - Martin L Sos
- a Molecular Pathology, Institute of Pathology, University of Cologne , Cologne , Germany.,b Department of Translational Genomics , Medical Faculty, University of Cologne , Cologne , Germany.,d Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany
| |
Collapse
|
55
|
MYC Modulation around the CDK2/p27/SKP2 Axis. Genes (Basel) 2017; 8:genes8070174. [PMID: 28665315 PMCID: PMC5541307 DOI: 10.3390/genes8070174] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 12/20/2022] Open
Abstract
MYC is a pleiotropic transcription factor that controls a number of fundamental cellular processes required for the proliferation and survival of normal and malignant cells, including the cell cycle. MYC interacts with several central cell cycle regulators that control the balance between cell cycle progression and temporary or permanent cell cycle arrest (cellular senescence). Among these are the cyclin E/A/cyclin-dependent kinase 2 (CDK2) complexes, the CDK inhibitor p27KIP1 (p27) and the E3 ubiquitin ligase component S-phase kinase-associated protein 2 (SKP2), which control each other by forming a triangular network. MYC is engaged in bidirectional crosstalk with each of these players; while MYC regulates their expression and/or activity, these factors in turn modulate MYC through protein interactions and post-translational modifications including phosphorylation and ubiquitylation, impacting on MYC's transcriptional output on genes involved in cell cycle progression and senescence. Here we elaborate on these network interactions with MYC and their impact on transcription, cell cycle, replication and stress signaling, and on the role of other players interconnected to this network, such as CDK1, the retinoblastoma protein (pRB), protein phosphatase 2A (PP2A), the F-box proteins FBXW7 and FBXO28, the RAS oncoprotein and the ubiquitin/proteasome system. Finally, we describe how the MYC/CDK2/p27/SKP2 axis impacts on tumor development and discuss possible ways to interfere therapeutically with this system to improve cancer treatment.
Collapse
|
56
|
The MYCN Protein in Health and Disease. Genes (Basel) 2017; 8:genes8040113. [PMID: 28358317 PMCID: PMC5406860 DOI: 10.3390/genes8040113] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
MYCN is a member of the MYC family of proto-oncogenes. It encodes a transcription factor, MYCN, involved in the control of fundamental processes during embryonal development. The MYCN protein is situated downstream of several signaling pathways promoting cell growth, proliferation and metabolism of progenitor cells in different developing organs and tissues. Conversely, deregulated MYCN signaling supports the development of several different tumors, mainly with a childhood onset, including neuroblastoma, medulloblastoma, rhabdomyosarcoma and Wilms’ tumor, but it is also associated with some cancers occurring during adulthood such as prostate and lung cancer. In neuroblastoma, MYCN-amplification is the most consistent genetic aberration associated with poor prognosis and treatment failure. Targeting MYCN has been proposed as a therapeutic strategy for the treatment of these tumors and great efforts have allowed the development of direct and indirect MYCN inhibitors with potential clinical use.
Collapse
|
57
|
Boratyn E, Nowak I, Durbas M, Horwacik I, Sawicka A, Rokita H. MCPIP1 Exogenous Overexpression Inhibits Pathways Regulating MYCN Oncoprotein Stability in Neuroblastoma. J Cell Biochem 2017; 118:1741-1755. [DOI: 10.1002/jcb.25832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/07/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Elżbieta Boratyn
- Faculty of Biochemistry, Biophysics and Biotechnology; Laboratory of Molecular Genetics and Virology, Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
| | - Iwona Nowak
- Faculty of Biochemistry, Biophysics and Biotechnology; Laboratory of Molecular Genetics and Virology, Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
| | - Małgorzata Durbas
- Faculty of Biochemistry, Biophysics and Biotechnology; Laboratory of Molecular Genetics and Virology, Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
| | - Irena Horwacik
- Faculty of Biochemistry, Biophysics and Biotechnology; Laboratory of Molecular Genetics and Virology, Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
| | - Anna Sawicka
- Faculty of Biochemistry, Biophysics and Biotechnology; Laboratory of Molecular Genetics and Virology, Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
| | - Hanna Rokita
- Faculty of Biochemistry, Biophysics and Biotechnology; Laboratory of Molecular Genetics and Virology, Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
| |
Collapse
|
58
|
Filipčík P, Curry JR, Mace PD. When Worlds Collide-Mechanisms at the Interface between Phosphorylation and Ubiquitination. J Mol Biol 2017; 429:1097-1113. [PMID: 28235544 DOI: 10.1016/j.jmb.2017.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 02/08/2023]
Abstract
Phosphorylation and ubiquitination are pervasive post-translational modifications that impact all processes inside eukaryotic cells. The role of each modification has been studied for decades, and functional interplay between the two has long been demonstrated and even more widely postulated. However, our understanding of the molecular features that allow phosphorylation to control protein ubiquitination and ubiquitin to control phosphorylation has only recently begun to build. Here, we review examples of regulation between ubiquitination and phosphorylation, aiming to describe mechanisms at the molecular level. In general, these examples illustrate phosphorylation as a versatile switch throughout ubiquitination pathways, and ubiquitination primarily impacting kinase signalling in a more emphatic manner through scaffolding or degradation. Examples of regulation between these two processes are likely to grow even further as advances in molecular biology, proteomics, and computation allow a system-level understanding of signalling. Many new cases could involve similar principles to those described here, but the extensive co-regulation of these two systems leaves no doubt that they still have many surprises in store.
Collapse
Affiliation(s)
- Pavel Filipčík
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Jack R Curry
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand.
| |
Collapse
|
59
|
Richards MW, Burgess SG, Poon E, Carstensen A, Eilers M, Chesler L, Bayliss R. Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proc Natl Acad Sci U S A 2016; 113:13726-13731. [PMID: 27837025 PMCID: PMC5137718 DOI: 10.1073/pnas.1610626113] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Myc family proteins promote cancer by inducing widespread changes in gene expression. Their rapid turnover by the ubiquitin-proteasome pathway is regulated through phosphorylation of Myc Box I and ubiquitination by the E3 ubiquitin ligase SCFFbxW7 However, N-Myc protein (the product of the MYCN oncogene) is stabilized in neuroblastoma by the protein kinase Aurora-A in a manner that is sensitive to certain Aurora-A-selective inhibitors. Here we identify a direct interaction between the catalytic domain of Aurora-A and a site flanking Myc Box I that also binds SCFFbxW7 We determined the crystal structure of the complex between Aurora-A and this region of N-Myc to 1.72-Å resolution. The structure indicates that the conformation of Aurora-A induced by compounds such as alisertib and CD532 is not compatible with the binding of N-Myc, explaining the activity of these compounds in neuroblastoma cells and providing a rational basis for the design of cancer therapeutics optimized for destabilization of the complex. We also propose a model for the stabilization mechanism in which binding to Aurora-A alters how N-Myc interacts with SCFFbxW7 to disfavor the generation of Lys48-linked polyubiquitin chains.
Collapse
Affiliation(s)
- Mark W Richards
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- Cancer Research UK Leeds Centre, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Selena G Burgess
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- Cancer Research UK Leeds Centre, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Evon Poon
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden National Health Service Trust, Belmont, Sutton, Surrey SM2 5NG, United Kingdom
| | - Anne Carstensen
- Theodor Boveri Institute, University of Würzburg, 97074 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, University of Würzburg, 97074 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Louis Chesler
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden National Health Service Trust, Belmont, Sutton, Surrey SM2 5NG, United Kingdom
| | - Richard Bayliss
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom;
- Cancer Research UK Leeds Centre, University of Leeds, Leeds LS2 9JT, United Kingdom
- Department of Cancer Studies, University of Leicester, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
60
|
Xiao D, Yue M, Su H, Ren P, Jiang J, Li F, Hu Y, Du H, Liu H, Qing G. Polo-like Kinase-1 Regulates Myc Stabilization and Activates a Feedforward Circuit Promoting Tumor Cell Survival. Mol Cell 2016; 64:493-506. [PMID: 27773673 DOI: 10.1016/j.molcel.2016.09.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/17/2016] [Accepted: 09/14/2016] [Indexed: 01/19/2023]
Abstract
MYCN amplification in human cancers predicts poor prognosis and resistance to therapy. However, pharmacological strategies that directly target N-Myc, the protein encoded by MYCN, remain elusive. Here, we identify a molecular mechanism responsible for reciprocal activation between Polo-like kinase-1 (PLK1) and N-Myc. PLK1 specifically binds to the SCFFbw7 ubiquitin ligase, phosphorylates it, and promotes its autopolyubiquitination and proteasomal degradation, counteracting Fbw7-mediated degradation of N-Myc and additional substrates, including cyclin E and Mcl1. Stabilized N-Myc in turn directly activates PLK1 transcription, constituting a positive feedforward regulatory loop that reinforces Myc-regulated oncogenic programs. Inhibitors of PLK1 preferentially induce potent apoptosis of MYCN-amplified tumor cells from neuroblastoma and small cell lung cancer and synergistically potentiate the therapeutic efficacies of Bcl2 antagonists. These findings reveal a PLK1-Fbw7-Myc signaling circuit that underlies tumorigenesis and validate PLK1 inhibitors, alone or with Bcl2 antagonists, as potential effective therapeutics for MYC-overexpressing cancers.
Collapse
Affiliation(s)
- Daibiao Xiao
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Ming Yue
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Hexiu Su
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Ping Ren
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Jue Jiang
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Feng Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yufeng Hu
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Haining Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hudan Liu
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Guoliang Qing
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Medical Research Institute, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
61
|
Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, Puca L, Cyrta J, Sboner A, Noorzad Z, MacDonald T, Cheung C, Yuen KS, Gao D, Chen Y, Eilers M, Mosquera JM, Robinson BD, Elemento O, Rubin MA, Demichelis F, Rickman DS. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer. Cancer Cell 2016; 30:563-577. [PMID: 27728805 PMCID: PMC5540451 DOI: 10.1016/j.ccell.2016.09.005] [Citation(s) in RCA: 418] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/22/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022]
Abstract
The transition from castration-resistant prostate adenocarcinoma (CRPC) to neuroendocrine prostate cancer (NEPC) has emerged as an important mechanism of treatment resistance. NEPC is associated with overexpression and gene amplification of MYCN (encoding N-Myc). N-Myc is an established oncogene in several rare pediatric tumors, but its role in prostate cancer progression is not well established. Integrating a genetically engineered mouse model and human prostate cancer transcriptome data, we show that N-Myc overexpression leads to the development of poorly differentiated, invasive prostate cancer that is molecularly similar to human NEPC. This includes an abrogation of androgen receptor signaling and induction of Polycomb Repressive Complex 2 signaling. Altogether, our data establishes N-Myc as an oncogenic driver of NEPC.
Collapse
Affiliation(s)
- Etienne Dardenne
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Himisha Beltran
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Matteo Benelli
- Centre for Integrative Biology, University of Trento, Trento 38123, Italy
| | - Kaitlyn Gayvert
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065 USA; Tri-Institutional Training Program in Computational Biology and Medicine of Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, and Cornell University, Ithaca, NY 14853, USA
| | - Adeline Berger
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Loredana Puca
- Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joanna Cyrta
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065 USA; Tri-Institutional Training Program in Computational Biology and Medicine of Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, and Cornell University, Ithaca, NY 14853, USA
| | - Zohal Noorzad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Theresa MacDonald
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Cynthia Cheung
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ka Shing Yuen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dong Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Chen
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Juan-Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065 USA
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065 USA
| | - Francesca Demichelis
- Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Centre for Integrative Biology, University of Trento, Trento 38123, Italy
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
62
|
Tavana O, Li D, Dai C, Lopez G, Banerjee D, Kon N, Chen C, Califano A, Yamashiro DJ, Sun H, Gu W. HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat Med 2016; 22:1180-1186. [PMID: 27618649 PMCID: PMC5091299 DOI: 10.1038/nm.4180] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/05/2016] [Indexed: 12/12/2022]
Abstract
The MYCN proto-oncogene is amplified in a number of advanced-stage human tumors, such as neuroblastomas. Similar to other members of the MYC family of oncoproteins, MYCN (also known as N-Myc) is a transcription factor, and its stability and activity are tightly controlled by ubiquitination-dependent proteasome degradation. Although numerous studies have demonstrated that N-Myc is a driver of neuroblastoma tumorigenesis, therapies that directly suppress N-Myc activity in human tumors are limited. Here we have identified ubiquitin-specific protease 7 (USP7; also known as HAUSP) as a regulator of N-Myc function in neuroblastoma. HAUSP interacts with N-Myc, and HAUSP expression induces deubiquitination and subsequent stabilization of N-Myc. Conversely, RNA interference (RNAi)-mediated knockdown of USP7 in neuroblastoma cancer cell lines, or genetic ablation of Usp7 in the mouse brain, destabilizes N-Myc, which leads to inhibition of N-Myc function. Notably, HAUSP is more abundant in patients with neuroblastoma who have poorer prognosis, and HAUSP expression substantially correlates with N-Myc transcriptional activity. Furthermore, small-molecule inhibitors of HAUSP's deubiquitinase activity markedly suppress the growth of MYCN-amplified human neuroblastoma cell lines in xenograft mouse models. Taken together, our findings demonstrate a crucial role of HAUSP in regulating N-Myc function in vivo and suggest that HAUSP inhibition is a potential therapy for MYCN-amplified tumors.
Collapse
Affiliation(s)
- Omid Tavana
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Dawei Li
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Chao Dai
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gonzalo Lopez
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Computational Biology and Bioinformatics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Debarshi Banerjee
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ning Kon
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Chao Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Andrea Califano
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Computational Biology and Bioinformatics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Biochemistry & Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Darrell J Yamashiro
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wei Gu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
63
|
The ubiquitin ligase Huwe1 regulates the maintenance and lymphoid commitment of hematopoietic stem cells. Nat Immunol 2016; 17:1312-1321. [PMID: 27668798 PMCID: PMC5117833 DOI: 10.1038/ni.3559] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are dormant in the bone marrow and can be activated in response to diverse stresses to replenish all blood cell types. Here we identify the ubiquitin ligase Huwe1 as a crucial regulator of HSC functions via its post-translational control of N-myc. We found Huwe1 to be essential for HSC self-renewal, quiescence and lymphoid fate specification. Using a novel fluorescent fusion allele (MycnM), we observed that N-myc expression was restricted to the most immature, multipotent stem and progenitor populations. N-myc was upregulated in response to stress or upon loss of Huwe1, leading to increased proliferation and stem cell exhaustion. Mycn depletion reversed most of these phenotypes in vivo, suggesting that the attenuation of N-myc by Huwe1 is essential to reestablish homeostasis following stress.
Collapse
|
64
|
Vaughan L, Clarke PA, Barker K, Chanthery Y, Gustafson CW, Tucker E, Renshaw J, Raynaud F, Li X, Burke R, Jamin Y, Robinson SP, Pearson A, Maira M, Weiss WA, Workman P, Chesler L. Inhibition of mTOR-kinase destabilizes MYCN and is a potential therapy for MYCN-dependent tumors. Oncotarget 2016; 7:57525-57544. [PMID: 27438153 PMCID: PMC5295370 DOI: 10.18632/oncotarget.10544] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
MYC oncoproteins deliver a potent oncogenic stimulus in several human cancers, making them major targets for drug development, but efforts to deliver clinically practical therapeutics have not yet been realized. In childhood cancer, aberrant expression of MYC and MYCN genes delineates a group of aggressive tumours responsible for a major proportion of pediatric cancer deaths. We designed a chemical-genetic screen that identifies compounds capable of enhancing proteasomal elimination of MYCN oncoprotein. We isolated several classes of compound that selectively kill MYCN expressing cells and we focus on inhibitors of PI3K/mTOR pathway in this study. We show that PI3K/mTOR inhibitors selectively killed MYCN-expressing neuroblastoma tumor cells, and induced significant apoptosis of transgenic MYCN-driven neuroblastoma tumors concomitant with elimination of MYCN protein in vivo. Mechanistically, the ability of these compounds to degrade MYCN requires complete blockade of mTOR but not PI3 kinase activity and we highlight NVP-BEZ235 as a PI3K/mTOR inhibitor with an ideal activity profile. These data establish that MYCN expression is a marker indicative of likely clinical sensitivity to mTOR inhibition, and provide a rationale for the selection of clinical candidate MYCN-destabilizers likely to be useful for the treatment of MYCN-driven cancers.
Collapse
Affiliation(s)
- Lynsey Vaughan
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Present address: Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Paul A. Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Karen Barker
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Yvan Chanthery
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Clay W. Gustafson
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Elizabeth Tucker
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Jane Renshaw
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Florence Raynaud
- Cancer Research UK Cancer Therapeutics Unit, Clinical Pharmacology and Trials Team, Sutton, Surrey, UK
| | - Xiaodun Li
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Present address: MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Target Selection and Hit Discovery Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Yann Jamin
- Cancer Research UK & Engineering and Physical Sciences Research Council Cancer Imaging Centre, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Simon P. Robinson
- Cancer Research UK & Engineering and Physical Sciences Research Council Cancer Imaging Centre, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Andrew Pearson
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Michel Maira
- Novartis Pharma AG, Basel, Switzerland
- Present address: Basilea Pharmaceutica International AG, Basel, Switzerland
| | - William A. Weiss
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
- The Royal Marsden NHS Trust, Children and Young People's Unit, Sutton, Surrey, UK
| |
Collapse
|
65
|
Morrison G, Scognamiglio R, Trumpp A, Smith A. Convergence of cMyc and β-catenin on Tcf7l1 enables endoderm specification. EMBO J 2016; 35:356-68. [PMID: 26675138 PMCID: PMC4741304 DOI: 10.15252/embj.201592116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 02/02/2023] Open
Abstract
The molecular machinery that directs formation of definitive endoderm from pluripotent stem cells is not well understood. Wnt/β-catenin and Nodal signalling have been implicated, but the requirements for lineage specification remain incompletely defined. Here, we demonstrate a potent effect of inhibiting glycogen synthase kinase 3 (GSK3) on definitive endoderm production. We find that downstream of GSK3 inhibition, elevated cMyc and β-catenin act in parallel to reduce transcription and DNA binding, respectively, of the transcriptional repressor Tcf7l1. Tcf7l1 represses FoxA2, a pioneer factor for endoderm specification. Deletion of Tcf7l1 is sufficient to allow upregulation of FoxA2 in the presence of Activin. In wild-type cells, cMyc contributes by reducing Tcf7l1 mRNA, while β-catenin acts on Tcf7l1 protein. GSK3 inhibition is further required for consolidation of endodermal fate via upregulation of Sox17, highlighting sequential roles for Wnt signalling. The identification of a cMyc/β-catenin-Tcf7l1-FoxA2 axis reveals a de-repression mechanism underlying endoderm induction that may be recapitulated in other developmental and patho-logical contexts.
Collapse
Affiliation(s)
- Gillian Morrison
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Roberta Scognamiglio
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Austin Smith
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
66
|
Zhou Z, He C, Wang J. Regulation mechanism of Fbxw7-related signaling pathways (Review). Oncol Rep 2015; 34:2215-24. [PMID: 26324296 DOI: 10.3892/or.2015.4227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/29/2015] [Indexed: 11/05/2022] Open
Abstract
F-box and WD repeat domain-containing 7 (Fbxw7), the substrate-recognition component of SCFFbxw7 complex, is thought to be a tumor suppressor involved in cell growth, proliferation, differentiation and survival. Although an increasing number of ubiquitin substrates of Fbxw7 have been identified, the best characterized substrates are cyclin E and c-Myc. Fbxw7/cyclin E and Fbxw7/c-Myc pathways are tightly regulated by multiple regulators. Fbxw7 has been identified as a tumor suppressor in hepatocellular carcinoma. This review focused on the regulation of Fbxw7/cyclin E and Fbxw7/c-Myc pathways and discussed findings to gain a better understanding of the role of Fbxw7 in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chuanchao He
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
67
|
Shoji W, Suenaga Y, Kaneko Y, Islam SMR, Alagu J, Yokoi S, Nio M, Nakagawara A. NCYM promotes calpain-mediated Myc-nick production in human MYCN-amplified neuroblastoma cells. Biochem Biophys Res Commun 2015; 461:501-6. [PMID: 25896758 DOI: 10.1016/j.bbrc.2015.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022]
Abstract
NCYM is a cis-antisense gene of MYCN and is amplified in human neuroblastomas. High NCYM expression is associated with poor prognoses, and the NCYM protein stabilizes MYCN to promote proliferation of neuroblastoma cells. However, the molecular mechanisms of NCYM in the regulation of cell survival have remained poorly characterized. Here we show that NCYM promotes cleavage of MYCN to produce the anti-apoptotic protein, Myc-nick, both in vitro and in vivo. NCYM and Myc-nick were induced at G2/M phase, and NCYM knockdown induced apoptotic cell death accompanied by Myc-nick downregulation. These results reveal a novel function of NCYM as a regulator of Myc-nick production in human neuroblastomas.
Collapse
Affiliation(s)
- Wataru Shoji
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717, Japan; Department of Pediatric Surgery, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Yusuke Suenaga
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717, Japan; Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717, Japan.
| | - Yoshiki Kaneko
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717, Japan
| | - S M Rafiqul Islam
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717, Japan
| | - Jennifer Alagu
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717, Japan
| | - Sana Yokoi
- Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717, Japan
| | - Masaki Nio
- Department of Pediatric Surgery, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Akira Nakagawara
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717, Japan.
| |
Collapse
|
68
|
Peyre E, Silva CG, Nguyen L. Crosstalk between intracellular and extracellular signals regulating interneuron production, migration and integration into the cortex. Front Cell Neurosci 2015; 9:129. [PMID: 25926769 PMCID: PMC4396449 DOI: 10.3389/fncel.2015.00129] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/19/2015] [Indexed: 11/29/2022] Open
Abstract
During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex.
Collapse
Affiliation(s)
- Elise Peyre
- GIGA-Neurosciences, University of Liège Liège, Belgium ; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège Liège, Belgium
| | - Carla G Silva
- GIGA-Neurosciences, University of Liège Liège, Belgium ; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, University of Liège Liège, Belgium ; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège Liège, Belgium ; Wallon Excellence in Lifesciences and Biotechnology, University of Liège Liège, Belgium
| |
Collapse
|
69
|
Ahmad Z, Jasnos L, Gil V, Howell L, Hallsworth A, Petrie K, Sawado T, Chesler L. Molecular and in vivo characterization of cancer-propagating cells derived from MYCN-dependent medulloblastoma. PLoS One 2015; 10:e0119834. [PMID: 25785590 PMCID: PMC4365014 DOI: 10.1371/journal.pone.0119834] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/16/2015] [Indexed: 11/25/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor. While the pathways that are deregulated in MB remain to be fully characterized, amplification and/or overexpression of the MYCN gene, which is has a critical role in cerebellar development as a regulator of neural progenitor cell fate, has been identified in several MB subgroups. Phenotypically, aberrant expression of MYCN is associated with the large-cell/anaplastic MB variant, which accounts for 5-15% of cases and is associated with aggressive disease and poor clinical outcome. To better understand the role of MYCN in MB in vitro and in vivo and to aid the development of MYCN-targeted therapeutics we established tumor-derived neurosphere cell lines from the GTML (Glt1-tTA/TRE-MYCN-Luc) genetically engineered mouse model. A fraction of GTML neurospheres were found to be growth factor independent, expressed CD133 (a marker of neural stem cells), failed to differentiate upon MYCN withdrawal and were highly tumorigenic when orthotopically implanted into the cerebellum. Principal component analyzes using single cell RNA assay data suggested that the clinical candidate aurora-A kinase inhibitor MLN8237 converts GTML neurospheres to resemble non-MYCN expressors. Correlating with this, MLN8237 significantly extended the survival of mice bearing GTML MB allografts. In summary, our results demonstrate that MYCN plays a critical role in expansion and survival of aggressive MB-propagating cells, and establish GTML neurospheres as an important resource for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zai Ahmad
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Lukasz Jasnos
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Veronica Gil
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Louise Howell
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Albert Hallsworth
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Kevin Petrie
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Tomoyuki Sawado
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| |
Collapse
|
70
|
Dauphinot L, Mockel L, Cahu J, Jinnah HA, Ledroit M, Potier MC, Ceballos-Picot I. Transcriptomic approach to Lesch-Nyhan disease. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:208-17. [PMID: 24940671 DOI: 10.1080/15257770.2014.880477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lesch-Nyhan disease (LND) is an X-linked metabolic disease caused by various mutations in the gene HPRT1 encoding an enzyme of purine metabolism, hypoxanthine guanine phosphoribosyltransferase (HPRT). In its most severe form, LND patients suffer from overproduction of uric acid along with neurological or behavioural difficulties including self-injurious behaviours. To gain more insight into pathogenesis, we compared the transcriptome from human LND fibroblasts to normal human fibroblasts using a microarray with 60,000 probes corresponding to the entire human genome. Using stringent criteria, we identified 25 transcripts whose expression was significantly different between LND and control cells. These genes were confirmed by quantitative RT-PCR to be dysregulated in LND cells. Moreover, bioinformatic analysis of microarray data using gene ontology (GO) highlighted clusters of genes displaying biological processes most significantly affected in LND cells. These affected genes belonged to specific processes such as cell cycle and cell-division processes, metabolic and nucleic acid processes, demonstrating the specific nature of the changes and providing new insights into LND pathogenesis.
Collapse
Affiliation(s)
- Luce Dauphinot
- a CRICM, UPMC Hôpital de la Pitié-Salpêtrière , Paris , France
| | | | | | | | | | | | | |
Collapse
|
71
|
Cunningham D, DeBarber AE, Bir N, Binkley L, Merkens LS, Steiner RD, Herman GE. Analysis of hedgehog signaling in cerebellar granule cell precursors in a conditional Nsdhl allele demonstrates an essential role for cholesterol in postnatal CNS development. Hum Mol Genet 2015; 24:2808-25. [PMID: 25652406 DOI: 10.1093/hmg/ddv042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/02/2015] [Indexed: 12/21/2022] Open
Abstract
NSDHL is a 3β-hydroxysterol dehydrogenase that is involved in the removal of two C-4 methyl groups in one of the later steps of cholesterol biosynthesis. Mutations in the gene encoding the enzyme are responsible for the X-linked, male lethal mouse mutations bare patches and striated, as well as most cases of human CHILD syndrome. Rare, hypomorphic NSDHL mutations are also associated with X-linked intellectual disability in males with CK syndrome. Since hemizygous male mice with Nsdhl mutations die by midgestation, we generated a conditional targeted Nsdhl mutation (Nsdhl(tm1.1Hrm)) to investigate the essential role of cholesterol in the early postnatal CNS. Ablation of Nsdhl in radial glia using GFAP-cre resulted in live-born, normal appearing affected male pups. However, the pups develop overt ataxia by postnatal day 8-10 and die shortly thereafter. Histological abnormalities include progressive loss of cortical and hippocampal neurons, as well as deficits in the proliferation and migration of cerebellar granule precursors and subsequent massive apoptosis of the cerebellar cortex. We replicated the granule cell precursor proliferation defect in vitro and demonstrate that it results from defective signaling by SHH. Furthermore, this defect is almost completely rescued by supplementation of the culture media with exogenous cholesterol, while methylsterol accumulation above the enzymatic block appears to be associated with increased cell death. These data support the absolute requirement for cholesterol synthesis in situ once the blood-brain-barrier forms and cholesterol transport to the fetus is abolished. They further emphasize the complex ramifications of cholesterogenic enzyme deficiency on cellular metabolism.
Collapse
Affiliation(s)
- David Cunningham
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | | | - Natalie Bir
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Laura Binkley
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | | | - Robert D Steiner
- Department of Pediatrics, Department of Molecular and Medical Genetics and Institute on Development and Disability, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, OR, USA and Marshfield Clinic Research Foundation and the Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Marshfield and Madison, WI, USA
| | - Gail E Herman
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA,
| |
Collapse
|
72
|
Xu J, Wong EYM, Cheng C, Li J, Sharkar MTK, Xu CY, Chen B, Sun J, Jing D, Xu PX. Eya1 interacts with Six2 and Myc to regulate expansion of the nephron progenitor pool during nephrogenesis. Dev Cell 2014; 31:434-47. [PMID: 25458011 DOI: 10.1016/j.devcel.2014.10.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/12/2014] [Accepted: 10/23/2014] [Indexed: 11/25/2022]
Abstract
Self-renewal and proliferation of nephron progenitor cells and the decision to initiate nephrogenesis are crucial events directing kidney development. Despite recent advancements in defining lineage and regulators for the progenitors, fundamental questions about mechanisms driving expansion of the progenitors remain unanswered. Here we show that Eya1 interacts with Six2 and Myc to control self-renewing cell activity. Cell fate tracing reveals a developmental restriction of the Eya1(+) population within the intermediate mesoderm to nephron-forming cell fates and a common origin shared between caudal mesonephric and metanephric nephrons. Conditional inactivation of Eya1 leads to loss of Six2 expression and premature epithelialization of the progenitors. Six2 mediates translocation of Eya1 to the nucleus, where Eya1 uses its threonine phosphatase activity to control Myc phosphorylation/dephosphorylation and function in the progenitor cells. Our results reveal a functional link between Eya1, Six2, and Myc in driving the expansion and maintenance of the multipotent progenitors during nephrogenesis.
Collapse
Affiliation(s)
- Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elaine Y M Wong
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chunming Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jun Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mohammad T K Sharkar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chelsea Y Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Binglai Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianbo Sun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dongzhu Jing
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
73
|
Park JH, Szemes M, Vieira GC, Melegh Z, Malik S, Heesom KJ, Von Wallwitz-Freitas L, Greenhough A, Brown KW, Zheng YG, Catchpoole D, Deery MJ, Malik K. Protein arginine methyltransferase 5 is a key regulator of the MYCN oncoprotein in neuroblastoma cells. Mol Oncol 2014; 9:617-27. [PMID: 25475372 PMCID: PMC4359099 DOI: 10.1016/j.molonc.2014.10.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022] Open
Abstract
Approximately half of poor prognosis neuroblastomas (NBs) are characterized by pathognomonic MYCN gene amplification and MYCN over-expression. Here we present data showing that short-interfering RNA mediated depletion of the protein arginine methyltransferase 5 (PRMT5) in cell-lines representative of NBs with MYCN gene amplification leads to greatly impaired growth and apoptosis. Growth suppression is not apparent in the MYCN-negative SH-SY5Y NB cell-line, or in two immortalized human fibroblast cell-lines. Immunoblotting of NB cell-lines shows that high PRMT5 expression is strongly associated with MYCN-amplification (P < 0.004, Mann-Whitney U-test) and immunohistochemical analysis of primary NBs reveals that whilst PRMT5 protein is ubiquitously expressed in the cytoplasm of most cells, MYCN-amplified tumours exhibit pronounced nuclear PRMT5 staining. PRMT5 knockdown in MYCN-overexpressing cells, including the SHEP-21N cell-line with inducible MYCN expression leads to a dramatic decrease in MYCN protein and MYCN-associated cell-death in SHEP-21N cells. Quantitative gene expression analysis and cycloheximide chase experiments suggest that PRMT5 regulates MYCN at a post-transcriptional level. Reciprocal co-immunoprecipitation experiments demonstrated that endogenous PRMT5 and MYCN interact in both SK-N-BE(2)C and NGP cell lines. By using liquid chromatography - tandem mass spectrometry (LC-MS/MS) analysis of immunoprecipitated MYCN protein, we identified several potential sites of arginine dimethylation on the MYCN protein. Together our studies implicate PRMT5 in a novel mode of MYCN post-translational regulation and suggest PRMT5 plays a major role in NB tumorigenesis. Small-molecule inhibitors of PRMT5 may therefore represent a novel therapeutic strategy for neuroblastoma and other cancers driven by the MYCN oncogene.
Collapse
Affiliation(s)
- Ji Hyun Park
- Cancer Epigenetics Laboratory University of Bristol, Bristol BS8 1TD, UK
| | - Marianna Szemes
- Cancer Epigenetics Laboratory University of Bristol, Bristol BS8 1TD, UK
| | | | - Zsombor Melegh
- Department of Cellular Pathology, Southmead Hospital, Bristol, UK
| | - Sally Malik
- Cancer Epigenetics Laboratory University of Bristol, Bristol BS8 1TD, UK
| | - Kate J Heesom
- Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - Alexander Greenhough
- Colorectal Cancer Laboratory, School of Cellular & Molecular Medicine University of Bristol, Bristol BS8 1TD, UK
| | - Keith W Brown
- Cancer Epigenetics Laboratory University of Bristol, Bristol BS8 1TD, UK
| | - Y George Zheng
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Daniel Catchpoole
- The Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Michael J Deery
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Karim Malik
- Cancer Epigenetics Laboratory University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
74
|
Shh signaling protects Atoh1 from degradation mediated by the E3 ubiquitin ligase Huwe1 in neural precursors. Dev Cell 2014; 29:649-61. [PMID: 24960692 DOI: 10.1016/j.devcel.2014.05.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 01/31/2023]
Abstract
Signaling networks controlled by Sonic hedgehog (SHH) and the transcription factor Atoh1 regulate the proliferation and differentiation of cerebellar granule neuron progenitors (GNPs). Deregulations in those developmental processes lead to medulloblastoma formation, the most common malignant brain tumor in childhood. Although the protein Atoh1 is a key factor during both cerebellar development and medulloblastoma formation, up-to-date detailed mechanisms underlying its function and regulation have remained poorly understood. Here, we report that SHH regulates Atoh1 stability by preventing its phosphodependent degradation by the E3 ubiquitin ligase Huwe1. Our results reveal that SHH and Atoh1 contribute to a positive autoregulatory loop promoting neuronal precursor expansion. Consequently, Huwe1 loss in mouse SHH medulloblastoma illustrates the disruption of this developmental mechanism in cancer. Hence, the crosstalk between SHH signaling and Atoh1 during cerebellar development highlights a collaborative network that could be further targeted in medulloblastoma.
Collapse
|
75
|
Beltran H. The N-myc Oncogene: Maximizing its Targets, Regulation, and Therapeutic Potential. Mol Cancer Res 2014; 12:815-22. [PMID: 24589438 DOI: 10.1158/1541-7786.mcr-13-0536] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
N-myc (MYCN), a member of the Myc family of basic-helix-loop-helix-zipper (bHLHZ) transcription factors, is a central regulator of many vital cellular processes. As such, N-myc is well recognized for its classic oncogenic activity and association with human neuroblastoma. Amplification and overexpression of N-myc has been described in other tumor types, particularly those of neural origin and neuroendocrine tumors. This review outlines N-myc's contribution to normal development and oncogenic progression. In addition, it highlights relevant transcriptional targets and mechanisms of regulation. Finally, the clinical implications of N-Myc as a biomarker and potential as a target using novel therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Himisha Beltran
- Author's Affiliation: Weill Cornell Medical College, New York, New York
| |
Collapse
|
76
|
Suenaga Y, Islam SMR, Alagu J, Kaneko Y, Kato M, Tanaka Y, Kawana H, Hossain S, Matsumoto D, Yamamoto M, Shoji W, Itami M, Shibata T, Nakamura Y, Ohira M, Haraguchi S, Takatori A, Nakagawara A. NCYM, a Cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3β resulting in the stabilization of MYCN in human neuroblastomas. PLoS Genet 2014; 10:e1003996. [PMID: 24391509 PMCID: PMC3879166 DOI: 10.1371/journal.pgen.1003996] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/18/2013] [Indexed: 11/19/2022] Open
Abstract
The rearrangement of pre-existing genes has long been thought of as the major mode of new gene generation. Recently, de novo gene birth from non-genic DNA was found to be an alternative mechanism to generate novel protein-coding genes. However, its functional role in human disease remains largely unknown. Here we show that NCYM, a cis-antisense gene of the MYCN oncogene, initially thought to be a large non-coding RNA, encodes a de novo evolved protein regulating the pathogenesis of human cancers, particularly neuroblastoma. The NCYM gene is evolutionally conserved only in the taxonomic group containing humans and chimpanzees. In primary human neuroblastomas, NCYM is 100% co-amplified and co-expressed with MYCN, and NCYM mRNA expression is associated with poor clinical outcome. MYCN directly transactivates both NCYM and MYCN mRNA, whereas NCYM stabilizes MYCN protein by inhibiting the activity of GSK3β, a kinase that promotes MYCN degradation. In contrast to MYCN transgenic mice, neuroblastomas in MYCN/NCYM double transgenic mice were frequently accompanied by distant metastases, behavior reminiscent of human neuroblastomas with MYCN amplification. The NCYM protein also interacts with GSK3β, thereby stabilizing the MYCN protein in the tumors of the MYCN/NCYM double transgenic mice. Thus, these results suggest that GSK3β inhibition by NCYM stabilizes the MYCN protein both in vitro and in vivo. Furthermore, the survival of MYCN transgenic mice bearing neuroblastoma was improved by treatment with NVP-BEZ235, a dual PI3K/mTOR inhibitor shown to destabilize MYCN via GSK3β activation. In contrast, tumors caused in MYCN/NCYM double transgenic mice showed chemo-resistance to the drug. Collectively, our results show that NCYM is the first de novo evolved protein known to act as an oncopromoting factor in human cancer, and suggest that de novo evolved proteins may functionally characterize human disease. The MYCN oncogene has a central role in the genesis and progression of neuroblastomas, and its amplification is associated with an unfavorable prognosis. We have found that NCYM, a MYCN cis-antisense RNA, is translated in humans to a de novo evolved protein. NCYM inhibits GSK3β to stabilize MYCN, whereas MYCN induces NCYM transcription. The positive feedback regulation formed in the MYCN/NCYM-amplified tumors promotes the aggressive nature of human neuroblastoma. MYCN transgenic mice, which express human MYCN in sympathoadrenal tissues, spontaneously develop neuroblastomas. However, unlike human neuroblastoma, distant metastasis is infrequent. We established MYCN/NCYM double transgenic mice as a new animal model for studying neuroblastoma pathogenesis. We found that NCYM expression promoted both the metastasis and chemo-resistance of the neuroblastomas formed in the double transgenic mice. These results demonstrate that NCYM may be a potential target for developing novel therapeutic tools against high-risk neuroblastomas in humans, and that the MYCN/NCYM double transgenic mouse may be a suitable model for the screening of these new drugs.
Collapse
Affiliation(s)
- Yusuke Suenaga
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, Japan
| | - S. M. Rafiqul Islam
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, Japan
| | - Jennifer Alagu
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, Japan
| | - Yoshiki Kaneko
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, Japan
| | - Mamoru Kato
- Division of Cancer Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Yukichi Tanaka
- Department of Diagnostic Pathology, Research Institute, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa, Minami-ku, Yokohama, Japan
| | - Hidetada Kawana
- Division of Surgical Pathology, Chiba Cancer Center, 666-2 Nitona, Chuo-ku, Chiba, Japan
| | - Shamim Hossain
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, Japan
| | - Daisuke Matsumoto
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, Japan
| | - Mami Yamamoto
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, Japan
| | - Wataru Shoji
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, Japan
- Department of Pediatric Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Makiko Itami
- Division of Surgical Pathology, Chiba Cancer Center, 666-2 Nitona, Chuo-ku, Chiba, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Yohko Nakamura
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, Japan
| | - Miki Ohira
- Laboratory of Cancer Genomics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, Japan
| | - Seiki Haraguchi
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, Japan
| | - Atsushi Takatori
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, Japan
| | - Akira Nakagawara
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, Japan
- * E-mail:
| |
Collapse
|
77
|
CDK/CK1 inhibitors roscovitine and CR8 downregulate amplified MYCN in neuroblastoma cells. Oncogene 2013; 33:5675-87. [PMID: 24317512 DOI: 10.1038/onc.2013.513] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 10/09/2013] [Accepted: 10/21/2013] [Indexed: 12/15/2022]
Abstract
To understand the mechanisms of action of (R)-roscovitine and (S)-CR8, two related pharmacological inhibitors of cyclin-dependent kinases (CDKs), we applied a variety of '-omics' techniques to the human neuroblastoma SH-SY5Y and IMR32 cell lines: (1) kinase interaction assays, (2) affinity competition on immobilized broad-spectrum kinase inhibitors, (3) affinity chromatography on immobilized (R)-roscovitine and (S)-CR8, (4) whole genome transcriptomics analysis and specific quantitative PCR studies, (5) global quantitative proteomics approach and western blot analysis of selected proteins. Altogether, the results show that the major direct targets of these two molecules belong to the CDKs (1,2,5,7,9,12), DYRKs, CLKs and CK1s families. By inhibiting CDK7, CDK9 and CDK12, these inhibitors transiently reduce RNA polymerase 2 activity, which results in downregulation of a large set of genes. Global transcriptomics and proteomics analysis converge to a central role of MYC transcription factors downregulation. Indeed, CDK inhibitors trigger rapid and massive downregulation of MYCN expression in MYCN-amplified neuroblastoma cells as well as in nude mice xenografted IMR32 cells. Inhibition of casein kinase 1 may also contribute to the antitumoral activity of (R)-roscovitine and (S)-CR8. This dual mechanism of action may be crucial in the use of these kinase inhibitors for the treatment of MYC-dependent cancers, in particular neuroblastoma where MYCN amplification is a strong predictor factor for high-risk disease.
Collapse
|
78
|
Barone G, Anderson J, Pearson ADJ, Petrie K, Chesler L. New strategies in neuroblastoma: Therapeutic targeting of MYCN and ALK. Clin Cancer Res 2013; 19:5814-21. [PMID: 23965898 PMCID: PMC3818140 DOI: 10.1158/1078-0432.ccr-13-0680] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clinical outcome remains poor in patients with high-risk neuroblastoma, in which chemoresistant relapse is common following high-intensity conventional multimodal therapy. Novel treatment approaches are required. Although recent genomic profiling initiatives have not revealed a high frequency of mutations in any significant number of therapeutically targeted genes, two exceptions, amplification of the MYCN oncogene and somatically acquired tyrosine kinase domain point mutations in anaplastic lymphoma kinase (ALK), present exciting possibilities for targeted therapy. In contrast with the situation with ALK, in which a robust pipeline of pharmacologic agents is available from early clinical use in adult malignancy, therapeutic targeting of MYCN (and MYC oncoproteins in general) represents a significant medicinal chemistry challenge that has remained unsolved for two decades. We review the latest approaches envisioned for blockade of ALK activity in neuroblastoma, present a classification of potential approaches for therapeutic targeting of MYCN, and discuss how recent developments in targeting of MYC proteins seem to make therapeutic inhibition of MYCN a reality in the clinic.
Collapse
Affiliation(s)
- Giuseppe Barone
- Paediatric Solid Tumour Biology and Therapeutics Team, Division of Clinical Studies, The Institute of Cancer Research, Sutton, United Kingdom
- Children’s and Young People’s Unit Royal Marsden NHS Trust, Sutton, United Kingdom
| | - John Anderson
- Unit of Molecular Haematology and Cancer Biology, Institute of Child Health, London, United Kingdom
| | - Andrew D. J. Pearson
- Paediatric Solid Tumour Biology and Therapeutics Team, Division of Clinical Studies, The Institute of Cancer Research, Sutton, United Kingdom
- Children’s and Young People’s Unit Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Kevin Petrie
- Paediatric Solid Tumour Biology and Therapeutics Team, Division of Clinical Studies, The Institute of Cancer Research, Sutton, United Kingdom
| | - Louis Chesler
- Paediatric Solid Tumour Biology and Therapeutics Team, Division of Clinical Studies, The Institute of Cancer Research, Sutton, United Kingdom
- Children’s and Young People’s Unit Royal Marsden NHS Trust, Sutton, United Kingdom
| |
Collapse
|
79
|
Abstract
Neuroblastoma, the most common extracranial solid tumor of childhood, is thought to originate from undifferentiated neural crest cells. Amplification of the MYC family member, MYCN, is found in ∼25% of cases and correlates with high-risk disease and poor prognosis. Currently, amplification of MYCN remains the best-characterized genetic marker of risk in neuroblastoma. This article reviews roles for MYCN in neuroblastoma and highlights recent identification of other driver mutations. Strategies to target MYCN at the level of protein stability and transcription are also reviewed.
Collapse
Affiliation(s)
- Miller Huang
- Departments of Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, California 94158-9001
| | | |
Collapse
|
80
|
Bruyère C, Meijer L. Targeting cyclin-dependent kinases in anti-neoplastic therapy. Curr Opin Cell Biol 2013; 25:772-9. [PMID: 24011867 DOI: 10.1016/j.ceb.2013.08.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 12/12/2022]
Abstract
Cell cycle progression is controlled by sequential activation of cyclin-dependent kinases (CDKs), which are often deregulated in cancer. Consequently numerous pharmacological inhibitors of CDKs have been developed with the aim of treating cancers. The article briefly reviews CDK inhibitors and their use to treat cancers, with specific focus on the use of biomarkers and drugs combination to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Céline Bruyère
- ManRos Therapeutics, Centre de Perharidy, 29680 Roscoff, France
| | | |
Collapse
|
81
|
Yu F, Gao W, Yokochi T, Suenaga Y, Ando K, Ohira M, Nakamura Y, Nakagawara A. RUNX3 interacts with MYCN and facilitates protein degradation in neuroblastoma. Oncogene 2013; 33:2601-9. [DOI: 10.1038/onc.2013.221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 04/24/2013] [Accepted: 05/03/2013] [Indexed: 11/09/2022]
|
82
|
Brockmann M, Poon E, Berry T, Carstensen A, Deubzer HE, Rycak L, Jamin Y, Thway K, Robinson SP, Roels F, Witt O, Fischer M, Chesler L, Eilers M. Small molecule inhibitors of aurora-a induce proteasomal degradation of N-myc in childhood neuroblastoma. Cancer Cell 2013; 24:75-89. [PMID: 23792191 PMCID: PMC4298657 DOI: 10.1016/j.ccr.2013.05.005] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 04/21/2013] [Accepted: 05/08/2013] [Indexed: 01/08/2023]
Abstract
Amplification of MYCN is a driver mutation in a subset of human neuroendocrine tumors, including neuroblastoma. No small molecules that target N-Myc, the protein encoded by MYCN, are clinically available. N-Myc forms a complex with the Aurora-A kinase, which protects N-Myc from proteasomal degradation. Although stabilization of N-Myc does not require the catalytic activity of Aurora-A, we show here that two Aurora-A inhibitors, MLN8054 and MLN8237, disrupt the Aurora-A/N-Myc complex and promote degradation of N-Myc mediated by the Fbxw7 ubiquitin ligase. Disruption of the Aurora-A/N-Myc complex inhibits N-Myc-dependent transcription, correlating with tumor regression and prolonged survival in a mouse model of MYCN-driven neuroblastoma. We conclude that Aurora-A is an accessible target that makes destabilization of N-Myc a viable therapeutic strategy.
Collapse
Affiliation(s)
- Markus Brockmann
- Comprehensive Cancer Center Mainfranken and Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Evon Poon
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd. Belmont, Sutton, Surrey SM2 5NG, UK
| | - Teeara Berry
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd. Belmont, Sutton, Surrey SM2 5NG, UK
| | - Anne Carstensen
- Comprehensive Cancer Center Mainfranken and Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hedwig E. Deubzer
- CCU Pediatric Oncology, DKFZ and Department of Pediatrics 3, University Hospital Heidelberg, Germany, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lukas Rycak
- Institute of Molecular Biology and Tumor Research (IMT), Emil-Mannkopff-Str. 2, 35037 Marburg, Germany
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd. Belmont, Sutton, Surrey SM2 5NG, UK
| | - Khin Thway
- Division of Pathology, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd. Belmont, Sutton, Surrey SM2 5NG, UK
| | - Simon P. Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd. Belmont, Sutton, Surrey SM2 5NG, UK
| | - Frederik Roels
- University Children’s Hospital of Cologne, and Cologne Center for Molecular Medicine (CMMC), University of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Olaf Witt
- CCU Pediatric Oncology, DKFZ and Department of Pediatrics 3, University Hospital Heidelberg, Germany, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Matthias Fischer
- University Children’s Hospital of Cologne, and Cologne Center for Molecular Medicine (CMMC), University of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Louis Chesler
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd. Belmont, Sutton, Surrey SM2 5NG, UK
| | - Martin Eilers
- Comprehensive Cancer Center Mainfranken and Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
83
|
Cepeda D, Ng HF, Sharifi HR, Mahmoudi S, Cerrato VS, Fredlund E, Magnusson K, Nilsson H, Malyukova A, Rantala J, Klevebring D, Viñals F, Bhaskaran N, Zakaria SM, Rahmanto AS, Grotegut S, Nielsen ML, Szigyarto CAK, Sun D, Lerner M, Navani S, Widschwendter M, Uhlén M, Jirström K, Pontén F, Wohlschlegel J, Grandér D, Spruck C, Larsson LG, Sangfelt O. CDK-mediated activation of the SCF(FBXO) (28) ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer. EMBO Mol Med 2013; 5:1067-86. [PMID: 23776131 PMCID: PMC3721474 DOI: 10.1002/emmm.201202341] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 12/12/2022] Open
Abstract
SCF (Skp1/Cul1/F-box) ubiquitin ligases act as master regulators of cellular homeostasis by targeting key proteins for ubiquitylation. Here, we identified a hitherto uncharacterized F-box protein, FBXO28 that controls MYC-dependent transcription by non-proteolytic ubiquitylation. SCFFBXO28 activity and stability are regulated during the cell cycle by CDK1/2-mediated phosphorylation of FBXO28, which is required for its efficient ubiquitylation of MYC and downsteam enhancement of the MYC pathway. Depletion of FBXO28 or overexpression of an F-box mutant unable to support MYC ubiquitylation results in an impairment of MYC-driven transcription, transformation and tumourigenesis. Finally, in human breast cancer, high FBXO28 expression and phosphorylation are strong and independent predictors of poor outcome. In conclusion, our data suggest that SCFFBXO28 plays an important role in transmitting CDK activity to MYC function during the cell cycle, emphasizing the CDK-FBXO28-MYC axis as a potential molecular drug target in MYC-driven cancers, including breast cancer.
Collapse
Affiliation(s)
- Diana Cepeda
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Wang Y, Lin L, Lai H, Parada LF, Lei L. Transcription factor Sox11 is essential for both embryonic and adult neurogenesis. Dev Dyn 2013; 242:638-53. [PMID: 23483698 DOI: 10.1002/dvdy.23962] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/02/2013] [Accepted: 03/02/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Neurogenesis requires neural progenitor cell (NPC) proliferation, neuronal migration, and differentiation. During embryonic development, neurons are generated in specific areas of the developing neuroepithelium and migrate to their appropriate positions. In the adult brain, neurogenesis continues in the subgranular zone (SGZ) of the hippocampal dentate gyrus and the subventricular zone (SVZ) of the lateral ventricle. Although neurogenesis is fundamental to brain development and function, our understanding of the molecular mechanisms that regulate neurogenesis is still limited. RESULTS In this study, we generated a Sox11 floxed allele and a Sox11 null allele in mice using the Cre-loxP technology. We first analyzed the role of the transcription factor Sox11 in embryonic neurogenesis using Sox11 null embryos. We also examined the role of Sox11 in adult hippocampal neurogenesis using Sox11 conditional knockout mice in which Sox11 is specifically deleted in adult NPCs. Sox11 null embryos developed small and disorganized brains, accompanied by transient proliferation deficits in NPCs. Deletion of Sox11 in adult NPCs blunted proliferation in the SGZ. Using functional genomics, we identified potential downstream target genes of Sox11. CONCLUSIONS Taken together, our work provides evidence that Sox11 is required for both embryonic and adult neurogenesis, and identifies potential downstream target genes.
Collapse
Affiliation(s)
- Yong Wang
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | | | | | | | | |
Collapse
|
85
|
Liu L, Eisenman RN. Regulation of c-Myc Protein Abundance by a Protein Phosphatase 2A-Glycogen Synthase Kinase 3β-Negative Feedback Pathway. Genes Cancer 2012; 3:23-36. [PMID: 22893788 DOI: 10.1177/1947601912448067] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 04/12/2012] [Indexed: 12/11/2022] Open
Abstract
Regulation of Myc protein abundance is critical for normal cell growth as evidenced by the fact that deregulated Myc expression is a hallmark of many cancers. One of several important mechanisms that control Myc levels involves its phosphorylation-dependent proteolysis. Previous studies have shown that phosphorylation of threonine 58 by glycogen synthase kinase 3β (GSK3β) within the conserved Myc Box I sequence results in binding by the ubiquitin ligase Fbw7-SCF complex, followed by ubiquitination and proteasome-mediated degradation of Myc. Here, we show that induction of Myc in several cell types correlates with loss of the inhibitory serine 9 phosphorylation of GSK3β and its increased kinase activity. The Myc-induced decrease in serine 9 phosphorylation is blocked by okadaic acid, an inhibitor of protein phosphatase 2A (PP2A). We therefore examined components of PP2A complexes and found that, among the regulatory B56 subunits, only the promoter of the ppp2r5d gene, encoding the B56δ isoform, is directly bound and transcriptionally activated by Myc in an E-box-dependent manner. Furthermore, we find that B56δ associates with both GSK3β and Myc, resulting in phosphorylation of Myc threonine 58, the well-established signal for ubiquitination and degradation. Furthermore, overexpression, or siRNA-mediated knockdown, of B56δ respectively results in accelerated, or retarded, rates of Myc degradation. Together, our data indicate that Myc limits its own abundance through a negative feedback pathway involving PP2A and GSK3β.
Collapse
Affiliation(s)
- Lingfeng Liu
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
86
|
Wu J, Kharebava G, Piao C, Stoica BA, Dinizo M, Sabirzhanov B, Hanscom M, Guanciale K, Faden AI. Inhibition of E2F1/CDK1 pathway attenuates neuronal apoptosis in vitro and confers neuroprotection after spinal cord injury in vivo. PLoS One 2012; 7:e42129. [PMID: 22848730 PMCID: PMC3405037 DOI: 10.1371/journal.pone.0042129] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 07/03/2012] [Indexed: 11/18/2022] Open
Abstract
Apoptosis of post-mitotic neurons plays a significant role in secondary tissue damage following traumatic spinal cord injury (SCI). Activation of E2F1-dependent transcription promotes expression of pro-apoptotic factors, including CDK1; this signal transduction pathway is believed to represent an important mechanism for the physiological or pathological neuronal cell death. However, a specific role for this pathway in neuronal apoptosis induced by SCI has not yet been reported. Here we demonstrate up-regulation of the E2F1/CDK1 pathway that is associated with neuronal apoptosis following impact SCI in rats. Expression of E2F1 and CDK1 were robustly up-regulated as early as 15 min after injury and sustained until 3 days post-injury. CDK1 activity and E2F1 downstream targets bim and c-Myb were significantly increased after SCI. Activation of E2F1/CDK1 signaling also was associated with death of neurons in vitro; this was attenuated by shRNA knockdown or pharmacological inhibition of the E2F1/CDK1 pathway. CR8, a novel and potent CDK1 inhibitor, blocked apoptosis of primary cortical neurons at low-micromolar concentrations. Moreover, SCI-induced up-regulation of E2F1/CDK1 and associated neuronal apoptosis was significantly attenuated by systemic injection of CR8 (1 mg/kg, i.p.) at 5 min after injury. CR8 significantly decreased posttraumatic elevation of biochemical markers of apoptosis, such as products of caspase-3 and α–fodrin cleavage, as well as neuronal cell death, as indicated by TUNEL staining. Importantly, CR8 treatment also increased the number of surviving neurons at 5 weeks after injury. Together, these findings indicate that activation of the E2F1/CDK1 pathway contributes to the pathophysiology of SCI and that selective inhibition of this signaling cascade may represent an attractive therapeutic strategy.
Collapse
Affiliation(s)
- Junfang Wu
- Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Berry T, Luther W, Bhatnagar N, Jamin Y, Poon E, Sanda T, Pei D, Sharma B, Vetharoy WR, Hallsworth A, Ahmad Z, Barker K, Moreau L, Webber H, Wang W, Liu Q, Perez-Atayde A, Rodig S, Cheung NK, Raynaud F, Hallberg B, Robinson SP, Gray NS, Pearson AD, Eccles SA, Chesler L, George RE. The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell 2012; 22:117-30. [PMID: 22789543 PMCID: PMC3417812 DOI: 10.1016/j.ccr.2012.06.001] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 03/18/2012] [Accepted: 06/05/2012] [Indexed: 01/03/2023]
Abstract
The ALK(F1174L) mutation is associated with intrinsic and acquired resistance to crizotinib and cosegregates with MYCN in neuroblastoma. In this study, we generated a mouse model overexpressing ALK(F1174L) in the neural crest. Compared to ALK(F1174L) and MYCN alone, co-expression of these two oncogenes led to the development of neuroblastomas with earlier onset, higher penetrance, and enhanced lethality. ALK(F1174L)/MYCN tumors exhibited increased MYCN dosage due to ALK(F1174L)-induced activation of the PI3K/AKT/mTOR and MAPK pathways, coupled with suppression of MYCN pro-apoptotic effects. Combined treatment with the ATP-competitive mTOR inhibitor Torin2 overcame the resistance of ALK(F1174L)/MYCN tumors to crizotinib. Our findings demonstrate a pathogenic role for ALK(F1174L) in neuroblastomas overexpressing MYCN and suggest a strategy for improving targeted therapy for ALK-positive neuroblastoma.
Collapse
Affiliation(s)
- Teeara Berry
- Divisions of Clinical Studies & Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK
| | - William Luther
- Department of Pediatric Hematology & Oncology, Dana-Farber Cancer Institute and Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Namrata Bhatnagar
- Department of Pediatric Hematology & Oncology, Dana-Farber Cancer Institute and Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Yann Jamin
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Evon Poon
- Divisions of Clinical Studies & Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Takaomi Sanda
- Department of Pediatric Hematology & Oncology, Dana-Farber Cancer Institute and Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Desheng Pei
- Department of Pediatric Hematology & Oncology, Dana-Farber Cancer Institute and Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Bandana Sharma
- Department of Pediatric Hematology & Oncology, Dana-Farber Cancer Institute and Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Winston R. Vetharoy
- Divisions of Clinical Studies & Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Albert Hallsworth
- Divisions of Clinical Studies & Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Zai Ahmad
- Divisions of Clinical Studies & Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Karen Barker
- Divisions of Clinical Studies & Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Lisa Moreau
- Department of Pediatric Hematology & Oncology, Dana-Farber Cancer Institute and Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Hannah Webber
- Divisions of Clinical Studies & Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Wenchao Wang
- Department of Pediatric Hematology & Oncology, Dana-Farber Cancer Institute and Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Qingsong Liu
- Departments of Cancer Biology, Dana Farber Cancer Institute and Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Scott Rodig
- Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nai-Kong Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Florence Raynaud
- Divisions of Clinical Studies & Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Bengt Hallberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Simon P. Robinson
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Nathanael S. Gray
- Departments of Cancer Biology, Dana Farber Cancer Institute and Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Andrew D.J. Pearson
- Divisions of Clinical Studies & Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK
- The Children and Young People’s Unit, The Royal Marsden NHS Trust, Sutton, Surrey, UK
| | - Suzanne A. Eccles
- Divisions of Clinical Studies & Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Louis Chesler
- Divisions of Clinical Studies & Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK
- The Children and Young People’s Unit, The Royal Marsden NHS Trust, Sutton, Surrey, UK
| | - Rani E. George
- Department of Pediatric Hematology & Oncology, Dana-Farber Cancer Institute and Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
88
|
Abstract
Myc proteins are often deregulated in human brain tumors, especially in embryonal tumors that affect children. Many observations have shown how alterations of these pleiotropic Myc transcription factors provide initiation, maintenance, or progression of tumors. This review will focus on the role of Myc family members (particularly c-myc and Mycn) in tumors like medulloblastoma and glioma and will further discuss how to target stabilization of these proteins for future brain tumor therapies.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Uppsala University, Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala, Sweden.
| |
Collapse
|
89
|
|
90
|
Anaplastic Lymphoma Kinase (ALK) regulates initiation of transcription of MYCN in neuroblastoma cells. Oncogene 2012; 31:5193-200. [PMID: 22286764 DOI: 10.1038/onc.2012.12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neuroblastoma is a neural crest-derived embryonal tumour of the postganglionic sympathetic nervous system and a disease with several different chromosomal gains and losses, which include MYCN-amplified neuroblastoma on chromosome 2, deletions of parts of the chromosomes 1p and 11q, gain of parts of 17q and triploidy. Recently, activating mutations of the ALK (Anaplastic Lymphoma Kinase) RTK (Receptor Tyrosine Kinase) gene have been described in neuroblastoma. A meta-analysis of neuroblastoma cases revealed that ALK mutations (49 of 709 cases) in relation to genomic subtype were most frequently observed in MYCN amplified tumours (8.9%), correlating with a poor clinical outcome. MYCN proteins target proliferation and apoptotic pathways, and have an important role in the progression of neuroblastoma. Here, we show that both wild-type and gain-of-function mutants in ALK are able to stimulate transcription at the MYCN promoter and initiate mRNA transcription of the MYCN gene in both neuronal and neuroblastoma cell lines. Further, this stimulation of MYCN gene transcription and de novo MYCN protein expression is abrogated by specific ALK inhibitors, such as crizotinib (PF-2341066), NVP-TAE684, and by small interfering RNA to ALK resulting in a decrease in proliferation rate. Finally, co-transfection of ALK gain-of-function mutations together with MYCN leads to an increase in transformation potential. Taken together, our results indicate that ALK signalling regulates initiation of transcription of the MYCN gene providing a possible explanation for the poor clinical outcome observed when MYCN is amplified together with activated ALK.
Collapse
|
91
|
Sengupta R, Dubuc A, Ward S, Yang L, Northcott P, Woerner BM, Kroll K, Luo J, Taylor MD, Wechsler-Reya RJ, Rubin JB. CXCR4 activation defines a new subgroup of Sonic hedgehog-driven medulloblastoma. Cancer Res 2011; 72:122-32. [PMID: 22052462 DOI: 10.1158/0008-5472.can-11-1701] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Medulloblastoma prognosis tends to be poor, despite aggressive therapy, but defining molecular subgroups may identify patients who could benefit from targeted therapies. This study used human gene array and associated clinical data to identify a new molecular subgroup of medulloblastoma characterized by coactivation of the Sonic hedgehog (SHH) and CXCR4 pathways. SHH-CXCR4 tumors were more common in the youngest patients where they were associated with desmoplastic histology. In contrast to tumors activating SHH but not CXCR4, coactivated tumors exhibited greater expression of Math1 and cyclin D1. Treatment with the CXCR4 antagonist AMD3100 inhibited cyclin D1 expression and maximal tumor growth in vivo. Mechanistic investigations revealed that SHH activation stimulated CXCR4 cell surface localization and effector signaling activity, whereas SHH absence caused CXCR4 to assume an intracellular localization. Taken together, our findings define a new medulloblastoma subgroup characterized by a functional interaction between the SHH and CXCR4 pathways, and they provide a rationale to clinically evaluate combined inhibition of SHH and CXCR4 for medulloblastoma treatment.
Collapse
Affiliation(s)
- Rajarshi Sengupta
- Department of Pediatrics, Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Faisal A, Vaughan L, Bavetsias V, Sun C, Atrash B, Avery S, Jamin Y, Robinson SP, Workman P, Blagg J, Raynaud FI, Eccles SA, Chesler L, Linardopoulos S. The aurora kinase inhibitor CCT137690 downregulates MYCN and sensitizes MYCN-amplified neuroblastoma in vivo. Mol Cancer Ther 2011; 10:2115-23. [PMID: 21885865 PMCID: PMC4298164 DOI: 10.1158/1535-7163.mct-11-0333] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aurora kinases regulate key stages of mitosis including centrosome maturation, spindle assembly, chromosome segregation, and cytokinesis. Aurora A and B kinase overexpression has also been associated with various human cancers, and as such, they have been extensively studied as novel antimitotic drug targets. Here, we characterize the Aurora kinase inhibitor CCT137690, a highly selective, orally bioavailable imidazo[4,5-b]pyridine derivative that inhibits Aurora A and B kinases with low nanomolar IC(50) values in both biochemical and cellular assays and exhibits antiproliferative activity against a wide range of human solid tumor cell lines. CCT137690 efficiently inhibits histone H3 and transforming acidic coiled-coil 3 phosphorylation (Aurora B and Aurora A substrates, respectively) in HCT116 and HeLa cells. Continuous exposure of tumor cells to the inhibitor causes multipolar spindle formation, chromosome misalignment, polyploidy, and apoptosis. This is accompanied by p53/p21/BAX induction, thymidine kinase 1 downregulation, and PARP cleavage. Furthermore, CCT137690 treatment of MYCN-amplified neuroblastoma cell lines inhibits cell proliferation and decreases MYCN protein expression. Importantly, in a transgenic mouse model of neuroblastoma that overexpresses MYCN protein and is predisposed to spontaneous neuroblastoma formation, this compound significantly inhibits tumor growth. The potent preclinical activity of CCT137690 suggests that this inhibitor may benefit patients with MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Amir Faisal
- Cancer Research UK, Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, UK
| | - Lynsey Vaughan
- Paediatric Oncology, The Institute of Cancer Research, Sutton, UK
| | - Vassilios Bavetsias
- Cancer Research UK, Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, UK
| | - Chongbo Sun
- Cancer Research UK, Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, UK
| | - Butrus Atrash
- Cancer Research UK, Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, UK
| | - Sian Avery
- Cancer Research UK, Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, UK
| | - Yann Jamin
- Cancer Research UK and EPSRC Cancer Imaging Centre, The Institute of Cancer Research and Royal Marsden NHS Trust, Sutton, Surrey, UK
| | - Simon P. Robinson
- Cancer Research UK and EPSRC Cancer Imaging Centre, The Institute of Cancer Research and Royal Marsden NHS Trust, Sutton, Surrey, UK
| | - Paul Workman
- Cancer Research UK, Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, UK
| | - Julian Blagg
- Cancer Research UK, Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, UK
| | - Florence I. Raynaud
- Cancer Research UK, Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, UK
| | - Suzanne A. Eccles
- Cancer Research UK, Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, UK
| | - Louis Chesler
- Paediatric Oncology, The Institute of Cancer Research, Sutton, UK
| | - Spiros Linardopoulos
- Cancer Research UK, Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, UK
- Breakthrough Breast Cancer Research Centre, London, UK
| |
Collapse
|
93
|
Yaddanapudi K, De Miranda J, Hornig M, Lipkin WI. Toll-like receptor 3 regulates neural stem cell proliferation by modulating the Sonic Hedgehog pathway. PLoS One 2011; 6:e26766. [PMID: 22046349 PMCID: PMC3201973 DOI: 10.1371/journal.pone.0026766] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/04/2011] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptor 3 (TLR3) signaling has been implicated in neural stem/precursor cell (NPC) proliferation. However, the molecular mechanisms involved, and their relationship to classical TLR-mediated innate immune pathways, remain unknown. Here, we report investigation of the mechanics of TLR3 signaling in neurospheres comprised of epidermal growth factor (EGF)-responsive NPC isolated from murine embryonic cerebral cortex of C57BL/6 (WT) or TLR3 deficient (TLR3(-/-)) mice. Our data indicate that the TLR3 ligand polyinosinic-polycytidylic acid (PIC) negatively regulates NPC proliferation by inhibiting Sonic Hedgehog (Shh) signaling, that PIC induces apoptosis in association with inhibition of Ras-ERK signaling and elevated expression of Fas, and that these effects are TLR3-dependent, suggesting convergent signaling between the Shh and TLR3 pathways.
Collapse
Affiliation(s)
- Kavitha Yaddanapudi
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Joari De Miranda
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Mady Hornig
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| |
Collapse
|
94
|
Kapeli K, Hurlin PJ. Differential regulation of N-Myc and c-Myc synthesis, degradation, and transcriptional activity by the Ras/mitogen-activated protein kinase pathway. J Biol Chem 2011; 286:38498-38508. [PMID: 21908617 DOI: 10.1074/jbc.m111.276675] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myc transcription factors are important regulators of proliferation and can promote oncogenesis when deregulated. Deregulated Myc expression in cancers can result from MYC gene amplification and translocation but also from alterations in mitogenic signaling pathways that affect Myc levels through both transcriptional and post-transcription mechanisms. For example, mutations in Ras family GTPase proteins that cause their constitutive activation can increase cellular levels of c-Myc by interfering with its rapid proteasomal degradation. Although enhanced protein stability is generally thought to be applicable to other Myc family members, here we show that c-Myc and its paralog N-Myc respond to oncogenic H-Ras (H-Ras(G12V)) in very different ways. H-Ras(G12V) promotes accumulation of both c-Myc and N-Myc, but although c-Myc accumulation is achieved by enhanced protein stability, N-Myc accumulation is associated with an accelerated rate of translation that overcomes a surprising H-Ras(G12V)-mediated destabilization of N-Myc. We show that H-Ras(G12V)-mediated degradation of N-Myc functions independently of key phosphorylation sites in the highly conserved Myc homology box I region that controls c-Myc protein stability by oncogenic Ras. Finally, we found that N-Myc and c-Myc transcriptional activity is associated with their proteasomal degradation but that N-Myc may be uniquely dependent on Ras-stimulated proteolysis for target gene expression. Taken together, these studies provide mechanistic insight into how oncogenic Ras augments N-Myc levels in cells and suggest that enhanced N-Myc translation and degradation-coupled transactivation may contribute to oncogenesis.
Collapse
Affiliation(s)
- Katannya Kapeli
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Peter J Hurlin
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239; Shriners Hospital for Children, Portland, Oregon 97239.
| |
Collapse
|
95
|
Mainwaring LA, Kenney AM. Divergent functions for eIF4E and S6 kinase by sonic hedgehog mitogenic signaling in the developing cerebellum. Oncogene 2011; 30:1784-97. [PMID: 21339731 PMCID: PMC3583293 DOI: 10.1038/onc.2010.564] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/02/2010] [Accepted: 09/29/2010] [Indexed: 01/29/2023]
Abstract
Cerebellar development entails rapid peri-natal proliferation of cerebellar granule neuron precursors (CGNPs), proposed cells-of-origin for certain medulloblastomas. CGNPs require insulin-like growth factor (IGF) for survival and sonic hedgehog (Shh)-implicated in medulloblastoma-for proliferation. The IGF-responsive kinase mammalian target of rapamycin (mTOR) drives proliferation-associated protein synthesis. We asked whether Shh signaling regulates mTOR targets to promote CGNP proliferation despite constitutive IGF signaling under proliferative and differentiation-promoting conditions. Surprisingly, Shh promoted eukaryotic initiation factor 4E (eIF4E) expression, but inhibited S6 kinase (S6K). In vivo, S6K activity specifically marked the CGNP population transitioning from proliferation-competent to post-mitotic. Indeed, eIF4E was required for CGNP proliferation, while S6K activation drove cell cycle exit. Protein phosphatase 2A (PP2A) inhibition rescued S6K activity. Moreover, Shh upregulated the PP2A B56γ subunit, which targets S6K for inactivation and was required for CGNP proliferation. These findings reveal unique developmental functions for eIF4E and S6 kinase wherein their activity is specifically uncoupled by mitogenic Shh signaling.
Collapse
Affiliation(s)
- Lori A. Mainwaring
- Biochemistry, Cell, and Molecular Biology Program, Weill Medical College of Cornell University, New York NY 10021 USA
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 USA
| | - Anna Marie Kenney
- Biochemistry, Cell, and Molecular Biology Program, Weill Medical College of Cornell University, New York NY 10021 USA
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 USA
| |
Collapse
|
96
|
Bhatia B, Hsieh M, Kenney AM, Nahlé Z. Mitogenic Sonic hedgehog signaling drives E2F1-dependent lipogenesis in progenitor cells and medulloblastoma. Oncogene 2011; 30:410-22. [PMID: 20890301 PMCID: PMC3072890 DOI: 10.1038/onc.2010.454] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 08/29/2010] [Indexed: 12/11/2022]
Abstract
Deregulation of the Rb/E2F tumor suppressor complex and aberrantion of Sonic hedgehog (Shh) signaling are documented across the spectrum of human malignancies. Exaggerated de novo lipid synthesis is also found in certain highly proliferative, aggressive tumors. Here, we show that in Shh-driven medulloblastomas, Rb is inactivated and E2F1 is upregulated, promoting lipogenesis. Extensive lipid accumulation and elevated levels of the lipogenic enzyme fatty acid synthase (FASN) mark those tumors. In primary cerebellar granule neuron precursors (CGNPs), proposed Shh-associated medulloblastoma cells-of-origin, Shh signaling triggers E2F1 and FASN expression, whereas suppressing fatty acid oxidation (FAO), in a smoothened-dependent manner. In the developing cerebellum, E2F1 and FASN co-localize in proliferating CGNPs. in vivo and in vitro, E2F1 is required for FASN expression and CGNP proliferation, and E2F1 knockdown impairs Shh-mediated FAO inhibition. Pharmacological blockade of Rb inactivation and/or lipogenesis inhibits CGNP proliferation, drives medulloblastoma cell death and extends survival of medulloblastoma-bearing animals In vivo. These findings identify a novel mechanism through which Shh signaling links cell cycle progression to lipid synthesis, through E2F1-dependent regulation of lipogenic enzymes. These findings pertinent to the etiology of tumor metabolism also underscore the key role of the Shh→E2F1→FASN axis in regulating de novo lipid synthesis in cancers, and as such its value as a global therapeutic target in hedgehog-dependent and/or Rb-inactivated tumors.
Collapse
Affiliation(s)
- Bobby Bhatia
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York NY 10021
| | - Michael Hsieh
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY 10021
| | - Anna Marie Kenney
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York NY 10021
| | - Zaher Nahlé
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY 10021
| |
Collapse
|
97
|
Popkie AP, Zeidner LC, Albrecht AM, D'Ippolito A, Eckardt S, Newsom DE, Groden J, Doble BW, Aronow B, McLaughlin KJ, White P, Phiel CJ. Phosphatidylinositol 3-kinase (PI3K) signaling via glycogen synthase kinase-3 (Gsk-3) regulates DNA methylation of imprinted loci. J Biol Chem 2010; 285:41337-47. [PMID: 21047779 DOI: 10.1074/jbc.m110.170704] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glycogen synthase kinase-3 (Gsk-3) isoforms, Gsk-3α and Gsk-3β, are constitutively active, largely inhibitory kinases involved in signal transduction. Underscoring their biological significance, altered Gsk-3 activity has been implicated in diabetes, Alzheimer disease, schizophrenia, and bipolar disorder. Here, we demonstrate that deletion of both Gsk-3α and Gsk-3β in mouse embryonic stem cells results in reduced expression of the de novo DNA methyltransferase Dnmt3a2, causing misexpression of the imprinted genes Igf2, H19, and Igf2r and hypomethylation of their corresponding imprinted control regions. Treatment of wild-type embryonic stem cells and neural stem cells with the Gsk-3 inhibitor, lithium, phenocopies the DNA hypomethylation at these imprinted loci. We show that inhibition of Gsk-3 by phosphatidylinositol 3-kinase (PI3K)-mediated activation of Akt also results in reduced DNA methylation at these imprinted loci. Finally, we find that N-Myc is a potent Gsk-3-dependent regulator of Dnmt3a2 expression. In summary, we have identified a signal transduction pathway that is capable of altering the DNA methylation of imprinted loci.
Collapse
Affiliation(s)
- Anthony P Popkie
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Potvin É, Beuret L, Cadrin-Girard JF, Carter M, Roy S, Tremblay M, Charron J. Cooperative action of multiple cis-acting elements is required for N-myc expression in branchial arches: specific contribution of GATA3. Mol Cell Biol 2010; 30:5348-63. [PMID: 20855530 PMCID: PMC2976382 DOI: 10.1128/mcb.00353-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/02/2009] [Accepted: 08/07/2010] [Indexed: 01/05/2023] Open
Abstract
The precise expression of the N-myc proto-oncogene is essential for normal mammalian development, whereas altered N-myc gene regulation is known to be a determinant factor in tumor formation. Using transgenic mouse embryos, we show that N-myc sequences from kb -8.7 to kb +7.2 are sufficient to reproduce the N-myc embryonic expression profile in developing branchial arches and limb buds. These sequences encompass several regulatory elements dispersed throughout the N-myc locus, including an upstream limb bud enhancer, a downstream somite enhancer, a branchial arch enhancer in the second intron, and a negative regulatory element in the first intron. N-myc expression in the limb buds is under the dominant control of the limb bud enhancer. The expression in the branchial arches necessitates the interplay of three regulatory domains. The branchial arch enhancer cooperates with the somite enhancer region to prevent an inhibitory activity contained in the first intron. The characterization of the branchial arch enhancer has revealed a specific role of the transcription factor GATA3 in the regulation of N-myc expression. Together, these data demonstrate that correct N-myc developmental expression is achieved via cooperation of multiple positive and negative regulatory elements.
Collapse
Affiliation(s)
- Éric Potvin
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Laurent Beuret
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Jean-François Cadrin-Girard
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Marcelle Carter
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Sophie Roy
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Michel Tremblay
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Jean Charron
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| |
Collapse
|
99
|
Parathath SR, Mainwaring LA, Fernandez-L A, Guldal CG, Nahlé Z, Kenney AM. β-Arrestin-1 links mitogenic sonic hedgehog signaling to the cell cycle exit machinery in neural precursors. Cell Cycle 2010; 9:4013-24. [PMID: 20935513 DOI: 10.4161/cc.9.19.13325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Development of the cerebellum, a brain region regulating posture and coordination, occurs post-natally and is marked by rapid proliferation of granule neuron precursors (CGNPs), stimulated by mitogenic Sonic hedgehog (Shh) signaling. β-Arrestin (βArr) proteins play important roles downstream of Smoothened, the Shh signal transducer. However, whether Shh regulates βArrs and what role they play in Shh-driven CGNP proliferation remains to be determined. Here, we report that Shh induces βArr1 accumulation and localization to the nucleus, where it participates in enhancing expression of the cyclin dependent kinase (cdk) inhibitor p27, whose accumulation eventually drives CGNP cell cycle exit. βArr1 knockdown enhances CGNP proliferation and reduces p27 expression. Thus, Shh-mediated βArr1 induction represents a novel negative feedback loop within the Shh mitogenic pathway, such that ongoing Shh signaling, while required for CGNPs to proliferate, also sets up a cell-intrinsic clock programming their ultimate exit from the cell cycle.
Collapse
Affiliation(s)
- Susana R Parathath
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
100
|
Pedrosa E, Shah A, Tenore C, Capogna M, Villa C, Guo X, Zheng D, Lachman HM. β-catenin promoter ChIP-chip reveals potential schizophrenia and bipolar disorder gene network. J Neurogenet 2010; 24:182-93. [PMID: 20615089 DOI: 10.3109/01677063.2010.495182] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Therapeutic concentrations of lithium salts inhibit glycogen synthase kinase 3 beta (GSK3β) and phosphoinositide (PI) signaling suggesting that abnormal activation of these pathways could be a factor in the pathophysiology of bipolar disorder (BD). Involvement of these pathways is also supported by recent genome-wide association studies (GWASs). One way investigators have investigated the molecular basis of BD and the therapeutic action of lithium is by microarray expression studies, since both GSK3β- and PI-mediated signal transduction pathways are coupled to transcriptional activation and inhibition. However, expression profiling has some limitations and investigators cannot use the approach to analyze fetal brain tissue, arguably the most relevant biological structure related to the development of genetically based psychiatric disorders. To address these shortcomings, the authors have taken a novel approach using chromatin immunoprecipitation-enriched material annealed to microarrays (ChIP-chip) targeting genes in fetal brain tissue bound by β-catenin, a transcription factor that is directly regulated by GSK3β. The promoters for 640 genes were found to be bound by β-catenin, many of which are known schizophrenia (SZ), autism spectrum disorder (ASD), and BD candidates, including CACNA1B, NRNG, SNAP29, FGFR1, PCDH9, and nine others identified in recently published GWASs and genome-wide searches for copy number variants (CNVs). The findings suggest that seemingly disparate candidate genes for SZ and BD can be incorporated into a common molecular network revolving around GSK3β/β-catenin signaling. In addition, the finding that a putative lithium-responsive pathway may influence a subgroup of SZ and ASD candidate genes could have therapeutic implications.
Collapse
Affiliation(s)
- Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Division of Basic Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|