51
|
Mechanisms and Regulation of Cardiac Ca V1.2 Trafficking. Int J Mol Sci 2021; 22:ijms22115927. [PMID: 34072954 PMCID: PMC8197997 DOI: 10.3390/ijms22115927] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/05/2023] Open
Abstract
During cardiac excitation contraction coupling, the arrival of an action potential at the ventricular myocardium triggers voltage-dependent L-type Ca2+ (CaV1.2) channels in individual myocytes to open briefly. The level of this Ca2+ influx tunes the amplitude of Ca2+-induced Ca2+ release from ryanodine receptors (RyR2) on the junctional sarcoplasmic reticulum and thus the magnitude of the elevation in intracellular Ca2+ concentration and ultimately the downstream contraction. The number and activity of functional CaV1.2 channels at the t-tubule dyads dictates the amplitude of the Ca2+ influx. Trafficking of these channels and their auxiliary subunits to the cell surface is thus tightly controlled and regulated to ensure adequate sarcolemmal expression to sustain this critical process. To that end, recent discoveries have revealed the existence of internal reservoirs of preformed CaV1.2 channels that can be rapidly mobilized to enhance sarcolemmal expression in times of acute stress when hemodynamic and metabolic demand increases. In this review, we provide an overview of the current thinking on CaV1.2 channel trafficking dynamics in the heart. We highlight the numerous points of control including the biosynthetic pathway, the endosomal recycling pathway, ubiquitination, and lysosomal and proteasomal degradation pathways, and discuss the effects of β-adrenergic and angiotensin receptor signaling cascades on this process.
Collapse
|
52
|
Jhaveri A, Maisuria D, Varga M, Mohammadyani D, Johnson ME. Thermodynamics and Free Energy Landscape of BAR-Domain Dimerization from Molecular Simulations. J Phys Chem B 2021; 125:3739-3751. [PMID: 33826319 DOI: 10.1021/acs.jpcb.0c10992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteins with BAR domains function to bind to and remodel biological membranes, where the dimerization of BAR domains is a key step in this function. These domains can dimerize in solution or after localizing to the membrane surface. Here, we characterize the binding thermodynamics of homodimerization between the LSP1 BAR domain proteins in solution, using molecular dynamics (MD) simulations. By combining the MARTINI coarse-grained protein models with enhanced sampling through metadynamics, we construct a two-dimensional free energy surface quantifying the bound versus unbound ensembles as a function of two distance variables. With this methodology, our simulations can simultaneously characterize the structures and relative stabilities of a range of sampled dimers, portraying a heterogeneous and extraordinarily stable bound ensemble, where the proper crystal structure dimer is the most stable in a 100 mM NaCl solution. Nonspecific dimers that are sampled involve contacts that are consistent with experimental structures of higher-order oligomers formed by the LSP1 BAR domain. Because the BAR dimers and oligomers can assemble on membranes, we characterize the relative alignment of the known membrane binding patches, finding that only the specific dimer is aligned to form strong interactions with the membrane. Hence, we would predict a strong selection of the specific dimer in binding to or assembling when on the membrane. Establishing the pairwise stabilities of homodimer contacts is difficult experimentally when the proteins form stable oligomers, but through the method used here, we can isolate these contacts, providing a foundation to study the same interactions on the membrane.
Collapse
Affiliation(s)
- Adip Jhaveri
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218, United States
| | - Dhruw Maisuria
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218, United States
| | - Matthew Varga
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218, United States
| | - Dariush Mohammadyani
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218, United States
| | - Margaret E Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218, United States
| |
Collapse
|
53
|
Rogg M, Maier JI, Dotzauer R, Artelt N, Kretz O, Helmstädter M, Abed A, Sammarco A, Sigle A, Sellung D, Dinse P, Reiche K, Yasuda-Yamahara M, Biniossek ML, Walz G, Werner M, Endlich N, Schilling O, Huber TB, Schell C. SRGAP1 Controls Small Rho GTPases To Regulate Podocyte Foot Process Maintenance. J Am Soc Nephrol 2021; 32:563-579. [PMID: 33514561 PMCID: PMC7920176 DOI: 10.1681/asn.2020081126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/15/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Previous research demonstrated that small Rho GTPases, modulators of the actin cytoskeleton, are drivers of podocyte foot-process effacement in glomerular diseases, such as FSGS. However, a comprehensive understanding of the regulatory networks of small Rho GTPases in podocytes is lacking. METHODS We conducted an analysis of podocyte transcriptome and proteome datasets for Rho GTPases; mapped in vivo, podocyte-specific Rho GTPase affinity networks; and examined conditional knockout mice and murine disease models targeting Srgap1. To evaluate podocyte foot-process morphology, we used super-resolution microscopy and electron microscopy; in situ proximity ligation assays were used to determine the subcellular localization of the small GTPase-activating protein SRGAP1. We performed functional analysis of CRISPR/Cas9-generated SRGAP1 knockout podocytes in two-dimensional and three-dimensional cultures and quantitative interaction proteomics. RESULTS We demonstrated SRGAP1 localization to podocyte foot processes in vivo and to cellular protrusions in vitro. Srgap1fl/fl*Six2Cre but not Srgap1fl/fl*hNPHS2Cre knockout mice developed an FSGS-like phenotype at adulthood. Podocyte-specific deletion of Srgap1 by hNPHS2Cre resulted in increased susceptibility to doxorubicin-induced nephropathy. Detailed analysis demonstrated significant effacement of podocyte foot processes. Furthermore, SRGAP1-knockout podocytes showed excessive protrusion formation and disinhibition of the small Rho GTPase machinery in vitro. Evaluation of a SRGAP1-dependent interactome revealed the involvement of SRGAP1 with protrusive and contractile actin networks. Analysis of glomerular biopsy specimens translated these findings toward human disease by displaying a pronounced redistribution of SRGAP1 in FSGS. CONCLUSIONS SRGAP1, a podocyte-specific RhoGAP, controls podocyte foot-process architecture by limiting the activity of protrusive, branched actin networks. Therefore, elucidating the complex regulatory small Rho GTPase affinity network points to novel targets for potentially precise intervention in glomerular diseases.
Collapse
Affiliation(s)
- Manuel Rogg
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Jasmin I. Maier
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Robert Dotzauer
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Nadine Artelt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Ahmed Abed
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Alena Sammarco
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - August Sigle
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Urology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Dominik Sellung
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Patrick Dinse
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Karoline Reiche
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Mako Yasuda-Yamahara
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Martin L. Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Gerd Walz
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Martin Werner
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Berta-Ottenstein Program, Medical Faculty, Medical Center – University of Freiburg, Freiburg, Germany
| |
Collapse
|
54
|
Rojas Molina R, Liese S, Alimohamadi H, Rangamani P, Carlson A. Diffuso-kinetic membrane budding dynamics. SOFT MATTER 2020; 16:10889-10899. [PMID: 33125025 DOI: 10.1039/d0sm01028f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A wide range of proteins are known to create shape transformations of biological membranes, where the remodelling is a coupling between the energetic costs from deforming the membrane, the recruitment of proteins that induce a local spontaneous curvature C0 and the diffusion of proteins along the membrane. We propose a minimal mathematical model that accounts for these processes to describe the diffuso-kinetic dynamics of membrane budding processes. By deploying numerical simulations we map out the membrane shapes, the time for vesicle formation and the vesicle size as a function of the dimensionless kinetic recruitment parameter K1 and the proteins sensitivity to mean curvature. We derive a time for scission that follows a power law ∼K1-2/3, a consequence of the interplay between the spreading of proteins by diffusion and the kinetic-limited increase of the protein density on the membrane. We also find a scaling law for the vesicle size ∼1/([small sigma, Greek, macron]avC0), with [small sigma, Greek, macron]av the average protein density in the vesicle, which is confirmed in the numerical simulations. Rescaling all the membrane profiles at the time of vesicle formation highlights that the membrane adopts a self-similar shape.
Collapse
Affiliation(s)
- Rossana Rojas Molina
- Mechanics Division, Department of Mathematics, University of Oslo, 0316 Oslo, Norway.
| | | | | | | | | |
Collapse
|
55
|
Leite DM, Matias D, Battaglia G. The Role of BAR Proteins and the Glycocalyx in Brain Endothelium Transcytosis. Cells 2020; 9:E2685. [PMID: 33327645 PMCID: PMC7765129 DOI: 10.3390/cells9122685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Within the brain, endothelial cells lining the blood vessels meticulously coordinate the transport of nutrients, energy metabolites and other macromolecules essential in maintaining an appropriate activity of the brain. While small molecules are pumped across specialised molecular transporters, large macromolecular cargos are shuttled from one side to the other through membrane-bound carriers formed by endocytosis on one side, trafficked to the other side and released by exocytosis. Such a process is collectively known as transcytosis. The brain endothelium is recognised to possess an intricate vesicular endosomal network that mediates the transcellular transport of cargos from blood-to-brain and brain-to-blood. However, mounting evidence suggests that brain endothelial cells (BECs) employ a more direct route via tubular carriers for a fast and efficient transport from the blood to the brain. Here, we compile the mechanism of transcytosis in BECs, in which we highlight intracellular trafficking mediated by tubulation, and emphasise the possible role in transcytosis of the Bin/Amphiphysin/Rvs (BAR) proteins and glycocalyx (GC)-a layer of sugars covering BECs, in transcytosis. Both BAR proteins and the GC are intrinsically associated with cell membranes and involved in the modulation and shaping of these membranes. Hence, we aim to summarise the machinery involved in transcytosis in BECs and highlight an uncovered role of BAR proteins and the GC at the brain endothelium.
Collapse
Affiliation(s)
- Diana M. Leite
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
| | - Diana Matias
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Samantha Dickson Brain Cancer Unit, Cancer Institute, University College London, London WC1E 06DD, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies, 08010 Barcelona, Spain
| |
Collapse
|
56
|
Snider CE, Chandra M, McDonald NA, Willet AH, Collier SE, Ohi MD, Jackson LP, Gould KL. Opposite Surfaces of the Cdc15 F-BAR Domain Create a Membrane Platform That Coordinates Cytoskeletal and Signaling Components for Cytokinesis. Cell Rep 2020; 33:108526. [PMID: 33357436 PMCID: PMC7775634 DOI: 10.1016/j.celrep.2020.108526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Many eukaryotes assemble an actin- and myosin-based cytokinetic ring (CR) on the plasma membrane (PM) for cell division, but how it is anchored there remains unclear. In Schizosaccharomyces pombe, the F-BAR protein Cdc15 links the PM via its F-BAR domain to proteins in the CR’s interior via its SH3 domain. However, Cdc15’s F-BAR domain also directly binds formin Cdc12, suggesting that Cdc15 may polymerize a protein network directly adjacent to the membrane. Here, we determine that the F-BAR domain binds Cdc12 using residues on the face opposite its membrane-binding surface. These residues also bind paxillin-like Pxl1, promoting its recruitment with calcineurin to the CR. Mutation of these F-BAR domain residues results in a shallower CR, with components localizing ~35% closer to the PM than in wild type, and aberrant CR constriction. Thus, F-BAR domains serve as oligomeric membrane-bound platforms that can modulate the architecture of an entire actin structure. Multiple F-BAR domains link actin structures to membrane. Snider et al. show that the flat Cdc15 F-BAR domain utilizes opposite surfaces to bind the plasma membrane and cytokinetic ring proteins simultaneously. Disrupting Cdc15 F-BAR domain’s interaction with proteins results in an overall compression of the entire cytokinetic ring architecture.
Collapse
Affiliation(s)
- Chloe E Snider
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Scott E Collier
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
57
|
Ritter A, Safdar BK, Jasmer B, Kreis NN, Friemel A, Roth S, Solbach C, Louwen F, Yuan J. The Function of Oncogene B-Cell Lymphoma 6 in the Regulation of the Migration and Invasion of Trophoblastic Cells. Int J Mol Sci 2020; 21:ijms21218393. [PMID: 33182312 PMCID: PMC7664908 DOI: 10.3390/ijms21218393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Human placentation is a highly invasive process. Deficiency in the invasiveness of trophoblasts is associated with a spectrum of gestational diseases, such as preeclampsia (PE). The oncogene B-cell lymphoma 6 (BCL6) is involved in the migration and invasion of various malignant cells. Intriguingly, its expression is deregulated in preeclamptic placentas. We have reported that BCL6 is required for the proliferation, survival, fusion, and syncytialization of trophoblasts. In the present work, we show that the inhibition of BCL6, either by its gene silencing or by using specific small molecule inhibitors, impairs the migration and invasion of trophoblastic cells, by reducing cell adhesion and compromising the dynamics of the actin cytoskeleton. Moreover, the suppression of BCL6 weakens the signals of the phosphorylated focal adhesion kinase, Akt/protein kinase B, and extracellular regulated kinase 1/2, accompanied by more stationary, but less migratory, cells. Interestingly, transcriptomic analyses reveal that a small interfering RNA-induced reduction of BCL6 decreases the levels of numerous genes, such as p21 activated kinase 1, myosin light chain kinase, and gamma actin related to cell adhesion, actin dynamics, and cell migration. These data suggest BCL6 as a crucial player in the migration and invasion of trophoblasts in the early stages of placental development through the regulation of various genes associated with the migratory machinery.
Collapse
Affiliation(s)
- Andreas Ritter
- Correspondence: (A.R.); (J.Y.); Tel.: +49-69-6301-83297 (A.R.); +49-69-6301-5819 (J.Y.)
| | | | | | | | | | | | | | | | - Juping Yuan
- Correspondence: (A.R.); (J.Y.); Tel.: +49-69-6301-83297 (A.R.); +49-69-6301-5819 (J.Y.)
| |
Collapse
|
58
|
Spanke HT, Style RW, François-Martin C, Feofilova M, Eisentraut M, Kress H, Agudo-Canalejo J, Dufresne ER. Wrapping of Microparticles by Floppy Lipid Vesicles. PHYSICAL REVIEW LETTERS 2020; 125:198102. [PMID: 33216584 DOI: 10.1103/physrevlett.125.198102] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Lipid membranes, the barrier defining living cells and many of their subcompartments, bind to a wide variety of nano- and micrometer sized objects. In the presence of strong adhesive forces, membranes can strongly deform and wrap the particles, an essential step in crossing the membrane for a variety of healthy and disease-related processes. A large body of theoretical and numerical work has focused on identifying the physical properties that underly wrapping. Using a model system of micron-sized colloidal particles and giant unilamellar lipid vesicles with tunable adhesive forces, we measure a wrapping phase diagram and make quantitative comparisons to theoretical models. Our data are consistent with a model of membrane-particle interactions accounting for the adhesive energy per unit area, membrane bending rigidity, particle size, and vesicle radius.
Collapse
Affiliation(s)
| | | | | | | | - Manuel Eisentraut
- Department of Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Holger Kress
- Department of Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Jaime Agudo-Canalejo
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen, Germany
| | | |
Collapse
|
59
|
Fagiani F, Lanni C, Racchi M, Pascale A, Govoni S. Amyloid-β and Synaptic Vesicle Dynamics: A Cacophonic Orchestra. J Alzheimers Dis 2020; 72:1-14. [PMID: 31561377 DOI: 10.3233/jad-190771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now more than two decades since amyloid-β (Aβ), the proteolytic product of the amyloid-β protein precursor (AβPP), was first demonstrated to be a normal and soluble product of neuronal metabolism. To date, despite a growing body of evidence suggests its regulatory role on synaptic function, the exact cellular and molecular pathways involved in Aβ-driven synaptic effects remain elusive. This review provides an overview of the mounting evidence showing Aβ-mediated effects on presynaptic functions and neurotransmitter release from axon terminals, focusing on its interaction with synaptic vesicle cycle. Indeed, Aβ peptides have been found to interact with key presynaptic scaffold proteins and kinases affecting the consequential steps of the synaptic vesicle dynamics (e.g., synaptic vesicles exocytosis, endocytosis, and trafficking). Defects in the fine-tuning of synaptic vesicle cycle by Aβ and deregulation of key molecules and kinases, which orchestrate synaptic vesicle availability, may alter synaptic homeostasis, possibly contributing to synaptic loss and cognitive decline. Elucidating the presynaptic mechanisms by which Aβ regulate synaptic transmission is fundamental for a deeper comprehension of the biology of presynaptic terminals as well as of Aβ-driven early synaptic defects occurring in prodromal stage of AD. Moreover, a better understating of Aβ involvement in cellular signal pathways may allow to set up more effective therapeutic interventions by detecting relevant molecular mechanisms, whose imbalance might ultimately lead to synaptic impairment in AD.
Collapse
Affiliation(s)
- Francesca Fagiani
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy.,Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy
| |
Collapse
|
60
|
Su M, Zhuang Y, Miao X, Zeng Y, Gao W, Zhao W, Wu M. Comparative Study of Curvature Sensing Mediated by F-BAR and an Intrinsically Disordered Region of FBP17. iScience 2020; 23:101712. [PMID: 33205024 PMCID: PMC7649350 DOI: 10.1016/j.isci.2020.101712] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/11/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Membrane curvature has emerged as an intriguing physical principle underlying biological signaling and membrane trafficking. The CIP4/FBP17/Toca-1 F-BAR subfamily is unique in the BAR family because its structurally folded F-BAR domain does not contain any hydrophobic motifs that insert into membrane. Although widely assumed so, whether the banana-shaped F-BAR domain alone can sense curvature has never been experimentally demonstrated. Using a nanobar-supported lipid bilayer system, we found that the F-BAR domain of FBP17 displayed minimal curvature sensing in vitro. In comparison, an alternatively spliced intrinsically disordered region (IDR) adjacent to the F-BAR domain has the membrane curvature-sensing ability greatly exceeding that of F-BAR domain alone. In living cells, the presence of the IDR delayed the recruitment of FBP17 in curvature-coupled cortical waves. Collectively, we propose that contrary to the common belief, FBP17's curvature-sensing capability largely originates from IDR, and not the F-BAR domain alone.
Collapse
Affiliation(s)
- Maohan Su
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8002, USA.,Centre for BioImaging Sciences, Mechanobiology Institute, Department of Biological Sciences, National University of Singapore, Singapore, 117411
| | - Yinyin Zhuang
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8002, USA.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457
| | - Xinwen Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457
| | - Yongpeng Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457
| | - Weibo Gao
- School of Physics and Mathematical Science, Nanyang Technological University, Singapore, 637371
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8002, USA.,Centre for BioImaging Sciences, Mechanobiology Institute, Department of Biological Sciences, National University of Singapore, Singapore, 117411
| |
Collapse
|
61
|
Wu M, Liu J. Mechanobiology in cortical waves and oscillations. Curr Opin Cell Biol 2020; 68:45-54. [PMID: 33039945 DOI: 10.1016/j.ceb.2020.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
Cortical actin waves have emerged as a widely prevalent phenomena and brought pattern formation to many fields of cell biology. Cortical excitabilities, reminiscent of the electric excitability in neurons, are likely fundamental property of the cell cortex. Although they have been mostly considered to be biochemical in nature, accumulating evidence support the role of mechanics in the pattern formation process. Both pattern formation and mechanobiology approach biological phenomena at the collective level, either by looking at the mesoscale dynamical behavior of molecular networks or by using collective physical properties to characterize biological systems. As such they are very different from the traditional reductionist, bottom-up view of biology, which brings new challenges and potential opportunities. In this essay, we aim to provide our perspectives on what the proposed mechanochemical feedbacks are and open questions regarding their role in cortical excitable and oscillatory dynamics.
Collapse
Affiliation(s)
- Min Wu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA..
| | - Jian Liu
- Department of Cell Biology, School of Medicine, Johns Hopkins University, 855 N Wolfe Street, Baltimore, MD, 21025, USA
| |
Collapse
|
62
|
Mazheika I, Voronko O, Kamzolkina O. Early endocytosis as a key to understanding mechanisms of plasma membrane tension regulation in filamentous fungi. Biol Cell 2020; 112:409-426. [PMID: 32860722 DOI: 10.1111/boc.202000066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION Two main systems regulate plasma membrane tension (PMT) and provide a close connection between the protoplast and the cell wall in fungi: turgor pressure and the actin cytoskeleton. These systems work together with the plasma membrane focal adhesion to the cell wall and their contribution to fungal cell organization and physiology has been partially studied. However, it remains controversial in model filamentous ascomycetes and oomycetes and even less investigated in filamentous basidiomycetes. Early endocytosis can be used to research the mechanisms regulating PMT since the dynamics of early endocytosis is largely dependent on this tension. RESULTS This study examined the effects of actin polymerization inhibitors and hyperosmotic shock on early endocytosis and cell morphology in two filamentous basidiomycetes. The main obtained results are: (i) the depolymerisation of F-actin leads to the fast formation of endocytic pits while inhibiting of their scission from the plasma membrane and (ii) the moderate hyperosmotic shock does not affect the dynamics of early endocytosis. These and our other results have allowed suggesting a curtain model for the regulation of PMT in basidiomycetes. CONCLUSIONS AND SIGNIFICANCE According to the proposed curtain model, the PMT in many non-apical cells of hyphae is more often regulated not by turgor pressure but by a system of actin driver cables that are associated with the proteins of the focal adhesion sites. The change in PMT occurs similar to the movement of a curtain along the curtain rod using the curtain drivers. This model addresses the fundamental properties of the fungal structure and physiology. It requires confirmation including the currently technically unavailable high-quality labelling of the actin cytoskeleton of the basidiomycetes.
Collapse
Affiliation(s)
- Igor Mazheika
- Department of mycology and algology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Oksana Voronko
- Department of mycology and algology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga Kamzolkina
- Department of mycology and algology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
63
|
Redpath GMI, Betzler VM, Rossatti P, Rossy J. Membrane Heterogeneity Controls Cellular Endocytic Trafficking. Front Cell Dev Biol 2020; 8:757. [PMID: 32850860 PMCID: PMC7419583 DOI: 10.3389/fcell.2020.00757] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Endocytic trafficking relies on highly localized events in cell membranes. Endocytosis involves the gathering of protein (cargo/receptor) at distinct plasma membrane locations defined by specific lipid and protein compositions. Simultaneously, the molecular machinery that drives invagination and eventually scission of the endocytic vesicle assembles at the very same place on the inner leaflet of the membrane. It is membrane heterogeneity - the existence of specific lipid and protein domains in localized regions of membranes - that creates the distinct molecular identity required for an endocytic event to occur precisely when and where it is required rather than at some random location within the plasma membrane. Accumulating evidence leads us to believe that the trafficking fate of internalized proteins is sealed following endocytosis, as this distinct membrane identity is preserved through the endocytic pathway, upon fusion of endocytic vesicles with early and sorting endosomes. In fact, just like at the plasma membrane, multiple domains coexist at the surface of these endosomes, regulating local membrane tubulation, fission and sorting to recycling pathways or to the trans-Golgi network via late endosomes. From here, membrane heterogeneity ensures that fusion events between intracellular vesicles and larger compartments are spatially regulated to promote the transport of cargoes to their intracellular destination.
Collapse
Affiliation(s)
- Gregory M I Redpath
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,The ANZAC Research Institute, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Verena M Betzler
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Pascal Rossatti
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Jérémie Rossy
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
64
|
Casamento A, Boucrot E. Molecular mechanism of Fast Endophilin-Mediated Endocytosis. Biochem J 2020; 477:2327-2345. [PMID: 32589750 PMCID: PMC7319585 DOI: 10.1042/bcj20190342] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Endocytosis mediates the cellular uptake of micronutrients and cell surface proteins. Clathrin-mediated endocytosis (CME) is the housekeeping pathway in resting cells but additional Clathrin-independent endocytic (CIE) routes, including Fast Endophilin-Mediated Endocytosis (FEME), internalize specific cargoes and support diverse cellular functions. FEME is part of the Dynamin-dependent subgroup of CIE pathways. Here, we review our current understanding of the molecular mechanism of FEME. Key steps are: (i) priming, (ii) cargo selection, (iii) membrane curvature and carrier formation, (iv) membrane scission and (v) cytosolic transport. All steps are controlled by regulatory mechanisms mediated by phosphoinositides and by kinases such as Src, LRRK2, Cdk5 and GSK3β. A key feature of FEME is that it is not constitutively active but triggered upon the stimulation of selected cell surface receptors by their ligands. In resting cells, there is a priming cycle that concentrates Endophilin into clusters on discrete locations of the plasma membrane. In the absence of receptor activation, the patches quickly abort and new cycles are initiated nearby, constantly priming the plasma membrane for FEME. Upon activation, receptors are swiftly sorted into pre-existing Endophilin clusters, which then bud to form FEME carriers within 10 s. We summarize the hallmarks of FEME and the techniques and assays required to identify it. Next, we review similarities and differences with other CIE pathways and proposed cargoes that may use FEME to enter cells. Finally, we submit pending questions and future milestones and discuss the exciting perspectives that targeting FEME may boost treatments against cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandra Casamento
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, U.K
| |
Collapse
|
65
|
Liu Y, McDonald NA, Naegele SM, Gould KL, Wu JQ. The F-BAR Domain of Rga7 Relies on a Cooperative Mechanism of Membrane Binding with a Partner Protein during Fission Yeast Cytokinesis. Cell Rep 2020; 26:2540-2548.e4. [PMID: 30840879 PMCID: PMC6425953 DOI: 10.1016/j.celrep.2019.01.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
F-BAR proteins bind the plasma membrane (PM) to scaffold and organize the actin cytoskeleton. To understand how F-BAR proteins achieve their PM association, we studied the localization of a Schizosaccharomyces pombe F-BAR protein Rga7, which requires the coiled-coil protein Rng10 for targeting to the division site during cytokinesis. We find that the Rga7 F-BAR domain directly binds a motif in Rng10 simultaneously with the PM, and that an adjacent Rng10 motif independently binds the PM. Together, these multivalent interactions significantly enhance Rga7 F-BAR avidity for membranes at physiological protein concentrations, ensuring the division site localization of Rga7. Moreover, the requirement for the F-BAR domain in Rga7 localization and function in cytokinesis is bypassed by tethering an Rga7 construct lacking its F-BAR to Rng10, indicating that at least some F-BAR domains are necessary but not sufficient for PM targeting and are stably localized to specific cortical positions through adaptor proteins. Liu et al. show that the Rga7 F-BAR domain binds an adaptor protein Rng10, which contains a second membrane-binding module, to enhance Rga7 membrane avidity and stabilize its membrane association. The authors reveal a mechanism by which F-BAR domains can achieve high-avidity binding with the plasma membrane.
Collapse
Affiliation(s)
- Yajun Liu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Shelby M Naegele
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
66
|
Yeast as a Model to Understand Actin-Mediated Cellular Functions in Mammals-Illustrated with Four Actin Cytoskeleton Proteins. Cells 2020; 9:cells9030672. [PMID: 32164332 PMCID: PMC7140605 DOI: 10.3390/cells9030672] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: (1) yeast Hof1p/mammalian PSTPIP1, (2) yeast Rvs167p/mammalian BIN1, (3) yeast eEF1A/eEF1A1 and eEF1A2 and (4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines.
Collapse
|
67
|
The role of membrane-shaping BAR domain proteins in caveolar invagination: from mechanistic insights to pathophysiological consequences. Biochem Soc Trans 2020; 48:137-146. [DOI: 10.1042/bst20190377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 01/25/2023]
Abstract
The formation of caveolae, bulb-shaped plasma membrane invaginations, requires the coordinated action of distinct lipid-interacting and -shaping proteins. The interdependence of caveolar structure and function has evoked substantial scientific interest given the association of human diseases with caveolar dysfunction. Model systems deficient of core components of caveolae, caveolins or cavins, did not allow for an explicit attribution of observed functional defects to the requirement of caveolar invagination as they lack both invaginated caveolae and caveolin proteins. Knockdown studies in cultured cells and recent knockout studies in mice identified an additional family of membrane-shaping proteins crucial for caveolar formation, syndapins (PACSINs) — BAR domain superfamily proteins characterized by crescent-shaped membrane binding interfaces recognizing and inducing distinct curved membrane topologies. Importantly, syndapin loss-of-function resulted exclusively in impairment of caveolar invagination without a reduction in caveolin or cavin at the plasma membrane, thereby allowing the specific role of the caveolar invagination to be unveiled. Muscle cells of syndapin III KO mice showed severe reductions of caveolae reminiscent of human caveolinopathies and were more vulnerable to membrane damage upon changes in membrane tensions. Consistent with the lack of syndapin III-dependent invaginated caveolae providing mechanoprotection by releasing membrane reservoirs through caveolar flattening, physical exercise of syndapin III KO mice resulted in pathological defects reminiscent of the clinical symptoms of human myopathies associated with caveolin 3 mutation suggesting that the ability of muscular caveolae to respond to mechanical forces is a key physiological process.
Collapse
|
68
|
Chlamydia-induced curvature of the host-cell plasma membrane is required for infection. Proc Natl Acad Sci U S A 2020; 117:2634-2644. [PMID: 31964834 PMCID: PMC7007526 DOI: 10.1073/pnas.1911528117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During invasion of host cells, Chlamydia pneumoniae secretes the effector protein CPn0678, which facilitates internalization of the pathogen by remodeling the target cell's plasma membrane and recruiting sorting nexin 9 (SNX9), a central multifunctional endocytic scaffold protein. We show here that the strongly amphipathic N-terminal helix of CPn0678 mediates binding to phospholipids in both the plasma membrane and synthetic membranes, and is sufficient to induce extensive membrane tubulations. CPn0678 interacts via its conserved C-terminal polyproline sequence with the Src homology 3 domain of SNX9. Thus, SNX9 is found at bacterial entry sites, where C. pneumoniae is internalized via EGFR-mediated endocytosis. Moreover, depletion of human SNX9 significantly reduces internalization, whereas ectopic overexpression of CPn0678-GFP results in a dominant-negative effect on endocytotic processes in general, leading to the uptake of fewer chlamydial elementary bodies and diminished turnover of EGFR. Thus, CPn0678 is an early effector involved in regulating the endocytosis of C. pneumoniae in an EGFR- and SNX9-dependent manner.
Collapse
|
69
|
Galkina SI, Fedorova NV, Golenkina EA, Stadnichuk VI, Sud’ina GF. Cytonemes Versus Neutrophil Extracellular Traps in the Fight of Neutrophils with Microbes. Int J Mol Sci 2020; 21:ijms21020586. [PMID: 31963289 PMCID: PMC7014225 DOI: 10.3390/ijms21020586] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Neutrophils can phagocytose microorganisms and destroy them intracellularly using special bactericides located in intracellular granules. Recent evidence suggests that neutrophils can catch and kill pathogens extracellularly using the same bactericidal agents. For this, live neutrophils create a cytoneme network, and dead neutrophils provide chromatin and proteins to form neutrophil extracellular traps (NETs). Cytonemes are filamentous tubulovesicular secretory protrusions of living neutrophils with intact nuclei. Granular bactericides are localized in membrane vesicles and tubules of which cytonemes are composed. NETs are strands of decondensed DNA associated with histones released by died neutrophils. In NETs, bactericidal neutrophilic agents are adsorbed onto DNA strands and are not covered with a membrane. Cytonemes and NETs occupy different places in protecting the body against infections. Cytonemes can develop within a few minutes at the site of infection through the action of nitric oxide or actin-depolymerizing alkaloids of invading microbes. The formation of NET in vitro occurs due to chromatin decondensation resulting from prolonged activation of neutrophils with PMA (phorbol 12-myristate 13-acetate) or other stimuli, or in vivo due to citrullination of histones with peptidylarginine deiminase 4. In addition to antibacterial activity, cytonemes are involved in cell adhesion and communications. NETs play a role in autoimmunity and thrombosis.
Collapse
Affiliation(s)
- Svetlana I. Galkina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
- Correspondence: (S.I.G.); (G.F.S.); Tel.: +7-495-939-5408 (S.I.G.)
| | - Natalia V. Fedorova
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
| | - Ekaterina A. Golenkina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
| | | | - Galina F. Sud’ina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
- Correspondence: (S.I.G.); (G.F.S.); Tel.: +7-495-939-5408 (S.I.G.)
| |
Collapse
|
70
|
Echarri A, Pavón DM, Sánchez S, García-García M, Calvo E, Huerta-López C, Velázquez-Carreras D, Viaris de Lesegno C, Ariotti N, Lázaro-Carrillo A, Strippoli R, De Sancho D, Alegre-Cebollada J, Lamaze C, Parton RG, Del Pozo MA. An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nat Commun 2019; 10:5828. [PMID: 31862885 PMCID: PMC6925243 DOI: 10.1038/s41467-019-13782-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Cells remodel their structure in response to mechanical strain. However, how mechanical forces are translated into biochemical signals that coordinate the structural changes observed at the plasma membrane (PM) and the underlying cytoskeleton during mechanoadaptation is unclear. Here, we show that PM mechanoadaptation is controlled by a tension-sensing pathway composed of c-Abl tyrosine kinase and membrane curvature regulator FBP17. FBP17 is recruited to caveolae to induce the formation of caveolar rosettes. FBP17 deficient cells have reduced rosette density, lack PM tension buffering capacity under osmotic shock, and cannot adapt to mechanical strain. Mechanistically, tension is transduced to the FBP17 F-BAR domain by direct phosphorylation mediated by c-Abl, a mechanosensitive molecule. This modification inhibits FBP17 membrane bending activity and releases FBP17-controlled inhibition of mDia1-dependent stress fibers, favoring membrane adaptation to increased tension. This mechanoprotective mechanism adapts the cell to changes in mechanical tension by coupling PM and actin cytoskeleton remodeling. Mechanical forces are sensed by cells and can alter plasma membrane properties, but biochemical changes underlying this are not clear. Here the authors show tension is sensed by c-Abl and FBP17, which couples changes in mechanical tension to remodelling of the plasma membrane and actin cytoskeleton.
Collapse
Affiliation(s)
- Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Dácil M Pavón
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Sara Sánchez
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - María García-García
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Carla Huerta-López
- Molecular Mechanics of the Cardiovascular System Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Diana Velázquez-Carreras
- Molecular Mechanics of the Cardiovascular System Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Christine Viaris de Lesegno
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie - Centre de Recherche, PSL Research University, CNRS UMR3666, INSERM U1143, 75248, Paris, France
| | - Nicholas Ariotti
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ana Lázaro-Carrillo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | | | - David De Sancho
- Departamento de Ciencia y Tecnología de Polímeros, Euskal Herriko Unibertsitatea, 20018, Donostia-San Sebastián, Spain.,Donostia International Physics Center, Manuel Lardizabal Ibilbidea, 4, 20018, Donostia-San Sebastián, Spain
| | - Jorge Alegre-Cebollada
- Molecular Mechanics of the Cardiovascular System Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Christophe Lamaze
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie - Centre de Recherche, PSL Research University, CNRS UMR3666, INSERM U1143, 75248, Paris, France
| | - Robert G Parton
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
71
|
Gasilina A, Vitali T, Luo R, Jian X, Randazzo PA. The ArfGAP ASAP1 Controls Actin Stress Fiber Organization via Its N-BAR Domain. iScience 2019; 22:166-180. [PMID: 31785555 PMCID: PMC6889188 DOI: 10.1016/j.isci.2019.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/30/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
ASAP1 is a multi-domain ArfGAP that controls cell migration, spreading, and focal adhesion dynamics. Although its GAP activity contributes to remodeling of the actin cytoskeleton, it does not fully explain all cellular functions of ASAP1. Here we find that ASAP1 regulates actin filament assembly directly through its N-BAR domain and controls stress fiber maintenance. ASAP1 depletion caused defects in stress fiber organization. Conversely, overexpression of ASAP1 enhanced actin remodeling. The BAR-PH fragment was sufficient to affect actin. ASAP1 with the BAR domain replaced with the BAR domain of the related ACAP1 did not affect actin. The BAR-PH tandem of ASAP1 bound and bundled actin filaments directly, whereas the presence of the ArfGAP and the C-terminal linker/SH3 domain reduced binding and bundling of filaments by BAR-PH. Together these data provide evidence that ASAP1 may regulate the actin cytoskeleton through direct interaction of the BAR-PH domain with actin filaments.
Collapse
Affiliation(s)
- Anjelika Gasilina
- Section on Regulation of Ras Superfamily, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 2042, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Teresa Vitali
- Section on Regulation of Ras Superfamily, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 2042, Bethesda, MD 20892, USA
| | - Ruibai Luo
- Section on Regulation of Ras Superfamily, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 2042, Bethesda, MD 20892, USA
| | - Xiaoying Jian
- Section on Regulation of Ras Superfamily, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 2042, Bethesda, MD 20892, USA
| | - Paul A Randazzo
- Section on Regulation of Ras Superfamily, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 2042, Bethesda, MD 20892, USA.
| |
Collapse
|
72
|
Yan Z, Wu Z, Li S, Zhang X, Yi X, Yue T. Curvature-mediated cooperative wrapping of multiple nanoparticles at the same and opposite membrane sides. NANOSCALE 2019; 11:19751-19762. [PMID: 31384870 DOI: 10.1039/c9nr03554k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell membrane interactions with nanoparticles (NPs) are essential to cellular functioning and mostly accompanied by membrane curvature generation and sensing. Multiple NPs inducing curvature from one side of a membrane are believed to be wrapped cooperatively by the membrane through curvature-mediated interactions. However, little is known about another biologically ubiquitous and important case, i.e., NPs binding to opposite membrane sides induce a curved bend of different directions. Combining coarse-grained molecular dynamics and theoretical analysis, here we systematically investigate the cooperative effect in the wrapping of multiple adhesive NPs at the same and opposite membrane sides and demonstrate the importance of the magnitude and direction of the membrane bend in regulating curvature-mediated NP interactions. Effects of the NP size, size difference, initial distance, number, and strength of adhesion with the membrane on the wrapping cooperativity and wrapping states are analyzed. For NPs binding to the same membrane side, rich membrane wrapping and NP aggregation states are observed, and the curvature-mediated interactions could be either attractive or repulsive, depending on the initial NP distance and the competition between the membrane bending, NP binding and membrane protrusion. In sharp contrast, the interaction between two NPs binding to opposite membrane sides is always attractive and the cooperative wrapping of NPs is promoted, as the curved membrane regions induced by the NPs are shared in a manner that the NP-membrane contact is increased and the energy cost of membrane bending is reduced. Owing to the ubiquity and heterogeneity of membrane shaping proteins in biology, our results enrich the cutting-edge knowledge on the curvature-mediated interaction of NPs for better and profound understanding on high-order cooperative assemblies of NPs or proteins in numerous biological processes.
Collapse
Affiliation(s)
- Zengshuai Yan
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Zeming Wu
- Department of Mechanics and Engineering Science, Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing 100871, China.
| | - Shixin Li
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Yi
- Department of Mechanics and Engineering Science, Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing 100871, China.
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
73
|
Varga K, Jiang ZJ, Gong LW. Phosphatidylserine is critical for vesicle fission during clathrin-mediated endocytosis. J Neurochem 2019; 152:48-60. [PMID: 31587282 DOI: 10.1111/jnc.14886] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
Phosphatidylserine (PS), a negatively charged phospholipid present predominantly at the inner leaflet of the plasma membrane, has been widely implicated in many cellular processes including membrane trafficking. Along this line, PS has been demonstrated to be important for endocytosis, however, the involved mechanisms remain uncertain. By monitoring clathrin-mediated endocytosis (CME) of single vesicles in mouse chromaffin cells using cell-attached capacitance measurements that offer millisecond time resolution, we demonstrate in the present study that the fission-pore duration is reduced by PS addition, indicating a stimulatory role of PS in regulating the dynamics of vesicle fission during CME. Furthermore, our results show that the PS-mediated effect on the fission-pore duration is Ca2+ -dependent and abolished in the absence of synaptotagmin 1 (Syt1), implying that Syt1 is necessary for the stimulatory role of PS in vesicle fission during CME. Consistently, a Syt1 mutant with a defective PS-Syt1 interaction increases the fission-pore duration. Taken together, our study suggests that PS-Syt1 interaction may be critical in regulating fission dynamics during CME.
Collapse
Affiliation(s)
- Kelly Varga
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Biological Sciences, University of North Texas at Dallas, Dallas, Texas, USA
| | - Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
74
|
Simunovic M, Evergren E, Callan-Jones A, Bassereau P. Curving Cells Inside and Out: Roles of BAR Domain Proteins in Membrane Shaping and Its Cellular Implications. Annu Rev Cell Dev Biol 2019; 35:111-129. [DOI: 10.1146/annurev-cellbio-100617-060558] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many cellular processes rely on precise and timely deformation of the cell membrane. While many proteins participate in membrane reshaping and scission, usually in highly specialized ways, Bin/amphiphysin/Rvs (BAR) domain proteins play a pervasive role, as they not only participate in many aspects of cell trafficking but also are highly versatile membrane remodelers. Subtle changes in the shape and size of the BAR domain can greatly impact the way in which BAR domain proteins interact with the membrane. Furthermore, the activity of BAR domain proteins can be tuned by external physical parameters, and so they behave differently depending on protein surface density, membrane tension, or membrane shape. These proteins can form 3D structures that mold the membrane and alter its liquid properties, even promoting scission under various circumstances.As such, BAR domain proteins have numerous roles within the cell. Endocytosis is among the most highly studied processes in which BAR domain proteins take on important roles. Over the years, a more complete picture has emerged in which BAR domain proteins are tied to almost all intracellular compartments; examples include endosomal sorting and tubular networks in the endoplasmic reticulum and T-tubules. These proteins also have a role in autophagy, and their activity has been linked with cancer. Here, we briefly review the history of BAR domain protein discovery, discuss the mechanisms by which BAR domain proteins induce curvature, and attempt to settle important controversies in the field. Finally, we review BAR domain proteins in the context of a cell, highlighting their emerging roles in cell signaling and organelle shaping.
Collapse
Affiliation(s)
- Mijo Simunovic
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Emma Evergren
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Andrew Callan-Jones
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, 75205 Paris, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, CNRS UMR 168, Institut Curie, PSL Research University, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| |
Collapse
|
75
|
Hoock SC, Ritter A, Steinhäuser K, Roth S, Behrends C, Oswald F, Solbach C, Louwen F, Kreis N, Yuan J. RITA modulates cell migration and invasion by affecting focal adhesion dynamics. Mol Oncol 2019; 13:2121-2141. [PMID: 31353815 PMCID: PMC6763788 DOI: 10.1002/1878-0261.12551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/12/2019] [Accepted: 07/21/2019] [Indexed: 12/15/2022] Open
Abstract
RITA, the RBP-J interacting and tubulin-associated protein, has been reported to be related to tumor development, but the underlying mechanisms are not understood. Since RITA interacts with tubulin and coats microtubules of the cytoskeleton, we hypothesized that it is involved in cell motility. We show here that depletion of RITA reduces cell migration and invasion of diverse cancer cell lines and mouse embryonic fibroblasts. Cells depleted of RITA display stable focal adhesions (FA) with elevated active integrin, phosphorylated focal adhesion kinase, and paxillin. This is accompanied by enlarged size and disturbed turnover of FA. These cells also demonstrate increased polymerized tubulin. Interestingly, RITA is precipitated with the lipoma-preferred partner (LPP), which is critical in actin cytoskeleton remodeling and cell migration. Suppression of RITA results in reduced LPP and α-actinin at FA leading to compromised focal adhesion turnover and actin dynamics. This study identifies RITA as a novel crucial player in cell migration and invasion by affecting the turnover of FA through its interference with the dynamics of actin filaments and microtubules. Its deregulation may contribute to malignant progression.
Collapse
Affiliation(s)
- Samira Catharina Hoock
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Andreas Ritter
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Kerstin Steinhäuser
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
- Present address:
Solvadis Distribution GmbHGernsheimGermany
| | - Susanne Roth
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Christian Behrends
- Institute of Biochemistry II, Medical SchoolJ. W.‐Goethe UniversityFrankfurtGermany
- Present address:
Munich Cluster of Systems NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Franz Oswald
- Department of Internal Medicine I, Center for Internal MedicineMedical Center UlmGermany
| | - Christine Solbach
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Frank Louwen
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Nina‐Naomi Kreis
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| |
Collapse
|
76
|
Ebrahimkutty MP, Galic M. Receptor‐Free Signaling at Curved Cellular Membranes. Bioessays 2019; 41:e1900068. [DOI: 10.1002/bies.201900068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/09/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Mirsana P. Ebrahimkutty
- DFG Cluster of Excellence “Cells in Motion”University of Muenster Muenster 48149 Germany
- Institute of Medical Physics and BiophysicsUniversity of Muenster Muenster 48149 Germany
- CIM‐IMRPS Graduate School Muenster 48149 Germany
| | - Milos Galic
- DFG Cluster of Excellence “Cells in Motion”University of Muenster Muenster 48149 Germany
- Institute of Medical Physics and BiophysicsUniversity of Muenster Muenster 48149 Germany
| |
Collapse
|
77
|
Young S, Sharma N, Lee JH, Chitu V, Neumeister V, Sohr E, Stanley ER, Hedrich CM, Craig AWB. Mast cells enhance sterile inflammation in chronic nonbacterial osteomyelitis. Dis Model Mech 2019; 12:dmm.040097. [PMID: 31416928 PMCID: PMC6737947 DOI: 10.1242/dmm.040097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/21/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic nonbacterial osteomyelitis (CNO) is an autoinflammatory bone disease, and patients with active or recurrent bone inflammation at multiple sites are diagnosed with chronic recurrent multifocal osteomyelitis (CRMO). The Chronic multifocal osteomyelitis (CMO) mouse model develops IL-1β-driven sterile bone lesions reminiscent of severe CRMO. The goal of this study was to evaluate the potential involvement of mast cells in CMO/CRMO. Here, we show that mast cells accumulate in inflamed tissues from CMO mice and that mast cell protease Mcpt1 can be detected in the peripheral blood. A transgenic model of connective tissue mast cell depletion (Mcpt5-Cre:Rosa26-Stopfl/fl-DTa) was crossed with CMO mice and the resulting mice (referred to as CMO/MC–) showed a significant delay in disease onset compared with age-matched CMO mice. At 5-6 months of age, CMO/MC– mice had fewer bone lesions and immune infiltration in the popliteal lymph nodes that drain the affected tissues. In bone marrow-derived mast cell cultures from CMO mice, cytokine production in response to the alarmin IL-33 was elevated compared with wild-type cultures. To test the relevance of mast cells to human CRMO, we tested serum samples from a cohort of healthy controls and from CRMO patients at diagnosis. Interestingly, mast cell chymase was elevated in CRMO patients as well as in patients with oligoarticular juvenile arthritis. Tryptase-positive mast cells were also detected in bone lesions from CRMO patients and patients with bacterial osteomyelitis. Together, our results identify mast cells as cellular contributors to bone inflammation in CMO/CRMO and provide rationale for further study of mast cells as therapeutic targets. Summary: This paper reports that mast cells promote bone loss in an autoinflammatory disease model and that mast cell mediators were detected in autoinflammatory disease patient samples.
Collapse
Affiliation(s)
- Stephanie Young
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Namit Sharma
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jae Hoon Lee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Volker Neumeister
- Departments of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden 01307, Germany
| | - Elisabeth Sohr
- Pediatric Rheumatology and Immunology, Children's Hospital Dresden, Technical University Dresden, Dresden 01307, Germany
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christian M Hedrich
- Pediatric Rheumatology and Immunology, Children's Hospital Dresden, Technical University Dresden, Dresden 01307, Germany.,Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L14 5AB, UK.,Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool L14 5AB, UK
| | - Andrew W B Craig
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
78
|
Postema MM, Grega-Larson NE, Meenderink LM, Tyska MJ. PACSIN2-dependent apical endocytosis regulates the morphology of epithelial microvilli. Mol Biol Cell 2019; 30:2515-2526. [PMID: 31390291 PMCID: PMC6743356 DOI: 10.1091/mbc.e19-06-0352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Apical microvilli are critical for the homeostasis of transporting epithelia, yet mechanisms that control the assembly and morphology of these protrusions remain poorly understood. Previous studies in intestinal epithelial cell lines suggested a role for the F-BAR domain protein PACSIN2 in normal microvillar assembly. Here we report the phenotype of PACSIN2 KO mice and provide evidence that through its role in promoting apical endocytosis, this molecule plays a role in controlling microvillar morphology. PACSIN2 KO enterocytes exhibit reduced numbers of microvilli and defects in the microvillar ultrastructure, with membranes lifting away from rootlets of core bundles. Dynamin2, a PACSIN2 binding partner, and other endocytic factors were also lost from their normal localization near microvillar rootlets. To determine whether loss of endocytic machinery could explain defects in microvillar morphology, we examined the impact of PACSIN2 KD and endocytosis inhibition on live intestinal epithelial cells. These assays revealed that when endocytic vesicle scission fails, tubules are pulled into the cytoplasm and this, in turn, leads to a membrane-lifting phenomenon reminiscent of that observed at PACSIN2 KO brush borders. These findings lead to a new model where inward forces generated by endocytic machinery on the plasma membrane control the membrane wrapping of cell surface protrusions.
Collapse
Affiliation(s)
- Meagan M Postema
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University Medical Center, Nashville, TN 37232
| | - Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University Medical Center, Nashville, TN 37232
| | - Leslie M Meenderink
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University Medical Center, Nashville, TN 37232
| |
Collapse
|
79
|
Phobalysin: Fisheye View of Membrane Perforation, Repair, Chemotaxis and Adhesion. Toxins (Basel) 2019; 11:toxins11070412. [PMID: 31315179 PMCID: PMC6669599 DOI: 10.3390/toxins11070412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 11/30/2022] Open
Abstract
Phobalysin P (PhlyP, for photobacterial lysin encoded on a plasmid) is a recently described small β-pore forming toxin of Photobacterium damselae subsp. damselae (Pdd). This organism, belonging to the family of Vibrionaceae, is an emerging pathogen of fish and various marine animals, which occasionally causes life-threatening soft tissue infections and septicemia in humans. By using genetically modified Pdd strains, PhlyP was found to be an important virulence factor. More recently, in vitro studies with purified PhlyP elucidated some basic consequences of pore formation. Being the first bacterial small β-pore forming toxin shown to trigger calcium-influx dependent membrane repair, PhlyP has advanced to a revealing model toxin to study this important cellular function. Further, results from co-culture experiments employing various Pdd strains and epithelial cells together with data on other bacterial toxins indicate that limited membrane damage may generally enhance the association of bacteria with target cells. Thereby, remodeling of plasma membrane and cytoskeleton during membrane repair could be involved. In addition, a chemotaxis-dependent attack-and track mechanism influenced by environmental factors like salinity may contribute to PhlyP-dependent association of Pdd with cells. Obviously, a synoptic approach is required to capture the regulatory links governing the interaction of Pdd with target cells. The characterization of Pdd’s secretome may hold additional clues because it may lead to the identification of proteases activating PhlyP’s pro-form. Current findings on PhlyP support the notion that pore forming toxins are not just killer proteins but serve bacteria to fulfill more subtle functions, like accessing their host.
Collapse
|
80
|
Shi X, Duan F, Lin L, Xu Q, Xu T, Zhang R. WIP-1 and DBN-1 promote scission of endocytic vesicles by bridging actin and Dynamin-1 in the C. elegans intestine. J Cell Sci 2019; 132:jcs.228023. [PMID: 31118234 DOI: 10.1242/jcs.228023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/13/2019] [Indexed: 01/13/2023] Open
Abstract
There has been a consensus that actin plays an important role in scission of the clathrin-coated pits (CCPs) together with large GTPases of the dynamin family in metazoan cells. However, the recruitment, regulation and functional interdependence of actin and dynamin during this process remain inadequately understood. Here, based on small-scale screening and in vivo live-imaging techniques, we identified a novel set of molecules underlying CCP scission in the multicellular organism Caenorhabditis elegans We found that loss of Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP-1) impaired CCP scission in a manner that is independent of the C. elegans homolog of WASP/N-WASP (WSP-1) and is mediated by direct binding to G-actin. Moreover, the cortactin-binding domain of WIP-1 serves as the binding interface for DBN-1 (also known in other organisms as Abp1), another actin-binding protein. We demonstrate that the interaction between DBN-1 and F-actin is essential for Dynamin-1 (DYN-1) recruitment at endocytic sites. In addition, the recycling regulator RME-1, a homolog of mammalian Eps15 homology (EH) domain-containing proteins, is increasingly recruited at the arrested endocytic intermediates induced by F-actin loss or DYN-1 inactivation, which further stabilizes the tubular endocytic intermediates. Our study provides new insights into the molecular network underlying F-actin participation in the scission of CCPs.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xuemeng Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Fengyun Duan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Long Lin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qifeng Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tao Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China .,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
81
|
Taylor KL, Taylor RJ, Richters KE, Huynh B, Carrington J, McDermott ME, Wilson RL, Dent EW. Opposing functions of F-BAR proteins in neuronal membrane protrusion, tubule formation, and neurite outgrowth. Life Sci Alliance 2019; 2:2/3/e201800288. [PMID: 31160379 PMCID: PMC6549137 DOI: 10.26508/lsa.201800288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
Neurite formation is a fundamental antecedent to axon and dendrite formation, but the mechanisms that underlie this important process are poorly characterized. Here, we demonstrate that two F-BAR proteins, CIP4 and FBP17, have opposing functions in early cortical neuron development. The F-BAR family of proteins play important roles in many cellular processes by regulating both membrane and actin dynamics. The CIP4 family of F-BAR proteins is widely recognized to function in endocytosis by elongating endocytosing vesicles. However, in primary cortical neurons, CIP4 concentrates at the tips of extending lamellipodia and filopodia and inhibits neurite outgrowth. Here, we report that the highly homologous CIP4 family member, FBP17, induces tubular structures in primary cortical neurons and results in precocious neurite formation. Through domain swapping and deletion experiments, we demonstrate that a novel polybasic region between the F-BAR and HR1 domains is required for membrane bending. Moreover, the presence of a poly-PxxP region in longer splice isoforms of CIP4 and FBP17 largely reverses the localization and function of these proteins. Thus, CIP4 and FBP17 function as an antagonistic pair to fine-tune membrane protrusion, endocytosis, and neurite formation during early neuronal development.
Collapse
Affiliation(s)
- Kendra L Taylor
- University of Wisconsin-Madison, Neuroscience Training Program, Madison, WI, USA
| | - Russell J Taylor
- University of Wisconsin-Madison, Neuroscience Training Program, Madison, WI, USA
| | - Karl E Richters
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Brandon Huynh
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Justin Carrington
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Maeve E McDermott
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Rebecca L Wilson
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Erik W Dent
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| |
Collapse
|
82
|
RNAi Screen in Tribolium Reveals Involvement of F-BAR Proteins in Myoblast Fusion and Visceral Muscle Morphogenesis in Insects. G3-GENES GENOMES GENETICS 2019; 9:1141-1151. [PMID: 30733382 PMCID: PMC6469413 DOI: 10.1534/g3.118.200996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In a large-scale RNAi screen in Tribolium castaneum for genes with knock-down phenotypes in the larval somatic musculature, one recurring phenotype was the appearance of larval muscle fibers that were significantly thinner than those in control animals. Several of the genes producing this knock-down phenotype corresponded to orthologs of Drosophila genes that are known to participate in myoblast fusion, particularly via their effects on actin polymerization. A new gene previously not implicated in myoblast fusion but displaying a similar thin-muscle knock-down phenotype was the Tribolium ortholog of Nostrin, which encodes an F-BAR and SH3 domain protein. Our genetic studies of Nostrin and Cip4, a gene encoding a structurally related protein, in Drosophila show that the encoded F-BAR proteins jointly contribute to efficient myoblast fusion during larval muscle development. Together with the F-Bar protein Syndapin they are also required for normal embryonic midgut morphogenesis. In addition, Cip4 is required together with Nostrin during the profound remodeling of the midgut visceral musculature during metamorphosis. We propose that these F-Bar proteins help govern proper morphogenesis particularly of the longitudinal midgut muscles during metamorphosis.
Collapse
|
83
|
Gov NS. Guided by curvature: shaping cells by coupling curved membrane proteins and cytoskeletal forces. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0115. [PMID: 29632267 DOI: 10.1098/rstb.2017.0115] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2017] [Indexed: 01/11/2023] Open
Abstract
Eukaryote cells have flexible membranes that allow them to have a variety of dynamical shapes. The shapes of the cells serve important biological functions, both for cells within an intact tissue, and during embryogenesis and cellular motility. How cells control their shapes and the structures that they form on their surface has been a subject of intensive biological research, exposing the building blocks that cells use to deform their membranes. These processes have also drawn the interest of theoretical physicists, aiming to develop models based on physics, chemistry and nonlinear dynamics. Such models explore quantitatively different possible mechanisms that the cells can employ to initiate the spontaneous formation of shapes and patterns on their membranes. We review here theoretical work where one such class of mechanisms was investigated: the coupling between curved membrane proteins, and the cytoskeletal forces that they recruit. Theory indicates that this coupling gives rise to a rich variety of membrane shapes and dynamics, while experiments indicate that this mechanism appears to drive many cellular shape changes.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- N S Gov
- Department of Chemical Physics, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| |
Collapse
|
84
|
von Hoven G, Neukirch C, Meyenburg M, Schmidt S, Vences A, Osorio CR, Husmann M, Rivas AJ. Cytotoxin- and Chemotaxis-Genes Cooperate to Promote Adhesion of Photobacterium damselae subsp. damselae. Front Microbiol 2019; 9:2996. [PMID: 30619115 PMCID: PMC6300472 DOI: 10.3389/fmicb.2018.02996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Photobacterium damselae subsp. damselae (Pdd) is an emerging pathogen of marine animals that sometimes causes serious infections in humans. Two related pore forming toxins, phobalysins P and C, and damselysin, a phospholipase D, confer strong virulence of Pdd in mice. Because infections by Pdd are typically caused following exposure of wounds to sea water we investigated how salinity impacts toxin activity, swimming, and association of Pdd with epithelial cells. These activities were low when bacteria were pre-cultured in media with 3.5% NaCl, the global average salinity of sea water. In contrast, lower salinity increased swimming of wild type Pdd peaking at 2% NaCl, hemolysis, and association with epithelial cells peaking at 1-1.5%. Previously, we have found that hemolysin genes enhance the association of Pdd with epithelial cells, but the underlying mechanisms have remained ill-defined. We here searched for potential links between hemolysin-production, chemotaxis and association of Pdd with target cells at varying salt concentrations. Unexpectedly, disruption of chemotaxis regulator cheA not only affected bacterial swimming and association with epithelial cells at intermediate to low salinity, but also reduced the production of plasmid-encoded phobalysin (PhlyP). The results thus reveal unforeseen links between chemotaxis regulators, a pore forming toxin and the association of a marine bacterium with target cells.
Collapse
Affiliation(s)
- Gisela von Hoven
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Claudia Neukirch
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Martina Meyenburg
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Sabine Schmidt
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ana Vences
- Departamento de Microbioloxìa e Parasitoloxìa, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos R Osorio
- Departamento de Microbioloxìa e Parasitoloxìa, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Matthias Husmann
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Amable J Rivas
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
85
|
Pannuzzo M, McDargh ZA, Deserno M. The role of scaffold reshaping and disassembly in dynamin driven membrane fission. eLife 2018; 7:39441. [PMID: 30561335 PMCID: PMC6355196 DOI: 10.7554/elife.39441] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022] Open
Abstract
The large GTPase dynamin catalyzes membrane fission in eukaryotic cells, but despite three decades of experimental work, competing and partially conflicting models persist regarding some of its most basic actions. Here we investigate the mechanical and functional consequences of dynamin scaffold shape changes and disassembly with the help of a geometrically and elastically realistic simulation model of helical dynamin-membrane complexes. Beyond changes of radius and pitch, we emphasize the crucial role of a third functional motion: an effective rotation of the filament around its longitudinal axis, which reflects alternate tilting of dynamin’s PH binding domains and creates a membrane torque. We also show that helix elongation impedes fission, hemifission is reached via a small transient pore, and coat disassembly assists fission. Our results have several testable structural consequences and help to reconcile mutual conflicting aspects between the two main present models of dynamin fission—the two-stage and the constrictase model. When cells take up material from their surroundings, they must first transport this cargo across their outer membrane, a flexible sheet of tightly organized fat molecules that act as a barrier to the environment. Cells can achieve this by letting their membrane surround the object, pulling it inwards until it is contained in a pouch that bulges into the cell. This bag is then corded up so it splits off from the outer membrane. The ‘cord’ is a protein called dynamin, which is thought to form a tight spiral around the bag’s neck, closing it over and pinching it away. The structure of dynamin is fairly well known, and yet several theories compete to explain how it may snap the bag off the outer membrane. Here, Pannuzzo et al. have created a computer simulation that faithfully replicates the geometry and the elasticity of the membrane and of dynamin, and used it to test different ways the protein could work. The first test featured simple constriction, where the dynamin spiral contracts around the membrane to pinch it; this only separated the bag from the membrane after implausibly tight constriction. The second test added elongation, with the spiral lengthening as well as reducing its diameter, but this further reduced the ability for the protein to snap off the membrane. The final test combined constriction and rotation, whereby dynamin ‘twirls’ as it presses on the neck of the bag: this succeeded in efficiently severing the membrane once the dynamin spiral disassembled. Indeed, the simulations suggested that dynamin might start to dismantle while it constricts, without compromising its role. In fact, getting rid of excess length as the protein contracts helps to dissolve any remnants of a membrane connection. Defects in dynamin are associated with conditions such as centronuclear myopathy and Charcot‐Marie‐Tooth peripheral neuropathy. Recent research also indicates that the protein is involved in a much wider range of neurological disorders that include Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. The models created by Pannuzzo et al. are useful tools to understand how dynamin and similar proteins work and sometimes fail.
Collapse
Affiliation(s)
- Martina Pannuzzo
- Department of Physics, Carnegie Mellon University, Pittsburgh, United States
| | - Zachary A McDargh
- Department of Physics, Carnegie Mellon University, Pittsburgh, United States
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, United States
| |
Collapse
|
86
|
Snead WT, Zeno WF, Kago G, Perkins RW, Richter JB, Zhao C, Lafer EM, Stachowiak JC. BAR scaffolds drive membrane fission by crowding disordered domains. J Cell Biol 2018; 218:664-682. [PMID: 30504247 PMCID: PMC6363457 DOI: 10.1083/jcb.201807119] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/12/2018] [Accepted: 11/08/2018] [Indexed: 01/01/2023] Open
Abstract
Cylindrical protein scaffolds are thought to stabilize membrane tubules, preventing membrane fission. In contrast, Snead et al. find that when scaffold proteins assemble, bulky disordered domains within them become acutely concentrated, generating steric pressure that destabilizes tubules, driving fission. Cellular membranes are continuously remodeled. The crescent-shaped bin-amphiphysin-rvs (BAR) domains remodel membranes in multiple cellular pathways. Based on studies of isolated BAR domains in vitro, the current paradigm is that BAR domain–containing proteins polymerize into cylindrical scaffolds that stabilize lipid tubules. But in nature, proteins that contain BAR domains often also contain large intrinsically disordered regions. Using in vitro and live cell assays, here we show that full-length BAR domain–containing proteins, rather than stabilizing membrane tubules, are instead surprisingly potent drivers of membrane fission. Specifically, when BAR scaffolds assemble at membrane surfaces, their bulky disordered domains become crowded, generating steric pressure that destabilizes lipid tubules. More broadly, we observe this behavior with BAR domains that have a range of curvatures. These data suggest that the ability to concentrate disordered domains is a key driver of membrane remodeling and fission by BAR domain–containing proteins.
Collapse
Affiliation(s)
- Wilton T Snead
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX
| | - Wade F Zeno
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX
| | - Grace Kago
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
| | - Ryan W Perkins
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX
| | - J Blair Richter
- Department of Biochemistry and Structural Biology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Chi Zhao
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX .,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
| |
Collapse
|
87
|
BAR domain proteins-a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophys Rev 2018; 10:1587-1604. [PMID: 30456600 DOI: 10.1007/s12551-018-0467-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.
Collapse
|
88
|
Direct effects of Ca2+/calmodulin on actin filament formation. Biochem Biophys Res Commun 2018; 506:355-360. [DOI: 10.1016/j.bbrc.2018.07.159] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/31/2018] [Indexed: 01/06/2023]
|
89
|
Abstract
Dynamin 2 (DNM2) belongs to a family of large GTPases that are well known for mediating membrane fission by oligomerizing at the neck of membrane invaginations. Autosomal dominant mutations in the ubiquitously expressed DNM2 cause 2 discrete neuromuscular diseases: autosomal dominant centronuclear myopathy (ADCNM) and dominant intermediate Charcot-Marie-Tooth neuropathy (CMT). CNM and CMT mutations may affect DNM2 in distinct manners: CNM mutations may cause protein hyperactivity with elevated GTPase and fission activities, while CMT mutations could impair DNM2 lipid binding and activity. DNM2 is also a modifier of the X-linked and autosomal recessive forms of CNM, as DNM2 protein levels are upregulated in animal models and patient muscle samples. Strikingly, reducing DNM2 has been shown to revert muscle phenotypes in preclinical models of CNM. As DNM2 emerges as the key player in CNM pathogenesis, the role(s) of DNM2 in skeletal muscle remains unclear. This review aims to provide insights into potential pathomechanisms related to DNM2-CNM mutations, and discuss exciting outcomes of current and future therapeutic approaches targeting DNM2 hyperactivity.
Collapse
Affiliation(s)
- Mo Zhao
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Nika Maani
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - James J Dowling
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Division of Neurology, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Pediatrics, University of Toronto, Toronto, ON, M5G 1X8, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
90
|
Role for ERK1/2-dependent activation of FCHSD2 in cancer cell-selective regulation of clathrin-mediated endocytosis. Proc Natl Acad Sci U S A 2018; 115:E9570-E9579. [PMID: 30249660 DOI: 10.1073/pnas.1810209115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) regulates the uptake of cell-surface receptors as well as their downstream signaling activities. We recently reported that signaling can reciprocally regulate CME in cancer cells and that this crosstalk can contribute to cancer progression. To further explore the nature and extent of the crosstalk between signaling and CME in cancer cell biology, we analyzed a panel of oncogenic signaling kinase inhibitors for their effects on CME across a panel of normal and cancerous cells. Inhibition of several kinases selectively affected CME in cancer cells, including inhibition of ERK1/2, which selectively inhibited CME by decreasing the rate of clathrin-coated pit (CCP) initiation. We identified an ERK1/2 substrate, the FCH/F-BAR and SH3 domain-containing protein FCHSD2, as being essential for the ERK1/2-dependent effects on CME and CCP initiation. Our data suggest that ERK1/2 phosphorylation activates FCHSD2 and regulates EGF receptor (EGFR) endocytic trafficking as well as downstream signaling activities. Loss of FCHSD2 activity in nonsmall cell lung cancer (NSCLC) cells leads to increased cell-surface expression and altered signaling downstream of EGFR, resulting in enhanced cell proliferation and migration. The expression level of FCHSD2 is positively correlated with higher NSCLC patient survival rates, suggesting that FCHSD2 can negatively affect cancer progression. These findings provide insight into the mechanisms and consequences of the reciprocal regulation of signaling and CME in cancer cells.
Collapse
|
91
|
FBP17 and CIP4 recruit SHIP2 and lamellipodin to prime the plasma membrane for fast endophilin-mediated endocytosis. Nat Cell Biol 2018; 20:1023-1031. [PMID: 30061681 DOI: 10.1038/s41556-018-0146-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/20/2018] [Indexed: 12/29/2022]
Abstract
Endocytosis mediates the cellular uptake of micronutrients and the turnover of plasma membrane proteins. Clathrin-mediated endocytosis is the major uptake pathway in resting cells1, but several clathrin-independent endocytic routes exist in parallel2,3. One such pathway, fast endophilin-mediated endocytosis (FEME), is not constitutive but triggered upon activation of certain receptors, including the β1 adrenergic receptor4. FEME activates promptly following stimulation as endophilin is pre-enriched by the phosphatidylinositol-3,4-bisphosphate-binding protein lamellipodin4,5. However, in the absence of stimulation, endophilin foci abort and disassemble after a few seconds. Looking for additional proteins involved in FEME, we found that 20 out of 65 BAR domain-containing proteins tested colocalized with endophilin spots. Among them, FBP17 and CIP4 prime the membrane of resting cells for FEME by recruiting the 5'-lipid phosphatase SHIP2 and lamellipodin to mediate the local production of phosphatidylinositol-3,4-bisphosphate and endophilin pre-enrichment. Membrane-bound GTP-loaded Cdc42 recruits FBP17 and CIP4, before being locally deactivated by RICH1 and SH3BP1 GTPase-activating proteins. This generates the transient assembly and disassembly of endophilin spots, which lasts 5-10 seconds. This mechanism periodically primes patches of the membrane for prompt responses upon FEME activation.
Collapse
|
92
|
Lin X, Wang H, Lou Z, Cao M, Zhang Z, Gu N. Roles of
PIP
2 in the membrane binding of
MIM
I‐
BAR
: insights from molecular dynamics simulations. FEBS Lett 2018; 592:2533-2542. [DOI: 10.1002/1873-3468.13186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/01/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University China
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
| | - Hongyin Wang
- Department of Integrative Biology and Pharmacology McGovern Medical School The University of Texas Health Science Center at Houston TX USA
| | - Zhichao Lou
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
- College of Materials Science and Engineering Nanjing Forestry University China
| | - Meng Cao
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
- Collaborative Innovation Center of Suzhou Nano‐Science and Technology Suzhou Key Laboratory of Biomaterials and Technologies China
| | - Zuoheng Zhang
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
- Collaborative Innovation Center of Suzhou Nano‐Science and Technology Suzhou Key Laboratory of Biomaterials and Technologies China
| | - Ning Gu
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
- Collaborative Innovation Center of Suzhou Nano‐Science and Technology Suzhou Key Laboratory of Biomaterials and Technologies China
| |
Collapse
|
93
|
A model for hydrophobic protrusions on peripheral membrane proteins. PLoS Comput Biol 2018; 14:e1006325. [PMID: 30048443 PMCID: PMC6080788 DOI: 10.1371/journal.pcbi.1006325] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 08/07/2018] [Accepted: 06/24/2018] [Indexed: 11/19/2022] Open
Abstract
With remarkable spatial and temporal specificities, peripheral membrane proteins bind to biological membranes. They do this without compromising solubility of the protein, and their binding sites are not easily distinguished. Prototypical peripheral membrane binding sites display a combination of patches of basic and hydrophobic amino acids that are also frequently present on other protein surfaces. The purpose of this contribution is to identify simple but essential components for membrane binding, through structural criteria that distinguish exposed hydrophobes at membrane binding sites from those that are frequently found on any protein surface. We formulate the concepts of protruding hydrophobes and co-insertability and have analysed more than 300 families of proteins that are classified as peripheral membrane binders. We find that this structural motif strongly discriminates the surfaces of membrane-binding and non-binding proteins. Our model constitutes a novel formulation of a structural pattern for membrane recognition and emphasizes the importance of subtle structural properties of hydrophobic membrane binding sites. Peripheral membrane proteins bind cellular membranes transiently, and are otherwise soluble proteins. As the interaction between proteins and membranes happens at cellular interfaces they are naturally involved in important interfacial processes such as recognition, signaling and trafficking. Commonly their binding sites are also soluble, and their binding mechanisms poorly understood. This complicates the elaboration of conceptual and quantitative models for peripheral membrane binding and makes binding site prediction difficult. It is therefore of great interest to discover traits that are common between these binding sites and that distinguishes them from other protein surfaces. In this work we identify simple and general structural features that facilitate membrane recognition by soluble proteins. We show that these motifs are highly over-represented on peripheral membrane proteins.
Collapse
|
94
|
Ramakrishnan N, Bradley RP, Tourdot RW, Radhakrishnan R. Biophysics of membrane curvature remodeling at molecular and mesoscopic lengthscales. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:273001. [PMID: 29786613 PMCID: PMC6066392 DOI: 10.1088/1361-648x/aac702] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
At the micron scale, where cell organelles display an amazing complexity in their shape and organization, the physical properties of a biological membrane can be better-understood using continuum models subject to thermal (stochastic) undulations. Yet, the chief orchestrators of these complex and intriguing shapes are a specialized class of membrane associating often peripheral proteins called curvature remodeling proteins (CRPs) that operate at the molecular level through specific protein-lipid interactions. We review multiscale methodologies to model these systems at the molecular as well as at the mesoscopic and cellular scales, and also present a free energy perspective of membrane remodeling through the organization and assembly of CRPs. We discuss the morphological space of nearly planar to highly curved membranes, methods to include thermal fluctuations, and review studies that model such proteins as curvature fields to describe the emergent curved morphologies. We also discuss several mesoscale models applied to a variety of cellular processes, where the phenomenological parameters (such as curvature field strength) are often mapped to models of real systems based on molecular simulations. Much insight can be gained from the calculation of free energies of membranes states with protein fields, which enable accurate mapping of the state and parameter values at which the membrane undergoes morphological transformations such as vesiculation or tubulation. By tuning the strength, anisotropy, and spatial organization of the curvature-field, one can generate a rich array of membrane morphologies that are highly relevant to shapes of several cellular organelles. We review applications of these models to budding of vesicles commonly seen in cellular signaling and trafficking processes such as clathrin mediated endocytosis, sorting by the ESCRT protein complexes, and cellular exocytosis regulated by the exocyst complex. We discuss future prospects where such models can be combined with other models for cytoskeletal assembly, and discuss their role in understanding the effects of cell membrane tension and the mechanics of the extracellular microenvironment on cellular processes.
Collapse
Affiliation(s)
- N Ramakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | | | | | | |
Collapse
|
95
|
Zhang G, Müller M. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers. J Chem Phys 2018; 147:064906. [PMID: 28810752 DOI: 10.1063/1.4997575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.
Collapse
Affiliation(s)
- Guojie Zhang
- Institute for Theoretical Physics, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
96
|
RodZ modulates geometric localization of the bacterial actin MreB to regulate cell shape. Nat Commun 2018; 9:1280. [PMID: 29599448 PMCID: PMC5876373 DOI: 10.1038/s41467-018-03633-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/01/2018] [Indexed: 01/10/2023] Open
Abstract
In the rod-shaped bacterium Escherichia coli, the actin-like protein MreB localizes in a curvature-dependent manner and spatially coordinates cell-wall insertion to maintain cell shape, although the molecular mechanism by which cell width is regulated remains unknown. Here we demonstrate that the membrane protein RodZ regulates the biophysical properties of MreB and alters the spatial organization of E. coli cell-wall growth. The relative expression levels of MreB and RodZ change in a manner commensurate with variations in growth rate and cell width, and RodZ systematically alters the curvature-based localization of MreB and cell width in a concentration-dependent manner. We identify MreB mutants that alter the bending properties of MreB filaments in molecular dynamics simulations similar to RodZ binding, and show that these mutants rescue rod-like shape in the absence of RodZ alone or in combination with wild-type MreB. Thus, E. coli can control its shape and dimensions by differentially regulating RodZ and MreB to alter the patterning of cell-wall insertion, highlighting the rich regulatory landscape of cytoskeletal molecular biophysics. Membrane protein RodZ interacts with the actin-like protein MreB, which coordinates cell-wall insertion to maintain the typical rod-like shape of E. coli cells. Here, the authors provide evidence that RodZ modulates the biophysical properties of MreB and alters the spatial organization of cell-wall growth.
Collapse
|
97
|
Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and Developmental Regulation of RNA Processing. Compr Physiol 2018; 8:509-553. [PMID: 29687899 PMCID: PMC11323716 DOI: 10.1002/cphy.c170002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.
Collapse
Affiliation(s)
- James D. Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Łukasz J. Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
98
|
Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors. Biochem Soc Trans 2018. [PMID: 29540508 DOI: 10.1042/bst20170322] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors.
Collapse
|
99
|
Cytosolic proteins can exploit membrane localization to trigger functional assembly. PLoS Comput Biol 2018; 14:e1006031. [PMID: 29505559 PMCID: PMC5854442 DOI: 10.1371/journal.pcbi.1006031] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/15/2018] [Accepted: 02/09/2018] [Indexed: 12/03/2022] Open
Abstract
Cell division, endocytosis, and viral budding would not function without the localization and assembly of protein complexes on membranes. What is poorly appreciated, however, is that by localizing to membranes, proteins search in a reduced space that effectively drives up concentration. Here we derive an accurate and practical analytical theory to quantify the significance of this dimensionality reduction in regulating protein assembly on membranes. We define a simple metric, an effective equilibrium constant, that allows for quantitative comparison of protein-protein interactions with and without membrane present. To test the importance of membrane localization for driving protein assembly, we collected the protein-protein and protein-lipid affinities, protein and lipid concentrations, and volume-to-surface-area ratios for 46 interactions between 37 membrane-targeting proteins in human and yeast cells. We find that many of the protein-protein interactions between pairs of proteins involved in clathrin-mediated endocytosis in human and yeast cells can experience enormous increases in effective protein-protein affinity (10–1000 fold) due to membrane localization. Localization of binding partners thus triggers robust protein complexation, suggesting that it can play an important role in controlling the timing of endocytic protein coat formation. Our analysis shows that several other proteins involved in membrane remodeling at various organelles have similar potential to exploit localization. The theory highlights the master role of phosphoinositide lipid concentration, the volume-to-surface-area ratio, and the ratio of 3D to 2D equilibrium constants in triggering (or preventing) constitutive assembly on membranes. Our simple model provides a novel quantitative framework for interpreting or designing in vitro experiments of protein complexation influenced by membrane binding. In a multitude of cellular processes, including cell division and endocytosis, proteins must bind to one another to form large multi-protein complexes. To initiate the formation of these critical multi-protein assemblies at the right time and the right place, the constituent proteins must be present at sufficient concentrations. We show here that membrane localization offers a powerful way of controlling protein concentrations by reducing the dimensionality of the protein’s search space. We present a simple and practical analytical theory that determines the significance of membrane localization for triggering protein-protein interactions. We show that protein binding partners will often form substantially more complexes when both partners can localize to surfaces, and thus localization can regulate the timing of multi-protein assembly. We collect in vitro binding data and cellular concentrations of proteins and lipids involved in pathways including clathrin-mediated endocytosis to demonstrate how cellular proteins could exploit membrane localization to regulate assembly.
Collapse
|
100
|
Huang Y, Chen J, Sun B, Zheng R, Li B, Li Z, Tan Y, Wei J, Pan G, Li C, Zhou Z. Engineered resistance to Nosema bombycis by in vitro expression of a single-chain antibody in Sf9-III cells. PLoS One 2018; 13:e0193065. [PMID: 29447266 PMCID: PMC5814085 DOI: 10.1371/journal.pone.0193065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/02/2018] [Indexed: 11/18/2022] Open
Abstract
Nosema bombycis is a destructive, obligate intracellular parasite of the Bombyx mori. In this study, a single-chain variable fragment (scFv) dependent technology is developed for the purpose of inhibiting parasite proliferation in insect cells. The scFv-G4, which we prepared from a mouse G4 monoclonal antibody, can target the N. bombycis spore wall protein 12 (NbSWP12). Indirect immunofluorescence assays showed that NbSWP12 located mainly on the outside of the N. bombycis cytoskeleton, although some of it co-localized with β-tubulin in the meront-stage of parasites. When meront division began, NbSWP12 became concentrated at both ends of each meront. Western blotting showed that scFv-G4 could express in Sf9-III cells and recognized native NbSWP12. The transgenic Sf9-III cell line showed better resistance than the controls when challenged with N. bombycis, indicating that NbSWP12 is a promising target in this parasite and this scFv dependent strategy could be a solution for construction of N. bombycis-resistant Bombyx mori.
Collapse
Affiliation(s)
- Yukang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, P. R. China
| | - Bin Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
| | - Rong Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
| | - Boning Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
| | - Zeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
| | - Yaoyao Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, P. R. China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, P. R. China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, P. R. China
- * E-mail: (CL); (ZZ)
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, P. R. China
- College of Life Sciences, Chongqing Normal University, Chongqing, P. R. China
- * E-mail: (CL); (ZZ)
| |
Collapse
|