51
|
Lu YW, Martino N, Gerlach BD, Lamar JM, Vincent PA, Adam AP, Schwarz JJ. MEF2 (Myocyte Enhancer Factor 2) Is Essential for Endothelial Homeostasis and the Atheroprotective Gene Expression Program. Arterioscler Thromb Vasc Biol 2021; 41:1105-1123. [PMID: 33406884 DOI: 10.1161/atvbaha.120.314978] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Atherosclerosis predominantly forms in regions of oscillatory shear stress while regions of laminar shear stress are protected. This protection is partly through the endothelium in laminar flow regions expressing an anti-inflammatory and antithrombotic gene expression program. Several molecular pathways transmitting these distinct flow patterns to the endothelium have been defined. Our objective is to define the role of the MEF2 (myocyte enhancer factor 2) family of transcription factors in promoting an atheroprotective endothelium. Approach and Results: Here, we show through endothelial-specific deletion of the 3 MEF2 factors in the endothelium, Mef2a, -c, and -d, that MEF2 is a critical regulator of vascular homeostasis. MEF2 deficiency results in systemic inflammation, hemorrhage, thrombocytopenia, leukocytosis, and rapid lethality. Transcriptome analysis reveals that MEF2 is required for normal regulation of 3 pathways implicated in determining the flow responsiveness of the endothelium. Specifically, MEF2 is required for expression of Klf2 and Klf4, 2 partially redundant factors essential for promoting an anti-inflammatory and antithrombotic endothelium. This critical requirement results in phenotypic similarities between endothelial-specific deletions of Mef2a/c/d and Klf2/4. In addition, MEF2 regulates the expression of Notch family genes, Notch1, Dll1, and Jag1, which also promote an atheroprotective endothelium. In contrast to these atheroprotective pathways, MEF2 deficiency upregulates an atherosclerosis promoting pathway through increasing the amount of TAZ (transcriptional coactivator with PDZ-binding motif). CONCLUSIONS Our results implicate MEF2 as a critical upstream regulator of several transcription factors responsible for gene expression programs that affect development of atherosclerosis and promote an anti-inflammatory and antithrombotic endothelium. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Yao Wei Lu
- Department of Molecular and Cellular Physiology (Y.W.L., N.M., B.D.G., J.M.L., P.A.V., A.P.A., J.J.S.), Albany Medical College, NY
| | - Nina Martino
- Department of Molecular and Cellular Physiology (Y.W.L., N.M., B.D.G., J.M.L., P.A.V., A.P.A., J.J.S.), Albany Medical College, NY
| | - Brennan D Gerlach
- Department of Molecular and Cellular Physiology (Y.W.L., N.M., B.D.G., J.M.L., P.A.V., A.P.A., J.J.S.), Albany Medical College, NY
| | - John M Lamar
- Department of Molecular and Cellular Physiology (Y.W.L., N.M., B.D.G., J.M.L., P.A.V., A.P.A., J.J.S.), Albany Medical College, NY
| | - Peter A Vincent
- Department of Molecular and Cellular Physiology (Y.W.L., N.M., B.D.G., J.M.L., P.A.V., A.P.A., J.J.S.), Albany Medical College, NY
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology (Y.W.L., N.M., B.D.G., J.M.L., P.A.V., A.P.A., J.J.S.), Albany Medical College, NY.,Department of Ophthalmology (A.P.A.), Albany Medical College, NY
| | - John J Schwarz
- Department of Molecular and Cellular Physiology (Y.W.L., N.M., B.D.G., J.M.L., P.A.V., A.P.A., J.J.S.), Albany Medical College, NY
| |
Collapse
|
52
|
Chemokine mediated signalling within arteries promotes vascular smooth muscle cell recruitment. Commun Biol 2020; 3:734. [PMID: 33277595 PMCID: PMC7719186 DOI: 10.1038/s42003-020-01462-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 11/05/2020] [Indexed: 01/13/2023] Open
Abstract
The preferential accumulation of vascular smooth muscle cells (vSMCs) on arteries versus veins during early development is a well-described phenomenon, but the molecular pathways underlying this polarization are not well understood. In zebrafish, the cxcr4a receptor (mammalian CXCR4) and its ligand cxcl12b (mammalian CXCL12) are both preferentially expressed on arteries at time points consistent with the arrival and differentiation of the first vSMCs during vascular development. We show that autocrine cxcl12b/cxcr4 activity leads to increased production of the vSMC chemoattractant ligand pdgfb by endothelial cells in vitro and increased expression of pdgfb by arteries of zebrafish and mice in vivo. Additionally, we demonstrate that expression of the blood flow-regulated transcription factor klf2a in primitive veins negatively regulates cxcr4/cxcl12 and pdgfb expression, restricting vSMC recruitment to the arterial vasculature. Together, this signalling axis leads to the differential acquisition of vSMCs at sites where klf2a expression is low and both cxcr4a and pdgfb are co-expressed, i.e. arteries during early development. Stratman et al. provide evidence linking the cxcl12b/cxcr4a signaling axis in endothelial cells to an increased release of platelet-derived growth factor b, leading to the recruitment of smooth muscle cells to developing arteries. This signalling axis is suppressed in the venous endothelium during early development by the high expression of blood flow-regulated transcription factor klf2a.
Collapse
|
53
|
Heck AM, Ishida T, Hadland B. Location, Location, Location: How Vascular Specialization Influences Hematopoietic Fates During Development. Front Cell Dev Biol 2020; 8:602617. [PMID: 33282876 PMCID: PMC7691428 DOI: 10.3389/fcell.2020.602617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 01/22/2023] Open
Abstract
During embryonic development, sequential waves of hematopoiesis give rise to blood-forming cells with diverse lineage potentials and self-renewal properties. This process must accomplish two important yet divergent goals: the rapid generation of differentiated blood cells to meet the needs of the developing embryo and the production of a reservoir of hematopoietic stem cells to provide for life-long hematopoiesis in the adult. Vascular beds in distinct anatomical sites of extraembryonic tissues and the embryo proper provide the necessary conditions to support these divergent objectives, suggesting a critical role for specialized vascular niche cells in regulating disparate blood cell fates during development. In this review, we will examine the current understanding of how organ- and stage-specific vascular niche specialization contributes to the development of the hematopoietic system.
Collapse
Affiliation(s)
- Adam M. Heck
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Takashi Ishida
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
54
|
Kindberg A, Hu JK, Bush JO. Forced to communicate: Integration of mechanical and biochemical signaling in morphogenesis. Curr Opin Cell Biol 2020; 66:59-68. [PMID: 32569947 PMCID: PMC7577940 DOI: 10.1016/j.ceb.2020.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/06/2020] [Accepted: 05/05/2020] [Indexed: 01/05/2023]
Abstract
Morphogenesis is a physical process that requires the generation of mechanical forces to achieve dynamic changes in cell position, tissue shape, and size as well as biochemical signals to coordinate these events. Mechanical forces are also used by the embryo to transmit detailed information across space and detected by target cells, leading to downstream changes in cellular properties and behaviors. Indeed, forces provide signaling information of complementary quality that can both synergize and diversify the functional outputs of biochemical signaling. Here, we discuss recent findings that reveal how mechanical signaling and biochemical signaling are integrated during morphogenesis and the possible context-specific advantages conferred by the interactions between these signaling mechanisms.
Collapse
Affiliation(s)
- Abigail Kindberg
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Jeffrey O Bush
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
55
|
Chen Z, Li S, Guo L, Peng X, Liu Y. Prenatal alcohol exposure induced congenital heart diseases: From bench to bedside. Birth Defects Res 2020; 113:521-534. [PMID: 32578335 DOI: 10.1002/bdr2.1743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/27/2022]
Abstract
Alcohol consumption is increasing worldwide. Many child-bearing-aged women consume alcohol during pregnancy, intentionally or unintentionally, thereby increasing the potential risk for severe congenital diseases. Congenital heart disease (CHD) is the most common birth defect worldwide and can result from both hereditary and acquired factors. Prenatal alcohol exposure (PAE) is considered a key factor that leads to teratogenesis in CHD and its specific phenotypes, especially defects of the cardiac septa, cardiac valves, cardiac canals, and great arteries, adjacent to the chambers, both in animal experiments and clinical retrospective studies. The mechanisms underlying CHD and its phenotypes caused by PAE are associated with changes in retinoic acid biosynthesis and its signaling pathway, apoptosis and defective function of cardiac neural crest cells, disturbance of the Wntβ-catenin signaling pathway, suppression of bone morphogenetic protein (BMP) signaling, and other epigenetic mechanisms. Drug supplements and early diagnosis can help prevent PAE from inducing CHDs.
Collapse
Affiliation(s)
- Zhiyan Chen
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China.,Department of Research, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Sheng Li
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China.,Department of Research, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Linghong Guo
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine; Animal Research Institute, Sichuan University, Chengdu, Sichuan, China
| | - Xu Peng
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine; Animal Research Institute, Sichuan University, Chengdu, Sichuan, China
| | - Yin Liu
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China.,Department of Research, Zigong First People's Hospital, Zigong, Sichuan, China.,Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine; Animal Research Institute, Sichuan University, Chengdu, Sichuan, China.,Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
56
|
Jiang T, Zhang W, Wang Z. Laquinimod Protects Against TNF-α-Induced Attachment of Monocytes to Human Aortic Endothelial Cells (HAECs) by Increasing the Expression of KLF2. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1683-1691. [PMID: 32440094 PMCID: PMC7222522 DOI: 10.2147/dddt.s243666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/06/2020] [Indexed: 01/01/2023]
Abstract
Introduction As a worldwide health issue, the treatment and prevention of atherosclerosis present an important goal. Increased levels of proinflammatory cytokines such as TNF-α-associated chronic inflammatory response cause endothelial cells to lose their ability to regulate vascular function. Lipid-laden immune cells are recruited to the endothelium where they adhere to the endothelial wall and invade the intimal space, thereby leading to the development of atherosclerotic lesions, fatty plaques, and thickening of the arterial wall. In the present study, for the first time, we investigated the effects of laquinimod, an immunomodulatory agent used for the treatment of multiple sclerosis, on human aortic endothelial in a TNF-α-induced atherosclerotic microenvironment. At present, the mechanism of action of laquinimod is not well defined. Methods The effects of laquinimod on the gene expression of IL-6, MCP-1, VCAM-1, E-selectin, and KLF2 were measured by real-time PCR. ELISA assay was used to determine protein secretion and expression. Phosphorylation of ERK5 and the protein level of KLF2 were measured by Western blot analysis. The attachment of monocytes to endothelial cells was assayed by calcein-AM staining and fluorescent microscopy. Results Our findings demonstrate that laquinimod reduced the expression of key inflammatory cytokines and chemokines, including IL-6, MCP-1, and HMGB1. We further demonstrate that laquinimod significantly reduced the attachment of monocytes to endothelial cells, which is mediated through reduced expression of the cellular adhesion molecules VCAM-1 and E-selectin. Here, we found that laquinimod could significantly increase the expression of KLF2 through activation of ERK5 signaling. The results of our KLF2 knockdown experiment confirm that the effects of laquinimod observed in vitro are dependent on KLF2 expression. Conclusion Together, these findings suggest a potential antiatherosclerotic capacity of laquinimod. Further research will elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Tiechao Jiang
- Department of Cardiovascular Medicine, The Third Hospital of Jilin University, Changchun 130033, People's Republic of China.,Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, The Third Hospital of Jilin University, Changchun 130033, People's Republic of China.,Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, The Third Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Wenhao Zhang
- Department of Cardiovascular Medicine, The Third Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Zhongyu Wang
- Department of Cardiovascular Medicine, The Third Hospital of Jilin University, Changchun 130033, People's Republic of China.,Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, The Third Hospital of Jilin University, Changchun 130033, People's Republic of China.,Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, The Third Hospital of Jilin University, Changchun 130033, People's Republic of China
| |
Collapse
|
57
|
Primary cilia mediate Klf2-dependant Notch activation in regenerating heart. Protein Cell 2020; 11:433-445. [PMID: 32249387 PMCID: PMC7251007 DOI: 10.1007/s13238-020-00695-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/07/2020] [Indexed: 12/20/2022] Open
Abstract
Unlike adult mammalian heart, zebrafish heart has a remarkable capacity to regenerate after injury. Previous study has shown Notch signaling activation in the endocardium is essential for regeneration of the myocardium and this activation is mediated by hemodynamic alteration after injury, however, the molecular mechanism has not been fully explored. In this study we demonstrated that blood flow change could be perceived and transmitted in a primary cilia dependent manner to control the hemodynamic responsive klf2 gene expression and subsequent activation of Notch signaling in the endocardium. First we showed that both homologues of human gene KLF2 in zebrafish, klf2a and klf2b, could respond to hemodynamic alteration and both were required for Notch signaling activation and heart regeneration. Further experiments indicated that the upregulation of klf2 gene expression was mediated by endocardial primary cilia. Overall, our findings reveal a novel aspect of mechanical shear stress signal in activating Notch pathway and regulating cardiac regeneration.
Collapse
|
58
|
Sindi HA, Russomanno G, Satta S, Abdul-Salam VB, Jo KB, Qazi-Chaudhry B, Ainscough AJ, Szulcek R, Jan Bogaard H, Morgan CC, Pullamsetti SS, Alzaydi MM, Rhodes CJ, Piva R, Eichstaedt CA, Grünig E, Wilkins MR, Wojciak-Stothard B. Therapeutic potential of KLF2-induced exosomal microRNAs in pulmonary hypertension. Nat Commun 2020; 11:1185. [PMID: 32132543 PMCID: PMC7055281 DOI: 10.1038/s41467-020-14966-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disorder of lung vasculature that causes right heart failure. Homoeostatic effects of flow-activated transcription factor Krüppel-like factor 2 (KLF2) are compromised in PAH. Here, we show that KLF2-induced exosomal microRNAs, miR-181a-5p and miR-324-5p act together to attenuate pulmonary vascular remodelling and that their actions are mediated by Notch4 and ETS1 and other key regulators of vascular homoeostasis. Expressions of KLF2, miR-181a-5p and miR-324-5p are reduced, while levels of their target genes are elevated in pre-clinical PAH, idiopathic PAH and heritable PAH with missense p.H288Y KLF2 mutation. Therapeutic supplementation of miR-181a-5p and miR-324-5p reduces proliferative and angiogenic responses in patient-derived cells and attenuates disease progression in PAH mice. This study shows that reduced KLF2 signalling is a common feature of human PAH and highlights the potential therapeutic role of KLF2-regulated exosomal miRNAs in PAH and other diseases associated with vascular remodelling.
Collapse
Affiliation(s)
- Hebah A. Sindi
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK ,University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| | - Giusy Russomanno
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Sandro Satta
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Vahitha B. Abdul-Salam
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Kyeong Beom Jo
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Basma Qazi-Chaudhry
- 0000 0001 2322 6764grid.13097.3cDepartment of Physics, King’s College London UK, London, UK
| | - Alexander J. Ainscough
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Robert Szulcek
- Amsterdam UMC, VU University Medical Center, Department of Pulmonary Diseases, Amsterdam Cardiovascular Sciences (ACS), Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- Amsterdam UMC, VU University Medical Center, Department of Pulmonary Diseases, Amsterdam Cardiovascular Sciences (ACS), Amsterdam, The Netherlands
| | - Claire C. Morgan
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Soni S. Pullamsetti
- grid.452624.3Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany ,0000 0001 2165 8627grid.8664.cDepartment of Internal MedicineUniversities of Giessen and Marburg Lung Center (UGMLC), Member of the DZL, Justus Liebig University, Giessen, Germany
| | - Mai M. Alzaydi
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK ,0000 0000 8808 6435grid.452562.2National Center for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Christopher J. Rhodes
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Roberto Piva
- 0000 0001 2336 6580grid.7605.4Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Christina A. Eichstaedt
- grid.452624.3Centre for Pulmonary Hypertension, Thoraxclinic, Institute for Human Genetics, University of Heidelberg, Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany ,0000 0001 2190 4373grid.7700.0Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ekkehard Grünig
- grid.452624.3Centre for Pulmonary Hypertension, Thoraxclinic, Institute for Human Genetics, University of Heidelberg, Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martin R. Wilkins
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Beata Wojciak-Stothard
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
59
|
Druggable Sphingolipid Pathways: Experimental Models and Clinical Opportunities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:101-135. [PMID: 32894509 DOI: 10.1007/978-3-030-50621-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intensive research in the field of sphingolipids has revealed diverse roles in cell biological responses and human health and disease. This immense molecular family is primarily represented by the bioactive molecules ceramide, sphingosine, and sphingosine 1-phosphate (S1P). The flux of sphingolipid metabolism at both the subcellular and extracellular levels provides multiple opportunities for pharmacological intervention. The caveat is that perturbation of any single node of this highly regulated flux may have effects that propagate throughout the metabolic network in a dramatic and sometimes unexpected manner. Beginning with S1P, the receptors for which have thus far been the most clinically tractable pharmacological targets, this review will describe recent advances in therapeutic modulators targeting sphingolipids, their chaperones, transporters, and metabolic enzymes.
Collapse
|
60
|
Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico TJ, Ridger V, Roddie H, Evans PC. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol 2020; 17:52-63. [PMID: 31366922 DOI: 10.1038/s41569-019-0239-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 01/04/2023]
Abstract
Flowing blood generates a frictional force called shear stress that has major effects on vascular function. Branches and bends of arteries are exposed to complex blood flow patterns that exert low or low oscillatory shear stress, a mechanical environment that promotes vascular dysfunction and atherosclerosis. Conversely, physiologically high shear stress is protective. Endothelial cells are critical sensors of shear stress but the mechanisms by which they decode complex shear stress environments to regulate physiological and pathophysiological responses remain incompletely understood. Several laboratories have advanced this field by integrating specialized shear-stress models with systems biology approaches, including transcriptome, methylome and proteome profiling and functional screening platforms, for unbiased identification of novel mechanosensitive signalling pathways in arteries. In this Review, we describe these studies, which reveal that shear stress regulates diverse processes and demonstrate that multiple pathways classically known to be involved in embryonic development, such as BMP-TGFβ, WNT, Notch, HIF1α, TWIST1 and HOX family genes, are regulated by shear stress in arteries in adults. We propose that mechanical activation of these pathways evolved to orchestrate vascular development but also drives atherosclerosis in low shear stress regions of adult arteries.
Collapse
Affiliation(s)
- Celine Souilhol
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Timothy J Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre for Lifecourse Biology, University of Sheffield, Sheffield, UK
| | - Victoria Ridger
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Hannah Roddie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
- Bateson Centre for Lifecourse Biology, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
61
|
Wünnemann F, Ta-Shma A, Preuss C, Leclerc S, van Vliet PP, Oneglia A, Thibeault M, Nordquist E, Lincoln J, Scharfenberg F, Becker-Pauly C, Hofmann P, Hoff K, Audain E, Kramer HH, Makalowski W, Nir A, Gerety SS, Hurles M, Comes J, Fournier A, Osinska H, Robins J, Pucéat M, Elpeleg O, Hitz MP, Andelfinger G. Loss of ADAMTS19 causes progressive non-syndromic heart valve disease. Nat Genet 2019; 52:40-47. [PMID: 31844321 DOI: 10.1038/s41588-019-0536-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/23/2019] [Indexed: 01/24/2023]
Abstract
Valvular heart disease is observed in approximately 2% of the general population1. Although the initial observation is often localized (for example, to the aortic or mitral valve), disease manifestations are regularly observed in the other valves and patients frequently require surgery. Despite the high frequency of heart valve disease, only a handful of genes have so far been identified as the monogenic causes of disease2-7. Here we identify two consanguineous families, each with two affected family members presenting with progressive heart valve disease early in life. Whole-exome sequencing revealed homozygous, truncating nonsense alleles in ADAMTS19 in all four affected individuals. Homozygous knockout mice for Adamts19 show aortic valve dysfunction, recapitulating aspects of the human phenotype. Expression analysis using a lacZ reporter and single-cell RNA sequencing highlight Adamts19 as a novel marker for valvular interstitial cells; inference of gene regulatory networks in valvular interstitial cells positions Adamts19 in a highly discriminatory network driven by the transcription factor lymphoid enhancer-binding factor 1 downstream of the Wnt signaling pathway. Upregulation of endocardial Krüppel-like factor 2 in Adamts19 knockout mice precedes hemodynamic perturbation, showing that a tight balance in the Wnt-Adamts19-Klf2 axis is required for proper valve maturation and maintenance.
Collapse
Affiliation(s)
- Florian Wünnemann
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada.,Institute of Bioinformatics, University of Münster, Münster, Germany
| | - Asaf Ta-Shma
- Department of Pediatric Cardiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,Monique and Jacques Robo Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Severine Leclerc
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Patrick Piet van Vliet
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada.,LIA (International Associated Laboratory) Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada.,LIA (International Associated Laboratory) INSERM, Marseille, France
| | - Andrea Oneglia
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Maryse Thibeault
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Emily Nordquist
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Pediatric Cardiology, Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - Franka Scharfenberg
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Christoph Becker-Pauly
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Philipp Hofmann
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Kirstin Hoff
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany.,German Centre for Cardiovascular Research (DZHK), Kiel, Germany
| | - Enrique Audain
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany.,German Centre for Cardiovascular Research (DZHK), Kiel, Germany
| | - Hans-Heiner Kramer
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany.,German Centre for Cardiovascular Research (DZHK), Kiel, Germany
| | | | - Amiram Nir
- Department of Pediatric Cardiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | - Johanna Comes
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Anne Fournier
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Hanna Osinska
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Jeffrey Robins
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Michel Pucéat
- LIA (International Associated Laboratory) Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada.,LIA (International Associated Laboratory) INSERM, Marseille, France.,Université Aix-Marseille, INSERM U-1251, Marseille, France
| | | | - Orly Elpeleg
- Monique and Jacques Robo Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Marc-Phillip Hitz
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany.,German Centre for Cardiovascular Research (DZHK), Kiel, Germany.,Wellcome Sanger Institute, Cambridge, UK.,Department of Human Genetics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada. .,Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada. .,Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
62
|
Affiliation(s)
- Alan T Tang
- From the Department of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia
| | - Mark L Kahn
- From the Department of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia
| |
Collapse
|
63
|
Duchemin AL, Vignes H, Vermot J, Chow R. Mechanotransduction in cardiovascular morphogenesis and tissue engineering. Curr Opin Genet Dev 2019; 57:106-116. [PMID: 31586750 DOI: 10.1016/j.gde.2019.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022]
Abstract
Cardiovascular morphogenesis involves cell behavior and cell identity changes that are activated by mechanical forces associated with heart function. Recently, advances in in vivo imaging, methods to alter blood flow, and computational modelling have greatly advanced our understanding of how forces produced by heart contraction and blood flow impact different morphogenetic processes. Meanwhile, traditional genetic approaches have helped to elucidate how endothelial cells respond to forces at the cellular and molecular level. Here we discuss the principles of endothelial mechanosensitity and their interplay with cellular processes during cardiovascular morphogenesis. We then discuss their implications in the field of cardiovascular tissue engineering.
Collapse
Affiliation(s)
- Anne-Laure Duchemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Helene Vignes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| | - Renee Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
64
|
Yao Z, Zhang Y, Xu D, Zhou X, Peng P, Pan Z, Xiao N, Yao J, Li Z. Research Progress on Long Non-Coding RNA and Radiotherapy. Med Sci Monit 2019; 25:5757-5770. [PMID: 31375656 PMCID: PMC6690404 DOI: 10.12659/msm.915647] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a group of non-protein-coding RNAs longer than 200 nucleotides, are involved in multiple biological and pathological processes, such as proliferation, apoptosis, migration, invasion, angiogenesis, and immune escape. Many studies have shown that lncRNAs participate in the complex network of cancer and play vital roles as oncogenes or tumor-suppressor genes in a variety of cancers. Moreover, recent research has shown that abnormal expression of lncRNAs in malignant tumor cells before and after radiotherapy may participate in the progression of cancers and affect the radiation sensitivity of malignant tumor cells mediated by specific signaling pathways or cell cycle regulation. In this review, we summarize the published studies on lncRNAs in radiotherapy regarding the biological function and mechanism of human cancers, including esophageal cancer, pancreatic cancers, nasopharyngeal carcinoma, hepatocellular carcinoma, cervical cancer, colorectal cancer, and gastric cancer.
Collapse
Affiliation(s)
- Zhifeng Yao
- Department of Radiotherapy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Oncology, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yiwen Zhang
- Department of Nursing, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Danghui Xu
- Department of Medical Imaging, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xuejun Zhou
- Department of Medical Imaging, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Peng Peng
- Department of Nursing, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| | - Zhiyao Pan
- Department of Basic Medicine, Zhejiang University Medical College, Hangzhou, Zhejiang, China (mainland)
| | - Nan Xiao
- Department of Medical Imaging, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| | - Jianxin Yao
- Department of Medical Imaging, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| | - Zhifeng Li
- Department of Medical Imaging, Nanjing Health Higher Vocational and Technical College, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
65
|
Wu D, Birukov K. Endothelial Cell Mechano-Metabolomic Coupling to Disease States in the Lung Microvasculature. Front Bioeng Biotechnol 2019; 7:172. [PMID: 31380363 PMCID: PMC6658821 DOI: 10.3389/fbioe.2019.00172] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Lungs are the most vascular part of humans, accepting the totality of cardiac output in a volume much smaller than the body itself. Due to this cardiac output, the lung microvasculature is subject to mechanical forces including shear stress and cyclic stretch that vary with the cardiac and breathing cycle. Vessels are surrounded by extracellular matrix which dictates the stiffness which endothelial cells also sense and respond to. Shear stress, stiffness, and cyclic stretch are known to influence endothelial cell state. At high shear stress, endothelial cells exhibit cell quiescence marked by low inflammatory markers and high nitric oxide synthesis, whereas at low shear stress, endothelial cells are thought to "activate" into a pro-inflammatory state and have low nitric oxide. Shear stress' profound effect on vascular phenotype is most apparent in the arterial vasculature and in the pathophysiology of vascular inflammation. To conduct the flow of blood from the right heart, the lung microvasculature must be rigid yet compliant. It turns out that excessive substrate rigidity or stiffness is important in the development of pulmonary hypertension and chronic fibrosing lung diseases via excessive cell proliferation or the endothelial-mesenchymal transition. Recently, a new body of literature has evolved that couples mechanical sensing to endothelial phenotypic changes through metabolic signaling in clinically relevant contexts such as pulmonary hypertension, lung injury syndromes, as well as fibrosis, which is the focus of this review. Stretch, like flow, has profound effect on endothelial phenotype; metabolism studies due to stretch are in their infancy.
Collapse
Affiliation(s)
- David Wu
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Konstantin Birukov
- Department of Anesthesia, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
66
|
Gálvez-Santisteban M, Chen D, Zhang R, Serrano R, Nguyen C, Zhao L, Nerb L, Masutani EM, Vermot J, Burns CG, Burns CE, del Álamo JC, Chi NC. Hemodynamic-mediated endocardial signaling controls in vivo myocardial reprogramming. eLife 2019; 8:e44816. [PMID: 31237233 PMCID: PMC6592682 DOI: 10.7554/elife.44816] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/03/2019] [Indexed: 12/31/2022] Open
Abstract
Lower vertebrate and neonatal mammalian hearts exhibit the remarkable capacity to regenerate through the reprogramming of pre-existing cardiomyocytes. However, how cardiac injury initiates signaling pathways controlling this regenerative reprogramming remains to be defined. Here, we utilize in vivo biophysical and genetic fate mapping zebrafish studies to reveal that altered hemodynamic forces due to cardiac injury activate a sequential endocardial-myocardial signaling cascade to direct cardiomyocyte reprogramming and heart regeneration. Specifically, these altered forces are sensed by the endocardium through the mechanosensitive channel Trpv4 to control Klf2a transcription factor expression. Consequently, Klf2a then activates endocardial Notch signaling which results in the non-cell autonomous initiation of myocardial Erbb2 and BMP signaling to promote cardiomyocyte reprogramming and heart regeneration. Overall, these findings not only reveal how the heart senses and adaptively responds to environmental changes due to cardiac injury, but also provide insight into how flow-mediated mechanisms may regulate cardiomyocyte reprogramming and heart regeneration.
Collapse
Affiliation(s)
- Manuel Gálvez-Santisteban
- Department of Medicine, Division of CardiologyUniversity of California, San DiegoLa JollaUnited States
| | - Danni Chen
- Department of Medicine, Division of CardiologyUniversity of California, San DiegoLa JollaUnited States
| | - Ruilin Zhang
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
| | - Ricardo Serrano
- Mechanical and Aerospace Engineering DepartmentUniversity of California, San DiegoLa JollaUnited States
| | - Cathleen Nguyen
- Mechanical and Aerospace Engineering DepartmentUniversity of California, San DiegoLa JollaUnited States
| | - Long Zhao
- Department of Medicine, Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolCharlestownUnited States
| | - Laura Nerb
- Department of Medicine, Division of CardiologyUniversity of California, San DiegoLa JollaUnited States
| | - Evan M Masutani
- Department of Medicine, Division of CardiologyUniversity of California, San DiegoLa JollaUnited States
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et CellulaireCentre National de la Recherche Scientifique, UMR7104, INSERM U964, Université de StrasbourgIllkirchFrance
| | - Charles Geoffrey Burns
- Department of Medicine, Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolCharlestownUnited States
| | - Caroline E Burns
- Department of Medicine, Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolCharlestownUnited States
| | - Juan C del Álamo
- Mechanical and Aerospace Engineering DepartmentUniversity of California, San DiegoLa JollaUnited States
- Institute for Engineering in MedicineUniversity of California, San DiegoLa JollaUnited States
| | - Neil C Chi
- Department of Medicine, Division of CardiologyUniversity of California, San DiegoLa JollaUnited States
- Institute for Engineering in MedicineUniversity of California, San DiegoLa JollaUnited States
- Institute of Genomic MedicineUniversity of California, San DiegoLa JollaUnited States
| |
Collapse
|
67
|
Altalhi W, Hatkar R, Hoying JB, Aghazadeh Y, Nunes SS. Type I Diabetes Delays Perfusion and Engraftment of 3D Constructs by Impinging on Angiogenesis; Which can be Rescued by Hepatocyte Growth Factor Supplementation. Cell Mol Bioeng 2019; 12:443-454. [PMID: 31719926 DOI: 10.1007/s12195-019-00574-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/09/2019] [Indexed: 01/13/2023] Open
Abstract
Introduction The biggest bottleneck for cell-based regenerative therapy is the lack of a functional vasculature to support the grafts. This problem is exacerbated in diabetic patients, where vessel growth is inhibited. To address this issue, we aim to identify the causes of poor vascularization in 3D engineered tissues in diabetes and to reverse its negative effects. Methods We used 3D vascularized constructs composed of microvessel fragments containing all cells present in the microcirculation, embedded in collagen type I hydrogels. Constructs were either cultured in vitro or implanted subcutaneously in non-diabetic or in a type I diabetic (streptozotocin-injected) mouse model. We used qPCR, ELISA, immunostaining, FACs and co-culture assays to characterize the effect of diabetes in engineered constructs. Results We demonstrated in 3D vascularized constructs that perivascular cells secrete hepatocyte growth factor (HGF), driving microvessel sprouting. Blockage of HGF or HGF receptor signaling in 3D constructs prevented vessel sprouting. Moreover, HGF expression in 3D constructs in vivo is downregulated in diabetes; while no differences were found in HGF receptor, VEGF or VEGF receptor expression. Low HGF expression in diabetes delayed the inosculation of graft and host vessels, decreasing blood perfusion and preventing tissue engraftment. Supplementation of HGF in 3D constructs, restored vessel sprouting in a diabetic milieu. Conclusion We show for the first time that diabetes affects HGF secretion in microvessels, which in turn prevents the engraftment of engineered tissues. Exogenous supplementation of HGF, restores angiogenic growth in 3D constructs showing promise for application in cell-based regenerative therapies.
Collapse
Affiliation(s)
- Wafa Altalhi
- Toronto General Hospital Research Institute, University Health Network, 101 College St., MaRS, TMDT 3-904, Toronto, ON M5G 1L7 Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Present Address: Massachusetts General Hospital, 55 Fruit Street, Boston, USA
| | - Rupal Hatkar
- Toronto General Hospital Research Institute, University Health Network, 101 College St., MaRS, TMDT 3-904, Toronto, ON M5G 1L7 Canada
| | - James B Hoying
- Advanced Solutions Life Sciences, Manchester, NH 03101 USA
| | - Yasaman Aghazadeh
- Toronto General Hospital Research Institute, University Health Network, 101 College St., MaRS, TMDT 3-904, Toronto, ON M5G 1L7 Canada
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, 101 College St., MaRS, TMDT 3-904, Toronto, ON M5G 1L7 Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Canada
| |
Collapse
|
68
|
Fang Y, Wu D, Birukov KG. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol 2019; 9:873-904. [PMID: 30873580 PMCID: PMC6697421 DOI: 10.1002/cphy.c180020] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells (ECs) form a semiselective barrier for macromolecules and cell elements regulated by dynamic interactions between cytoskeletal elements and cell adhesion complexes. ECs also participate in many other vital processes including innate immune reactions, vascular repair, secretion, and metabolism of bioactive molecules. Moreover, vascular ECs represent a unique cell type exposed to continuous, time-dependent mechanical forces: different patterns of shear stress imposed by blood flow in macrovasculature and by rolling blood cells in the microvasculature; circumferential cyclic stretch experienced by the arterial vascular bed caused by heart propulsions; mechanical stretch of lung microvascular endothelium at different magnitudes due to spontaneous respiration or mechanical ventilation in critically ill patients. Accumulating evidence suggests that vascular ECs contain mechanosensory complexes, which rapidly react to changes in mechanical loading, process the signal, and develop context-specific adaptive responses to rebalance the cell homeostatic state. The significance of the interactions between specific mechanical forces in the EC microenvironment together with circulating bioactive molecules in the progression and resolution of vascular pathologies including vascular injury, atherosclerosis, pulmonary edema, and acute respiratory distress syndrome has been only recently recognized. This review will summarize the current understanding of EC mechanosensory mechanisms, modulation of EC responses to humoral factors by surrounding mechanical forces (particularly the cyclic stretch), and discuss recent findings of magnitude-specific regulation of EC functions by transcriptional, posttranscriptional and epigenetic mechanisms using -omics approaches. We also discuss ongoing challenges and future opportunities in developing new therapies targeting dysregulated mechanosensing mechanisms to treat vascular diseases. © 2019 American Physiological Society. Compr Physiol 9:873-904, 2019.
Collapse
Affiliation(s)
- Yun Fang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA,Correspondence to
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
69
|
Zhong F, Lee K, He JC. Role of Krüppel-like factor-2 in kidney disease. Nephrology (Carlton) 2019; 23 Suppl 4:53-56. [PMID: 30298668 DOI: 10.1111/nep.13456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
Krüppel-like factor-2 (KLF2) is a transcription factor that plays a major role in the regulation of endothelial cell function. KLF2 protects against endothelial cell injury through its anti-inflammatory, anti-thrombotic and anti-angiogenic effects to maintain the normal vascular integrity. Our recent data indicate that KLF2 is down-regulated in glomerular endothelial cells of patients with diabetic kidney disease and that endothelial cell-specific reduction in KLF2 expression in experimental model of diabetic kidney disease exacerbates glomerular endothelial cell injury and accelerates the disease progression. KLF2 is a key transcriptional regulator of endothelial nitric oxide synthase, and its renoprotective function may be mediated through the increased endothelial nitric oxide synthase expression. As KLF2 expression is stimulated by shear stress, we also investigated the role of KLF2 in the nephrectomy mouse model, in which the endothelial KLF2 expression would be increased through glomerular hyperfiltration in the remnant kidney. Reduction of endothelial KLF2 led to increased glomerular endothelial cell injury and progressive kidney disease in uninephrectomized mice. Interestingly, KLF2 expression is also reduced in nephrectomy patients with progressive kidney disease as compared to those with the non-progressive disease. Together, these studies indicate a critical role of KLF2 in maintaining normal glomerular endothelial cell function and that deficiency of KLF2 leads to more progressive kidney disease.
Collapse
Affiliation(s)
- Fang Zhong
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kyung Lee
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John C He
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
70
|
Rasouli SJ, El-Brolosy M, Tsedeke AT, Bensimon-Brito A, Ghanbari P, Maischein HM, Kuenne C, Stainier DY. The flow responsive transcription factor Klf2 is required for myocardial wall integrity by modulating Fgf signaling. eLife 2018; 7:e38889. [PMID: 30592462 PMCID: PMC6329608 DOI: 10.7554/elife.38889] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/24/2018] [Indexed: 12/17/2022] Open
Abstract
Complex interplay between cardiac tissues is crucial for their integrity. The flow responsive transcription factor KLF2, which is expressed in the endocardium, is vital for cardiovascular development but its exact role remains to be defined. To this end, we mutated both klf2 paralogues in zebrafish, and while single mutants exhibit no obvious phenotype, double mutants display a novel phenotype of cardiomyocyte extrusion towards the abluminal side. This extrusion requires cardiac contractility and correlates with the mislocalization of N-cadherin from the lateral to the apical side of cardiomyocytes. Transgenic rescue data show that klf2 expression in endothelium, but not myocardium, prevents this cardiomyocyte extrusion phenotype. Transcriptome analysis of klf2 mutant hearts reveals that Fgf signaling is affected, and accordingly, we find that inhibition of Fgf signaling in wild-type animals can lead to abluminal cardiomyocyte extrusion. These studies provide new insights into how Klf2 regulates cardiovascular development and specifically myocardial wall integrity.
Collapse
Affiliation(s)
- Seyed Javad Rasouli
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Mohamed El-Brolosy
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Ayele Taddese Tsedeke
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Anabela Bensimon-Brito
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Parisa Ghanbari
- Department of Cardiac Development and RemodelingMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Hans-Martin Maischein
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Carsten Kuenne
- Bioinformatics Core UnitMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Didier Y Stainier
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| |
Collapse
|
71
|
Paolini A, Abdelilah-Seyfried S. The mechanobiology of zebrafish cardiac valve leaflet formation. Curr Opin Cell Biol 2018; 55:52-58. [DOI: 10.1016/j.ceb.2018.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/31/2022]
|
72
|
Poelmann RE, Gittenberger-de Groot AC. Hemodynamics in Cardiac Development. J Cardiovasc Dev Dis 2018; 5:jcdd5040054. [PMID: 30404214 PMCID: PMC6306789 DOI: 10.3390/jcdd5040054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 12/14/2022] Open
Abstract
The beating heart is subject to intrinsic mechanical factors, exerted by contraction of the myocardium (stretch and strain) and fluid forces of the enclosed blood (wall shear stress). The earliest contractions of the heart occur already in the 10-somite stage in the tubular as yet unsegmented heart. With development, the looping heart becomes asymmetric providing varying diameters and curvatures resulting in unequal flow profiles. These flow profiles exert various wall shear stresses and as a consequence different expression patterns of shear responsive genes. In this paper we investigate the morphological alterations of the heart after changing the blood flow by ligation of the right vitelline vein in a model chicken embryo and analyze the extended expression in the endocardial cushions of the shear responsive gene Tgfbeta receptor III. A major phenomenon is the diminished endocardial-mesenchymal transition resulting in hypoplastic (even absence of) atrioventricular and outflow tract endocardial cushions, which might be lethal in early phases. The surviving embryos exhibit several cardiac malformations including ventricular septal defects and malformed semilunar valves related to abnormal development of the aortopulmonary septal complex and the enclosed neural crest cells. We discuss the results in the light of the interactions between several shear stress responsive signaling pathways including an extended review of the involved Vegf, Notch, Pdgf, Klf2, eNos, Endothelin and Tgfβ/Bmp/Smad networks.
Collapse
Affiliation(s)
- Robert E Poelmann
- Department of Animal Sciences and Health, Institute of Biology, Sylvius Laboratory, University of Leiden, Sylviusweg 72, 2333BE Leiden, The Netherlands.
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 20, 2300RC Leiden, The Netherlands.
| | | |
Collapse
|
73
|
Geng X, Cha B, Mahamud MR, Srinivasan RS. Intraluminal valves: development, function and disease. Dis Model Mech 2018; 10:1273-1287. [PMID: 29125824 PMCID: PMC5719258 DOI: 10.1242/dmm.030825] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The circulatory system consists of the heart, blood vessels and lymphatic vessels, which function in parallel to provide nutrients and remove waste from the body. Vascular function depends on valves, which regulate unidirectional fluid flow against gravitational and pressure gradients. Severe valve disorders can cause mortality and some are associated with severe morbidity. Although cardiac valve defects can be treated by valve replacement surgery, no treatment is currently available for valve disorders of the veins and lymphatics. Thus, a better understanding of valves, their development and the progression of valve disease is warranted. In the past decade, molecules that are important for vascular function in humans have been identified, with mouse studies also providing new insights into valve formation and function. Intriguing similarities have recently emerged between the different types of valves concerning their molecular identity, architecture and development. Shear stress generated by fluid flow has also been shown to regulate endothelial cell identity in valves. Here, we review our current understanding of valve development with an emphasis on its mechanobiology and significance to human health, and highlight unanswered questions and translational opportunities.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
74
|
Fan Y, Lu H, Liang W, Hu W, Zhang J, Chen YE. Krüppel-like factors and vascular wall homeostasis. J Mol Cell Biol 2018; 9:352-363. [PMID: 28992202 DOI: 10.1093/jmcb/mjx037] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVDs) are major causes of death worldwide. Identification of promising targets for prevention and treatment of CVDs is paramount in the cardiovascular field. Numerous transcription factors regulate cellular function through modulation of specific genes and thereby are involved in the physiological and pathophysiological processes of CVDs. Although Krüppel-like factors (KLFs) have a similar protein structure with a conserved zinc finger domain, they possess distinct tissue and cell distribution patterns as well as biological functions. In the vascular system, KLF activities are regulated at both transcriptional and posttranscriptional levels. Growing in vitro, in vivo, and genetic epidemiology studies suggest that specific KLFs play important roles in vascular wall biology, which further affect vascular diseases. KLFs regulate various functional aspects such as cell growth, differentiation, activation, and development through controlling a whole cluster of functionally related genes and modulating various signaling pathways in response to pathological conditions. Therapeutic targeting of selective KLF family members may be desirable to achieve distinct treatment effects in the context of various vascular diseases. Further elucidation of the association of KLFs with human CVDs, their underlying molecular mechanisms, and precise protein structure studies will be essential to define KLFs as promising targets for therapeutic interventions in CVDs.
Collapse
Affiliation(s)
- Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Haocheng Lu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenying Liang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenting Hu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
75
|
Ottaviani L, Sansonetti M, da Costa Martins PA. Myocardial cell-to-cell communication via microRNAs. Noncoding RNA Res 2018; 3:144-153. [PMID: 30175287 PMCID: PMC6114265 DOI: 10.1016/j.ncrna.2018.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Lara Ottaviani
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Marida Sansonetti
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paula A da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
76
|
Bioinformatics analysis of non-synonymous variants in the KLF genes related to cardiac diseases. Gene 2018; 650:68-76. [DOI: 10.1016/j.gene.2018.01.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/23/2017] [Accepted: 01/25/2018] [Indexed: 12/25/2022]
|
77
|
Expression, regulation and function of miR-126 in the mouse choroid vasculature. Exp Eye Res 2018; 170:169-176. [PMID: 29501382 PMCID: PMC5993209 DOI: 10.1016/j.exer.2018.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022]
Abstract
MicroRNA miR-126 has been shown to be required for proper angiogenesis in several models. However, its expression, regulation and function in the mouse choroid remain unclear. Our previous data has shown that miR-126 expression is enriched in the endothelial cells (ECs) of the mouse choroid. Here we report that a 5.5 kb Egfl7/miR-126 promoter drives the expression of miR-126 in the choroid ECs during choroidal vascular development. The expression of miR-126 in the ECs is regulated by flow stress likely through Krüppel-like transcriptional factors. miR-126−/− mice show mildly delayed choroidal vascular development, but adult knockout mice develop periphery choroidal vascular lesions. This study suggests that miR-126 is largely dispensable for mouse choroidal development but required for maintaining choroidal vasculature integrity.
Collapse
|
78
|
Laminar Flow Attenuates Macrophage Migration Inhibitory Factor Expression in Endothelial Cells. Sci Rep 2018; 8:2360. [PMID: 29403061 PMCID: PMC5799263 DOI: 10.1038/s41598-018-20885-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a non-canonical cytokine that is involved in multiple inflammatory diseases, including atherosclerosis. High MIF expression found in leukocytes which facilitates the initiation and progression of atherosclerosis. However, little is known about biomechanical forces in the induction of MIF in endothelial cells (ECs). Here, we show that laminar shear stress (LS) inhibits the expression of MIF in ECs. By profiling the whole transcriptome of human coronary artery ECs under different shear stress, we found that athero-protective LS attenuates the expression of MIF whereas pro-atherosclerotic oscillatory shear stress (OS) significantly increased the expression of MIF. En face staining of rabbit aorta revealed high MIF immunoreactivity in lesser curvature as well as arterial bifurcation areas where OS is predominant. Mechanistically, we found that Krüpple like factor 2 (KLF2) is required for inhibition of MIF expression in ECs in the context of shear stress. Knockdown of KLF2 abolishes LS-dependent MIF inhibition while overexpression of KLF2 significantly attenuated MIF expression. Overall, the present work showed that MIF is a shear stress-sensitive cytokine and is transcriptionally regulated by KLF2, suggesting that LS exerts its athero-protective effect in part by directly inhibiting pro-inflammatory MIF expression.
Collapse
|
79
|
Pollak NM, Hoffman M, Goldberg IJ, Drosatos K. Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci 2018; 3:132-156. [PMID: 29876529 PMCID: PMC5985828 DOI: 10.1016/j.jacbts.2017.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors that regulate various pathways that control metabolism and other cellular mechanisms. Various KLF isoforms have been associated with cellular, organ or systemic metabolism. Altered expression or activation of KLFs has been linked to metabolic abnormalities, such as obesity and diabetes, as well as with heart failure. In this review article we summarize the metabolic functions of KLFs, as well as the networks of different KLF isoforms that jointly regulate metabolism in health and disease.
Collapse
Affiliation(s)
- Nina M. Pollak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Hoffman
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
80
|
Donat S, Lourenço M, Paolini A, Otten C, Renz M, Abdelilah-Seyfried S. Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis. eLife 2018; 7:28939. [PMID: 29364115 PMCID: PMC5794256 DOI: 10.7554/elife.28939] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/24/2018] [Indexed: 12/18/2022] Open
Abstract
Endothelial cells respond to different levels of fluid shear stress through adaptations of their mechanosensitivity. Currently, we lack a good understanding of how this contributes to sculpting of the cardiovascular system. Cerebral cavernous malformation (CCM) is an inherited vascular disease that occurs when a second somatic mutation causes a loss of CCM1/KRIT1, CCM2, or CCM3 proteins. Here, we demonstrate that zebrafish Krit1 regulates the formation of cardiac valves. Expression of heg1, which encodes a binding partner of Krit1, is positively regulated by blood-flow. In turn, Heg1 stabilizes levels of Krit1 protein, and both Heg1 and Krit1 dampen expression levels of klf2a, a major mechanosensitive gene. Conversely, loss of Krit1 results in increased expression of klf2a and notch1b throughout the endocardium and prevents cardiac valve leaflet formation. Hence, the correct balance of blood-flow-dependent induction and Krit1 protein-mediated repression of klf2a and notch1b ultimately shapes cardiac valve leaflet morphology.
Collapse
Affiliation(s)
- Stefan Donat
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany.,Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Marta Lourenço
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Alessio Paolini
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Cécile Otten
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Marc Renz
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany.,Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
81
|
Saum K, Campos B, Celdran-Bonafonte D, Nayak L, Sangwung P, Thakar C, Roy-Chaudhury P, Owens AP. Uremic Advanced Glycation End Products and Protein-Bound Solutes Induce Endothelial Dysfunction Through Suppression of Krüppel-Like Factor 2. J Am Heart Assoc 2018; 7:e007566. [PMID: 29301761 PMCID: PMC5778969 DOI: 10.1161/jaha.117.007566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cardiovascular disease is the leading cause of morbidity and mortality in patients with end-stage renal disease. The accumulation of uremic solutes in this patient population is associated with endothelial dysfunction and accelerated cardiovascular disease. In this study, we examined the impact of the uremic milieu on the endothelial transcription factor, Krüppel-like factor 2 (KLF2), a key regulator of endothelial function and activation. METHODS AND RESULTS Using serum from uremic pigs with chronic renal insufficiency, our results show that KLF2 expression is suppressed by the uremic milieu and individual uremic solutes in vitro. Specifically, KLF2 expression is significantly decreased in human umbilical vein endothelial cells after treatment with uremic porcine serum or carboxymethyllysine-modified albumin, an advanced glycation end product (AGE) known to induce endothelial dysfunction. AGE-mediated suppression of KLF2 is dependent on activation of the receptor for AGE, as measured by small interfering RNA knockdown of the receptor for AGE. Furthermore, KLF2 suppression promotes endothelial dysfunction, because adenoviral overexpression of KLF2 inhibits reactive oxygen species production and leukocyte adhesion in human umbilical vein endothelial cells. In addition, the application of hemodynamic shear stress, prolonged serum dialysis, or treatment with the receptor for AGE antagonist azeliragon (TTP488) is sufficient to prevent KLF2 suppression in vitro. To decipher the mechanism by which uremic AGEs suppress KLF2 expression, we assessed the role of the receptor for AGE in activation of nuclear factor-κB signaling, a hallmark of endothelial cell activation. Using a constitutively active form of IκBα, we show that translocation of p65 to the nucleus is necessary for KLF2 suppression after treatment with uremic AGEs. CONCLUSIONS These data identify KLF2 suppression as a consequence of the uremic milieu, which may exacerbate endothelial dysfunction and resultant cardiovascular disease.
Collapse
Affiliation(s)
- Keith Saum
- University of Cincinnati Medical Scientist Training Program, The University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Nephrology and Hypertension, The University of Cincinnati College of Medicine, Cincinnati, OH
| | - Begoña Campos
- Division of Nephrology and Hypertension, The University of Cincinnati College of Medicine, Cincinnati, OH
| | - Diego Celdran-Bonafonte
- Division of Nephrology, University of Arizona College of Medicine and Banner University Medical Centers-Tucson and South and Southern Arizona Veterans Affairs Healthcare System, Tucson, AZ
| | - Lalitha Nayak
- Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Panjamaporn Sangwung
- Department of Physiology and Biophysics, Department of Medicine, Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Charuhas Thakar
- Division of Nephrology and Hypertension, The University of Cincinnati College of Medicine, Cincinnati, OH
| | - Prabir Roy-Chaudhury
- Division of Nephrology and Hypertension, The University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Nephrology, University of Arizona College of Medicine and Banner University Medical Centers-Tucson and South and Southern Arizona Veterans Affairs Healthcare System, Tucson, AZ
| | - A Phillip Owens
- Division of Cardiovascular Health and Disease, The University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
82
|
García-Cardeña G, Slegtenhorst BR. Hemodynamic Control of Endothelial Cell Fates in Development. Annu Rev Cell Dev Biol 2017; 32:633-648. [PMID: 27712101 DOI: 10.1146/annurev-cellbio-100814-125610] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. From the onset of blood flow, the embryonic vasculature is continuously exposed to a variety of hemodynamic forces. These biomechanical stimuli are key determinants of vascular cell specification and remodeling and the establishment of vascular homeostasis. In recent years, major advances have been made in our understanding of mechano-activated signaling networks that control both spatiotemporal and structural aspects of vascular development. It has become apparent that a major site for mechanotransduction is situated at the interface of blood and the vessel wall and that this process is controlled by the vascular endothelium. In this review, we discuss the hemodynamic control of endothelial cell fates, focusing on arterial-venous specification, lymphatic development, and the endothelial-to-hematopoietic transition, and present some recent insights into the mechano-activated pathways driving these cell fate decisions in the developing embryo.
Collapse
Affiliation(s)
- Guillermo García-Cardeña
- Program in Developmental and Regenerative Biology, Harvard Medical School, Boston, Massachusetts 02115; .,Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Bendix R Slegtenhorst
- Program in Developmental and Regenerative Biology, Harvard Medical School, Boston, Massachusetts 02115; .,Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115.,Department of Surgery, Erasmus MC-University Medical Center, 3015 CE, Rotterdam, The Netherlands
| |
Collapse
|
83
|
Kumar A, Placone JK, Engler AJ. Understanding the extracellular forces that determine cell fate and maintenance. Development 2017; 144:4261-4270. [PMID: 29183939 DOI: 10.1242/dev.158469] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells interpret signals from their microenvironment while simultaneously modifying the niche through secreting factors and exerting mechanical forces. Many soluble stem cell cues have been determined over the past century, but in the past decade, our molecular understanding of mechanobiology has advanced to explain how passive and active forces induce similar signaling cascades that drive self-renewal, migration, differentiation or a combination of these outcomes. Improvements in stem cell culture methods, materials and biophysical tools that assess function have improved our understanding of these cascades. Here, we summarize these advances and offer perspective on ongoing challenges.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Jesse K Placone
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA .,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| |
Collapse
|
84
|
Urner S, Kelly-Goss M, Peirce SM, Lammert E. Mechanotransduction in Blood and Lymphatic Vascular Development and Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:155-208. [PMID: 29310798 DOI: 10.1016/bs.apha.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood and lymphatic vasculatures are hierarchical networks of vessels, which constantly transport fluids and, therefore, are exposed to a variety of mechanical forces. Considering the role of mechanotransduction is key for fully understanding how these vascular systems develop, function, and how vascular pathologies evolve. During embryonic development, for example, initiation of blood flow is essential for early vascular remodeling, and increased interstitial fluid pressure as well as initiation of lymph flow is needed for proper development and maturation of the lymphatic vasculature. In this review, we introduce specific mechanical forces that affect both the blood and lymphatic vasculatures, including longitudinal and circumferential stretch, as well as shear stress. In addition, we provide an overview of the role of mechanotransduction during atherosclerosis and secondary lymphedema, which both trigger tissue fibrosis.
Collapse
Affiliation(s)
- Sofia Urner
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Molly Kelly-Goss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
85
|
Goddard LM, Duchemin AL, Ramalingan H, Wu B, Chen M, Bamezai S, Yang J, Li L, Morley MP, Wang T, Scherrer-Crosbie M, Frank DB, Engleka KA, Jameson SC, Morrisey EE, Carroll TJ, Zhou B, Vermot J, Kahn ML. Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis. Dev Cell 2017; 43:274-289.e5. [PMID: 29056552 DOI: 10.1016/j.devcel.2017.09.023] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/01/2017] [Accepted: 09/25/2017] [Indexed: 01/08/2023]
Abstract
Hemodynamic forces play an essential epigenetic role in heart valve development, but how they do so is not known. Here, we show that the shear-responsive transcription factor KLF2 is required in endocardial cells to regulate the mesenchymal cell responses that remodel cardiac cushions to mature valves. Endocardial Klf2 deficiency results in defective valve formation associated with loss of Wnt9b expression and reduced canonical WNT signaling in neighboring mesenchymal cells, a phenotype reproduced by endocardial-specific loss of Wnt9b. Studies in zebrafish embryos reveal that wnt9b expression is similarly restricted to the endocardial cells overlying the developing heart valves and is dependent upon both hemodynamic shear forces and klf2a expression. These studies identify KLF2-WNT9B signaling as a conserved molecular mechanism by which fluid forces sensed by endothelial cells direct the complex cellular process of heart valve development and suggest that congenital valve defects may arise due to subtle defects in this mechanotransduction pathway.
Collapse
Affiliation(s)
- Lauren M Goddard
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Anne-Laure Duchemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67404, France; Université de Strasbourg, Illkirch 67404, France
| | - Harini Ramalingan
- Department of Internal Medicine (Nephrology) and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Bingruo Wu
- Department of Genetics, Pediatric, and Medicine (Cardiology) and Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine of Yeshiva University, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Mei Chen
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Sharika Bamezai
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Li Li
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Tao Wang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Marielle Scherrer-Crosbie
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - David B Frank
- Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kurt A Engleka
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Stephen C Jameson
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Edward E Morrisey
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Thomas J Carroll
- Department of Internal Medicine (Nephrology) and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Bin Zhou
- Department of Genetics, Pediatric, and Medicine (Cardiology) and Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine of Yeshiva University, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67404, France; Université de Strasbourg, Illkirch 67404, France
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
86
|
Wang X, Jiang Z, Zhang Y, Wang X, Liu L, Fan Z. RNA sequencing analysis reveals protective role of kruppel-like factor 3 in colorectal cancer. Oncotarget 2017; 8:21984-21993. [PMID: 28423541 PMCID: PMC5400639 DOI: 10.18632/oncotarget.15766] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/27/2017] [Indexed: 01/03/2023] Open
Abstract
The Kruppel-like factor (KLF) family of transcription factors plays an important role in embryonic formation and cancer progression. This study was performed to determine the clinical importance of the KLF family in colorectal cancer (CRC). In total, 361 patients with CRC from The Cancer Genome Atlas (TCGA) cohort were used to comprehensively study the role of the KLF family in CRC. The results were then further validated using an in-house cohort (n=194). Univariate and multivariate Cox proportional hazards models were used to assess the risk factors for survival. In the TCGA cohort, KLF3 (hazard ratio [HR], 0.501; 95% confidence interval [CI], 0.272-0.920; P=0.025), KLF14 (HR, 1.454; 95% CI, 1.059-1.995; P=0.020), and KLF17 (HR, 1.241; 95% CI, 1.030-1.494, P=0.023) were identified as potential biomarkers in the univariate analysis, but after Cox proportional hazards analysis, only KLF3 (HR, 0.473; 95% CI, 0.230-0.831; P=0.012) was shown to be independently predictive of overall survival in patients with CRC. This finding was validated in our in-house cohort, which demonstrated that KLF3 expression was an independent predictor of both overall survival (HR, 0.628; 95% CI, 0.342-0.922; P=0.035) and disease-free survival (HR, 0.421; 95% CI, 0.317-0.697, P=0.016). KLF3 expression was inversely correlated with the N stage (P=0.015) and lymphovascular invasion (P=0.020). Collectively, loss of KLF3 was correlated with aggressive phenotypes and poor survival outcomes. KLF3 might be a potential new predictor and therapeutic target for CRC. Further study is needed for a more detailed understanding of the role of KLF3 in CRC.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Digestive Endoscopy Center, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Gastroenterology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhonghua Jiang
- Department of Gastroenterology, First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Yu Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiang Wang
- Department of Digestive Endoscopy Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Liu
- Department of Digestive Endoscopy Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhining Fan
- Department of Digestive Endoscopy Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
87
|
Veeriah V, Kumar P, Sundaresan L, Mafitha Z, Gupta R, Saran U, Manivannan J, Chatterjee S. Transcriptomic Analysis of Thalidomide Challenged Chick Embryo Suggests Possible Link between Impaired Vasculogenesis and Defective Organogenesis. Chem Res Toxicol 2017; 30:1883-1896. [DOI: 10.1021/acs.chemrestox.7b00199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | | | - Ravi Gupta
- SciGenom Laboratories, Cochin, Kerala 682037, India
| | | | | | | |
Collapse
|
88
|
Bialkowska AB, Yang VW, Mallipattu SK. Krüppel-like factors in mammalian stem cells and development. Development 2017; 144:737-754. [PMID: 28246209 DOI: 10.1242/dev.145441] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors that are found in many species. Recent studies have shown that KLFs play a fundamental role in regulating diverse biological processes such as cell proliferation, differentiation, development and regeneration. Of note, several KLFs are also crucial for maintaining pluripotency and, hence, have been linked to reprogramming and regenerative medicine approaches. Here, we review the crucial functions of KLFs in mammalian embryogenesis, stem cell biology and regeneration, as revealed by studies of animal models. We also highlight how KLFs have been implicated in human diseases and outline potential avenues for future research.
Collapse
Affiliation(s)
- Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA.,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| |
Collapse
|
89
|
Nakajima H, Mochizuki N. Flow pattern-dependent endothelial cell responses through transcriptional regulation. Cell Cycle 2017; 16:1893-1901. [PMID: 28820314 DOI: 10.1080/15384101.2017.1364324] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Blood flow provides endothelial cells (ECs) lining the inside of blood vessels with mechanical stimuli as well as humoral stimuli. Fluid shear stress, the frictional force between flowing blood and ECs, is recognized as an essential mechanical cue for vascular growth, remodeling, and homeostasis. ECs differentially respond to distinct flow patterns. High laminar shear flow leads to inhibition of cell cycle progression and stabilizes vessels, whereas low shear flow or disturbed flow leads to increased turnover of ECs and inflammatory responses of ECs prone to atherogenic. These differences of EC responses dependent on flow pattern are mainly ascribed to distinct patterns of gene expression. In this review, we highlight flow pattern-dependent transcriptional regulation in ECs by focusing on KLF2 and NFκB, major transcription factors responding to laminar flow and disturbed flow, respectively. Moreover, we introduce roles of a new flow-responsive transcriptional co-regulator, YAP, in blood vessel maintenance and discuss how these transcriptional regulators are spatiotemporally regulated by flow and then regulate EC functions in normal and pathological conditions.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- a Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute , Suita , Osaka , Japan
| | - Naoki Mochizuki
- a Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute , Suita , Osaka , Japan.,b AMED-CREST. National Cerebral and Cardiovascular Center , Suita , Osaka , Japan
| |
Collapse
|
90
|
Heart Failure and MEF2 Transcriptome Dynamics in Response to β-Blockers. Sci Rep 2017; 7:4476. [PMID: 28667250 PMCID: PMC5493616 DOI: 10.1038/s41598-017-04762-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/19/2017] [Indexed: 01/12/2023] Open
Abstract
Myocyte Enhancer Factor 2 (MEF2) mediates cardiac remodelling in heart failure (HF) and is also a target of β-adrenergic signalling, a front-line treatment for HF. We identified global gene transcription networks involved in HF with and without β-blocker treatment. Experimental HF by transverse aortic constriction (TAC) in a MEF2 “sensor” mouse model (6 weeks) was followed by four weeks of β-blockade with Atenolol (AT) or Solvent (Sol) treatment. Transcriptome analysis (RNA-seq) from left ventricular RNA samples and MEF2A depleted cardiomyocytes was performed. AT treatment resulted in an overall improvement in cardiac function of TAC mice and repression of MEF2 activity. RNA-seq identified 65 differentially expressed genes (DEGs) due to TAC treatment with enriched GO clusters including the inflammatory system, cell migration and apoptosis. These genes were mapped against DEGs in cardiomyocytes in which MEF2A expression was suppressed. Of the 65 TAC mediated DEGs, AT reversed the expression of 28 mRNAs. Rarres2 was identified as a novel MEF2 target gene that is upregulated with TAC in vivo and isoproterenol treatment in vitro which may have implications in cardiomyocyte apoptosis and hypertrophy. These studies identify a cohort of genes with vast potential for disease diagnosis and therapeutic intervention in heart failure.
Collapse
|
91
|
Abstract
Endothelial cells line blood vessels and experience shear stress from blood flow. In this issue of Developmental Cell, Nakajima and colleagues (2017) show that in zebrafish Yap responds to blood flow by translocating into the nucleus, where it drives a genetic program to maintain vascular stability.
Collapse
Affiliation(s)
- Jason Kuan Han Lai
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.
| |
Collapse
|
92
|
Kohlgrüber S, Upadhye A, Dyballa-Rukes N, McNamara CA, Altschmied J. Regulation of Transcription Factors by Reactive Oxygen Species and Nitric Oxide in Vascular Physiology and Pathology. Antioxid Redox Signal 2017; 26:679-699. [PMID: 27841660 PMCID: PMC5421514 DOI: 10.1089/ars.2016.6946] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Cardiovascular diseases are the main cause of death worldwide and pose an immense economical burden. In most cases, the underlying problem is vascular occlusion by atherosclerotic plaques. Importantly, different cell types of the vascular wall and the immune system play crucial roles in atherosclerosis at different stages of the disease. Furthermore, atherosclerosis and conditions recognized as risk factors are characterized by a reduced availability of the vasoprotective molecule nitric oxide and an increase in reactive oxygen species, so-called oxidative stress. Transcription factors function as intracellular signal integrators and relays and thus, play a central role in cellular responses to changing conditions. Recent Advances: Work on specific transcriptional regulators has uncovered many of their functions and the upstream pathways modulating their activity in response to reactive oxygen and nitrogen species. Here, we have reviewed for a few selected examples how this can contribute not only to protection against atherosclerosis development but also to disease progression and the occurrence of clinical manifestations, such as plaque rupture. CRITICAL ISSUES Transcription factors have pleiotropic outputs and often also divergent functions in different cell types and tissues. Thus, in light of potential severe adverse side effects, a global activation or inhibition of particular transcriptions factors does not seem a feasible therapeutic option. FUTURE DIRECTIONS A further in-depth characterization of the cell- and stage-specific actions and regulation of transcription factors in atherosclerosis with respect to protein-protein interactions and target genes could open up new avenues for prevention or therapeutic interventions in this vascular disease. Antioxid. Redox Signal. 26, 679-699.
Collapse
Affiliation(s)
- Stefanie Kohlgrüber
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| | - Aditi Upadhye
- 2 Department of Microbiology, Immunology, Cancer Biology, University of Virginia , Charlottesville, Virginia
| | - Nadine Dyballa-Rukes
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| | - Coleen A McNamara
- 3 Cardiovascular Division, Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine , Charlottesville, Virginia
| | - Joachim Altschmied
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| |
Collapse
|
93
|
First identification of Krüppel-like factor 2 mutation in heritable pulmonary arterial hypertension. Clin Sci (Lond) 2017; 131:689-698. [DOI: 10.1042/cs20160930] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/27/2017] [Accepted: 02/10/2017] [Indexed: 01/13/2023]
Abstract
Heritable pulmonary arterial hypertension (HPAH) is an autosomal dominantly inherited disease caused by mutations in the bone morphogenic protein receptor 2 (BMPR2) gene and/or genes of its signalling pathway in approximately 85% of patients. We clinically and genetically analysed an HPAH family without mutations in previously described pulmonary arterial hypertension (PAH) genes. Clinical assessment included electrocardiogram, lung function, blood gas analysis, chest X-ray, laboratory testing, echocardiography and right heart catheterization in case of suspected disease. Genetic diagnostics were performed using a PAH-specific gene panel including all known 12 PAH genes and 20 further candidate genes by next-generation sequencing (NGS). HPAH was invasively confirmed in two sisters and their father who died aged 32 years. No signs of HPAH were detected in five first-degree family members. Both sisters were lung transplanted and remained stable during a follow-up of >20 years. We detected a novel missense mutation in the Krüppel-like factor 2 (KLF2) likely leading to a disruption of gene function. The same KLF2 mutation has been described as a recurrent somatic mutation in B-cell lymphoma. Neither the healthy family members carried the mutation nor >120000 controls. These findings point to KLF2 as a new PAH gene. Further studies are needed to assess frequency and implication of KLF2 mutations in PAH patients.
Collapse
|
94
|
Ferreira RR, Vermot J. The balancing roles of mechanical forces during left-right patterning and asymmetric morphogenesis. Mech Dev 2017; 144:71-80. [DOI: 10.1016/j.mod.2016.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022]
|
95
|
Endothelial transcription factor KLF2 negatively regulates liver regeneration via induction of activin A. Proc Natl Acad Sci U S A 2017; 114:3993-3998. [PMID: 28348240 DOI: 10.1073/pnas.1613392114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endothelial cells (ECs) not only are important for oxygen delivery but also act as a paracrine source for signals that determine the balance between tissue regeneration and fibrosis. Here we show that genetic inactivation of flow-induced transcription factor Krüppel-like factor 2 (KLF2) in ECs results in reduced liver damage and augmentation of hepatocyte proliferation after chronic liver injury by treatment with carbon tetrachloride (CCl4). Serum levels of GLDH3 and ALT were significantly reduced in CCl4-treated EC-specific KLF2-deficient mice. In contrast, transgenic overexpression of KLF2 in liver sinusoidal ECs reduced hepatocyte proliferation. KLF2 induced activin A expression and secretion from endothelial cells in vitro and in vivo, which inhibited hepatocyte proliferation. However, loss or gain of KLF2 expression did not change capillary density and liver fibrosis, but significantly affected hepatocyte proliferation. Taken together, the data demonstrate that KLF2 induces an antiproliferative secretome, including activin A, which attenuates liver regeneration.
Collapse
|
96
|
Choi D, Park E, Jung E, Seong YJ, Yoo J, Lee E, Hong M, Lee S, Ishida H, Burford J, Peti-Peterdi J, Adams RH, Srikanth S, Gwack Y, Chen CS, Vogel HJ, Koh CJ, Wong AK, Hong YK. Laminar flow downregulates Notch activity to promote lymphatic sprouting. J Clin Invest 2017; 127:1225-1240. [PMID: 28263185 DOI: 10.1172/jci87442] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 01/11/2017] [Indexed: 01/01/2023] Open
Abstract
The major function of the lymphatic system is to drain interstitial fluid from tissue. Functional drainage causes increased fluid flow that triggers lymphatic expansion, which is conceptually similar to hypoxia-triggered angiogenesis. Here, we have identified a mechanotransduction pathway that translates laminar flow-induced shear stress to activation of lymphatic sprouting. While low-rate laminar flow commonly induces the classic shear stress responses in blood endothelial cells and lymphatic endothelial cells (LECs), only LECs display reduced Notch activity and increased sprouting capacity. In response to flow, the plasma membrane calcium channel ORAI1 mediates calcium influx in LECs and activates calmodulin to facilitate a physical interaction between Krüppel-like factor 2 (KLF2), the major regulator of shear responses, and PROX1, the master regulator of lymphatic development. The PROX1/KLF2 complex upregulates the expression of DTX1 and DTX3L. DTX1 and DTX3L, functioning as a heterodimeric Notch E3 ligase, concertedly downregulate NOTCH1 activity and enhance lymphatic sprouting. Notably, overexpression of the calcium reporter GCaMP3 unexpectedly inhibited lymphatic sprouting, presumably by disturbing calcium signaling. Endothelial-specific knockouts of Orai1 and Klf2 also markedly impaired lymphatic sprouting. Moreover, Dtx3l loss of function led to defective lymphatic sprouting, while Dtx3l gain of function rescued impaired sprouting in Orai1 KO embryos. Together, the data reveal a molecular mechanism underlying laminar flow-induced lymphatic sprouting.
Collapse
|
97
|
Nik S, Weinreb JT, Bowman TV. Developmental HSC Microenvironments: Lessons from Zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1041:33-53. [PMID: 29204828 DOI: 10.1007/978-3-319-69194-7_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hematopoietic stem cells (HSCs) posses the ability to maintain the blood system of an organism from birth to adulthood. The behavior of HSCs is modulated by its microenvironment. During development, HSCs acquire the instructions to self-renew and differentiate into all blood cell fates by passing through several developmental microenvironments. In this chapter, we discuss the signals and cell types that inform HSC decisions throughout ontogeny with a focus on HSC specification, mobilization, migration, and engraftment.
Collapse
Affiliation(s)
- Sara Nik
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joshua T Weinreb
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Teresa V Bowman
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Departments of Molecular Biology and Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
98
|
Alberts-Grill N, Engelbertsen D, Bu D, Foks A, Grabie N, Herter JM, Kuperwaser F, Chen T, Destefano G, Jarolim P, Lichtman AH. Dendritic Cell KLF2 Expression Regulates T Cell Activation and Proatherogenic Immune Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4651-4662. [PMID: 27837103 PMCID: PMC5136303 DOI: 10.4049/jimmunol.1600206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/17/2016] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DCs) have been implicated as important regulators of innate and adaptive inflammation in many diseases, including atherosclerosis. However, the molecular mechanisms by which DCs mitigate or promote inflammatory pathogenesis are only partially understood. Previous studies have shown an important anti-inflammatory role for the transcription factor Krüppel-like factor 2 (KLF2) in regulating activation of various cell types that participate in atherosclerotic lesion development, including endothelial cells, macrophages, and T cells. We used a pan-DC, CD11c-specific cre-lox gene knockout mouse model to assess the role of KLF2 in DC activation, function, and control of inflammation in the context of hypercholesterolemia and atherosclerosis. We found that KLF2 deficiency enhanced surface expression of costimulatory molecules CD40 and CD86 in DCs and promoted increased T cell proliferation and apoptosis. Transplant of bone marrow from mice with KLF2-deficient DCs into Ldlr-/- mice aggravated atherosclerosis compared with control mice, most likely due to heightened vascular inflammation evidenced by increased DC presence within lesions, enhanced T cell activation and cytokine production, and increased cell death in atherosclerotic lesions. Taken together, these data indicate that KLF2 governs the degree of DC activation and hence the intensity of proatherogenic T cell responses.
Collapse
Affiliation(s)
- Noah Alberts-Grill
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Daniel Engelbertsen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Dexiu Bu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Amanda Foks
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Nir Grabie
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Jan M Herter
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Felicia Kuperwaser
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Tao Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Gina Destefano
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| |
Collapse
|
99
|
Mallipattu SK, Estrada CC, He JC. The critical role of Krüppel-like factors in kidney disease. Am J Physiol Renal Physiol 2016; 312:F259-F265. [PMID: 27852611 DOI: 10.1152/ajprenal.00550.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 01/27/2023] Open
Abstract
Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors critical to mammalian embryonic development, regeneration, and human disease. There is emerging evidence that KLFs play a vital role in key physiological processes in the kidney, ranging from maintenance of glomerular filtration barrier to tubulointerstitial inflammation to progression of kidney fibrosis. Seventeen members of the KLF family have been identified, and several have been well characterized in the kidney. Although they may share some overlap in their downstream targets, their structure and function remain distinct. This review highlights our current knowledge of KLFs in the kidney, which includes their pattern of expression and their function in regulating key biological processes. We will also critically examine the currently available literature on KLFs in the kidney and offer some key areas in need of further investigation.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, New York, New York;
| | - Chelsea C Estrada
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, New York, New York
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and.,Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York
| |
Collapse
|
100
|
Peripheral tolerance can be modified by altering KLF2-regulated Treg migration. Proc Natl Acad Sci U S A 2016; 113:E4662-70. [PMID: 27462110 DOI: 10.1073/pnas.1605849113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tregs are essential for maintaining peripheral tolerance, and thus targeting these cells may aid in the treatment of autoimmunity and cancer by enhancing or reducing suppressive functions, respectively. Before these cells can be harnessed for therapeutic purposes, it is necessary to understand how they maintain tolerance under physiologically relevant conditions. We now report that transcription factor Kruppel-like factor 2 (KLF2) controls naive Treg migration patterns via regulation of homeostatic and inflammatory homing receptors, and that in its absence KLF2-deficient Tregs are unable to migrate efficiently to secondary lymphoid organs (SLOs). Diminished Treg trafficking to SLOs is sufficient to initiate autoimmunity, indicating that SLOs are a primary site for maintaining peripheral tolerance under homeostatic conditions. Disease severity correlates with impaired Treg recruitment to SLOs and, conversely, promotion of Tregs into these tissues can ameliorate autoimmunity. Moreover, stabilizing KLF2 expression within the Treg compartment enhances peripheral tolerance by diverting these suppressive cells from tertiary tissues into SLOs. Taken together, these results demonstrate that peripheral tolerance is enhanced or diminished through modulation of Treg trafficking to SLOs, a process that can be controlled by adjusting KLF2 protein levels.
Collapse
|