51
|
The ADAMTS hyalectanase family: biological insights from diverse species. Biochem J 2017; 473:2011-22. [PMID: 27407170 DOI: 10.1042/bcj20160148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022]
Abstract
The a disintegrin-like and metalloproteinase with thrombospondin type-1 motifs (ADAMTS) family of metzincins are complex secreted proteins that have diverse functions during development. The hyalectanases (ADAMTS1, 4, 5, 8, 9, 15 and 20) are a subset of this family that have enzymatic activity against hyalectan proteoglycans, the processing of which has important implications during development. This review explores the evolution, expression and developmental functions of the ADAMTS family, focusing on the ADAMTS hyalectanases and their substrates in diverse species. This review gives an overview of how the family and their substrates evolved from non-vertebrates to mammals, the expression of the hyalectanases and substrates in different species and their functions during development, and how these functions are conserved across species.
Collapse
|
52
|
Grant MG, Patterson VL, Grimes DT, Burdine RD. Modeling Syndromic Congenital Heart Defects in Zebrafish. Curr Top Dev Biol 2017; 124:1-40. [DOI: 10.1016/bs.ctdb.2016.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
53
|
Current Perspectives in Cardiac Laterality. J Cardiovasc Dev Dis 2016; 3:jcdd3040034. [PMID: 29367577 PMCID: PMC5715725 DOI: 10.3390/jcdd3040034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
The heart is the first organ to break symmetry in the developing embryo and onset of dextral looping is the first indication of this event. Looping is a complex process that progresses concomitantly to cardiac chamber differentiation and ultimately leads to the alignment of the cardiac regions in their final topology. Generation of cardiac asymmetry is crucial to ensuring proper form and consequent functionality of the heart, and therefore it is a highly regulated process. It has long been known that molecular left/right signals originate far before morphological asymmetry and therefore can direct it. The use of several animal models has led to the characterization of a complex regulatory network, which invariably converges on the Tgf-β signaling molecule Nodal and its downstream target, the homeobox transcription factor Pitx2. Here, we review current data on the cellular and molecular bases of cardiac looping and laterality, and discuss the contribution of Nodal and Pitx2 to these processes. A special emphasis will be given to the morphogenetic role of Pitx2 and to its modulation of transcriptional and functional properties, which have also linked laterality to atrial fibrillation.
Collapse
|
54
|
Araya C, Carmona-Fontaine C, Clarke JDW. Extracellular matrix couples the convergence movements of mesoderm and neural plate during the early stages of neurulation. Dev Dyn 2016; 245:580-9. [PMID: 26933766 DOI: 10.1002/dvdy.24401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/01/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND During the initial stages zebrafish neurulation, neural plate cells undergo highly coordinated movements before they assemble into a multicellular solid neural rod. We have previously identified that the underlying mesoderm is critical to ensure such coordination and generate correct neural tube organization. However, how intertissue coordination is achieved in vivo during zebrafish neural tube morphogenesis is unknown. RESULTS In this work, we use quantitative live imaging to study the coordinated movements of neural ectoderm and mesoderm during dorsal tissue convergence. We show the extracellular matrix components laminin and fibronectin that lie between mesoderm and neural plate act to couple the movements of neural plate and mesoderm during early stages of neurulation and to maintain the close apposition of these two tissues. CONCLUSIONS Our study highlights the importance of the extracellular matrix proteins laminin and libronectin in coupling the movements and spatial proximity of mesoderm and neuroectoderm during the morphogenetic movements of neurulation. Developmental Dynamics 245:580-589, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudio Araya
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia, Chile.,MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, 4th Floor, Guy's Hospital Campus, London, United Kingdom
| | - Carlos Carmona-Fontaine
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Jonathan D W Clarke
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, 4th Floor, Guy's Hospital Campus, London, United Kingdom
| |
Collapse
|
55
|
Abstract
The molecular mechanisms underlying cardiogenesis are of critical biomedical importance due to the high prevalence of cardiac birth defects. Over the past two decades, the zebrafish has served as a powerful model organism for investigating heart development, facilitated by its powerful combination of optical access to the embryonic heart and plentiful opportunities for genetic analysis. Work in zebrafish has identified numerous factors that are required for various aspects of heart formation, including the specification and differentiation of cardiac progenitor cells, the morphogenesis of the heart tube, cardiac chambers, and atrioventricular canal, and the establishment of proper cardiac function. However, our current roster of regulators of cardiogenesis is by no means complete. It is therefore valuable for ongoing studies to continue pursuit of additional genes and pathways that control the size, shape, and function of the zebrafish heart. An extensive arsenal of techniques is available to distinguish whether particular mutations, morpholinos, or small molecules disrupt specific processes during heart development. In this chapter, we provide a guide to the experimental strategies that are especially effective for the characterization of cardiac phenotypes in the zebrafish embryo.
Collapse
Affiliation(s)
- A R Houk
- University of California, San Diego, CA, United States
| | - D Yelon
- University of California, San Diego, CA, United States
| |
Collapse
|
56
|
Sørhus E, Incardona JP, Furmanek T, Jentoft S, Meier S, Edvardsen RB. Developmental transcriptomics in Atlantic haddock: Illuminating pattern formation and organogenesis in non-model vertebrates. Dev Biol 2016; 411:301-313. [DOI: 10.1016/j.ydbio.2016.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 01/19/2023]
|
57
|
Missinato MA, Tobita K, Romano N, Carroll JA, Tsang M. Extracellular component hyaluronic acid and its receptor Hmmr are required for epicardial EMT during heart regeneration. Cardiovasc Res 2015; 107:487-98. [PMID: 26156497 DOI: 10.1093/cvr/cvv190] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022] Open
Abstract
AIMS After injury, the adult zebrafish can regenerate the heart. This requires the activation of the endocardium and epicardium as well as the proliferation of pre-existing cardiomyocytes to replace the lost tissue. However, the molecular mechanisms involved in this process are not completely resolved. In this work, we aim to identify the proteins involved in zebrafish heart regeneration and to explore their function. METHODS AND RESULTS Using a proteomic approach, we identified Hyaluronan-mediated motility receptor (Hmmr), a hyaluronic acid (HA) receptor, to be expressed following ventricular resection in zebrafish. Moreover, enzymes that produce HA, hyaluronic acid synthases (has), were also expressed following injury, suggesting that this pathway may serve important functions in the regenerating heart. Indeed, suppression of HA production, as well as depletion of Hmmr, blocked cardiac regeneration. Mechanistically, HA and Hmmr are required for epicardial cell epithelial-mesenchymal transition (EMT) and their subsequent migration into the regenerating ventricle. Furthermore, chemical inhibition of Focal Adhesion Kinase (FAK) or inhibition of Src kinases, downstream effectors of Hmmr, also prevented epicardial cell migration, implicating a HA/Hmmr/FAK/Src pathway in this process. In a rat model of myocardial infarction, both HA and HMMR were up-regulated and localized in the infarct area within the first few days following damage, suggesting that this pathway may also play an important role in cardiac repair in mammals. CONCLUSION HA and Hmmr are required for activated epicardial cell EMT and migration involving the FAK/Src pathway for proper heart regeneration.
Collapse
Affiliation(s)
- Maria A Missinato
- Department of Developmental Biology, University of Pittsburgh, 3501 5th Avenue, Pittsburgh, PA 15260, USA Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Kimimasa Tobita
- Department of Developmental Biology, University of Pittsburgh, 3501 5th Avenue, Pittsburgh, PA 15260, USA
| | - Nicla Romano
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - James A Carroll
- Rocky Mountain Laboratories, Laboratory of Persistent Viral Diseases, Hamilton, MT, USA
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, 3501 5th Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
58
|
Palencia-Desai S, Rost MS, Schumacher JA, Ton QV, Craig MP, Baltrunaite K, Koenig AL, Wang J, Poss KD, Chi NC, Stainier DYR, Sumanas S. Myocardium and BMP signaling are required for endocardial differentiation. Development 2015; 142:2304-15. [PMID: 26092845 DOI: 10.1242/dev.118687] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/12/2015] [Indexed: 01/09/2023]
Abstract
Endocardial and myocardial progenitors originate in distinct regions of the anterior lateral plate mesoderm and migrate to the midline where they coalesce to form the cardiac tube. Endocardial progenitors acquire a molecular identity distinct from other vascular endothelial cells and initiate expression of specific genes such as nfatc1. Yet the molecular pathways and tissue interactions involved in establishing endocardial identity are poorly understood. The endocardium develops in tight association with cardiomyocytes. To test for a potential role of the myocardium in endocardial morphogenesis, we used two different zebrafish models deficient in cardiomyocytes: the hand2 mutant and a myocardial-specific genetic ablation method. We show that in hand2 mutants endocardial progenitors migrate to the midline but fail to assemble into a cardiac cone and do not express markers of differentiated endocardium. Endocardial differentiation defects were rescued by myocardial but not endocardial-specific expression of hand2. In metronidazole-treated myl7:nitroreductase embryos, myocardial cells were targeted for apoptosis, which resulted in the loss of endocardial nfatc1 expression. However, endocardial cells were present and retained expression of general vascular endothelial markers. We further identified bone morphogenetic protein (BMP) as a candidate myocardium-derived signal required for endocardial differentiation. Chemical and genetic inhibition of BMP signaling at the tailbud stage resulted in severe inhibition of endocardial differentiation while there was little effect on myocardial development. Heat-shock-induced bmp2b expression rescued endocardial nfatc1 expression in hand2 mutants and in myocardium-depleted embryos. Our results indicate that the myocardium is crucial for endocardial morphogenesis and differentiation, and identify BMP as a signal involved in endocardial differentiation.
Collapse
Affiliation(s)
- Sharina Palencia-Desai
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Megan S Rost
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jennifer A Schumacher
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Quynh V Ton
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael P Craig
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kristina Baltrunaite
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew L Koenig
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jinhu Wang
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Neil C Chi
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94158, USA
| | - Didier Y R Stainier
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94158, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
59
|
Tessadori F, Noël ES, Rens EG, Magliozzi R, Evers-van Gogh IJA, Guardavaccaro D, Merks RMH, Bakkers J. Nodal signaling range is regulated by proprotein convertase-mediated maturation. Dev Cell 2015; 32:631-9. [PMID: 25684355 DOI: 10.1016/j.devcel.2014.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/29/2014] [Accepted: 12/17/2014] [Indexed: 01/24/2023]
Abstract
Tissue patterning is established by extracellular growth factors or morphogens. Although different theoretical models explaining specific patterns have been proposed, our understanding of tissue pattern establishment in vivo remains limited. In many animal species, left-right patterning is governed by a reaction-diffusion system relying on the different diffusivity of an activator, Nodal, and an inhibitor, Lefty. In a genetic screen, we identified a zebrafish loss-of-function mutant for the proprotein convertase FurinA. Embryological and biochemical experiments demonstrate that cleavage of the Nodal-related Spaw proprotein into a mature form by FurinA is required for Spaw gradient formation and activation of Nodal signaling. We demonstrate that FurinA is required cell-autonomously for the long-range signaling activity of Spaw and no other Nodal-related factors. Combined in silico and in vivo approaches support a model in which FurinA controls the signaling range of Spaw by cleaving its proprotein into a mature, extracellular form, consequently regulating left-right patterning.
Collapse
Affiliation(s)
- Federico Tessadori
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Emily S Noël
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Elisabeth G Rens
- Life Sciences Group, Centrum Wiskunde and Informatica, 1098 XG Amsterdam, the Netherlands; Mathematical Institute, Leiden University, 2333 CA Leiden, the Netherlands
| | - Roberto Magliozzi
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Inkie J A Evers-van Gogh
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Daniele Guardavaccaro
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Roeland M H Merks
- Life Sciences Group, Centrum Wiskunde and Informatica, 1098 XG Amsterdam, the Netherlands; Mathematical Institute, Leiden University, 2333 CA Leiden, the Netherlands
| | - Jeroen Bakkers
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
60
|
Duncker DJ, Bakkers J, Brundel BJ, Robbins J, Tardiff JC, Carrier L. Animal and in silico models for the study of sarcomeric cardiomyopathies. Cardiovasc Res 2015; 105:439-48. [PMID: 25600962 DOI: 10.1093/cvr/cvv006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, our understanding of cardiomyopathies has improved dramatically, due to improvements in screening and detection of gene defects in the human genome as well as a variety of novel animal models (mouse, zebrafish, and drosophila) and in silico computational models. These novel experimental tools have created a platform that is highly complementary to the naturally occurring cardiomyopathies in cats and dogs that had been available for some time. A fully integrative approach, which incorporates all these modalities, is likely required for significant steps forward in understanding the molecular underpinnings and pathogenesis of cardiomyopathies. Finally, novel technologies, including CRISPR/Cas9, which have already been proved to work in zebrafish, are currently being employed to engineer sarcomeric cardiomyopathy in larger animals, including pigs and non-human primates. In the mouse, the increased speed with which these techniques can be employed to engineer precise 'knock-in' models that previously took years to make via multiple rounds of homologous recombination-based gene targeting promises multiple and precise models of human cardiac disease for future study. Such novel genetically engineered animal models recapitulating human sarcomeric protein defects will help bridging the gap to translate therapeutic targets from small animal and in silico models to the human patient with sarcomeric cardiomyopathy.
Collapse
Affiliation(s)
- Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bianca J Brundel
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jeff Robbins
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Jil C Tardiff
- Department of Medicine and Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
61
|
Simmons O, Snider P, Wang J, Schwartz RJ, Chen Y, Conway SJ. Persistent Noggin arrests cardiomyocyte morphogenesis and results in early in utero lethality. Dev Dyn 2014; 244:457-67. [PMID: 25428115 DOI: 10.1002/dvdy.24233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/13/2014] [Accepted: 11/16/2014] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Multiple bone morphogenetic protein (BMP) genes are expressed in the developing heart from the initiation to late-differentiation stages, and play pivotal roles in cardiovascular development. In this study, we investigated the requirement of BMP activity in heart development by transgenic over-expression of extracellular BMP antagonist Noggin. RESULTS Using Nkx2.5-Cre to drive lineage-restricted Noggin within cardiomyocyte progenitors, we show persistent Noggin arrests cardiac development at the linear heart stage. This is coupled with a significantly reduced cell proliferation rate, subsequent cardiomyocyte programmed cell death and reduction of downstream intracellular pSMAD1/5/8 expression. Noggin mutants exhibit reduced heartbeat which likely results in subsequent fully penetrant in utero lethality. Significantly, confocal and electron micrographic examination revealed considerably fewer contractile elements, as well as a lack of maturation of actin-myosin microfilaments. Molecular analysis demonstrated that ectopic Noggin-expressing regions in the early heart's pacemaker region, failed to express the potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4 (Hcn4), resulting in an overall decrease in Hcn4 levels. CONCLUSIONS Combined, our results reveal a novel role for BMP signaling in the progression of heart development from the tubular heart stage to the looped stage by means of regulation of proliferation and promotion of maturation of the in utero heart's contractile apparatus and pacemaker.
Collapse
Affiliation(s)
- Olga Simmons
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | |
Collapse
|
62
|
Noël ES, Verhoeven M, Lagendijk AK, Tessadori F, Smith K, Choorapoikayil S, den Hertog J, Bakkers J. A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality. Nat Commun 2014; 4:2754. [PMID: 24212328 DOI: 10.1038/ncomms3754] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/10/2013] [Indexed: 12/21/2022] Open
Abstract
Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind regulation of organ laterality. Here we identify a Nodal-independent mechanism that drives asymmetric heart looping in zebrafish embryos. In a unique mutant defective for the Nodal-related southpaw gene, preferential dextral looping in the heart is maintained, whereas gut and brain asymmetries are randomized. As genetic and pharmacological inhibition of Nodal signalling does not abolish heart asymmetry, a yet undiscovered mechanism controls heart chirality. This mechanism is tissue intrinsic, as explanted hearts maintain ex vivo retain chiral looping behaviour and require actin polymerization and myosin II activity. We find that Nodal signalling regulates actin gene expression, supporting a model in which Nodal signalling amplifies this tissue-intrinsic mechanism of heart looping.
Collapse
Affiliation(s)
- Emily S Noël
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Han Y, Zhang JP, Qian JQ, Hu CQ. Cardiotoxicity evaluation of anthracyclines in zebrafish (Danio rerio). J Appl Toxicol 2014; 35:241-52. [PMID: 24853142 DOI: 10.1002/jat.3007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/12/2014] [Accepted: 02/10/2014] [Indexed: 12/14/2022]
Abstract
Drug-induced cardiotoxicity is a leading factor for drug withdrawals, and limits drug efficacy and clinical use. Therefore, new alternative animal models and methods for drug safety evaluation have been given great attention. Anthracyclines (ANTs) are widely prescribed anticancer agents that have a cumulative dose relationship with cardiotoxicity. We performed experiments to study the toxicity of ANTs in early developing zebrafish embryos, especially their effects on the heart. LC50 values for daunorubicin, pirarubicin, doxorubicin (DOX), epirubicin and DOX-liposome at 72 h post-fertilization were 122.7 μM, 111.9 μM, 31.2 μM, 108.3 μM and 55.8 μM, respectively. At the same time, zebrafish embryos were exposed to ANTs in three exposure stages and induced incomplete looping of the heart tube, pericardia edema and bradycardia in a dose-dependent manner, eventually leading to death. DOX caused the greatest heart defects in the treatment stages and its liposome reduced the effects on the heart, while daunorubicin produced the least toxicity. Genes and proteins related to heart development were also identified to be sensitive to ANT exposure and downregulated by ANTs. It revealed ANTs could disturb the heart formation and development. ANTs induced cardiotoxicity in zebrafish has similar effects in mammalian models, indicating that zebrafish may have a potential value for assessment of drug-induced developmental cardiotoxicity.
Collapse
Affiliation(s)
- Ying Han
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | | | | | | |
Collapse
|
64
|
Bonetti M, Paardekooper Overman J, Tessadori F, Noël E, Bakkers J, den Hertog J. Noonan and LEOPARD syndrome Shp2 variants induce heart displacement defects in zebrafish. Development 2014; 141:1961-70. [PMID: 24718990 DOI: 10.1242/dev.106310] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Germline mutations in PTPN11, encoding Shp2, cause Noonan syndrome (NS) and LEOPARD syndrome (LS), two developmental disorders that are characterized by multiple overlapping symptoms. Interestingly, Shp2 catalytic activity is enhanced by NS mutations and reduced by LS mutations. Defective cardiac development is a prominent symptom of both NS and LS, but how the Shp2 variants affect cardiac development is unclear. Here, we have expressed the most common NS and LS Shp2-variants in zebrafish embryos to investigate their role in cardiac development in vivo. Heart function was impaired in embryos expressing NS and LS variants of Shp2. The cardiac anomalies first occurred during elongation of the heart tube and consisted of reduced cardiomyocyte migration, coupled with impaired leftward heart displacement. Expression of specific laterality markers was randomized in embryos expressing NS and LS variants of Shp2. Ciliogenesis and cilia function in Kupffer's vesicle was impaired, likely accounting for the left/right asymmetry defects. Mitogen-activated protein kinase (MAPK) signaling was activated to a similar extent in embryos expressing NS and LS Shp2 variants. Interestingly, inhibition of MAPK signaling prior to gastrulation rescued cilia length and heart laterality defects. These results suggest that NS and LS Shp2 variant-mediated hyperactivation of MAPK signaling leads to impaired cilia function in Kupffer's vesicle, causing left-right asymmetry defects and defective early cardiac development.
Collapse
Affiliation(s)
- Monica Bonetti
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | | | | | | | | | | |
Collapse
|
65
|
Huang S, Xu W, Su B, Luo L. Distinct mechanisms determine organ left-right asymmetry patterning in an uncoupled way. Bioessays 2014; 36:293-304. [PMID: 24464475 DOI: 10.1002/bies.201300128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Disruption of Nodal in the lateral plate mesoderm (LPM) usually leads to left-right (LR) patterning defects in multiple organs. However, whether the LR patterning of organs is always regulated in a coupled way has largely not yet been elucidated. In addition, whether other crucial regulators exist in the LPM that coordinate with Nodal in regulating organ LR patterning is also undetermined. In this paper, after briefly summarizing the common process of LR patterning, the most puzzling question regarding the initiation of asymmetry is considered and the divergent mechanisms underlying the uncoupled LR patterning in different organs are discussed. On the basis of cases in which different organ LR patterning is determined in an uncoupled way via an independent mechanism or at a different time, we propose that there are other critical factors in the LPM that coordinate with Nodal to regulate heart LR asymmetry patterning during early LR patterning.
Collapse
Affiliation(s)
- Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | | | | | | |
Collapse
|
66
|
Tong X, Zu Y, Li Z, Li W, Ying L, Yang J, Wang X, He S, Liu D, Zhu Z, Chen J, Lin S, Zhang B. Kctd10 regulates heart morphogenesis by repressing the transcriptional activity of Tbx5a in zebrafish. Nat Commun 2014; 5:3153. [DOI: 10.1038/ncomms4153] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/18/2013] [Indexed: 01/12/2023] Open
|
67
|
Wilkinson RN, Jopling C, van Eeden FJM. Zebrafish as a model of cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 124:65-91. [PMID: 24751427 DOI: 10.1016/b978-0-12-386930-2.00004-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The zebrafish has been rapidly adopted as a model for cardiac development and disease. The transparency of the embryo, its limited requirement for active oxygen delivery, and ease of use in genetic manipulations and chemical exposure have made it a powerful alternative to rodents. Novel technologies like TALEN/CRISPR-mediated genome engineering and advanced imaging methods will only accelerate its use. Here, we give an overview of heart development and function in the fish and highlight a number of areas where it is most actively contributing to the understanding of cardiac development and disease. We also review the current state of research on a feature that we only could wish to be conserved between fish and human; cardiac regeneration.
Collapse
Affiliation(s)
- Robert N Wilkinson
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Chris Jopling
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Labex Ion Channel Science and Therapeutics, Montpellier, France; INSERM, U661, Montpellier, France; Universités de Montpellier 1&2, UMR-5203, Montpellier, France
| | - Fredericus J M van Eeden
- MRC Centre for Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
68
|
Khodiyar VK, Howe D, Talmud PJ, Breckenridge R, Lovering RC. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development. F1000Res 2013; 2:242. [PMID: 24627794 DOI: 10.12688/f1000research.2-242.v1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2013] [Indexed: 12/17/2022] Open
Abstract
For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer's vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer's vesicle determine asymmetry in the developing heart, the direction of 'heart jogging' and the direction of 'heart looping'. 'Heart jogging' is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward 'jog'. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development. We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging. We found that the human, mouse and zebrafish 'heart jogging orthologs' are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging. This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach.
Collapse
Affiliation(s)
- Varsha K Khodiyar
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| | - Doug Howe
- The Zebrafish Model Organism Database, University of Oregon, Eugene, OR, 97403-5291, USA
| | - Philippa J Talmud
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| | - Ross Breckenridge
- Centre for Metabolism and Experimental Therapeutics, University College London, London, WC1E 6JF, UK
| | - Ruth C Lovering
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| |
Collapse
|
69
|
Khodiyar VK, Howe D, Talmud PJ, Breckenridge R, Lovering RC. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development. F1000Res 2013; 2:242. [PMID: 24627794 PMCID: PMC3931453 DOI: 10.12688/f1000research.2-242.v2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2014] [Indexed: 01/15/2023] Open
Abstract
For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer’s vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer’s vesicle determine asymmetry in the developing heart, the direction of ‘heart jogging’ and the direction of ‘heart looping’. ‘Heart jogging’ is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward ‘jog’. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development. We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging. We found that the human, mouse and zebrafish ‘heart jogging orthologs’ are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging. This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach.
Collapse
Affiliation(s)
- Varsha K Khodiyar
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| | - Doug Howe
- The Zebrafish Model Organism Database, University of Oregon, Eugene, OR, 97403-5291, USA
| | - Philippa J Talmud
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| | - Ross Breckenridge
- Centre for Metabolism and Experimental Therapeutics, University College London, London, WC1E 6JF, UK
| | - Ruth C Lovering
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| |
Collapse
|
70
|
Small heat shock proteins are necessary for heart migration and laterality determination in zebrafish. Dev Biol 2013; 384:166-80. [PMID: 24140541 DOI: 10.1016/j.ydbio.2013.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/27/2022]
Abstract
Small heat shock proteins (sHsps) regulate cellular functions not only under stress, but also during normal development, when they are expressed in organ-specific patterns. Here we demonstrate that two small heat shock proteins expressed in embryonic zebrafish heart, hspb7 and hspb12, have roles in the development of left-right asymmetry. In zebrafish, laterality is determined by the motility of cilia in Kupffer's vesicle (KV), where hspb7 is expressed; knockdown of hspb7 causes laterality defects by disrupting the motility of these cilia. In embryos with reduced hspb7, the axonemes of KV cilia have a 9+0 structure, while control embyros have a predominately 9+2 structure. Reduction of either hspb7 or hspb12 alters the expression pattern of genes that propagate the signals that establish left-right asymmetry: the nodal-related gene southpaw (spaw) in the lateral plate mesoderm, and its downstream targets pitx2, lefty1 and lefty2. Partial depletion of hspb7 causes concordant heart, brain and visceral laterality defects, indicating that loss of KV cilia motility leads to coordinated but randomized laterality. Reducing hspb12 leads to similar alterations in the expression of downstream laterality genes, but at a lower penetrance. Simultaneous reduction of hspb7 and hspb12 randomizes heart, brain and visceral laterality, suggesting that these two genes have partially redundant functions in the establishment of left-right asymmetry. In addition, both hspb7 and hspb12 are expressed in the precardiac mesoderm and in the yolk syncytial layer, which supports the migration and fusion of mesodermal cardiac precursors. In embryos in which the reduction of hspb7 or hspb12 was limited to the yolk, migration defects predominated, suggesting that the yolk expression of these genes rather than heart expression is responsible for the migration defects.
Collapse
|
71
|
Schumacher JA, Bloomekatz J, Garavito-Aguilar ZV, Yelon D. tal1 Regulates the formation of intercellular junctions and the maintenance of identity in the endocardium. Dev Biol 2013; 383:214-26. [PMID: 24075907 DOI: 10.1016/j.ydbio.2013.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 11/26/2022]
Abstract
The endocardium forms the inner lining of the heart tube, where it enables blood flow and also interacts with the myocardium during the formation of valves and trabeculae. Although a number of studies have identified regulators in the morphogenesis of the myocardium, relatively little is known about the molecules that control endocardial morphogenesis. Prior work has implicated the bHLH transcription factor Tal1 in endocardial tube formation: in zebrafish embryos lacking Tal1, endocardial cells form a disorganized mass within the ventricle and do not populate the atrium. Through blastomere transplantation, we find that tal1 plays a cell-autonomous role in regulating endocardial extension, suggesting that Tal1 activity influences the behavior of individual endocardial cells. The defects in endocardial behavior in tal1-deficient embryos originate during the earliest steps of endocardial morphogenesis: tal1-deficient endocardial cells fail to generate a cohesive monolayer at the midline and instead pack tightly together into a multi-layered aggregate. Moreover, the tight junction protein ZO-1 is mislocalized in the tal1-deficient endocardium, indicating a defect in intercellular junction formation. In addition, we find that the tal1-deficient endocardium fails to maintain its identity; over time, a progressively increasing number of tal1-deficient endocardial cells initiate myocardial gene expression. However, the onset of defects in intercellular junction formation precedes the onset of ectopic myocardial gene expression in the tal1-deficient endocardium. We therefore propose a model in which Tal1 has distinct roles in regulating the formation of endocardial intercellular junctions and maintaining endocardial identity.
Collapse
Affiliation(s)
- Jennifer A Schumacher
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
72
|
Osterfield M, Du X, Schüpbach T, Wieschaus E, Shvartsman SY. Three-dimensional epithelial morphogenesis in the developing Drosophila egg. Dev Cell 2013; 24:400-10. [PMID: 23449472 DOI: 10.1016/j.devcel.2013.01.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 12/21/2012] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
Abstract
Morphogenesis of the respiratory appendages on eggshells of Drosophila species provides a powerful experimental system for studying how cell sheets give rise to complex three-dimensional structures. In Drosophila melanogaster, each of the two tubular eggshell appendages is derived from a primordium comprising two distinct cell types. Using live imaging and three-dimensional image reconstruction, we demonstrate that the transformation of this two-dimensional primordium into a tube involves out-of-plane bending followed by a sequence of spatially ordered cell intercalations. These morphological transformations correlate with the appearance of complementary distributions of myosin and Bazooka in the primordium. These distributions suggest that a two-dimensional pattern of line tensions along cell-cell edges on the apical side of the epithelium is sufficient to produce the observed changes in morphology. Computational modeling shows that this mechanism could explain the main features of tissue deformation and cell rearrangements observed during three-dimensional morphogenesis.
Collapse
Affiliation(s)
- Miriam Osterfield
- Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
73
|
Veerkamp J, Rudolph F, Cseresnyes Z, Priller F, Otten C, Renz M, Schaefer L, Abdelilah-Seyfried S. Unilateral dampening of Bmp activity by nodal generates cardiac left-right asymmetry. Dev Cell 2013; 24:660-7. [PMID: 23499359 DOI: 10.1016/j.devcel.2013.01.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 11/19/2012] [Accepted: 01/30/2013] [Indexed: 12/29/2022]
Abstract
Signaling by Nodal and Bmp is essential for cardiac laterality. How activities of these pathways translate into left-right asymmetric organ morphogenesis is largely unknown. We show that, in zebrafish, Nodal locally reduces Bmp activity on the left side of the cardiac field. This effect is mediated by the extracellular matrix enzyme Hyaluronan synthase 2, expression of which is induced by Nodal. Unilateral reduction of Bmp signaling results in lower expression of nonmuscle myosin II and higher cell motility on the left, driving asymmetric displacement of the entire cardiac field. In silico modeling shows that left-right differences in cell motility are sufficient to induce a robust, directional migration of cardiac tissue. Thus, the mechanism underlying the formation of cardiac left-right asymmetry involves Nodal modulating an antimotogenic Bmp activity.
Collapse
Affiliation(s)
- Justus Veerkamp
- Cardiovascular Department, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Park CY, Wong AK, Greene CS, Rowland J, Guan Y, Bongo LA, Burdine RD, Troyanskaya OG. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes. PLoS Comput Biol 2013; 9:e1002957. [PMID: 23516347 PMCID: PMC3597527 DOI: 10.1371/journal.pcbi.1002957] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning) that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST) have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT) dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics techniques and will help biologists systematically integrate prior knowledge from diverse systems to direct targeted experiments in their organism of study. Due to technical and ethical challenges many human diseases or biological processes are studied in model organisms. Discoveries in these organisms are then transferred back to human or other model organisms. Traditional methods for transferring novel gene function annotations have relied on finding genes with high sequence similarity believed to share evolutionary ancestry. However, sequence similarity does not guarantee a shared functional role in molecular pathways. In this study, we show that functional genomics can complement traditional sequence similarity measures to improve the transfer of gene annotations between organisms. We coupled our knowledge transfer method with current state-of-the-art machine learning algorithms and predicted gene function for 11,000 biological processes across six organisms. We experimentally validated our prediction of wnt5b's involvement in the determination of left-right heart asymmetry in zebrafish. Our results show that functional knowledge transfer can improve the coverage and accuracy of machine learning methods used for gene function prediction in a diverse set of organisms. Such an approach can be applied to additional organisms, and will be especially beneficial in organisms that have high-throughput genomic data with sparse annotations.
Collapse
Affiliation(s)
- Christopher Y. Park
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| | - Aaron K. Wong
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| | - Casey S. Greene
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Jessica Rowland
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lars A. Bongo
- Department of Computer Science, University of Tromsø, Tromsø, Norway
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Olga G. Troyanskaya
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
75
|
Integration of nodal and BMP signals in the heart requires FoxH1 to create left-right differences in cell migration rates that direct cardiac asymmetry. PLoS Genet 2013; 9:e1003109. [PMID: 23358434 PMCID: PMC3554567 DOI: 10.1371/journal.pgen.1003109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/05/2012] [Indexed: 12/18/2022] Open
Abstract
Failure to properly establish the left–right (L/R) axis is a major cause of congenital heart defects in humans, but how L/R patterning of the embryo leads to asymmetric cardiac morphogenesis is still unclear. We find that asymmetric Nodal signaling on the left and Bmp signaling act in parallel to establish zebrafish cardiac laterality by modulating cell migration velocities across the L/R axis. Moreover, we demonstrate that Nodal plays the crucial role in generating asymmetry in the heart and that Bmp signaling via Bmp4 is dispensable in the presence of asymmetric Nodal signaling. In addition, we identify a previously unappreciated role for the Nodal-transcription factor FoxH1 in mediating cell responsiveness to Bmp, further linking the control of these two pathways in the heart. The interplay between these TGFβ pathways is complex, with Nodal signaling potentially acting to limit the response to Bmp pathway activation and the dosage of Bmp signals being critical to limit migration rates. These findings have implications for understanding the complex genetic interactions that lead to congenital heart disease in humans. Defects in left–right (L/R) patterning can lead to severe defects in the formation of the heart. In fact, three of the most common forms of congenital heart disease, transposition of the great arteries, chamber septation defects, and chamber isomerisms, can be caused by earlier defects in L/R asymmetry. The Nodal and Bmp signaling pathways influence the development of cardiac asymmetry, but how these signals function in this process is not well understood. In this report, we have clarified the specific roles for the Nodal versus Bmp pathways in the heart. We find that Nodal signals increase the rate of cardiac cell migration, while Bmp signals decrease cardiac cell velocities. We demonstrate that asymmetric Nodal signaling plays a critical role in directing asymmetry in the heart in contrast to reports suggesting that signaling via Bmp4 is the more critical pathway. In fact, we find that Bmp4 signaling is dispensable for correct asymmetry in the heart in the presence of asymmetric Nodal signals. In addition, we have identified a novel integration between these two pathways at the level of the transcription factor FoxH1, which is required for cardiac cell responsiveness to both Nodal and Bmp signals. Taken together, this work significantly increases our understanding of how the signals regulating cardiac asymmetry function and integrate to consistently establish cardiac laterality. These results also suggest that human congenital heart defects that have not been found to result from single mutations within individual genes may develop due to combinations of mutations within components of these two separate pathways.
Collapse
|
76
|
Garnaas MK, Cutting CC, Meyers A, Kelsey PB, Harris JM, North TE, Goessling W. Rargb regulates organ laterality in a zebrafish model of right atrial isomerism. Dev Biol 2012; 372:178-89. [PMID: 22982668 PMCID: PMC3697125 DOI: 10.1016/j.ydbio.2012.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/26/2012] [Accepted: 09/06/2012] [Indexed: 02/02/2023]
Abstract
Developmental signals determine organ morphology and position during embryogenesis. To discover novel modifiers of liver development, we performed a chemical genetic screen in zebrafish and identified retinoic acid as a positive regulator of hepatogenesis. Knockdown of the four RA receptors revealed that all receptors affect liver formation, however specific receptors exert differential effects. Rargb knockdown results in bilateral livers but does not impact organ size, revealing a unique role for Rargb in conferring left-right positional information. Bilateral populations of hepatoblasts are detectable in rargb morphants, indicating Rargb acts during hepatic specification to position the liver, and primitive endoderm is competent to form liver on both sides. Hearts remain at the midline and gut looping is perturbed in rargb morphants, suggesting Rargb affects lateral plate mesoderm migration. Overexpression of Bmp during somitogenesis similarly results in bilateral livers and midline hearts, and inhibition of Bmp signaling rescues the rargb morphant phenotype, indicating Rargb functions upstream of Bmp to regulate organ sidedness. Loss of rargb causes biliary and organ laterality defects as well as asplenia, paralleling symptoms of the human condition right atrial isomerism. Our findings uncover a novel role for RA in regulating organ laterality and provide an animal model of one form of human heterotaxia.
Collapse
Affiliation(s)
- Maija K Garnaas
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Singleman C, Holtzman NG. Analysis of postembryonic heart development and maturation in the zebrafish, Danio rerio. Dev Dyn 2012; 241:1993-2004. [PMID: 23074141 DOI: 10.1002/dvdy.23882] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Cardiac maturation is vital for animal survival and must occur throughout the animal's life. Zebrafish are increasingly used to model cardiac disease; however, little is known about how the cardiovascular system matures. We conducted a systematic analysis of cardiac maturation from larvae through to adulthood and assessed cardiac features influenced by genetic and environmental factors. RESULTS We identified a novel step in cardiac maturation, termed cardiac rotation, where the larval heart rotates into its final orientation within the thoracic cavity with the atrium placed behind the ventricle. This rotation is followed by linear ventricle growth and an increase in the angle between bulbous arteriosus and the ventricle. The ventricle transitions from a rectangle, to a triangle and ultimately a sphere that is significantly enveloped by the atrium. In addition, trabeculae are similarly patterned in the zebrafish and humans, both with muscular fingerlike projections and muscle bands that span the cardiac chamber. Of interest, partial loss of atrial contraction in myosin heavy chain 6 (myh6/wea(hu423/+)) mutants result in the adult maintaining a larval cardiac form. CONCLUSIONS These findings serve as a foundation for the study of defects in cardiovascular development from both genetic and environmental factors.
Collapse
Affiliation(s)
- Corinna Singleman
- Department of Biology, Queens College, City University of New York, Flushing New York and The Graduate Center, City University of New York, New York, New York, USA
| | | |
Collapse
|
78
|
Nakamura T, Hamada H. Left-right patterning: conserved and divergent mechanisms. Development 2012; 139:3257-62. [PMID: 22912409 DOI: 10.1242/dev.061606] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The left-right (LR) asymmetry of visceral organs is fundamental to their function and position within the body. Over the past decade or so, the molecular mechanisms underlying the establishment of such LR asymmetry have been revealed in many vertebrate and invertebrate model organisms. These studies have identified a gene network that contributes to this process and is highly conserved from sea urchin to mouse. By contrast, some specific steps of the process, such as the symmetry-breaking event and situs-specific organogenesis, appear to have diverged during evolution. Here, we summarize the common and divergent mechanisms by which LR asymmetry is established in vertebrates.
Collapse
Affiliation(s)
- Tetsuya Nakamura
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.
| | | |
Collapse
|
79
|
Staudt D, Stainier D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu Rev Genet 2012; 46:397-418. [PMID: 22974299 DOI: 10.1146/annurev-genet-110711-155646] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, the zebrafish has emerged as a powerful model organism for studying cardiac development. Its ability to survive without an active circulation and amenability to forward genetics has led to the identification of numerous mutants whose study has helped elucidate new mechanisms in cardiac development. Furthermore, its transparent, externally developing embryos have allowed detailed cellular analyses of heart development. In this review, we discuss the molecular and cellular processes involved in zebrafish heart development from progenitor specification to development of the valve and the conduction system. We focus on imaging studies that have uncovered the cellular bases of heart development and on zebrafish mutants with cardiac abnormalities whose study has revealed novel molecular pathways in cardiac cell specification and tissue morphogenesis.
Collapse
Affiliation(s)
- David Staudt
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
80
|
Matsui T, Bessho Y. Left-right asymmetry in zebrafish. Cell Mol Life Sci 2012; 69:3069-77. [PMID: 22527718 PMCID: PMC11115138 DOI: 10.1007/s00018-012-0985-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 03/04/2012] [Accepted: 03/28/2012] [Indexed: 11/28/2022]
Abstract
In vertebrates, internal organs are positioned asymmetrically across the left-right (LR) axis, placing them in a defined area within the body. This LR asymmetric placement is a conserved feature of the vertebrate body plan. Events determining LR asymmetry occur during embryonic development, and are regulated by the coordinated action of genetic mechanisms that are evolutionarily conserved among vertebrates. Recent studies using zebrafish have provided new insights into how the Kupffer's vesicle organizer region is generated, and how it relays LR asymmetry information to the lateral plate mesoderm. In this review, we summarize recent advances in zebrafish and describe our current understanding of the mechanisms underlying these processes.
Collapse
Affiliation(s)
- Takaaki Matsui
- Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Nara, 630-0101, Japan.
| | | |
Collapse
|
81
|
Tu S, Chi NC. Zebrafish models in cardiac development and congenital heart birth defects. Differentiation 2012; 84:4-16. [PMID: 22704690 DOI: 10.1016/j.diff.2012.05.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 12/31/2022]
Abstract
The zebrafish has become an ideal vertebrate animal system for investigating cardiac development due to its genetic tractability, external fertilization, early optical clarity and ability to survive without a functional cardiovascular system during development. In particular, recent advances in imaging techniques and the creation of zebrafish transgenics now permit the in vivo analysis of the dynamic cellular events that transpire during cardiac morphogenesis. As a result, the combination of these salient features provides detailed insight as to how specific genes may influence cardiac development at the cellular level. In this review, we will highlight how the zebrafish has been utilized to elucidate not only the underlying mechanisms of cardiac development and human congenital heart diseases (CHDs), but also potential pathways that may modulate cardiac regeneration. Thus, we have organized this review based on the major categories of CHDs-structural heart, functional heart, and vascular/great vessel defects, and will conclude with how the zebrafish may be further used to contribute to our understanding of specific human CHDs in the future.
Collapse
Affiliation(s)
- Shu Tu
- Department of Medicine, Division of Cardiology, University of California, San Diego, CA 92093-0613J, USA
| | | |
Collapse
|
82
|
de Pater E, Ciampricotti M, Priller F, Veerkamp J, Strate I, Smith K, Lagendijk AK, Schilling TF, Herzog W, Abdelilah-Seyfried S, Hammerschmidt M, Bakkers J. Bmp signaling exerts opposite effects on cardiac differentiation. Circ Res 2012; 110:578-87. [PMID: 22247485 DOI: 10.1161/circresaha.111.261172] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RATIONALE The importance for Bmp signaling during embryonic stem cell differentiation into myocardial cells has been recognized. The question when and where Bmp signaling in vivo regulates myocardial differentiation has remained largely unanswered. OBJECTIVE To identify when and where Bmp signaling regulates cardiogenic differentiation. METHODS AND RESULTS Here we have observed that in zebrafish embryos, Bmp signaling is active in cardiac progenitor cells prior to their differentiation into cardiomyocytes. Bmp signaling is continuously required during somitogenesis within the anterior lateral plate mesoderm to induce myocardial differentiation. Surprisingly, Bmp signaling is actively repressed in differentiating myocardial cells. We identified the inhibitory Smad6a, which is expressed in the cardiac tissue, to be required to inhibit Bmp signaling and thereby promote expansion of the ventricular myocardium. CONCLUSION Bmp signaling exerts opposing effects on myocardial differentiation in the embryo by promoting as well as inhibiting cardiac growth.
Collapse
Affiliation(s)
- Emma de Pater
- Cardiac development and genetics group, Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Smith KA, Lagendijk AK, Courtney AD, Chen H, Paterson S, Hogan BM, Wicking C, Bakkers J. Transmembrane protein 2 (Tmem2) is required to regionally restrict atrioventricular canal boundary and endocardial cushion development. Development 2011; 138:4193-8. [PMID: 21896629 DOI: 10.1242/dev.065375] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The atrioventricular canal (AVC) physically separates the atrial and ventricular chambers of the heart and plays a crucial role in the development of the valves and septa. Defects in AVC development result in aberrant heart morphogenesis and are a significant cause of congenital heart malformations. We have used a forward genetic screen in zebrafish to identify novel regulators of cardiac morphogenesis. We isolated a mutant, named wickham (wkm), that was indistinguishable from siblings at the linear heart tube stage but exhibited a specific loss of cardiac looping at later developmental stages. Positional cloning revealed that the wkm locus encodes transmembrane protein 2 (Tmem2), a single-pass transmembrane protein of previously unknown function. Expression analysis demonstrated myocardial and endocardial expression of tmem2 in zebrafish and conserved expression in the endocardium of mouse embryos. Detailed phenotypic analysis of the wkm mutant identified an expansion of expression of known myocardial and endocardial AVC markers, including bmp4 and has2. By contrast, a reduction in the expression of spp1, a marker of the maturing valvular primordia, was observed, suggesting that an expansion of immature AVC is detrimental to later valve maturation. Finally, we show that immature AVC expansion in wkm mutants is rescued by depleting Bmp4, indicating that Tmem2 restricts bmp4 expression to delimit the AVC primordium during cardiac development.
Collapse
Affiliation(s)
- Kelly A Smith
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Smith KA, Noël E, Thurlings I, Rehmann H, Chocron S, Bakkers J. Bmp and nodal independently regulate lefty1 expression to maintain unilateral nodal activity during left-right axis specification in zebrafish. PLoS Genet 2011; 7:e1002289. [PMID: 21980297 PMCID: PMC3183088 DOI: 10.1371/journal.pgen.1002289] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/30/2011] [Indexed: 11/21/2022] Open
Abstract
In vertebrates, left-right (LR) axis specification is determined by a ciliated structure in the posterior region of the embryo. Fluid flow in this ciliated structure is responsible for the induction of unilateral left-sided Nodal activity in the lateral plate mesoderm, which in turn regulates organ laterality. Bmp signalling activity has been implied in repressing Nodal expression on the right side, however its mechanism of action has been controversial. In a forward genetic screen for mutations that affect LR patterning, we identified the zebrafish linkspoot (lin) mutant, characterized by cardiac laterality and mild dorsoventral patterning defects. Mapping of the lin mutation revealed an inactivating missense mutation in the Bmp receptor 1aa (bmpr1aa) gene. Embryos with a mutation in lin/bmpr1aa and a novel mutation in its paralogue, bmpr1ab, displayed a variety of dorsoventral and LR patterning defects with increasing severity corresponding with a decrease in bmpr1a dosage. In Bmpr1a-deficient embryos we observed bilateral expression of the Nodal-related gene, spaw, coupled with reduced expression of the Nodal-antagonist lefty1 in the midline. Using genetic models to induce or repress Bmp activity in combination with Nodal inhibition or activation, we found that Bmp and Nodal regulate lefty1 expression in the midline independently of each other. Furthermore, we observed that the regulation of lefty1 by Bmp signalling is required for its observed downregulation of Nodal activity in the LPM providing a novel explanation for this phenomenon. From these results we propose a two-step model in which Bmp regulates LR patterning. Prior to the onset of nodal flow and Nodal activation, Bmp is required to induce lefty1 expression in the midline. When nodal flow has been established and Nodal activity is apparent, both Nodal and Bmp independently are required for lefty1 expression to assure unilateral Nodal activation and correct LR patterning. Although vertebrates are bilaterally symmetric when observed from the outside, inside the body cavity the organs are positioned asymmetrically with respect to the left and right sides. Cases where all the organs are mirror imaged, known as situs inversus, are not associated with any medical defects. Severe medical problems occur however in infants with a partial organ reversal (situs ambigious or heterotaxia), which arises during embryonic development. Left-right asymmetry in the embryo is established by unilateral expression of Nodal, a member of the Tgf-ß superfamily of secreted growth factors, a role that has been conserved from human to snails. By performing a genetic screen in zebrafish for laterality mutants, we have identified the linkspoot mutant, which displayed partial defects in asymmetric left-right positioning of the internal organs. The gene disrupted in the linkspoot mutant encodes a receptor for bone morphogenetic proteins (Bmp), another member of the Tgf-ß superfamily of secreted growth factors. Further analysis of Bmp over-expression or knock-down models demonstrate that Bmp signalling is required for unilateral Nodal expression, through the initiation and maintenance of an embryonic midline barrier. Our results demonstrate a novel and important mechanism by which left-right asymmetry in the vertebrate embryo is established and regulated.
Collapse
Affiliation(s)
- Kelly A. Smith
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emily Noël
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ingrid Thurlings
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Holger Rehmann
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sonja Chocron
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
85
|
Huang S, Ma J, Liu X, Zhang Y, Luo L. Retinoic acid signaling sequentially controls visceral and heart laterality in zebrafish. J Biol Chem 2011; 286:28533-43. [PMID: 21669875 DOI: 10.1074/jbc.m111.244327] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During zebrafish development, the left-right (LR) asymmetric signals are first established around the Kupffer vesicle (KV), a ciliated organ generating directional fluid flow. Then, LR asymmetry is conveyed and stabilized in the lateral plate mesoderm. Although numerous molecules and signaling pathways are involved in controlling LR asymmetry, mechanistic difference and concordance between different organs during LR patterning are poorly understood. Here we show that RA signaling regulates laterality decisions at two stages in zebrafish. Before the 2-somite stage (2So), inhibition of RA signaling leads to randomized visceral laterality through bilateral expression of nodal/spaw in the lateral plate mesoderm, which is mediated by increases in cilia length and defective directional fluid flow in KV. Fgf8 is required for the regulation of cilia length by RA signaling. Blockage of RA signaling before 2So also leads to mild defects of heart laterality, which become much more severe through perturbation of cardiac bmp4 asymmetry when RA signaling is blocked after 2So. At this stage, visceral laterality and the left-sided Nodal remain unaffected. These findings suggest that RA signaling controls visceral laterality through the left-sided Nodal signal before 2So, and regulates heart laterality through cardiac bmp4 mainly after 2So, first identifying sequential control and concordance of visceral and heart laterality.
Collapse
Affiliation(s)
- Sizhou Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | | | | | | | | |
Collapse
|
86
|
Abstract
Over the last decade, the zebrafish has entered the field of cardiovascular research as a new model organism. This is largely due to a number of highly successful small- and large-scale forward genetic screens, which have led to the identification of zebrafish mutants with cardiovascular defects. Genetic mapping and identification of the affected genes have resulted in novel insights into the molecular regulation of vertebrate cardiac development. More recently, the zebrafish has become an attractive model to study the effect of genetic variations identified in patients with cardiovascular defects by candidate gene or whole-genome-association studies. Thanks to an almost entirely sequenced genome and high conservation of gene function compared with humans, the zebrafish has proved highly informative to express and study human disease-related gene variants, providing novel insights into human cardiovascular disease mechanisms, and highlighting the suitability of the zebrafish as an excellent model to study human cardiovascular diseases. In this review, I discuss recent discoveries in the field of cardiac development and specific cases in which the zebrafish has been used to model human congenital and acquired cardiac diseases.
Collapse
Affiliation(s)
- Jeroen Bakkers
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Interuniversity Cardiology Institute of The Netherlands, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
87
|
Abstract
The zebrafish is an ideal model organism for investigating the molecular mechanisms underlying cardiogenesis, due to the powerful combination of optical access to the embryonic heart and plentiful opportunities for genetic analysis. A continually increasing number of studies are uncovering mutations, morpholinos, and small molecules that cause striking cardiac defects and disrupt blood circulation in the zebrafish embryo. Such defects can result from a wide variety of origins including defects in the specification or differentiation of cardiac progenitor cells; errors in the morphogenesis of the heart tube, the cardiac chambers, or the atrioventricular canal or problems with establishing proper cardiac function. An extensive arsenal of techniques is available to distinguish between these possibilities and thereby decipher the roots of cardiac defects. In this chapter, we provide a guide to the experimental strategies that are particularly effective for the characterization of cardiac phenotypes in the zebrafish embryo.
Collapse
Affiliation(s)
- Grant I Miura
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
88
|
Marmaras A, Berge U, Ferrari A, Kurtcuoglu V, Poulikakos D, Kroschewski R. A mathematical method for the 3D analysis of rotating deformable systems applied on lumen-forming MDCK cell aggregates. Cytoskeleton (Hoboken) 2010; 67:224-40. [PMID: 20183868 DOI: 10.1002/cm.20438] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility contributes to the formation of organs and tissues, into which multiple cells self-organize. However such mammalian cellular motilities are not characterized in a quantitative manner and the systemic consequences are thus unknown. A mathematical tool to decipher cell motility, accounting for changes in cell shape, within a three-dimensional (3D) cell system was missing. We report here such a tool, usable on segmented images reporting the outline of clusters (cells) and allowing the time-resolved 3D analysis of circular motility of these as parts of a system (cell aggregate). Our method can analyze circular motility in sub-cellular, cellular, multi-cellular, and also non-cellular systems for which time-resolved segmented cluster outlines are available. To exemplify, we characterized the circular motility of lumen-initiating MDCK cell aggregates, embedded in extracellular matrix. We show that the organization of the major surrounding matrix fibers was not significantly affected during this cohort rotation. Using our developed tool, we discovered two classes of circular motion, rotation and random walk, organized in three behavior patterns during lumen initiation. As rotational movements were more rapid than random walk and as both could continue during lumen initiation, we conclude that neither the class nor the rate of motion regulates lumen initiation. We thus reveal a high degree of plasticity during a developmentally critical cell polarization step, indicating that lumen initiation is a robust process. However, motility rates decreased with increasing cell number, previously shown to correlate with epithelial polarization, suggesting that migratory polarization is converted into epithelial polarization during aggregate development.
Collapse
Affiliation(s)
- Anastasios Marmaras
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
89
|
DeLaurier A, Eames BF, Blanco-Sánchez B, Peng G, He X, Swartz ME, Ullmann B, Westerfield M, Kimmel CB. Zebrafish sp7:EGFP: a transgenic for studying otic vesicle formation, skeletogenesis, and bone regeneration. Genesis 2010; 48:505-11. [PMID: 20506187 PMCID: PMC2926247 DOI: 10.1002/dvg.20639] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the expression pattern and construction of a transgenic zebrafish line for a transcription factor involved in otic vesicle formation and skeletogenesis. The zinc finger transcription factor sp7 (formerly called osterix) is reported as a marker of osteoblasts. Using bacterial artificial chromosome (BAC)-mediated transgenesis, we generated a zebrafish transgenic line for studying skeletal development, Tg(sp7:EGFP)b1212. Using a zebrafish BAC, EGFP was introduced downstream of the regulatory regions of sp7 and injected into one cell-stage embryos. In this transgenic line, GFP expression reproduces endogenous sp7 gene expression in the otic placode and vesicle, and in forming skeletal structures. GFP-positive cells were also detected in adult fish, and were found associated with regenerating fin rays post-amputation. This line provides an essential tool for the further study of zebrafish otic vesicle formation and the development and regeneration of the skeleton.
Collapse
Affiliation(s)
- April DeLaurier
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Craig EA, Parker P, Austin AF, Barnett JV, Camenisch TD. Involvement of the MEKK1 signaling pathway in the regulation of epicardial cell behavior by hyaluronan. Cell Signal 2010; 22:968-76. [PMID: 20159036 PMCID: PMC2846756 DOI: 10.1016/j.cellsig.2010.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/09/2010] [Accepted: 02/09/2010] [Indexed: 01/04/2023]
Abstract
During embryonic development, cells comprising the outermost layer of the heart or epicardium play a critical role in the formation of the coronary vasculature. Thus, uncovering the molecular mechanisms that govern epicardial cell behavior is imperative to better understand the etiology of cardiovascular diseases. In this study, we investigated the function of hyaluronan (HA), a major component of the extracellular matrix, in the modulation of epicardial signaling. We show that stimulation of epicardial cells with high molecular weight HA (HMW-HA) promotes the association of MEKK1 with the HA receptor CD44 and induces MEKK1 phosphorylation. This leads to the activation of two distinct pathways, one ERK-dependent and another NFkappaB-dependent. Furthermore, HMW-HA stimulates epicardial cells to differentiate and invade, as suggested by increased vimentin expression and enhanced invasion through a collagen matrix. Blockade of CD44, transfection with a kinase-inactive MEKK1 construct or the use of ERK1/2 and NFkappaB inhibitors significantly abrogates the invasive response to HMW-HA. Together, these findings suggest an important role for HA in the regulation of epicardial cell fate via activation of MEKK1 signaling cascades.
Collapse
Affiliation(s)
- Evisabel A. Craig
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona
| | - Patti Parker
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona
| | - Anita F. Austin
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joey V. Barnett
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Todd D. Camenisch
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona
- Steele Children’s Research Center and Bio5 Institute, The University of Arizona, Tucson, Arizona
| |
Collapse
|
91
|
Christiaen L, Stolfi A, Levine M. BMP signaling coordinates gene expression and cell migration during precardiac mesoderm development. Dev Biol 2010; 340:179-87. [DOI: 10.1016/j.ydbio.2009.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 01/09/2023]
|
92
|
Liang J, Gui Y, Wang W, Gao S, Li J, Song H. Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos. ACTA ACUST UNITED AC 2010; 88:480-6. [DOI: 10.1002/bdra.20654] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
93
|
Abstract
Bone Morphogenetic Proteins (BMPs) play an important role during organ development and during regeneration after tissue damage. BMPs signal via transmembrane serine/threonine kinase receptors. From our current understanding heteromeric complexes of type I and type II receptors are required for signal propagation. Presently, three type I and three type II receptors are known to bind BMPs with different affinities. Ligands and receptors eventually oligomerize via defined modes into signaling complexes. Co-receptors recruit into these complexes to either inhibit or to promote signaling. The Smad pathway, initiated by phosphorylation through the activated type I receptors, results in transcriptional regulation of early target genes. However, on its way to the nucleus, Smads represent signaling platforms for other pathways, which eventually finetune BMP signal transduction. We also describe BMP-induced signaling cascades leading to cytoskeletal rearrangements, non-transcriptional and non-Smad pathways. BMPs induce a plethora of different cellular effects ranging from stem cell maintenance, migration, differentiation, proliferation to apoptosis. The molecular mechanism, by which the same ligand induces these manifold effects, depends on the cellular context. Here we try to give a current picture of the most important players in regulating and directing BMP signaling towards the desired cellular outcome. Examples of BMP action during development, but also physiological and pathophysiological conditions in the adult organism are presented.
Collapse
Affiliation(s)
- Christina Sieber
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
94
|
de Pater E, Clijsters L, Marques SR, Lin YF, Garavito-Aguilar ZV, Yelon D, Bakkers J. Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development 2009; 136:1633-41. [PMID: 19395641 DOI: 10.1242/dev.030924] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amongst animal species, there is enormous variation in the size and complexity of the heart, ranging from the simple one-chambered heart of Ciona intestinalis to the complex four-chambered heart of lunged animals. To address possible mechanisms for the evolutionary adaptation of heart size, we studied how growth of the simple two-chambered heart in zebrafish is regulated. Our data show that the embryonic zebrafish heart tube grows by a substantial increase in cardiomyocyte number. Augmented cardiomyocyte differentiation, as opposed to proliferation, is responsible for the observed growth. By using transgenic assays to monitor developmental timing, we visualized for the first time the dynamics of cardiomyocyte differentiation in a vertebrate embryo. Our data identify two previously unrecognized phases of cardiomyocyte differentiation separated in time, space and regulation. During the initial phase, a continuous wave of cardiomyocyte differentiation begins in the ventricle, ends in the atrium, and requires Islet1 for its completion. In the later phase, new cardiomyocytes are added to the arterial pole, and this process requires Fgf signaling. Thus, two separate processes of cardiomyocyte differentiation independently regulate growth of the zebrafish heart. Together, our data support a model in which modified regulation of these distinct phases of cardiomyocyte differentiation has been responsible for the changes in heart size and morphology among vertebrate species.
Collapse
Affiliation(s)
- Emma de Pater
- Hubrecht Institute and University Medical Centre Utrecht, 3584 CT, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
95
|
Smith KA, Joziasse IC, Chocron S, van Dinther M, Guryev V, Verhoeven MC, Rehmann H, van der Smagt JJ, Doevendans PA, Cuppen E, Mulder BJ, Ten Dijke P, Bakkers J. Dominant-negative ALK2 allele associates with congenital heart defects. Circulation 2009; 119:3062-9. [PMID: 19506109 DOI: 10.1161/circulationaha.108.843714] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Serious congenital heart defects occur as a result of improper atrioventricular septum (AVS) development during embryogenesis. Despite extensive knowledge of the genetic control of AVS development, few genetic lesions have been identified that are responsible for AVS-associated congenital heart defects. METHODS AND RESULTS We sequenced 32 genes known to be important in AVS development in patients with AVS defects and identified 11 novel coding single-nucleotide polymorphisms that are predicted to impair protein function. We focused on variants identified in the bone morphogenetic protein receptor, ALK2, and subjected 2 identified variants to functional analysis. The coding single-nucleotide polymorphisms R307L and L343P are heterozygous missense substitutions and were each identified in single individuals. The L343P allele had impaired functional activity as measured by in vitro kinase and bone morphogenetic protein-specific transcriptional response assays and dominant-interfering activity in vivo. In vivo analysis of zebrafish embryos injected with ALK2 L343P RNA revealed improper atrioventricular canal formation. CONCLUSIONS These data identify the dominant-negative allele ALK2 L343P in a patient with AVS defects.
Collapse
Affiliation(s)
- Kelly A Smith
- Associate Professor, Cardiac Development and Genetics Group, Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Row RH, Kimelman D. Bmp inhibition is necessary for post-gastrulation patterning and morphogenesis of the zebrafish tailbud. Dev Biol 2009; 329:55-63. [PMID: 19236859 PMCID: PMC2670352 DOI: 10.1016/j.ydbio.2009.02.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/08/2009] [Accepted: 02/11/2009] [Indexed: 01/20/2023]
Abstract
Intricate interactions between the Wnt and Bmp signaling pathways pattern the gastrulating vertebrate embryo using a network of secreted protein ligands and inhibitors. While many of these proteins are expressed post-gastrula, their later roles have typically remained unclear, obscured by the effects of early perturbation. We find that Bmp signaling continues during somitogenesis in zebrafish embryos, with high activity in a small region of the mesodermal progenitor zone at the posterior end of the embryo. To test the hypothesis that Bmp inhibitors expressed just anterior to the tailbud are important to restrain Bmp signaling we produced a new zebrafish transgenic line, allowing temporal cell-autonomous activation of Bmp signaling and thereby bypassing the effects of the Bmp inhibitors. Ectopic activation of Bmp signaling during somitogenesis results in severe defects in the tailbud, including altered morphogenesis and gene expression. We show that these defects are due to non-autonomous effects on the tailbud, and present evidence that the tailbud defects are caused by alterations in Wnt signaling. We present a model in which the posteriorly expressed Bmp inhibitors function during somitogenesis to constrain Bmp signaling in the tailbud in order to allow normal expression of Wnt inhibitors in the presomitic mesoderm, which in turn constrain the levels of canonical and non-canonical Wnt signaling in the tailbud.
Collapse
Affiliation(s)
- Richard H Row
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | | |
Collapse
|
97
|
Marques SR, Yelon D. Differential requirement for BMP signaling in atrial and ventricular lineages establishes cardiac chamber proportionality. Dev Biol 2009; 328:472-82. [PMID: 19232521 PMCID: PMC2709526 DOI: 10.1016/j.ydbio.2009.02.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/04/2009] [Accepted: 02/06/2009] [Indexed: 11/23/2022]
Abstract
The function of an organ relies upon the proper relative proportions of its individual operational components. For example, effective embryonic circulation requires the appropriate relative sizes of each of the distinct pumps created by the atrial and ventricular cardiac chambers. Although the differences between atrial and ventricular cardiomyocytes are well established, little is known about the mechanisms regulating production of proportional numbers of each cell type. We find that mutation of the zebrafish type I BMP receptor gene alk8 causes reduction of atrial size without affecting the ventricle. Loss of atrial tissue is evident in the lateral mesoderm prior to heart tube formation and results from the inhibition of BMP signaling during cardiac progenitor specification stages. Comparison of the effects of decreased and increased BMP signaling further demonstrates that atrial cardiomyocyte production correlates with levels of BMP signaling while ventricular cardiomyocyte production is less susceptible to manipulation of BMP signaling. Additionally, mosaic analysis provides evidence for a cell-autonomous requirement for BMP signaling during cardiomyocyte formation and chamber fate assignment. Together, our studies uncover a new role for BMP signaling in the regulation of chamber size, supporting a model in which differential reception of cardiac inductive signals establishes chamber proportion.
Collapse
Affiliation(s)
- Sara R. Marques
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016 USA
- Graduate Program in Areas of Basic and Applied Biology, Universidade do Porto, 4050-465 Porto, Portugal
| | - Deborah Yelon
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016 USA
| |
Collapse
|
98
|
Bakkers J, Verhoeven MC, Abdelilah-Seyfried S. Shaping the zebrafish heart: from left-right axis specification to epithelial tissue morphogenesis. Dev Biol 2009; 330:213-20. [PMID: 19371733 DOI: 10.1016/j.ydbio.2009.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/07/2009] [Accepted: 04/07/2009] [Indexed: 11/18/2022]
Abstract
Although vertebrates appear bilaterally symmetric on the outside, various internal organs, including the heart, are asymmetric with respect to their position and/or their orientation based on the left/right (L/R) axis. The L/R axis is determined during embryo development. Determination of the L/R axis is fundamentally different from the determination of the anterior-posterior or the dorsal-ventral axis. In all vertebrates a ciliated organ has been described that induces a left-sided gene expression program, which includes Nodal expression in the left lateral plate mesoderm. To have a better understanding of organ laterality it is important to understand how L/R patterning induces cellular responses during organogenesis. In this review, we discuss the current understanding of the mechanisms of L/R patterning during zebrafish development and focus on how this affects cardiac morphogenesis. Several recent studies have provided unprecedented insights into the intimate link between L/R signaling and the cellular responses that drive morphogenesis of this organ.
Collapse
Affiliation(s)
- Jeroen Bakkers
- Hubrecht Institute and University Medical Centre Utrecht, 3584 CT, Utrecht, The Netherlands.
| | | | | |
Collapse
|
99
|
de Campos-Baptista MIM, Holtzman NG, Yelon D, Schier AF. Nodal signaling promotes the speed and directional movement of cardiomyocytes in zebrafish. Dev Dyn 2008; 237:3624-33. [PMID: 18985714 PMCID: PMC2632806 DOI: 10.1002/dvdy.21777] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Members of the Nodal family regulate left-right asymmetry during vertebrate organogenesis, but it is unclear how Nodal signaling controls asymmetric morphogenesis at the cellular level. We used high-resolution time-lapse imaging in zebrafish to compare the movements of cardiomyocytes in the presence or absence of Nodal signaling. Loss of Nodal signaling in late-zygotic mutants for the Nodal co-receptor one-eyed pinhead (LZoep) abolished the leftward movement of cardiomyocytes. Global heart rotation was blocked but cardiomyocyte neighbor relationships were maintained as in wild type. Cardiomyocytes in LZoep mutants moved more slowly and less directionally than their wild-type counterparts. The phenotypes observed in the absence of Nodal signaling strongly resemble abnormalities found in BMP signaling mutants. These results indicate that a Nodal-BMP signaling cascade drives left-right heart morphogenesis by regulating the speed and direction of cardiomyocyte movement.
Collapse
Affiliation(s)
- Maria Ines Medeiros de Campos-Baptista
- Department of Molecular and Cellular Biology, Center for Brain Science, Broad Institute, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
100
|
Abstract
The establishment of a left-right axis during vertebrate development is essential for coordinating the relative positions of the internal organs to ensure that they function appropriately. Studies in numerous model organisms have revealed differences in regulative mechanisms upstream of nodal signaling, a conserved pathway in left-right axis specification. This review will summarize the diverse pathways involved in the break of left-right symmetry and explore in depth the multiple roles of calcium in vertebrate left-right axis specification.
Collapse
Affiliation(s)
- Adam Langenbacher
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|