51
|
Duman JG, Mulherkar S, Tu YK, X Cheng J, Tolias KF. Mechanisms for spatiotemporal regulation of Rho-GTPase signaling at synapses. Neurosci Lett 2015; 601:4-10. [PMID: 26003445 DOI: 10.1016/j.neulet.2015.05.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 01/16/2023]
Abstract
Synapses mediate information flow between neurons and undergo plastic changes in response to experience, which is critical for learning and memory. Conversely, synaptic defects impair information processing and underlie many brain pathologies. Rho-family GTPases control synaptogenesis by transducing signals from extracellular stimuli to the cytoskeleton and nucleus. The Rho-GTPases Rac1 and Cdc42 promote synapse development and the growth of axons and dendrites, while RhoA antagonizes these processes. Despite its importance, many aspects of Rho-GTPase signaling remain relatively unknown. Rho-GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). Though the number of both GEFs and GAPs greatly exceeds that of Rho-GTPases, loss of even a single GEF or GAP often has profound effects on cognition and behavior. Here, we explore how the actions of specific GEFs and GAPs give rise to the precise spatiotemporal activation patterns of Rho-GTPases in neurons. We consider the effects of coupling GEFs and GAPs targeting the same Rho-GTPase and the modular pathways that connect specific cellular stimuli with a given Rho-GTPase via different GEFs. We discuss how the creation of sharp borders between Rho-GTPase activation zones is achieved by pairing a GEF for one Rho-GTPase with a GAP for another and the extensive crosstalk between different Rho-GTPases. Given the importance of synapses for cognition and the fundamental roles that Rho-GTPases play in regulating them, a detailed understanding of Rho-GTPase signaling is essential to the progress of neuroscience.
Collapse
Affiliation(s)
- Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yen-Kuei Tu
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program,Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jinxuan X Cheng
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program,Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
52
|
Matsui T, Watanabe T, Matsuzawa K, Kakeno M, Okumura N, Sugiyama I, Itoh N, Kaibuchi K. PAR3 and aPKC regulate Golgi organization through CLASP2 phosphorylation to generate cell polarity. Mol Biol Cell 2014; 26:751-61. [PMID: 25518939 PMCID: PMC4325844 DOI: 10.1091/mbc.e14-09-1382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A PAR complex (PAR3, PAR6, and aPKC) plays a central role in the establishment of cell polarity. Another polarity protein, CLASP2, binds directly with PAR3 and is phosphorylated by aPKC. Through CLASP2 phosphorylation, aPKC and PAR3 regulate the localization of CLASP2 to the trans-Golgi network, thereby controlling the Golgi organization. The organization of the Golgi apparatus is essential for cell polarization and its maintenance. The polarity regulator PAR complex (PAR3, PAR6, and aPKC) plays critical roles in several processes of cell polarization. However, how the PAR complex participates in regulating the organization of the Golgi remains largely unknown. Here we demonstrate the functional cross-talk of the PAR complex with CLASP2, which is a microtubule plus-end–tracking protein and is involved in organizing the Golgi ribbon. CLASP2 directly interacted with PAR3 and was phosphorylated by aPKC. In epithelial cells, knockdown of either PAR3 or aPKC induced the aberrant accumulation of CLASP2 at the trans-Golgi network (TGN) concomitantly with disruption of the Golgi ribbon organization. The expression of a CLASP2 mutant that inhibited the PAR3-CLASP2 interaction disrupted the organization of the Golgi ribbon. CLASP2 is known to localize to the TGN through its interaction with the TGN protein GCC185. This interaction was inhibited by the aPKC-mediated phosphorylation of CLASP2. Furthermore, the nonphosphorylatable mutant enhanced the colocalization of CLASP2 with GCC185, thereby perturbing the Golgi organization. On the basis of these observations, we propose that PAR3 and aPKC control the organization of the Golgi through CLASP2 phosphorylation.
Collapse
Affiliation(s)
- Toshinori Matsui
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kenji Matsuzawa
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mai Kakeno
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Nobumasa Okumura
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ikuko Sugiyama
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Norimichi Itoh
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
53
|
Chen K, Zhang W, Chen J, Li S, Guo G. Rho-associated protein kinase modulates neurite extension by regulating microtubule remodeling and vinculin distribution. Neural Regen Res 2014; 8:3027-35. [PMID: 25206623 PMCID: PMC4146208 DOI: 10.3969/j.issn.1673-5374.2013.32.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/25/2013] [Indexed: 01/11/2023] Open
Abstract
Rho-associated protein kinase is an essential regulator of cytoskeletal dynamics during the process of neurite extension. However, whether Rho kinase regulates microtubule remodeling or the distribution of adhesive proteins to mediate neurite outgrowth remains unclear. By specifically modulating Rho kinase activity with pharmacological agents, we studied the morpho-dynamics of neurite outgrowth. We found that lysophosphatidic acid, an activator of Rho kinase, inhibited neurite outgrowth, which could be reversed by Y-27632, an inhibitor of Rho kinase. Meanwhile, reorganization of microtubules was noticed during these processes, as indicated by their significant changes in the soma and growth cone. In addition, exposure to lysophosphatidic acid led to a decreased membrane distribution of vinculin, a focal adhesion protein in neurons, whereas Y-27632 recruited vinculin to the membrane. Taken together, our data suggest that Rho kinase regulates rat hippocampal neurite growth and microtubule formation via a mechanism associated with the redistribution of vinculin.
Collapse
Affiliation(s)
- Ke'en Chen
- Department of Neurosurgery, First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Wenbin Zhang
- Department of Emergency, First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Jing Chen
- Department of Anatomy, Medical College of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Sumei Li
- Department of Anatomy, Medical College of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Guoqing Guo
- Department of Anatomy, Medical College of Jinan University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
54
|
Crespo CL, Vernieri C, Keller PJ, Garrè M, Bender JR, Wittbrodt J, Pardi R. The PAR complex controls the spatiotemporal dynamics of F-actin and the MTOC in directionally migrating leukocytes. J Cell Sci 2014; 127:4381-95. [PMID: 25179599 PMCID: PMC4197085 DOI: 10.1242/jcs.146217] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inflammatory cells acquire a polarized phenotype to migrate towards sites of infection or injury. A conserved polarity complex comprising PAR-3, PAR-6 and atypical protein kinase C (aPKC) relays extracellular polarizing cues to control cytoskeletal and signaling networks affecting morphological and functional polarization. However, there is no evidence that myeloid cells use PAR signaling to migrate vectorially in three-dimensional (3D) environments in vivo. Using genetically encoded bioprobes and high-resolution live imaging, we reveal the existence of F-actin oscillations in the trailing edge and constant repositioning of the microtubule organizing center (MTOC) to direct leukocyte migration in wounded medaka fish larvae (Oryzias latipes). Genetic manipulation in live myeloid cells demonstrates that the catalytic activity of aPKC and the regulated interaction with PAR-3 and PAR-6 are required for consistent F-actin oscillations, MTOC perinuclear mobility, aPKC repositioning and wound-directed migration upstream of Rho kinase (also known as ROCK or ROK) activation. We propose that the PAR complex coordinately controls cytoskeletal changes affecting both the generation of traction force and the directionality of leukocyte migration to sites of injury.
Collapse
Affiliation(s)
- Carolina Lage Crespo
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Vernieri
- IFOM Foundation, Institute FIRC of Molecular Oncology, 20139 Milan, Italy
| | - Philipp J Keller
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, 20147 VI, USA
| | - Massimiliano Garrè
- IFOM Foundation, Institute FIRC of Molecular Oncology, 20139 Milan, Italy
| | - Jeffrey R Bender
- Department of Medicine, Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University, New Haven, 06511 CT, USA
| | - Joachim Wittbrodt
- Center for Organismal Studies Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ruggero Pardi
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy
| |
Collapse
|
55
|
Etienne-Manneville S. Neighborly relations during collective migration. Curr Opin Cell Biol 2014; 30:51-9. [PMID: 24997300 DOI: 10.1016/j.ceb.2014.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
The collective migration of sheets, cohorts, chains or streams of cells contributes to embryogenesis, tissue remodeling and repair as well as to cancer invasion. The functional coordination between neighboring cells is at the heart of collective migration, during which cells migrate with a similar speed in an identical direction. Far from being the result of the simultaneous migration of isolated cells, collective migration relies on the intercellular communication between migrating cells. Although the mechanisms of cell coordination are far from being completely understood, accumulated evidence show that exchange of mechanical and chemical information by direct intercellular contacts and by soluble extracellular signals orchestrate the coordinated behavior of collectively migrating cells.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur - CNRS URA 2582, Cell Polarity, Migration and Cancer Unit, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
56
|
Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Dev Biol 2014; 394:142-55. [PMID: 24997360 DOI: 10.1016/j.ydbio.2014.06.023] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/21/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022]
Abstract
Specification of the trophectoderm (TE) and inner cell mass (ICM) lineages in the mouse blastocyst correlates with cell position, as TE derives from outer cells whereas ICM from inner cells. Differences in position are reflected by cell polarization and Hippo signaling. Only in outer cells, the apical-basal cell polarity is established, and Hippo signaling is inhibited in such a manner that LATS1 and 2 (LATS1/2) kinases are prevented from phosphorylating YAP, a key transcriptional co-activator of the TE-specifying gene Cdx2. However, the molecular mechanisms that regulate these events are not fully understood. Here, we showed that inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling and disruption of apical-basal polarity. Embryos treated with ROCK inhibitor Y-27632 exhibited elevated expression of ICM marker NANOG and reduced expression of CDX2 at the blastocyst stage. Y-27632-treated embryos failed to accumulate YAP in the nucleus, although it was rescued by concomitant inhibition of LATS1/2. Segregation between apical and basal polarity regulators, namely PARD6B, PRKCZ, SCRIB, and LLGL1, was dampened by Y-27632 treatment, whereas some of the polarization events at the late 8-cell stage such as compaction and apical localization of p-ERM and tyrosinated tubulin occurred normally. Similar abnormalities of Hippo signaling and apical-basal polarization were also observed in embryos that were treated with RHO GTPases inhibitor. These results suggest that RHO-ROCK signaling plays an essential role in regulating Hippo signaling and cell polarization to enable proper specification of the ICM and TE lineages.
Collapse
|
57
|
Yang R, Kong E, Jin J, Hergovich A, Püschel AW. Rassf5 and Ndr kinases regulate neuronal polarity through Par3 phosphorylation in a novel pathway. J Cell Sci 2014; 127:3463-76. [PMID: 24928906 DOI: 10.1242/jcs.146696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The morphology and polarized growth of cells depend on pathways that control the asymmetric distribution of regulatory factors. The evolutionarily conserved Ndr kinases play important roles in cell polarity and morphogenesis in yeast and invertebrates but it is unclear whether they perform a similar function in mammalian cells. Here, we analyze the function of mammalian Ndr1 and Ndr2 (also known as STK38 or STK38L, respectively) in the establishment of polarity in neurons. We show that they act downstream of the tumor suppressor Rassf5 and upstream of the polarity protein Par3 (also known as PARD3). Rassf5 and Ndr1 or Ndr2 are required during the polarization of hippocampal neurons to prevent the formation of supernumerary axons. Mechanistically, the Ndr kinases act by phosphorylating Par3 at Ser383 to inhibit its interaction with dynein, thereby polarizing the distribution of Par3 and reinforcing axon specification. Our results identify a novel Rassf5-Ndr-Par3 signaling cascade that regulates the transport of Par3 during the establishment of neuronal polarity. Their role in neuronal polarity suggests that Ndr kinases perform a conserved function as regulators of cell polarity.
Collapse
Affiliation(s)
- Rui Yang
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Schloßplatz 5, D-48149 Münster, Germany
| | - Eryan Kong
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Schloßplatz 5, D-48149 Münster, Germany
| | - Jing Jin
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Schloßplatz 5, D-48149 Münster, Germany
| | | | - Andreas W Püschel
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Schloßplatz 5, D-48149 Münster, Germany Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany
| |
Collapse
|
58
|
Abstract
The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle trafficking, and the cell cycle. The roles of Rho GTPases in single mesenchymal cell migration are well established and rely on Cdc42- and Rac-dependent cell protrusion of a leading edge, coupled to Rho-dependent contractility required to move the cell body forward. In cells migrating collectively, cell-cell junctions are maintained, and migrating leader cells are mechanically coupled to, and coordinate, migration with follower cells. Recent evidence suggests that Rho GTPases provide multifunctional input to collective cell polarization, cell-cell interaction, and migration. Here, we discuss the role of Rho GTPases in initiating and maintaining front-rear, apical-basal cell polarization, mechanotransduction, and cell-cell junction stability between leader and follower cells, and how these roles are integrated in collective migration. Thereby, spatiotemporal fine-tuning of Rho GTPases within the same cell and among cells in the cell group are crucial in controlling potentially conflicting, divergent cell adhesion and cytoskeletal functions to achieve supracellular coordination and mechanocoupling.
Collapse
Affiliation(s)
- Mirjam M Zegers
- Department of Cell Biology; Radboud University Medical Center; Nijmegen, the Netherlands
| | - Peter Friedl
- Department of Cell Biology; Radboud University Medical Center; Nijmegen, the Netherlands; David H. Koch Center for Applied Research of Genitourinary Cancers; Department of Genitourinary Medical Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; Cancer Genomics Centre Netherlands; Utrecht, the Netherlands
| |
Collapse
|
59
|
Binamé F. Transduction of extracellular cues into cell polarity: the role of the transmembrane proteoglycan NG2. Mol Neurobiol 2014; 50:482-93. [PMID: 24390567 DOI: 10.1007/s12035-013-8610-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/08/2013] [Indexed: 01/23/2023]
Abstract
Resident progenitor cells expressing nerve/glial antigen 2 (NG2) such as oligodendrocyte precursor cells (OPC) and pericytes persist in the adult brain. The transmembrane proteoglycan NG2 regulates migration of both these cell types in response to growth factors or specific components of the extracellular matrix. This role of NG2 is linked to the control of cell polarity. The polarization of OPC toward an acute lesion in the brain is impaired in NG2-deficient mice, supporting this concept. A review of the signaling pathways impinged on by NG2 reveals key proteins of cell polarity: phosphatidylinositol 3-kinase, focal adhesion kinase, Rho GTPases, and polarity complex proteins. In the scope of cell migration, I discuss here how the interplay of NG2 with signaling transmitted by extracellular cues can control the establishment of cell polarity, and I propose a model to integrate the apparent opposite effects of NG2 on cellular dynamics.
Collapse
Affiliation(s)
- Fabien Binamé
- Molecular Cell Biology, Department of Biology, Johannes Gutenberg University of Mainz, Mainz, Germany,
| |
Collapse
|
60
|
Gu X, Meng S, Liu S, Jia C, Fang Y, Li S, Fu C, Song Q, Lin L, Wang X. miR-124 represses ROCK1 expression to promote neurite elongation through activation of the PI3K/Akt signal pathway. J Mol Neurosci 2013; 52:156-65. [PMID: 24338057 DOI: 10.1007/s12031-013-0190-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/18/2013] [Indexed: 12/22/2022]
Abstract
Recent studies have demonstrated an important role for miR-124, the most abundant and well-conserved brain-specific microRNA(miRNA), in promoting neurite outgrowth and elongation during neuronal differentiation. This miRNA's target genes and the mechanisms that execute this role remain unclear. In this study, we identified ROCK1, a small GTPase Rho kinase, as a direct target of miR-124 for regulating neurite elongation. miR-124 significantly inhibited ROCK1 expression in M17 cells. Inhibiting ROCK1 promoted neurite elongation, and the overexpression of ROCK1 strongly repressed the neurite elongation-enhancing effect of miR-124 in M17 cells. We determined that Akt functions as a novel ROCK1 downstream effector in regulating neurite outgrowth and elongation.
Collapse
Affiliation(s)
- Xi Gu
- Department of Neurobiology, Southern Medical University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Moore R, Theveneau E, Pozzi S, Alexandre P, Richardson J, Merks A, Parsons M, Kashef J, Linker C, Mayor R. Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion. Development 2013; 140:4763-75. [PMID: 24173803 DOI: 10.1242/dev.098509] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is growing evidence that contact inhibition of locomotion (CIL) is essential for morphogenesis and its failure is thought to be responsible for cancer invasion; however, the molecular bases of this phenomenon are poorly understood. Here we investigate the role of the polarity protein Par3 in CIL during migration of the neural crest, a highly migratory mesenchymal cell type. In epithelial cells, Par3 is localised to the cell-cell adhesion complex and is important in the definition of apicobasal polarity, but the localisation and function of Par3 in mesenchymal cells are not well characterised. We show in Xenopus and zebrafish that Par3 is localised to the cell-cell contact in neural crest cells and is essential for CIL. We demonstrate that the dynamics of microtubules are different in different parts of the cell, with an increase in microtubule catastrophe at the collision site during CIL. Par3 loss-of-function affects neural crest migration by reducing microtubule catastrophe at the site of cell-cell contact and abrogating CIL. Furthermore, Par3 promotes microtubule catastrophe by inhibiting the Rac-GEF Trio, as double inhibition of Par3 and Trio restores microtubule catastrophe at the cell contact and rescues CIL and neural crest migration. Our results demonstrate a novel role of Par3 during neural crest migration, which is likely to be conserved in other processes that involve CIL such as cancer invasion or cell dispersion.
Collapse
Affiliation(s)
- Rachel Moore
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
Axon formation is one of the most important events in neuronal polarization and is regulated by signaling molecules involved in cytoskeletal rearrangement and protein transport. We previously found that Partition-defective 3 (Par3) is associated with KIF3A (kinesin-2) and is transported into the nascent axon in a KIF3A-dependent fashion. Par3 interacts with the Rac-specific guanine nucleotide-exchange factors (GEFs) Tiam1/2, which activate Rac1, and participates in axon formation in cultured hippocampal neurons. However, the regulatory mechanism of the Par3-KIF3A interaction is poorly understood, and the role of Par3 in neuronal polarization in vivo remains elusive. Here, we found that extracellular signal-regulated kinase 2 (ERK2) directly interacts with Par3, that ERK2 phosphorylates Par3 at Ser-1116, and that the phosphorylated Par3 accumulates at the axonal tips in a manner dependent upon ERK2 activity. The phosphorylation of Par3 by ERK2 inhibited the interaction of Par3 with KIF3A but not with the other Par3 partners, including Par6 and aPKC. The phosphomimic mutant of Par3 (Par3-S1116D) showed less binding activity with the KIF3s and slower transport in the axons. The knockdown of Par3 by RNA interference impaired neuronal polarization, which was rescued with RNAi-resistant Par3, but not with the phosphomimic Par3 mutant, in cultured rat hippocampal neurons and mouse cortical projection neurons in vivo. These results suggest that ERK2 phosphorylates Par3 and inhibits its binding with KIF3A, thereby controlling Par3 transport and neuronal polarity.
Collapse
|
63
|
Narayanan AS, Reyes SB, Um K, McCarty JH, Tolias KF. The Rac-GAP Bcr is a novel regulator of the Par complex that controls cell polarity. Mol Biol Cell 2013; 24:3857-68. [PMID: 24152735 PMCID: PMC3861082 DOI: 10.1091/mbc.e13-06-0333] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The Par complex (Par3, Par6, and PKCζ) controls cell polarity, which is essential for many biological processes. Here we identify the Rac1 GTPase-activating protein Bcr as an integral member of the Par complex that regulates polarized cell migration by locally restricting both Rac1 and PKCζ function. Cell polarization is essential for many biological processes, including directed cell migration, and loss of polarity contributes to pathological conditions such as cancer. The Par complex (Par3, Par6, and PKCζ) controls cell polarity in part by recruiting the Rac-specific guanine nucleotide exchange factor T-lymphoma invasion and metastasis 1 (Tiam1) to specialized cellular sites, where Tiam1 promotes local Rac1 activation and cytoskeletal remodeling. However, the mechanisms that restrict Par-Tiam1 complex activity to the leading edge to maintain cell polarity during migration remain unclear. We identify the Rac-specific GTPase-activating protein (GAP) breakpoint cluster region protein (Bcr) as a novel regulator of the Par-Tiam1 complex. We show that Bcr interacts with members of the Par complex and inhibits both Rac1 and PKCζ signaling. Loss of Bcr results in faster, more random migration and striking polarity defects in astrocytes. These polarity defects are rescued by reducing PKCζ activity or by expressing full-length Bcr, but not an N-terminal deletion mutant or the homologous Rac-GAP, Abr, both of which fail to associate with the Par complex. These results demonstrate that Bcr is an integral member of the Par-Tiam1 complex that controls polarized cell migration by locally restricting both Rac1 and PKCζ function.
Collapse
Affiliation(s)
- Anjana S Narayanan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030 Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | | | | | | | | |
Collapse
|
64
|
Bulgakova NA, Grigoriev I, Yap AS, Akhmanova A, Brown NH. Dynamic microtubules produce an asymmetric E-cadherin-Bazooka complex to maintain segment boundaries. ACTA ACUST UNITED AC 2013; 201:887-901. [PMID: 23751496 PMCID: PMC3678168 DOI: 10.1083/jcb.201211159] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Distributing junctional components around the cell periphery is key for epithelial tissue morphogenesis and homeostasis. We discovered that positioning of dynamic microtubules controls the asymmetric accumulation of E-cadherin. Microtubules are oriented preferentially along the dorso-ventral axis in Drosophila melanogaster embryonic epidermal cells, and thus more frequently contact E-cadherin at dorso-ventral cell-cell borders. This inhibits RhoGEF2, reducing membrane recruitment of Rho-kinase, and increasing a specific E-cadherin pool that is mobile when assayed by fluorescence recovery after photobleaching. This mobile E-cadherin is complexed with Bazooka/Par-3, which in turn is required for normal levels of mobile E-cadherin. Mobile E-cadherin-Bazooka prevents formation of multicellular rosette structures and cell motility across the segment border in Drosophila embryos. Altogether, the combined action of dynamic microtubules and Rho signaling determines the level and asymmetric distribution of a mobile E-cadherin-Bazooka complex, which regulates cell behavior during the generation of a patterned epithelium.
Collapse
Affiliation(s)
- Natalia A Bulgakova
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, England, UK
| | | | | | | | | |
Collapse
|
65
|
Kamakura S, Nomura M, Hayase J, Iwakiri Y, Nishikimi A, Takayanagi R, Fukui Y, Sumimoto H. The cell polarity protein mInsc regulates neutrophil chemotaxis via a noncanonical G protein signaling pathway. Dev Cell 2013; 26:292-302. [PMID: 23891662 DOI: 10.1016/j.devcel.2013.06.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/07/2013] [Accepted: 06/07/2013] [Indexed: 12/15/2022]
Abstract
Successful chemotaxis requires not only increased motility but also sustained directionality. Here, we show that, during neutrophil chemotaxis via receptors coupled with the Gi family of heterotrimeric G proteins, directional movement is regulated by mInsc, a mammalian protein distantly related to the Drosophila polarity-organizer Inscuteable. The GDP-bound, Gβγ-free Gαi subunit accumulates at the front of chemotaxing neutrophils to recruit mInsc-complexed with the Par3-aPKC evolutionarily conserved polarity complex-via LGN/AGS3 that simultaneously binds to Gαi-GDP and mInsc. Both mInsc-deficient and aPKC-blocked neutrophils exhibit a normal motile activity but migrate in an undirected manner. mInsc deficiency prevents neutrophils from efficiently stabilizing pseudopods at the leading edge; the stability is restored by wild-type mInsc, but not by a mutant protein defective in binding to LGN/AGS3. Thus, mInsc controls directional migration via noncanonical G protein signaling, in which Gβγ-free Gαi-GDP, a product from Gαi-GTP released after receptor activation, plays a central role.
Collapse
Affiliation(s)
- Sachiko Kamakura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Li XX, Chen SR, Shen B, Yang JL, Ji SY, Wen Q, Zheng QS, Li L, Zhang J, Hu ZY, Huang XX, Liu YX. The Heat-Induced Reversible Change in the Blood-Testis Barrier (BTB) Is Regulated by the Androgen Receptor (AR) via the Partitioning-Defective Protein (Par) Polarity Complex in the Mouse1. Biol Reprod 2013; 89:12. [DOI: 10.1095/biolreprod.113.109405] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
67
|
Schofield AV, Bernard O. Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem Mol Biol 2013; 48:301-16. [PMID: 23601011 DOI: 10.3109/10409238.2013.786671] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small Rho GTPase family of proteins, encompassing the three major G-protein classes Rho, Rac and cell division control protein 42, are key mitogenic signaling molecules that regulate multiple cancer-associated cellular phenotypes including cell proliferation and motility. These proteins are known for their role in the regulation of actin cytoskeletal dynamics, which is achieved through modulating the activity of their downstream effector molecules. The Rho-associated coiled-coil kinase 1 and 2 (ROCK1 and ROCK2) proteins were the first discovered Rho effectors that were primarily established as players in RhoA-mediated stress fiber formation and focal adhesion assembly. It has since been discovered that the ROCK kinases actively phosphorylate a large cohort of actin-binding proteins and intermediate filament proteins to modulate their functions. It is well established that global cellular morphology, as modulated by the three cytoskeletal networks: actin filaments, intermediate filaments and microtubules, is regulated by a variety of accessory proteins whose activities are dependent on their phosphorylation by the Rho-kinases. As a consequence, they regulate many key cellular functions associated with malignancy, including cell proliferation, motility and viability. In this current review, we focus on the role of the ROCK-signaling pathways in disease including cancer.
Collapse
Affiliation(s)
- Alice V Schofield
- St Vincent's Institute of Medical Research, Cytoskeleton and Cancer Unit and Department of Medicine, St Vincent's Hospital, University of Melbourne, Victoria 3065, Australia
| | | |
Collapse
|
68
|
Atypical protein kinase C and Par3 are required for proteoglycan-induced axon growth inhibition. J Neurosci 2013; 33:2541-54. [PMID: 23392682 DOI: 10.1523/jneurosci.3154-12.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
When the CNS is injured, damaged axons do not regenerate. This failure is due in part to the growth-inhibitory environment that forms at the injury site. Myelin-associated molecules, repulsive axon guidance molecules, and extracellular matrix molecules including chondroitin sulfate proteoglycans (CSPGs) found within the glial scar inhibit axon regeneration but the intracellular signaling mechanisms triggered by these diverse molecules remain largely unknown. Here we provide biochemical and functional evidence that atypical protein kinase C (PKCζ) and polarity (Par) complex proteins mediate axon growth inhibition. Treatment of postnatal rat neurons in vitro with the NG2 CSPG, a major component of the glial scar, activates PKCζ, and this activation is both necessary and sufficient to inhibit axonal growth. NG2 treatment also activates Cdc42, increases the association of Par6 with PKCζ, and leads to a Par3-dependent activation of Rac1. Transfection of neurons with kinase-dead forms of PKCζ, dominant-negative forms of Cdc42, or mutant forms of Par6 that do not bind to Cdc42 prevent NG2-induced growth inhibition. Similarly, transfection with either a phosphomutant Par3 (S824A) or dominant-negative Rac1 prevent inhibition, whereas expression of constitutively active Rac1 inhibits axon growth on control surfaces. These results suggest a model in which NG2 binding to neurons activates PKCζ and modifies Par complex function. They also identify the Par complex as a novel therapeutic target for promoting axon regeneration after CNS injury.
Collapse
|
69
|
Nakayama M, Berger P. Coordination of VEGF receptor trafficking and signaling by coreceptors. Exp Cell Res 2013; 319:1340-7. [PMID: 23499743 DOI: 10.1016/j.yexcr.2013.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/25/2013] [Accepted: 03/02/2013] [Indexed: 02/01/2023]
Abstract
During development, regeneration and in certain pathological settings, the vasculature is expanded and remodeled substantially. Proper morphogenesis and function of blood vessels are essential in multicellular organisms. Upon stimulation with growth factors including vascular endothelial growth factors (VEGFs), the activation, internalization and sorting of receptor tyrosine kinases (RTKs) orchestrate developmental processes and the homeostatic maintenance of all organs including the vasculature. Previously, RTK signaling was thought to occur exclusively at the plasma membrane, a process that was subsequently terminated by endocytosis and receptor degradation. However, this model turned out to be an oversimplification and there is now a substantial amount of reports indicating that receptor internalization and trafficking to intracellular compartments depends on coreceptors leading to the activation of specific signaling pathways. Here we review the latest findings concerning endocytosis and intracellular trafficking of VEGFRs. The body of evidence is compelling that VEGF receptor trafficking is coordinated with other proteins such as Neuropilin-1, ephrin-B2, VE-cadherin and protein phosphatases.
Collapse
Affiliation(s)
- Masanori Nakayama
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, D-48149 Münster, Germany
| | | |
Collapse
|
70
|
Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat Cell Biol 2013; 15:249-60. [PMID: 23354168 DOI: 10.1038/ncb2679] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 12/13/2012] [Indexed: 02/07/2023]
Abstract
Activities as diverse as migration, proliferation and patterning occur simultaneously and in a coordinated fashion during tissue morphogenesis. In the growing vasculature, the formation of motile, invasive and filopodia-carrying endothelial sprouts is balanced with the stabilization of blood-transporting vessels. Here, we show that sprouting endothelial cells in the retina have high rates of VEGF uptake, VEGF receptor endocytosis and turnover. These internalization processes are opposed by atypical protein kinase C activity in more stable and mature vessels. aPKC phosphorylates Dab2, a clathrin-associated sorting protein that, together with the transmembrane protein ephrin-B2 and the cell polarity regulator PAR-3, enables VEGF receptor endocytosis and downstream signal transduction. Accordingly, VEGF receptor internalization and the angiogenic growth of vascular beds are defective in loss-of-function mice lacking key components of this regulatory pathway. Our work uncovers how vessel growth is dynamically controlled by local VEGF receptor endocytosis and the activity of cell polarity proteins.
Collapse
|
71
|
Wang S, Watanabe T, Matsuzawa K, Katsumi A, Kakeno M, Matsui T, Ye F, Sato K, Murase K, Sugiyama I, Kimura K, Mizoguchi A, Ginsberg MH, Collard JG, Kaibuchi K. Tiam1 interaction with the PAR complex promotes talin-mediated Rac1 activation during polarized cell migration. ACTA ACUST UNITED AC 2013; 199:331-45. [PMID: 23071154 PMCID: PMC3471226 DOI: 10.1083/jcb.201202041] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The PAR complex targets Tiam1 to adhesions, where it interacts with talin to promote adhesion-induced Rac1 activation, cell spreading, and migration. Migrating cells acquire front-rear polarity with a leading edge and a trailing tail for directional movement. The Rac exchange factor Tiam1 participates in polarized cell migration with the PAR complex of PAR3, PAR6, and atypical protein kinase C. However, it remains largely unknown how Tiam1 is regulated and contributes to the establishment of polarity in migrating cells. We show here that Tiam1 interacts directly with talin, which binds and activates integrins to mediate their signaling. Tiam1 accumulated at adhesions in a manner dependent on talin and the PAR complex. The interactions of talin with Tiam1 and the PAR complex were required for adhesion-induced Rac1 activation, cell spreading, and migration toward integrin substrates. Furthermore, Tiam1 acted with talin to regulate adhesion turnover. Thus, we propose that Tiam1, with the PAR complex, binds to integrins through talin and, together with the PAR complex, thereby regulates Rac1 activity and adhesion turnover for polarized migration.
Collapse
Affiliation(s)
- Shujie Wang
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Spiga FM, Prouteau M, Gotta M. The TAO kinase KIN-18 regulates contractility and establishment of polarity in the C. elegans embryo. Dev Biol 2013; 373:26-38. [DOI: 10.1016/j.ydbio.2012.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 09/15/2012] [Accepted: 10/01/2012] [Indexed: 01/12/2023]
|
73
|
Masaki T. Polarization and myelination in myelinating glia. ISRN NEUROLOGY 2012; 2012:769412. [PMID: 23326681 PMCID: PMC3544266 DOI: 10.5402/2012/769412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/13/2012] [Indexed: 01/13/2023]
Abstract
Myelinating glia, oligodendrocytes in central nervous system and Schwann cells in peripheral nervous system, form myelin sheath, a multilayered membrane system around axons enabling salutatory nerve impulse conduction and maintaining axonal integrity. Myelin sheath is a polarized structure localized in the axonal side and therefore is supposed to be formed based on the preceding polarization of myelinating glia. Thus, myelination process is closely associated with polarization of myelinating glia. However, cell polarization has been less extensively studied in myelinating glia than other cell types such as epithelial cells. The ultimate goal of this paper is to provide insights for the field of myelination research by applying the information obtained in polarity study in other cell types, especially epithelial cells, to cell polarization of myelinating glia. Thus, in this paper, the main aspects of cell polarization study in general are summarized. Then, they will be compared with polarization in oligodendrocytes. Finally, the achievements obtained in polarization study for epithelial cells, oligodendrocytes, and other types of cells will be translated into polarization/myelination process by Schwann cells. Then, based on this model, the perspectives in the study of Schwann cell polarization/myelination will be discussed.
Collapse
Affiliation(s)
- Toshihiro Masaki
- Department of Medical Science, Teikyo University of Science, 2-2-1 Senju-Sakuragi, Adachi-ku, Tokyo 120-0045, Japan
| |
Collapse
|
74
|
On the role of PDZ domain-encoding genes in Drosophila border cell migration. G3-GENES GENOMES GENETICS 2012; 2:1379-91. [PMID: 23173089 PMCID: PMC3484668 DOI: 10.1534/g3.112.004093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/10/2012] [Indexed: 12/31/2022]
Abstract
Cells often move as collective groups during normal embryonic development and wound healing, although the mechanisms governing this type of migration are poorly understood. The Drosophila melanogaster border cells migrate as a cluster during late oogenesis and serve as a powerful in vivo genetic model for collective cell migration. To discover new genes that participate in border cell migration, 64 out of 66 genes that encode PDZ domain-containing proteins were systematically targeted by in vivo RNAi knockdown. The PDZ domain is one of the largest families of protein-protein interaction domains found in eukaryotes. Proteins that contain PDZ domains participate in a variety of biological processes, including signal transduction and establishment of epithelial apical-basal polarity. Targeting PDZ proteins effectively assesses a larger number of genes via the protein complexes and pathways through which these proteins function. par-6, a known regulator of border cell migration, was a positive hit and thus validated the approach. Knockdown of 14 PDZ domain genes disrupted migration with multiple RNAi lines. The candidate genes have diverse predicted cellular functions and are anticipated to provide new insights into the mechanisms that control border cell movement. As a test of this concept, two genes that disrupted migration were characterized in more detail: big bang and the Dlg5 homolog CG6509. We present evidence that Big bang regulates JAK/STAT signaling, whereas Dlg5/CG6509 maintains cluster cohesion. Moreover, these results demonstrate that targeting a selected class of genes by RNAi can uncover novel regulators of collective cell migration.
Collapse
|
75
|
Gonzalez-Billault C, Muñoz-Llancao P, Henriquez DR, Wojnacki J, Conde C, Caceres A. The role of small GTPases in neuronal morphogenesis and polarity. Cytoskeleton (Hoboken) 2012; 69:464-85. [PMID: 22605667 DOI: 10.1002/cm.21034] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 12/21/2022]
Abstract
The highly dynamic remodeling and cross talk of the microtubule and actin cytoskeleton support neuronal morphogenesis. Small RhoGTPases family members have emerged as crucial regulators of cytoskeletal dynamics. In this review we will comprehensively analyze findings that support the participation of RhoA, Rac, Cdc42, and TC10 in different neuronal morphogenetic events ranging from migration to synaptic plasticity. We will specifically address the contribution of these GTPases to support neuronal polarity and axonal elongation.
Collapse
Affiliation(s)
- Christian Gonzalez-Billault
- Faculty of Sciences, Laboratory of Cell and Neuronal Dynamics, Department of Biology and Institute for Cell Dynamics and Biotechnology, Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
76
|
Abstract
A key function of signal transduction during cell polarization is the creation of spatially segregated regions of the cell cortex that possess different lipid and protein compositions and have distinct functions. Polarity can be initiated spontaneously or in response to signaling inputs from adjacent cells or soluble factors and is stabilized by positive-feedback loops. A conserved group of proteins, the Par proteins, plays a central role in polarity establishment and maintenance in many contexts. These proteins generate and maintain their distinct locations in cells by actively excluding one another from specific regions of the plasma membrane. The Par signaling pathway intersects with multiple other pathways that control cell growth, death, and organization.
Collapse
Affiliation(s)
- Luke Martin McCaffrey
- Department of Oncology, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
77
|
The Dishevelled-associating protein Daple controls the non-canonical Wnt/Rac pathway and cell motility. Nat Commun 2012; 3:859. [PMID: 22643886 DOI: 10.1038/ncomms1861] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/23/2012] [Indexed: 12/20/2022] Open
Abstract
Dishevelled is the common mediator of canonical and non-canonical Wnt signalling pathways, which are important for embryonic development, tissue maintenance and cancer progression. In the non-canonical Wnt signalling pathway, the Rho family of small GTPases acting downstream of Dishevelled has essential roles in cell migration. The mechanisms by which the non-canonical Wnt signalling pathway regulates Rac activation remain unknown. Here we show that Daple (Dishevelled-associating protein with a high frequency of leucine residues) regulates Wnt5a-mediated activation of Rac and formation of lamellipodia through interaction with Dishevelled. Daple increases the association of Dishevelled with an isoform of atypical protein kinase C, consequently promoting Rac activation. Accordingly, Daple deficiency impairs migration of fibroblasts and epithelial cells during wound healing in vivo. These findings indicate that Daple interacts with Dishevelled to direct the Dishevelled/protein kinase λ protein complex to activate Rac, which in turn mediates the non-canonical Wnt signalling pathway required for cell migration.
Collapse
|
78
|
Kato K, Yazawa T, Taki K, Mori K, Wang S, Nishioka T, Hamaguchi T, Itoh T, Takenawa T, Kataoka C, Matsuura Y, Amano M, Murohara T, Kaibuchi K. The inositol 5-phosphatase SHIP2 is an effector of RhoA and is involved in cell polarity and migration. Mol Biol Cell 2012; 23:2593-604. [PMID: 22593208 PMCID: PMC3386222 DOI: 10.1091/mbc.e11-11-0958] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Polarization in motile cells requires the coordination of several key signaling molecules, including RhoA small GTPases and phosphoinositides. It is found that SHIP2 interacts with RhoA in a GTP-dependent manner and this interaction is required for proper localization of PI(3,4,5)P3 and regulation of cell polarization and migration. Cell migration is essential for various physiological and pathological processes. Polarization in motile cells requires the coordination of several key signaling molecules, including RhoA small GTPases and phosphoinositides. Although RhoA participates in a front–rear polarization in migrating cells, little is known about the functional interaction between RhoA and lipid turnover. We find here that src-homology 2–containing inositol-5-phosphatase 2 (SHIP2) interacts with RhoA in a GTP-dependent manner. The association between SHIP2 and RhoA is observed in spreading and migrating U251 glioma cells. The depletion of SHIP2 attenuates cell polarization and migration, which is rescued by wild-type SHIP2 but not by a mutant defective in RhoA binding. In addition, the depletion of SHIP2 impairs the proper localization of phosphatidylinositol 3,4,5-trisphosphate, which is not restored by a mutant defective in RhoA binding. These results suggest that RhoA associates with SHIP2 to regulate cell polarization and migration.
Collapse
Affiliation(s)
- Katsuhiro Kato
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Ohara K, Enomoto A, Kato T, Hashimoto T, Isotani-Sakakibara M, Asai N, Ishida-Takagishi M, Weng L, Nakayama M, Watanabe T, Kato K, Kaibuchi K, Murakumo Y, Hirooka Y, Goto H, Takahashi M. Involvement of Girdin in the determination of cell polarity during cell migration. PLoS One 2012; 7:e36681. [PMID: 22574214 PMCID: PMC3344933 DOI: 10.1371/journal.pone.0036681] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 04/05/2012] [Indexed: 02/05/2023] Open
Abstract
Cell migration is a critical cellular process that determines embryonic development and the progression of human diseases. Therefore, cell- or context-specific mechanisms by which multiple promigratory proteins differentially regulate cell migration must be analyzed in detail. Girdin (girders of actin filaments) (also termed GIV, Gα-interacting vesicle associated protein) is an actin-binding protein that regulates migration of various cells such as endothelial cells, smooth muscle cells, neuroblasts, and cancer cells. Here we show that Girdin regulates the establishment of cell polarity, the deregulation of which may result in the disruption of directional cell migration. We found that Girdin interacts with Par-3, a scaffolding protein that is a component of the Par protein complex that has an established role in determining cell polarity. RNA interference-mediated depletion of Girdin leads to impaired polarization of fibroblasts and mammary epithelial cells in a way similar to that observed in Par-3-depleted cells. Accordingly, the expression of Par-3 mutants unable to interact with Girdin abrogates cell polarization in fibroblasts. Further biochemical analysis suggests that Girdin is present in the Par protein complex that includes Par-3, Par-6, and atypical protein kinase C. Considering previous reports showing the role of Girdin in the directional migration of neuroblasts, network formation of endothelial cells, and cancer invasion, these data may provide a specific mechanism by which Girdin regulates cell movement in biological contexts that require directional cell movement.
Collapse
Affiliation(s)
- Kei Ohara
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Gastroenterology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail: (MT); (AE)
| | - Takuya Kato
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiko Hashimoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Naoya Asai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maki Ishida-Takagishi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Liang Weng
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanori Nakayama
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhiro Kato
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency, Saitama, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Hirooka
- Department of Endoscopy, Nagoya University Hospital, Nagoya, Japan
| | - Hidemi Goto
- Department of Gastroenterology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Endoscopy, Nagoya University Hospital, Nagoya, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail: (MT); (AE)
| |
Collapse
|
80
|
Ellenbroek SIJ, Iden S, Collard JG. Cell polarity proteins and cancer. Semin Cancer Biol 2012; 22:208-15. [PMID: 22465739 DOI: 10.1016/j.semcancer.2012.02.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 01/06/2023]
Abstract
Cell polarity is essential in many biological processes and required for development as well as maintenance of tissue integrity. Loss of polarity is considered both a hallmark and precondition for human cancer. Three conserved polarity protein complexes regulate different modes of polarity that are conserved throughout numerous cell types and species. These complexes are the Crumbs, Par and Scribble complex. Given the importance of cell polarity for normal tissue homeostasis, aberrant polarity signaling is suggested to contribute to the multistep processes of human cancer. Most human cancers are formed from epithelial cells. Evidence confirming the roles for polarity proteins in different phases of the oncogenic trajectory comes from functional studies using mammalian cells as well as Drosophila and zebrafish models. Furthermore, several reports have revealed aberrant expression and localization of polarity proteins in different human tumors. In this review we will give an overview on the current data available that couple polarity signaling to tumorigenesis, particularly in epithelial cells.
Collapse
Affiliation(s)
- Saskia I J Ellenbroek
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
81
|
Johnson JL, Monfregola J, Napolitano G, Kiosses WB, Catz SD. Vesicular trafficking through cortical actin during exocytosis is regulated by the Rab27a effector JFC1/Slp1 and the RhoA-GTPase-activating protein Gem-interacting protein. Mol Biol Cell 2012; 23:1902-16. [PMID: 22438581 PMCID: PMC3350554 DOI: 10.1091/mbc.e11-12-1001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mechanism of cytoskeleton remodeling during exocytosis is not well defined. A combination of vesicular dynamics and functional studies shows that the Rab27a effector JFC1 and the RhoA-GTPase–activating protein Gem-interacting protein are necessary for RhoA regulation, actin depolymerization, and vesicular transport through the actin cortex during exocytosis. Cytoskeleton remodeling is important for the regulation of vesicular transport associated with exocytosis, but a direct association between granular secretory proteins and actin-remodeling molecules has not been shown, and this mechanism remains obscure. Using a proteomic approach, we identified the RhoA-GTPase–activating protein Gem-interacting protein (GMIP) as a factor that associates with the Rab27a effector JFC1 and modulates vesicular transport and exocytosis. GMIP down-regulation induced RhoA activation and actin polymerization. Importantly, GMIP-down-regulated cells showed impaired vesicular transport and exocytosis, while inhibition of the RhoA-signaling pathway induced actin depolymerization and facilitated exocytosis. We show that RhoA activity polarizes around JFC1-containing secretory granules, suggesting that it may control directionality of granule movement. Using quantitative live-cell microscopy, we show that JFC1-containing secretory organelles move in areas near the plasma membrane deprived of polymerized actin and that dynamic vesicles maintain an actin-free environment in their surroundings. Supporting a role for JFC1 in RhoA inactivation and actin remodeling during exocytosis, JFC1 knockout neutrophils showed increased RhoA activity, and azurophilic granules were unable to traverse cortical actin in cells lacking JFC1. We propose that during exocytosis, actin depolymerization commences near the secretory organelle, not the plasma membrane, and that secretory granules use a JFC1- and GMIP-dependent molecular mechanism to traverse cortical actin.
Collapse
Affiliation(s)
- Jennifer L Johnson
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
82
|
Tang AT, Campbell WB, Nithipatikom K. ROCK1 feedback regulation of the upstream small GTPase RhoA. Cell Signal 2012; 24:1375-80. [PMID: 22430126 DOI: 10.1016/j.cellsig.2012.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/01/2012] [Accepted: 03/04/2012] [Indexed: 10/28/2022]
Abstract
Rho-associated coiled-coil containing protein kinase 1 (ROCK1) is a key downstream effector of the small GTPase RhoA. Targeting ROCK1 has shown promising clinical potential in cancer, cardioprotection, hypertension, diabetes, neuronal regeneration, and stem cell biology. General working hypothesis in previous studies has centered on the function of ROCK1 as a downstream sequence in the RhoA signaling pathway. In this study, the effects of the direct inhibition of ROCK1 on the activity of upstream RhoA and Rac1 were examined using a combined pharmacological and genetic approach. We report an intriguing mechanism by which the inhibition of ROCK1 indirectly diminishes the activity of upstream RhoA through the stimulation of Tiam1-induced Rac1 activity. This novel feedback mechanism, in which ROCK1 mediates upstream Rac1 and RhoA activity, offers considerable insight into the diverse effects of ROCK1 on the functional balance of the Rho family of small GTPases, which regulates actin cytoskeleton reorganization processes and the resulting overall behavior of cells.
Collapse
Affiliation(s)
- Alan T Tang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | | | | |
Collapse
|
83
|
Daley WP, Gervais EM, Centanni SW, Gulfo KM, Nelson DA, Larsen M. ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity. Development 2012; 139:411-22. [PMID: 22186730 PMCID: PMC3243099 DOI: 10.1242/dev.075366] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2011] [Indexed: 12/23/2022]
Abstract
The basement membrane is crucial for epithelial tissue organization and function. However, the mechanisms by which basement membrane is restricted to the basal periphery of epithelial tissues and the basement membrane-mediated signals that regulate coordinated tissue organization are not well defined. Here, we report that Rho kinase (ROCK) controls coordinated tissue organization by restricting basement membrane to the epithelial basal periphery in developing mouse submandibular salivary glands, and that ROCK inhibition results in accumulation of ectopic basement membrane throughout the epithelial compartment. ROCK-regulated restriction of PAR-1b (MARK2) localization in the outer basal epithelial cell layer is required for basement membrane positioning at the tissue periphery. PAR-1b is specifically required for basement membrane deposition, as inhibition of PAR-1b kinase activity prevents basement membrane deposition and disrupts overall tissue organization, and suppression of PAR-1b together with ROCK inhibition prevents interior accumulations of basement membrane. Conversely, ectopic overexpression of wild-type PAR-1b results in ectopic interior basement membrane deposition. Significantly, culture of salivary epithelial cells on exogenous basement membrane rescues epithelial organization in the presence of ROCK1 or PAR-1b inhibition, and this basement membrane-mediated rescue requires functional integrin β1 to maintain epithelial cell-cell adhesions. Taken together, these studies indicate that ROCK1/PAR-1b-dependent regulation of basement membrane placement is required for the coordination of tissue polarity and the elaboration of tissue structure in the developing submandibular salivary gland.
Collapse
Affiliation(s)
- William P. Daley
- Graduate program in Molecular, Cellular, Developmental, and Neural Biology, University at Albany, State University of New York, Albany, NY 12208, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12208, USA
| | - Elise M. Gervais
- Graduate program in Molecular, Cellular, Developmental, and Neural Biology, University at Albany, State University of New York, Albany, NY 12208, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12208, USA
| | - Samuel W. Centanni
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12208, USA
| | - Kathryn M. Gulfo
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12208, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12208, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12208, USA
| |
Collapse
|
84
|
Racchetti G, D'Alessandro R, Meldolesi J. Astrocyte stellation, a process dependent on Rac1 is sustained by the regulated exocytosis of enlargeosomes. Glia 2011; 60:465-75. [PMID: 22144092 PMCID: PMC3306795 DOI: 10.1002/glia.22280] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 11/18/2011] [Indexed: 12/20/2022]
Abstract
Cultured astrocytes exhibit a flat/epitelioid phenotype much different from the star-like phenotype of tissue astrocytes. Upon exposure to treatments that affect the small GTPase Rho and/or its effector ROCK, however, flat astrocytes undergo stellation, with restructuring of cytoskeleton and outgrowth of processes with lamellipodia, assuming a phenotype closer to that exhibited in situ. The mechanisms of this change are known only in part. Using the ROCK blocker drug Y27632, which induces rapid (tens of min), dose-dependent and reversible stellations, we focused on two specific aspects of the process: its dependence on small GTPases and the large surface expansion of the cells. Contrary to previous reports, we found stellation to be governed by the small G protein Rac1, up to disappearance of the process when Rac1 was downregulated or blocked by a specific drug. In contrast cdc42, the other G-protein often involved in phenotype changes, appeared not involved. The surface expansion concomitant to cytoskeleton restructuring, also dependent on Rac1, was found to be at least partially sustained by the exocytosis of enlargeosomes, small vesicles distinct from classical cell organelles, which are abundant in astrocytes. Exhaustion of stellation induced by repeated administrations of Y27632 correlated with the decrease of the enlargeosome pool. A whole-cell process like stellation of cultured astrocytes might be irrelevant in the brain tissue. However, local restructuring of the cytoskeleton coordinate with surface expansion, occurring at critical cell sites and sustained by mechanisms analogous to those of stellation, might be of importance in both astrocyte physiology and pathology. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gabriella Racchetti
- Scientific Institute San Raffaele, Division of Neuroscience and IIT Network, Research Unit of Molecular Neuroscience, via Olgettina 58, Milan, Italy
| | | | | |
Collapse
|
85
|
Vichas A, Zallen JA. Translating cell polarity into tissue elongation. Semin Cell Dev Biol 2011; 22:858-64. [PMID: 21983030 PMCID: PMC4752253 DOI: 10.1016/j.semcdb.2011.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
Planar cell polarity, the orientation of single-cell asymmetries within the plane of a multicellular tissue, is essential to generating the shape and dimensions of organs and organisms. Planar polarity systems align cell behavior with the body axes and orient the cellular processes that lead to tissue elongation. Using Drosophila as a model system, significant progress has been made toward understanding how planar polarity is generated by biochemical and mechanical signals. Recent studies using time-lapse imaging reveal that cells engage in a number of active behaviors whose orientation and dynamics translate planar cell polarity into tissue elongation. Here we review recent progress in understanding the cellular mechanisms that link planar polarity to large-scale changes in tissue structure.
Collapse
Affiliation(s)
- Athea Vichas
- Howard Hughes Medical Institute, Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Jennifer A. Zallen
- Howard Hughes Medical Institute, Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
86
|
Sato K, Watanabe T, Wang S, Kakeno M, Matsuzawa K, Matsui T, Yokoi K, Murase K, Sugiyama I, Ozawa M, Kaibuchi K. Numb controls E-cadherin endocytosis through p120 catenin with aPKC. Mol Biol Cell 2011; 22:3103-19. [PMID: 21775625 PMCID: PMC3164458 DOI: 10.1091/mbc.e11-03-0274] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/31/2011] [Accepted: 06/25/2011] [Indexed: 11/11/2022] Open
Abstract
Cadherin trafficking controls tissue morphogenesis and cell polarity. The endocytic adaptor Numb participates in apicobasal polarity by acting on intercellular adhesions in epithelial cells. However, it remains largely unknown how Numb controls cadherin-based adhesion. Here, we found that Numb directly interacted with p120 catenin (p120), which is known to interact with E-cadherin and prevent its internalization. Numb accumulated at intercellular adhesion sites and the apical membrane in epithelial cells. Depletion of Numb impaired E-cadherin internalization, whereas depletion of p120 accelerated internalization. Expression of the Numb-binding fragment of p120 inhibited E-cadherin internalization in a dominant-negative fashion, indicating that Numb interacts with the E-cadherin/p120 complex and promotes E-cadherin endocytosis. Impairment of Numb induced mislocalization of E-cadherin from the lateral membrane to the apical membrane. Atypical protein kinase C (aPKC), a member of the PAR complex, phosphorylated Numb and inhibited its association with p120 and α-adaptin. Depletion or inhibition of aPKC accelerated E-cadherin internalization. Wild-type Numb restored E-cadherin internalization in the Numb-depleted cells, whereas a phosphomimetic mutant or a mutant with defective α-adaptin-binding ability did not restore the internalization. Thus, we propose that aPKC phosphorylates Numb to prevent its binding to p120 and α-adaptin, thereby attenuating E-cadherin endocytosis to maintain apicobasal polarity.
Collapse
Affiliation(s)
- Kazuhide Sato
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
| | - Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
- Institute for Advanced Research, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Shujie Wang
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
- Department of Anatomy, School of Medicine, Mie University, Tsu, Mie 514-8507, Japan
| | - Mai Kakeno
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
| | - Kenji Matsuzawa
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
| | - Toshinori Matsui
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
| | - Keiko Yokoi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
| | - Kiyoko Murase
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
| | - Ikuko Sugiyama
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
| | - Masayuki Ozawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
87
|
Abstract
Inositol phospholipids have been implicated in almost all aspects of cellular physiology including spatiotemporal regulation of cellular signaling, acquisition of cellular polarity, specification of membrane identity, cytoskeletal dynamics, and regulation of cellular adhesion, motility, and cytokinesis. In this review, we examine the critical role phosphoinositides play in these processes to execute the establishment and maintenance of cellular architecture. Epithelial tissues perform essential barrier and transport functions in almost all major organs. Key to their development and function is the establishment of epithelial cell polarity. We place a special emphasis on highlighting recent studies demonstrating phosphoinositide regulation of epithelial cell polarity and how individual cells use phosphoinositides to further organize into epithelial tissues.
Collapse
Affiliation(s)
- Annette Shewan
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143-2140, USA
| | | | | |
Collapse
|
88
|
Citi S, Spadaro D, Schneider Y, Stutz J, Pulimeno P. Regulation of small GTPases at epithelial cell-cell junctions. Mol Membr Biol 2011; 28:427-44. [DOI: 10.3109/09687688.2011.603101] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
89
|
Kadir S, Astin JW, Tahtamouni L, Martin P, Nobes CD. Microtubule remodelling is required for the front-rear polarity switch during contact inhibition of locomotion. J Cell Sci 2011; 124:2642-53. [PMID: 21750190 DOI: 10.1242/jcs.087965] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
When migrating mesenchymal cells collide, they exhibit a 'contact inhibition of locomotion' response that results in reversal of their front-rear polarity by extension of a new leading edge, which enables their migration away from the opposing contacted cell. The critical cytoskeletal rearrangements underpinning these mutual repulsion events are currently unknown. We found that during fibroblast cell-cell collisions, microtubules at the region of contact increase their frequency of catastrophe, their rates of shrinkage and growth, and concomitantly, a new microtubule array is established at a new leading edge. We show that Rho and ROCK activity is necessary for this repulsion response, and we observed increased microtubule stabilisation as a consequence of ROCK inhibition. Importantly, partial destabilisation of microtubules, by co-treatment with a low dose of nocodazole, restored microtubule dynamics to that of untreated cells and rescued contact inhibition of locomotion in ROCK-inhibited cells. Although there was an increase in microtubule growth or shrinkage rates in Y27632 cell-cell collisions, these failed to reach the same level of dynamicity compared with untreated collisions. Our data suggest that microtubule dynamics at contact sites must increase beyond a threshold for a cell to switch its front-rear polarity, and that microtubule stabilisation can lead to a failure of contact inhibition of locomotion.
Collapse
Affiliation(s)
- Shereen Kadir
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
90
|
Abstract
The correct establishment and maintenance of cell polarity are crucial for normal cell physiology and tissue homeostasis. Conversely, loss of cell polarity, tissue disorganisation and excessive cell growth are hallmarks of cancer. In this review, we focus on identifying the stages of tumoural development that are affected by the loss or deregulation of epithelial cell polarity. Asymmetric division has recently emerged as a major regulatory mechanism that controls stem cell numbers and differentiation. Links between cell polarity and asymmetric cell division in the context of cancer will be examined. Apical–basal polarity and cell–cell adhesion are tightly interconnected. Hence, how loss of cell polarity in epithelial cells may promote epithelial mesenchymal transition and metastasis will also be discussed. Altogether, we present the argument that loss of epithelial cell polarity may have an important role in both the initiation of tumourigenesis and in later stages of tumour development, favouring the progression of tumours from benign to malignancy.
Collapse
|
91
|
Spindler SR, Hartenstein V. Bazooka mediates secondary axon morphology in Drosophila brain lineages. Neural Dev 2011; 6:16. [PMID: 21524279 PMCID: PMC3107162 DOI: 10.1186/1749-8104-6-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/27/2011] [Indexed: 12/22/2022] Open
Abstract
In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF) clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila.
Collapse
Affiliation(s)
- Shana R Spindler
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
92
|
Levayer R, Pelissier-Monier A, Lecuit T. Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis. Nat Cell Biol 2011; 13:529-40. [PMID: 21516109 DOI: 10.1038/ncb2224] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 02/14/2011] [Indexed: 11/09/2022]
Abstract
E-cadherin plays a pivotal role in epithelial morphogenesis. It controls the intercellular adhesion required for tissue cohesion and anchors the actomyosin-driven tension needed to change cell shape. In the early Drosophila embryo, Myosin-II (Myo-II) controls the planar polarized remodelling of cell junctions and tissue extension. The E-cadherin distribution is also planar polarized and complementary to the Myosin-II distribution. Here we show that E-cadherin polarity is controlled by the polarized regulation of clathrin- and dynamin-mediated endocytosis. Blocking E-cadherin endocytosis resulted in cell intercalation defects. We delineate a pathway that controls the initiation of E-cadherin endocytosis through the regulation of AP2 and clathrin coat recruitment by E-cadherin. This requires the concerted action of the formin Diaphanous (Dia) and Myosin-II. Their activity is controlled by the guanine exchange factor RhoGEF2, which is planar polarized and absent in non-intercalating regions. Finally, we provide evidence that Dia and Myo-II control the initiation of E-cadherin endocytosis by regulating the lateral clustering of E-cadherin.
Collapse
Affiliation(s)
- Romain Levayer
- IBDML, UMR6216 CNRS-Université de la Méditerranée, Campus de Luminy, case 907. 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|
93
|
Abstract
Cell polarity is essential for cells to divide asymmetrically, form spatially restricted subcellular structures and participate in three-dimensional multicellular organization. PAR proteins are conserved polarity regulators that function by generating cortical landmarks that establish dynamic asymmetries in the distribution of effector proteins. Here, we review recent findings on the role of PAR proteins in cell polarity in C. elegans and Drosophila, and emphasize the links that exist between PAR networks and cytoskeletal proteins that both regulate PAR protein localization and act as downstream effectors to elaborate polarity within the cell.
Collapse
Affiliation(s)
- Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
94
|
Cheng PL, Lu H, Shelly M, Gao H, Poo MM. Phosphorylation of E3 ligase Smurf1 switches its substrate preference in support of axon development. Neuron 2011; 69:231-43. [PMID: 21262463 DOI: 10.1016/j.neuron.2010.12.021] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2010] [Indexed: 12/19/2022]
Abstract
Ubiquitin E3 ligases serve for ubiquitination of specific substrates, and its ligase efficacy is regulated by interacting proteins or substrate modifications. Whether and how the ligases themselves are modified by cellular signaling is unclear. Here we report that protein kinase A (PKA)-dependent phosphorylation of Smad Ubiquitin Regulatory Factor 1 (Smurf1) can switch its substrate preference between two proteins of opposing actions on axon development. Extracellular factors that promote axon formation elevated Smurf1 phosphorylation at a PKA site Thr³⁰⁶, and preventing this phosphorylation reduced axon formation in cultured hippocampal neurons and impaired polarization of cortical neurons in vivo. Thr³⁰⁶-phosphorylation changed the relative affinities of Smurf1 for its substrates, leading to reduced degradation of polarity protein Par6 and increased degradation of growth-inhibiting RhoA. Thus, PKA-dependent phosphorylation of the E3 ligase could switch its substrate preference, contributing to selective protein degradation required for localized cellular function.
Collapse
Affiliation(s)
- Pei-lin Cheng
- Division of Neurobiology, Department of Molecular and Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
95
|
Stiess M, Bradke F. Controlled demolition: Smurf1 regulates neuronal polarity by substrate switching. Neuron 2011; 69:183-5. [PMID: 21262456 DOI: 10.1016/j.neuron.2011.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During axon specification, growth promoting proteins localize selectively to the growing axon. In this issue of Neuron, Cheng et al. report how selective protein degradation, controlled by a substrate switch of the ubiquitin ligase Smurf1, specifies Par6 and RhoA localization and thereby regulates neuronal polarity.
Collapse
Affiliation(s)
- Michael Stiess
- Axonal Growth and Regeneration Group, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
96
|
Pieczynski J, Margolis B. Protein complexes that control renal epithelial polarity. Am J Physiol Renal Physiol 2011; 300:F589-601. [PMID: 21228104 DOI: 10.1152/ajprenal.00615.2010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Establishment of epithelial apicobasal polarity is crucial for proper kidney development and function. In recent years, there have been important advances in our understanding of the factors that mediate the initiation of apicobasal polarization. Key among these are the polarity complexes that are evolutionarily conserved from simple organisms to humans. Three of these complexes are discussed in this review: the Crumbs complex, the Par complex, and the Scribble complex. The apical Crumbs complex consists of three proteins, Crumbs, PALS1, and PATJ, whereas the apical Par complex consists of Par-3, Par-6, and atypical protein kinase C. The lateral Scribble complex consists of Scribble, discs large, and lethal giant larvae. These complexes modulate kinase and small G protein activity such that the apical and basolateral complexes signal antagonistically, leading to the segregation of the apical and basolateral membranes. The polarity complexes also serve as scaffolds to direct and retain proteins at the apical membrane, the basolateral membrane, or the intervening tight junction. There is plasticity in apicobasal polarity, and this is best seen in the processes of epithelial-to-mesenchymal transition and the converse mesenchymal-to-epithelial transition. These transitions are important in kidney disease as well as kidney development, and modulation of the polarity complexes are critical for these transitions.
Collapse
Affiliation(s)
- Jay Pieczynski
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
97
|
Rikitake Y, Takai Y. Directional Cell Migration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:97-143. [DOI: 10.1016/b978-0-12-386043-9.00003-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
98
|
Hidalgo-Carcedo C, Hooper S, Chaudhry SI, Williamson P, Harrington K, Leitinger B, Sahai E. Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol 2010; 13:49-58. [PMID: 21170030 PMCID: PMC3018349 DOI: 10.1038/ncb2133] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 11/02/2010] [Indexed: 12/16/2022]
Abstract
Collective cell migration occurs in a range of contexts: cancer cells frequently invade in cohorts while retaining cell-cell junctions. Here we show that collective cancer cell invasion depends on reducing actomyosin contractility at sites of cell-cell contact. When actomyosin is not down-regulated at cell-cell contacts migrating cells lose cohesion. We provide a novel molecular mechanism for this down-regulation. Depletion of Discoidin Domain Receptor 1 (DDR1) blocks collective cancer cell invasion in a range of 2D, 3D and ‘organotypic’ models. DDR1 co-ordinates the Par3/6 cell polarity complex through its C-terminus binding PDZ domains in Par3 and Par6. The DDR1/Par3/6 complex controls the localisation of RhoE to cell-cell contacts where it antagonizes ROCK-driven actomyosin contractility. Depletion of DDR1, Par3, Par6 or RhoE leads to increased actomyosin at cell-cell contacts, a loss of cell-cell cohesion and defective collective cell invasion.
Collapse
Affiliation(s)
- Cristina Hidalgo-Carcedo
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | | | |
Collapse
|
99
|
Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken) 2010; 67:545-54. [PMID: 20803696 PMCID: PMC3038199 DOI: 10.1002/cm.20472] [Citation(s) in RCA: 753] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rho-associated kinase (Rho-kinase/ROCK/ROK) is an effector of the small GTPase Rho and belongs to the AGC family of kinases. Rho-kinase has pleiotropic functions including the regulation of cellular contraction, motility, morphology, polarity, cell division, and gene expression. Pharmacological analyses have revealed that Rho-kinase is involved in a wide range of diseases such as vasospasm, pulmonary hypertension, nerve injury, and glaucoma, and is therefore considered to be a potential therapeutic target. This review focuses on the structure, function, and modes of activation and action of Rho-kinase.
Collapse
Affiliation(s)
- Mutsuki Amano
- Department of Cell Pharmacology, Nagoya University, Showa-ku, Japan
| | | | | |
Collapse
|
100
|
Astin JW, Batson J, Kadir S, Charlet J, Persad RA, Gillatt D, Oxley JD, Nobes CD. Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells. Nat Cell Biol 2010; 12:1194-204. [PMID: 21076414 DOI: 10.1038/ncb2122] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 09/23/2010] [Indexed: 11/09/2022]
Abstract
Metastatic cancer cells typically fail to halt migration on contact with non-cancer cells. This invasiveness is in contrast to normal mesenchymal cells that retract on contact with another cell. Why cancer cells are defective in contact inhibition of locomotion is not understood. Here, we analyse the dynamics of prostate cancer cell lines co-cultured with fibroblasts, and demonstrate that a combinatorial code of Eph receptor activation dictates whether cell migration will be contact inhibited. The unimpeded migration of metastatic PC-3 cells towards fibroblasts is dependent on activation of EphB3 and EphB4 by ephrin-B2, which we show activates Cdc42 and cell migration. Knockdown of EphB3 and EphB4 restores contact inhibition of locomotion to PC-3 cells. Conversely, homotypic collisions between two cancer cells results in contact inhibition of locomotion, mediated by EphA-Rho-Rho kinase (ROCK) signalling. Thus, the migration of cancer cells can switch from restrained to invasive, depending on the Eph-receptor profile of the cancer cell and the reciprocal ephrin ligands expressed by neighbouring cells.
Collapse
Affiliation(s)
- Jonathan W Astin
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | | | | | | | | | |
Collapse
|