51
|
Saiz ML, Rocha-Perugini V, Sánchez-Madrid F. Tetraspanins as Organizers of Antigen-Presenting Cell Function. Front Immunol 2018; 9:1074. [PMID: 29875769 PMCID: PMC5974036 DOI: 10.3389/fimmu.2018.01074] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Professional antigen-presenting cells (APCs) include dendritic cells, monocytes, and B cells. APCs internalize and process antigens, producing immunogenic peptides that enable antigen presentation to T lymphocytes, which provide the signals that trigger T-cell activation, proliferation, and differentiation, and lead to adaptive immune responses. After detection of microbial antigens through pattern recognition receptors (PRRs), APCs migrate to secondary lymphoid organs where antigen presentation to T lymphocytes takes place. Tetraspanins are membrane proteins that organize specialized membrane platforms, called tetraspanin-enriched microdomains, which integrate membrane receptors, like PRR and major histocompatibility complex class II (MHC-II), adhesion proteins, and signaling molecules. Importantly, through the modulation of the function of their associated membrane partners, tetraspanins regulate different steps of the immune response. Several tetraspanins can positively or negatively regulate the activation threshold of immune receptors. They also play a role during migration of APCs by controlling the surface levels and spatial arrangement of adhesion molecules and their subsequent intracellular signaling. Finally, tetraspanins participate in antigen processing and are important for priming of naïve T cells through the control of T-cell co-stimulation and MHC-II-dependent antigen presentation. In this review, we discuss the role of tetraspanins in APC biology and their involvement in effective immune responses.
Collapse
Affiliation(s)
- Maria Laura Saiz
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Vera Rocha-Perugini
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| |
Collapse
|
52
|
Zoccal KF, Gardinassi LG, Sorgi CA, Meirelles AFG, Bordon KCF, Glezer I, Cupo P, Matsuno AK, Bollela VR, Arantes EC, Guimarães FS, Faccioli LH. CD36 Shunts Eicosanoid Metabolism to Repress CD14 Licensed Interleukin-1β Release and Inflammation. Front Immunol 2018; 9:890. [PMID: 29755470 PMCID: PMC5934479 DOI: 10.3389/fimmu.2018.00890] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/10/2018] [Indexed: 01/26/2023] Open
Abstract
Interleukin (IL)-1β is a potential target for treatment of several inflammatory diseases, including envenomation by the scorpion Tityus serrulatus. In this context, bioactive lipids such as prostaglandin (PG)E2 and leukotriene (LT)B4 modulate the production of IL-1β by innate immune cells. Pattern recognition receptors (PRRs) that perceive T. serrulatus venom (TsV), and orchestrate LTB4, PGE2, and cyclic adenosine monophosphate (cAMP) production to regulate IL-1β release are unknown. Furthermore, molecular mechanisms driving human cell responses to TsV remain uncharacterized. Here, we identified that both CD14 and CD36 control the synthesis of bioactive lipids, inflammatory cytokines, and mortality mediated by TsV. CD14 induces PGE2/cAMP/IL-1β release and inflammation. By contrast, CD36 shunts eicosanoid metabolism toward production of LTB4, which represses the PGE2/cAMP/IL-1β axis and mortality. Of importance, the molecular mechanisms observed in mice strongly correlate with those of human cell responses to TsV. Overall, this study provides major insights into molecular mechanisms connecting CD14 and CD36 with differential eicosanoid metabolism and inflammation mediated by IL-1β.
Collapse
Affiliation(s)
- Karina F Zoccal
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Luiz G Gardinassi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carlos A Sorgi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alyne F G Meirelles
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Karla C F Bordon
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Isaias Glezer
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Palmira Cupo
- Departamento de Puericultura e Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alessandra K Matsuno
- Departamento de Puericultura e Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Valdes R Bollela
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Eliane C Arantes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lúcia Helena Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
53
|
Evans AL, Blackburn JWD, Taruc K, Kipp A, Dirk BS, Hunt NR, Barr SD, Dikeakos JD, Heit B. Antagonistic Coevolution of MER Tyrosine Kinase Expression and Function. Mol Biol Evol 2017; 34:1613-1628. [PMID: 28369510 DOI: 10.1093/molbev/msx102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TYRO3, AXL, and MERTK (TAM) receptors are a family of receptor tyrosine kinases that maintain homeostasis through the clearance of apoptotic cells, and when defective, contribute to chronic inflammatory and autoimmune diseases such as atherosclerosis, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and Crohn's disease. In addition, certain enveloped viruses utilize TAM receptors for immune evasion and entry into host cells, with several viruses preferentially hijacking MERTK for these purposes. Despite the biological importance of TAM receptors, little is understood of their recent evolution and its impact on their function. Using evolutionary analysis of primate TAM receptor sequences, we identified strong, recent positive selection in MERTK's signal peptide and transmembrane domain that was absent from TYRO3 and AXL. Reconstruction of hominid and primate ancestral MERTK sequences revealed three nonsynonymous single nucleotide polymorphisms in the human MERTK signal peptide, with a G14C mutation resulting in a predicted non-B DNA cruciform motif, producing a significant decrease in MERTK expression with no significant effect on MERTK trafficking or half-life. Reconstruction of MERTK's transmembrane domain identified three amino acid substitutions and four amino acid insertions in humans, which led to significantly higher levels of self-clustering through the creation of a new interaction motif. This clustering counteracted the effect of the signal peptide mutations through enhancing MERTK avidity, whereas the lower MERTK expression led to reduced binding of Ebola virus-like particles. The decreased MERTK expression counterbalanced by increased avidity is consistent with antagonistic coevolution to evade viral hijacking of MERTK.
Collapse
Affiliation(s)
- Amanda L Evans
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| | - Jack W D Blackburn
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| | - Kyle Taruc
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| | - Angela Kipp
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| | - Brennan S Dirk
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| | - Nina R Hunt
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| | - Stephen D Barr
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| |
Collapse
|
54
|
Marcovecchio PM, Thomas GD, Mikulski Z, Ehinger E, Mueller KAL, Blatchley A, Wu R, Miller YI, Nguyen AT, Taylor AM, McNamara CA, Ley K, Hedrick CC. Scavenger Receptor CD36 Directs Nonclassical Monocyte Patrolling Along the Endothelium During Early Atherogenesis. Arterioscler Thromb Vasc Biol 2017; 37:2043-2052. [PMID: 28935758 DOI: 10.1161/atvbaha.117.309123] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/07/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Nonclassical monocytes (NCM) function to maintain vascular homeostasis by crawling or patrolling along the vessel wall. This subset of monocytes responds to viruses, tumor cells, and other pathogens to aid in protection of the host. In this study, we wished to determine how early atherogenesis impacts NCM patrolling in the vasculature. APPROACH AND RESULTS To study the role of NCM in early atherogenesis, we quantified the patrolling behaviors of NCM in ApoE-/- (apolipoprotein E) and C57BL/6J mice fed a Western diet. Using intravital imaging, we found that NCM from Western diet-fed mice display a 4-fold increase in patrolling activity within large peripheral blood vessels. Both human and mouse NCM preferentially engulfed OxLDL (oxidized low-density lipoprotein) in the vasculature, and we observed that OxLDL selectively induced NCM patrolling in vivo. Induction of patrolling during early atherogenesis required scavenger receptor CD36, as CD36-/- mice revealed a significant reduction in patrolling activity along the femoral vasculature. Mechanistically, we found that CD36-regulated patrolling was mediated by a SFK (src family kinase) through DAP12 (DNAX activating protein of 12KDa) adaptor protein. CONCLUSIONS Our studies show a novel pathway for induction of NCM patrolling along the vascular wall during early atherogenesis. Mice fed a Western diet showed increased NCM patrolling activity with a concurrent increase in SFK phosphorylation. This patrolling activity was lost in the absence of either CD36 or DAP12. These data suggest that NCM function in an atheroprotective manner through sensing and responding to oxidized lipoprotein moieties via scavenger receptor engagement during early atherogenesis.
Collapse
Affiliation(s)
- Paola M Marcovecchio
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Graham D Thomas
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Zbigniew Mikulski
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Erik Ehinger
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Karin A L Mueller
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Amy Blatchley
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Runpei Wu
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Yury I Miller
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Anh Tram Nguyen
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Angela M Taylor
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Coleen A McNamara
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Klaus Ley
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Catherine C Hedrick
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.).
| |
Collapse
|
55
|
Phagocytic Receptors Activate Syk and Src Signaling during Borrelia burgdorferi Phagocytosis. Infect Immun 2017; 85:IAI.00004-17. [PMID: 28717031 DOI: 10.1128/iai.00004-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/10/2017] [Indexed: 11/20/2022] Open
Abstract
Phagocytosis of the Lyme disease-causing pathogen Borrelia burgdorferi has been shown to be important for generating an inflammatory response to the pathogen. As a result, understanding the mechanisms of phagocytosis has been an area of great interest in the field of Lyme disease. Several cell surface receptors that participate in B. burgdorferi phagocytosis have been reported, including the scavenger receptor MARCO and integrin α3β1. We sought to define the mechanisms by which these receptors mediate phagocytosis and to identify signaling pathways activated downstream of these receptors upon contact with B. burgdorferi We identified both Syk and Src signaling pathways as ones that participate in B. burgdorferi phagocytosis and the resulting cytokine activation. In our studies, we found that both MARCO and integrin β1 play a role in the activation of the Src kinase pathway. However, only integrin β1 participates in the activation of Syk. Interestingly, the integrin activates Syk without the help of the signaling adaptor Dap12 or FcRγ. Thus, we report that multiple pathways participate in B. burgdorferi internalization and that different cell surface receptors act simultaneously in cooperation and independently to mediate phagocytosis.
Collapse
|
56
|
Abstract
Phagocytosis refers to the active process that allows cells to take up large particulate material upon binding to surface receptors. The discovery of phagocytosis in 1883 by Elie Metchnikoff, leading to the concept that specialized cells are implicated in the defense against microbes, was one of the starting points of the field of immunology. After more than a century of research, phagocytosis is now appreciated to be a widely used process that enables the cellular uptake of a remarkable variety of particles, including bacteria, fungi, parasites, viruses, dead cells, and assorted debris and solid materials. Uptake of foreign particles is performed almost exclusively by specialized myeloid cells, commonly termed "professional phagocytes": neutrophils, monocytes, macrophages, and dendritic cells. Phagocytosis of microbes not only stops or at least restricts the spread of infection but also plays an important role in regulating the innate and adaptive immune responses. Activation of the myeloid cells upon phagocytosis leads to the secretion of cytokines and chemokines that convey signals to a variety of immune cells. Moreover, foreign antigens generated by the degradation of microbes following phagocytosis are loaded onto the major histocompatibility complex for presentation to specific T lymphocytes. However, phagocytosis is not restricted to professional myeloid phagocytes; an expanding diversity of cell types appear capable of engulfing apoptotic bodies and debris, playing a critical role in tissue remodeling and in the clearance of billions of effete cells every day.
Collapse
|
57
|
Qin M, Wang L, Li F, Yang M, Song L, Tian F, Yukht A, Shah PK, Rothenberg ME, Sharifi BG. Oxidized LDL activated eosinophil polarize macrophage phenotype from M2 to M1 through activation of CD36 scavenger receptor. Atherosclerosis 2017. [PMID: 28623741 DOI: 10.1016/j.atherosclerosis.2017.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Inflammation, particularly innate immunity, plays an important role in cardiovascular diseases. The aim of this study was to investigate whether atherogenic determinants such as oxidized LDL modulate the phenotype of eosinophils. METHODS Cultured eosinophils were treated with oxidized LDL and the expression of selective inflammatory and anti-inflammatory cytokines was determined. In addition, the eosinophil receptor and signaling that mediate these events were identified. RESULTS Treatment of cultured eosinophils with oxidized LDL (Ox-LDL) specifically induced the expression of IFNα and IFNβ without affecting expression of other proinflammatory cytokines, such as TNFα, IL-1β, and IL-6. In macrophages, Ox-LDL downregulated expression of both IFNα and IFNβ, suggesting that the effect of Ox-LDL on the expression of type I interferons is specific to eosinophils. Furthermore, we noted that eosinophils constitutively expressed IL-4 and IL-13, and Ox-LDL markedly downregulated their expression. Analysis of Ox-LDL signaling revealed that eosinophils constitutively expressed SRB2, CD36, and CD68 scavenger receptors, and Ox-LDL markedly induced the expression of CD36. Further analysis of CD36 signaling by siRNA and neutralizing antibodies showed that the induction of type I IFN by Ox-LDL is mediated by CD36 signaling whereas downregulation of IL-4 is independent of CD36 activation. We further showed that peritoneal macrophages treated with condition medium collected from Ox-LDL treated eosinophils markedly induced the expression of M1 markers such as iNOS, IL6, SOSC3 and TNFα whereas the condition medium from non-treated eosinophils significantly induced expression of M2 markers like ARG1 and CCL24. CONCLUSIONS Our data suggest that an atherogenic condition could activate eosinophils and modulate the phenotype of macrophages (from M2 to M1 phenotype), in part, through the CD36 receptor signaling.
Collapse
Affiliation(s)
- Minghui Qin
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | - Lai Wang
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | - Fuqiang Li
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | - Mingjie Yang
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | - Lei Song
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | - Fang Tian
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | - Ada Yukht
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | - Prediman K Shah
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Behrooz G Sharifi
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, CA, USA.
| |
Collapse
|
58
|
Kieser KJ, Kagan JC. Multi-receptor detection of individual bacterial products by the innate immune system. Nat Rev Immunol 2017; 17:376-390. [PMID: 28461704 DOI: 10.1038/nri.2017.25] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The receptors of the innate immune system detect specific microbial ligands to promote effective inflammatory and adaptive immune responses. Although this idea is well appreciated, studies in recent years have highlighted the complexity of innate immune detection, with multiple host receptors recognizing the same microbial ligand. Understanding the collective actions of diverse receptors that recognize common microbial signatures represents a new frontier in the study of innate immunity, and is the focus of this Review. Here, we discuss examples of individual bacterial cell wall components that are recognized by at least two and as many as four different receptors of the innate immune system. These receptors survey the extracellular or cytosolic spaces for their cognate ligands and operate in a complementary manner to induce distinct cellular responses. We further highlight that, despite this genetic diversity in receptors and pathways, common features exist to explain the operation of these receptors. These common features may help to provide unifying organizing principles associated with host defence.
Collapse
Affiliation(s)
- Karen J Kieser
- Department of Pediatrics, Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Jonathan C Kagan
- Department of Pediatrics, Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
59
|
Chen J, Zhong MC, Guo H, Davidson D, Mishel S, Lu Y, Rhee I, Pérez-Quintero LA, Zhang S, Cruz-Munoz ME, Wu N, Vinh DC, Sinha M, Calderon V, Lowell CA, Danska JS, Veillette A. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature 2017; 544:493-497. [PMID: 28424516 DOI: 10.1038/nature22076] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/15/2017] [Indexed: 12/31/2022]
Abstract
Cancer cells elude anti-tumour immunity through multiple mechanisms, including upregulated expression of ligands for inhibitory immune checkpoint receptors. Phagocytosis by macrophages plays a critical role in cancer control. Therapeutic blockade of signal regulatory protein (SIRP)-α, an inhibitory receptor on macrophages, or of its ligand CD47 expressed on tumour cells, improves tumour cell elimination in vitro and in vivo, suggesting that blockade of the SIRPα-CD47 checkpoint could be useful in treating human cancer. However, the pro-phagocytic receptor(s) responsible for tumour cell phagocytosis is(are) largely unknown. Here we find that macrophages are much more efficient at phagocytosis of haematopoietic tumour cells, compared with non-haematopoietic tumour cells, in response to SIRPα-CD47 blockade. Using a mouse lacking the signalling lymphocytic activation molecule (SLAM) family of homotypic haematopoietic cell-specific receptors, we determined that phagocytosis of haematopoietic tumour cells during SIRPα-CD47 blockade was strictly dependent on SLAM family receptors in vitro and in vivo. In both mouse and human cells, this function required a single SLAM family member, SLAMF7 (also known as CRACC, CS1, CD319), expressed on macrophages and tumour cell targets. In contrast to most SLAM receptor functions, SLAMF7-mediated phagocytosis was independent of signalling lymphocyte activation molecule-associated protein (SAP) adaptors. Instead, it depended on the ability of SLAMF7 to interact with integrin Mac-1 (refs 18, 19, 20) and utilize signals involving immunoreceptor tyrosine-based activation motifs. These findings elucidate the mechanism by which macrophages engulf and destroy haematopoietic tumour cells. They also reveal a novel SAP adaptor-independent function for a SLAM receptor. Lastly, they suggest that patients with tumours expressing SLAMF7 are more likely to respond to SIRPα-CD47 blockade therapy.
Collapse
Affiliation(s)
- Jun Chen
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Huaijian Guo
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Dominique Davidson
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Sabrin Mishel
- Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yan Lu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Inmoo Rhee
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada.,Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, South Korea
| | - Luis-Alberto Pérez-Quintero
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Shaohua Zhang
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Mario-Ernesto Cruz-Munoz
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,School of Medicine, University of Morelos, Cuernavaca 62350, Mexico
| | - Ning Wu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Donald C Vinh
- Infectious Disease Susceptibility Program, McGill University Health Centre (MUHC) and Research Institute-MUHC (RI-MUHC), Montréal, Québec H4A 3J1, Canada.,Department of Human Genetics, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Meenal Sinha
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Virginie Calderon
- Bioinformatics Core Facility, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Jayne S Danska
- Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada.,Department of Medicine, University of Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
60
|
Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F, Feng J, Yang D, Qin Z, Yan X. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res 2017; 27:352-372. [PMID: 28084332 PMCID: PMC5339843 DOI: 10.1038/cr.2017.8] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/18/2016] [Accepted: 11/28/2016] [Indexed: 12/24/2022] Open
Abstract
The persistence of cholesterol-engorged macrophages (foam cells) in the artery wall fuels the development of atherosclerosis. However, the mechanism that regulates the formation of macrophage foam cells and impedes their emigration out of inflamed plaques is still elusive. Here, we report that adhesion receptor CD146 controls the formation of macrophage foam cells and their retention within the plaque during atherosclerosis exacerbation. CD146 is expressed on the macrophages in human and mouse atheroma and can be upregulated by oxidized low-density lipoprotein (oxLDL). CD146 triggers macrophage activation by driving the internalization of scavenger receptor CD36 during lipid uptake. In response to oxLDL, macrophages show reduced migratory capacity toward chemokines CCL19 and CCL21; this capacity can be restored by blocking CD146. Genetic deletion of macrophagic CD146 or targeting of CD146 with an antibody result in much less complex plaques in high-fat diet-fed ApoE-/- mice by causing lipid-loaded macrophages to leave plaques. Collectively, our findings identify CD146 as a novel retention signal that traps macrophages within the artery wall, and a promising therapeutic target in atherosclerosis treatment.
Collapse
Affiliation(s)
- Yongting Luo
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yining Qian
- Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing 100029, China
| | - Liqun Feng
- Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing 100029, China
| | - Zhenzhen Wu
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Wang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongling Yang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihai Qin
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
61
|
Chistiakov DA, Melnichenko AA, Orekhov AN, Bobryshev YV. How do macrophages sense modified low-density lipoproteins? Int J Cardiol 2017; 230:232-240. [DOI: 10.1016/j.ijcard.2016.12.164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/19/2016] [Accepted: 12/25/2016] [Indexed: 01/18/2023]
|
62
|
Tsugita M, Morimoto N, Tashiro M, Kinoshita K, Nakayama M. SR-B1 Is a Silica Receptor that Mediates Canonical Inflammasome Activation. Cell Rep 2017; 18:1298-1311. [DOI: 10.1016/j.celrep.2017.01.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 12/13/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
|
63
|
Tan Y, Kagan JC. Microbe-inducible trafficking pathways that control Toll-like receptor signaling. Traffic 2017; 18:6-17. [PMID: 27731905 PMCID: PMC5182131 DOI: 10.1111/tra.12454] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
Abstract
The receptors of the mammalian innate immune system are designed for rapid microbial detection, and are located in organelles that are conducive to serve these needs. However, emerging evidence indicates that the sites of microbial detection are not the sites of innate immune signal transduction. Rather, microbial detection triggers the movement of receptors to regions of the cell where factors called sorting adaptors detect active receptors and promote downstream inflammatory responses. These findings highlight the critical role that membrane trafficking pathways play in the initiation of innate immunity to infection. In this review, we describe pathways that promote the microbe-inducible endocytosis of Toll-like receptors (TLRs), and the microbe-inducible movement of TLRs between intracellular compartments. We highlight a new class of proteins called Transporters Associated with the eXecution of Inflammation (TAXI), which have the unique ability to transport TLRs and their microbial ligands to signaling-competent regions of the cell, and we discuss the means by which the subcellular sites of signal transduction are defined.
Collapse
Affiliation(s)
- Yunhao Tan
- Harvard Medical School and Division of Gastroenterology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Jonathan C. Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children’s Hospital, Boston, MA, 02115, USA
| |
Collapse
|
64
|
Yang N, Zhang DF, Tao Z, Li M, Zhou SM, Wang GL. Identification of a novel class B scavenger receptor homologue in Portunus trituberculatus: Molecular cloning and microbial ligand binding. FISH & SHELLFISH IMMUNOLOGY 2016; 58:73-81. [PMID: 27633673 DOI: 10.1016/j.fsi.2016.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/02/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Class B scavenger receptors (SRBs), which are present in mammals and insects, have been implicated in a wide range of functions. Herein, a novel SRB homologue, PtSRB, was cloned from the swimming crab, Portunus trituberculatus. PtSRB has 538 amino acid residues, and it consists of two transmembrane regions, a large extracellular loop, and two intracellular tails. A phylogenetic analysis showed that PtSRB distinctly clustered with Marsupenaeus japonicas SRB-1 and most Drosophila SRB homologues, including Croquemort, Peste, NinaD, and Santa Maria, but was separate from the Drosophila sensory neuron membrane protein, MjSRB-2, and all vertebrate SRBs. Real-time quantitative PCR analyses showed that the PtSRB gene was constitutively expressed in all tissues tested. When PtSRB was overexpressed in human embryonic kidney 293T cells, it was distributed in the membrane and cytoplasm. Moreover, in vitro assays showed that rPtSRB bound microbial lipopolysaccharide with low affinity, and lipoteichoic acid and peptidoglycan with high affinity. PtSRB transcripts were down-regulated after challenge with Vibrio alginolyticus or white spot syndrome virus, but not after a Candida lusitaniae challenge. This study provides valuable data for understanding the role of SRBs in the host defense against microbial pathogens, which will facilitate future studies of host-pathogen interactions in crabs.
Collapse
Affiliation(s)
- Ning Yang
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China; Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Dan-Feng Zhang
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Zhen Tao
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Meng Li
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Su-Ming Zhou
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China.
| | - Guo-Liang Wang
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
65
|
Goiko M, de Bruyn JR, Heit B. Short-Lived Cages Restrict Protein Diffusion in the Plasma Membrane. Sci Rep 2016; 6:34987. [PMID: 27725698 PMCID: PMC5057110 DOI: 10.1038/srep34987] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023] Open
Abstract
The plasma membrane is a heterogeneous environment characterized by anomalous diffusion and the presence of microdomains that are molecularly distinct from the bulk membrane. Using single particle tracking of the C-type lectin CD93, we have identified for the first time the transient trapping of transmembrane proteins in cage-like microdomains which restrict protein diffusion. These cages are stabilized by actin-dependent confinement regions, but are separate structures with sizes and lifespans uncorrelated to those of the underlying actin corral. These membrane cages require cholesterol for their strength and stability, with cholesterol depletion decreasing both. Despite this, cages are much larger in size and are longer lived than lipid rafts, suggesting instead that cholesterol-dependent effects on membrane fluidity or molecular packing play a role in cage formation. This diffusional compartment in the plasma membrane has characteristics of both a diffusional barrier and a membrane microdomain, with a size and lifespan intermediate between short-lived microdomains such as lipid rafts and long-lasting diffusional barriers created by the actin cytoskeleton.
Collapse
Affiliation(s)
- Maria Goiko
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, N6A 5C1 Canada.,Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, N6A 3K7 Canada
| | - John R de Bruyn
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, N6A 3K7 Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, N6A 5C1 Canada.,Centre for Human Immunology, The University of Western Ontario, London, Ontario, N6A 5C1 Canada
| |
Collapse
|
66
|
Penberthy KK, Ravichandran KS. Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev 2016; 269:44-59. [PMID: 26683144 DOI: 10.1111/imr.12376] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phosphatidylserine recognition receptors are a highly diverse set of receptors grouped by their ability to recognize the 'eat-me' signal phosphatidylserine on apoptotic cells. Most of the phosphatidylserine recognition receptors dampen inflammation by inducing the production of anti-inflammatory mediators during the phagocytosis of apoptotic corpses. However, many phosphatidylserine receptors are also capable of recognizing other ligands, with some receptors being categorized as scavenger receptors. It is now appreciated that these receptors can elicit different downstream events for particular ligands. Therefore, how phosphatidylserine recognition receptors mediate specific signals during recognition of apoptotic cells versus other ligands, and how this might help regulate the inflammatory state of a tissue is an important question that is not fully understood. Here, we revisit the work on signaling downstream of the phosphatidylserine recognition receptor BAI1, and evaluate how these and other signaling modules mediate signaling downstream from other receptors, including Stabilin-2, MerTK, and αvβ5. We also propose the concept that phosphatidylserine recognition receptors could be viewed as a subset of scavenger receptors that are capable of eliciting anti-inflammatory responses to apoptotic cells.
Collapse
Affiliation(s)
- Kristen K Penberthy
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
67
|
Howard JC, Florentinus-Mefailoski A, Bowden P, Trimble W, Grinstein S, Marshall JG. OxLDL receptor chromatography from live human U937 cells identifies SYK(L) that regulates phagocytosis of oxLDL. Anal Biochem 2016; 513:7-20. [PMID: 27510553 DOI: 10.1016/j.ab.2016.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
Abstract
The binding and activation of macrophages by microscopic aggregates of oxLDL in the intima of the arteries may be an important step towards atherosclerosis leading to heart attack and stroke. Microbeads coated with oxLDL were used to activate, capture and isolate the oxLDL receptor complex from the surface of live cells. Analysis of the resulting tryptic peptides by liquid chromatography and tandem mass spectrometry revealed the Spleen Tyrosine Kinase (SYK), and many of SYK's known interaction network including Fc receptors (FCGR2A, FCER1G and FCGR1A) Toll receptor 4 (TLR4), receptor kinases like EGFRs, as well as RNA binding and metabolism proteins. High-intensity precursor ions (∼9*E3 to 2*E5 counts) were correlated to peptides and specific phosphopeptides from long isoform of SYK (SYK-L) by the SEQUEST, OMSSA and X!TANDEM algorithms. Peptides or phosphopeptides from SYK were observed with the oxLDL-microbeads. Pharmacological inhibitors of SYK activity significantly reduced the engulfment of oxLDL microbeads in the presence of serum factors, but had little effect on IgG phagocytosis. Anti SYK siRNA regulated oxLD engulfment in the context of serum factors and or SYK-L siRNA significantly inhibited engulfment of oxLDL microbeads, but not IgG microbeads.
Collapse
Affiliation(s)
- Jeffrey C Howard
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | | | - Peter Bowden
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - William Trimble
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - John G Marshall
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
68
|
Okuda K, Tong M, Dempsey B, Moore KJ, Gazzinelli RT, Silverman N. Leishmania amazonensis Engages CD36 to Drive Parasitophorous Vacuole Maturation. PLoS Pathog 2016; 12:e1005669. [PMID: 27280707 PMCID: PMC4900624 DOI: 10.1371/journal.ppat.1005669] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/10/2016] [Indexed: 11/19/2022] Open
Abstract
Leishmania amastigotes manipulate the activity of macrophages to favor their own success. However, very little is known about the role of innate recognition and signaling triggered by amastigotes in this host-parasite interaction. In this work we developed a new infection model in adult Drosophila to take advantage of its superior genetic resources to identify novel host factors limiting Leishmania amazonensis infection. The model is based on the capacity of macrophage-like cells, plasmatocytes, to phagocytose and control the proliferation of parasites injected into adult flies. Using this model, we screened a collection of RNAi-expressing flies for anti-Leishmania defense factors. Notably, we found three CD36-like scavenger receptors that were important for defending against Leishmania infection. Mechanistic studies in mouse macrophages showed that CD36 accumulates specifically at sites where the parasite contacts the parasitophorous vacuole membrane. Furthermore, CD36-deficient macrophages were defective in the formation of the large parasitophorous vacuole typical of L. amazonensis infection, a phenotype caused by inefficient fusion with late endosomes and/or lysosomes. These data identify an unprecedented role for CD36 in the biogenesis of the parasitophorous vacuole and further highlight the utility of Drosophila as a model system for dissecting innate immune responses to infection.
Collapse
Affiliation(s)
- Kendi Okuda
- Division of Infectious Diseases & Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (KO); (NS)
| | - Mei Tong
- Division of Infectious Diseases & Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Brian Dempsey
- Division of Infectious Diseases & Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kathryn J. Moore
- Department of Medicine, New York University School of Medicine, Langone Medical Center, New York, New York, United States of America
| | - Ricardo T. Gazzinelli
- Division of Infectious Diseases & Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Neal Silverman
- Division of Infectious Diseases & Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (KO); (NS)
| |
Collapse
|
69
|
Vance DT, Dufresne J, Florentinus-Mefailoski A, Tucholska M, Trimble W, Grinstein S, Marshall JG. A phagocytosis assay for oxidized low-density lipoprotein versus immunoglobulin G-coated microbeads in human U937 macrophages. Anal Biochem 2016; 500:24-34. [DOI: 10.1016/j.ab.2016.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/24/2015] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
|
70
|
Biedroń R, Peruń A, Józefowski S. CD36 Differently Regulates Macrophage Responses to Smooth and Rough Lipopolysaccharide. PLoS One 2016; 11:e0153558. [PMID: 27073833 PMCID: PMC4830570 DOI: 10.1371/journal.pone.0153558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/31/2016] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharide (LPS) is the major pathogen-associated molecular pattern of Gram-negative bacterial infections, and includes smooth (S-LPS) and rough (R-LPS) chemotypes. Upon activation by LPS through CD14, TLR4/MD-2 heterodimers sequentially induce two waves of intracellular signaling for macrophage activation: the MyD88-dependent pathway from the plasma membrane and, following internalization, the TRIF-dependent pathway from endosomes. We sought to better define the role of scavenger receptors CD36 and CD204/SR-A as accessory LPS receptors that can contribute to pro-inflammatory and microbicidal activation of macrophages. We have found that CD36 differently regulates activation of mouse macrophages by S-LPS versus R-LPS. The ability of CD36 to substitute for CD14 in loading R-LPS, but not S-LPS onto TLR4/MD-2 allows CD14-independent macrophage responses to R-LPS. Conversely, S-LPS, but not R-LPS effectively stimulates CD14 binding to CD36, which favors S-LPS transfer from CD14 onto TLR4/MD-2 under conditions of low CD14 occupancy with S-LPS in serum-free medium. In contrast, in the presence of serum, CD36 reduces S-LPS binding to TLR4/MD-2 and the subsequent MyD88-dependent signaling, by mediating internalization of S-LPS/CD14 complexes. Additionally, CD36 positively regulates activation of TRIF-dependent signaling by both S-LPS and R-LPS, by promoting TLR4/MD-2 endocytosis. In contrast, we have found that SR-A does not function as a S-LPS receptor. Thus, by co-operating with CD14 in both R- and S-LPS loading onto TLR4/MD-2, CD36 can enhance the sensitivity of tissue-resident macrophages in detecting infections by Gram-negative bacteria. However, in later phases, following influx of serum to the infection site, the CD36-mediated negative regulation of MyD88-dependent branch of S-LPS-induced TLR4 signaling might constitute a mechanism to prevent an excessive inflammatory response, while preserving the adjuvant effect of S-LPS for adaptive immunity.
Collapse
Affiliation(s)
- Rafał Biedroń
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Angelika Peruń
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
- * E-mail:
| |
Collapse
|
71
|
Takeda Y, Suzuki M, Jin Y, Tachibana I. Preventive Role of Tetraspanin CD9 in Systemic Inflammation of Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2016; 53:751-60. [PMID: 26378766 DOI: 10.1165/rcmb.2015-0122tr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is frequently associated with extrapulmonary complications, including cardiovascular disease, diabetes, and osteoporosis. Persistent, low-grade, systemic inflammation underlies these comorbid disorders. Tetraspanins, which have a characteristic structure spanning the membrane four times, facilitate lateral organization of molecular complexes and thereby form tetraspanin-enriched microdomains that are distinct from lipid rafts. Recent basic research has suggested a preventive role of tetraspanin CD9 in COPD. CD9-enriched microdomains negatively regulate LPS-induced receptor formation by preventing CD14 from accumulating into the rafts, and decreased CD9 in macrophages enhances inflammation in mice. Mice doubly deficient in CD9 and a related tetraspanin, CD81, show pulmonary emphysema, weight loss, and osteopenia, a phenotype akin to human COPD. A therapeutic approach to up-regulating CD9 in macrophages might improve the clinical course of patients with COPD with comorbidities.
Collapse
Affiliation(s)
- Yoshito Takeda
- 1 Department of Respiratory Medicine, Allergy, and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Osaka, Japan, and
| | - Mayumi Suzuki
- 2 Department of Medicine, Nissay Hospital, Nippon Life Saiseikai Public Interest Incorporated Foundation, Nishi-ku, Osaka, Japan
| | - Yingji Jin
- 1 Department of Respiratory Medicine, Allergy, and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Osaka, Japan, and
| | - Isao Tachibana
- 2 Department of Medicine, Nissay Hospital, Nippon Life Saiseikai Public Interest Incorporated Foundation, Nishi-ku, Osaka, Japan
| |
Collapse
|
72
|
PSD-95 regulates CRFR1 localization, trafficking and β-arrestin2 recruitment. Cell Signal 2016; 28:531-540. [PMID: 26898829 DOI: 10.1016/j.cellsig.2016.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/13/2022]
Abstract
Corticotropin-releasing factor (CRF) is a neuropeptide commonly associated with the hypothalamic-pituitary adrenal axis stress response. Upon release, CRF activates two G protein-coupled receptors (GPCRs): CRF receptor 1 (CRFR1) and CRF receptor 2 (CRFR2). Although both receptors contribute to mood regulation, CRFR1 antagonists have demonstrated anxiolytic and antidepressant-like properties that may be exploited in the generation of new pharmacological interventions for mental illnesses. Previous studies have demonstrated CRFR1 capable of heterologously sensitizing serotonin 2A receptor (5-HT2AR) signaling: another GPCR implicated in psychiatric disease. Interestingly, this phenomenon was dependent on Postsynaptic density 95 (PSD-95)/Disc Large/Zona Occludens (PDZ) interactions on the distal carboxyl termini of both receptors. In the current study, we demonstrate that endogenous PSD-95 can be co-immunoprecipitated with CRFR1 from cortical brain homogenate, and this interaction appears to be primarily via the PDZ-binding motif. Additionally, PSD-95 colocalizes with CRFR1 within the dendritic projections of cultured mouse neurons in a PDZ-binding motif-dependent manner. In HEK 293 cells, PSD-95 overexpression inhibited CRFR1 endocytosis, whereas PSD-95 shRNA knockdown enhanced CRFR1 endocytosis. Although PSD-95 does not appear to play a significant role in CRF-mediated cAMP or ERK1/2 signaling, PSD-95 was demonstrated to suppress β-arrestin2 recruitment: providing a potential mechanism for PSD-95's inhibition of endocytosis. In revisiting previously documented heterologous sensitization, PSD-95 shRNA knockdown did not prevent CRFR1-mediated enhancement of 5-HT2AR signaling. In conclusion, we have identified and characterized a novel functional relationship between CRFR1 and PSD-95 that may have implications in the design of new treatment strategies for mental illness.
Collapse
|
73
|
Rocha-Perugini V, Sánchez-Madrid F, Martínez Del Hoyo G. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation. Front Immunol 2016; 6:653. [PMID: 26793193 PMCID: PMC4707441 DOI: 10.3389/fimmu.2015.00653] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022] Open
Abstract
Tetraspanin-enriched microdomains (TEMs) are specialized membrane platforms driven by protein–protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen-presenting cells (APCs) through the organization of pattern-recognition receptors (PRRs) and their downstream-induced signaling, as well as the regulation of MHC-II–peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS) formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling, and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation and in the dynamics of IS architectural organization.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Gloria Martínez Del Hoyo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) , Madrid , Spain
| |
Collapse
|
74
|
Caetano FA, Dirk BS, Tam JHK, Cavanagh PC, Goiko M, Ferguson SSG, Pasternak SH, Dikeakos JD, de Bruyn JR, Heit B. MIiSR: Molecular Interactions in Super-Resolution Imaging Enables the Analysis of Protein Interactions, Dynamics and Formation of Multi-protein Structures. PLoS Comput Biol 2015; 11:e1004634. [PMID: 26657340 PMCID: PMC4676698 DOI: 10.1371/journal.pcbi.1004634] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/27/2015] [Indexed: 11/18/2022] Open
Abstract
Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell. In this paper we present the software package Molecular Interactions in Super Resolution (MIiSR), which provides a series of quantitative analytical tools for measuring molecular interactions and the formation of higher-order molecular complexes in super-resolution microscopy images.
Collapse
Affiliation(s)
- Fabiana A. Caetano
- The J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute and the Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Brennan S. Dirk
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Joshua H. K. Tam
- The J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute and the Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - P. Craig Cavanagh
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Maria Goiko
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | | | - Stephen H. Pasternak
- The J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute and the Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - John R. de Bruyn
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
75
|
Demers A, Samami S, Lauzier B, Des Rosiers C, Ngo Sock ET, Ong H, Mayer G. PCSK9 Induces CD36 Degradation and Affects Long-Chain Fatty Acid Uptake and Triglyceride Metabolism in Adipocytes and in Mouse Liver. Arterioscler Thromb Vasc Biol 2015; 35:2517-25. [PMID: 26494228 DOI: 10.1161/atvbaha.115.306032] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/12/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptor thereby elevating plasma low-density lipoprotein cholesterol levels and the risk of coronary heart disease. Thus, the use of PCSK9 inhibitors holds great promise to prevent heart disease. Previous work found that PCSK9 is involved in triglyceride metabolism, independently of its action on low-density lipoprotein receptor, and that other yet unidentified receptors could mediate this effect. Therefore, we assessed whether PCSK9 enhances the degradation of CD36, a major receptor involved in transport of long-chain fatty acids and triglyceride storage. APPROACH AND RESULTS Overexpressed or recombinant PCSK9 induced CD36 degradation in cell lines and primary adipocytes and reduced the uptake of the palmitate analog Bodipy FL C16 and oxidized low-density lipoprotein in 3T3-L1 adipocytes and hepatic HepG2 cells, respectively. Surface plasmon resonance, coimmunoprecipitation, confocal immunofluorescence microscopy, and protein degradation pathway inhibitors revealed that PCSK9 directly interacts with CD36 and targets the receptor to lysosomes through a mechanism involving the proteasome. Importantly, the level of CD36 protein was increased by >3-fold upon small interfering RNA knockdown of endogenous PCSK9 in hepatic cells and similarly increased in the liver and visceral adipose tissue of Pcsk9(-/-) mice. In Pcsk9(-/-) mice, increased hepatic CD36 was correlated with an amplified uptake of fatty acid and accumulation of triglycerides and lipid droplets. CONCLUSIONS Our results demonstrate an important role of PCSK9 in modulating the function of CD36 and triglyceride metabolism. PCSK9-mediated CD36 degradation may serve to limit fatty acid uptake and triglyceride accumulation in tissues, such as the liver.
Collapse
Affiliation(s)
- Annie Demers
- From the Laboratory of Molecular Cell Biology (A.D., S.S., E.T.N.S., G.M.) and Laboratory of Metabolomic (C.D.R.), Montreal Heart Institute, Montréal, Québec, Canada; Université de Nantes, L'institut du thorax, Inserm UMR 1087 / CNRS UMR 6291, Nantes, France (B.L.); and Faculty of Pharmacy (H.O.), Université de Montréal, Department of Pharmacology, Faculty of Medicine (S.S., E.T.N.S., G.M.), Department of Nutrition, Faculty of Medicine (C.D.R.), and Department of Medicine (G.M.), Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Samaneh Samami
- From the Laboratory of Molecular Cell Biology (A.D., S.S., E.T.N.S., G.M.) and Laboratory of Metabolomic (C.D.R.), Montreal Heart Institute, Montréal, Québec, Canada; Université de Nantes, L'institut du thorax, Inserm UMR 1087 / CNRS UMR 6291, Nantes, France (B.L.); and Faculty of Pharmacy (H.O.), Université de Montréal, Department of Pharmacology, Faculty of Medicine (S.S., E.T.N.S., G.M.), Department of Nutrition, Faculty of Medicine (C.D.R.), and Department of Medicine (G.M.), Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Benjamin Lauzier
- From the Laboratory of Molecular Cell Biology (A.D., S.S., E.T.N.S., G.M.) and Laboratory of Metabolomic (C.D.R.), Montreal Heart Institute, Montréal, Québec, Canada; Université de Nantes, L'institut du thorax, Inserm UMR 1087 / CNRS UMR 6291, Nantes, France (B.L.); and Faculty of Pharmacy (H.O.), Université de Montréal, Department of Pharmacology, Faculty of Medicine (S.S., E.T.N.S., G.M.), Department of Nutrition, Faculty of Medicine (C.D.R.), and Department of Medicine (G.M.), Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Christine Des Rosiers
- From the Laboratory of Molecular Cell Biology (A.D., S.S., E.T.N.S., G.M.) and Laboratory of Metabolomic (C.D.R.), Montreal Heart Institute, Montréal, Québec, Canada; Université de Nantes, L'institut du thorax, Inserm UMR 1087 / CNRS UMR 6291, Nantes, France (B.L.); and Faculty of Pharmacy (H.O.), Université de Montréal, Department of Pharmacology, Faculty of Medicine (S.S., E.T.N.S., G.M.), Department of Nutrition, Faculty of Medicine (C.D.R.), and Department of Medicine (G.M.), Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Emilienne Tudor Ngo Sock
- From the Laboratory of Molecular Cell Biology (A.D., S.S., E.T.N.S., G.M.) and Laboratory of Metabolomic (C.D.R.), Montreal Heart Institute, Montréal, Québec, Canada; Université de Nantes, L'institut du thorax, Inserm UMR 1087 / CNRS UMR 6291, Nantes, France (B.L.); and Faculty of Pharmacy (H.O.), Université de Montréal, Department of Pharmacology, Faculty of Medicine (S.S., E.T.N.S., G.M.), Department of Nutrition, Faculty of Medicine (C.D.R.), and Department of Medicine (G.M.), Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Huy Ong
- From the Laboratory of Molecular Cell Biology (A.D., S.S., E.T.N.S., G.M.) and Laboratory of Metabolomic (C.D.R.), Montreal Heart Institute, Montréal, Québec, Canada; Université de Nantes, L'institut du thorax, Inserm UMR 1087 / CNRS UMR 6291, Nantes, France (B.L.); and Faculty of Pharmacy (H.O.), Université de Montréal, Department of Pharmacology, Faculty of Medicine (S.S., E.T.N.S., G.M.), Department of Nutrition, Faculty of Medicine (C.D.R.), and Department of Medicine (G.M.), Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Gaetan Mayer
- From the Laboratory of Molecular Cell Biology (A.D., S.S., E.T.N.S., G.M.) and Laboratory of Metabolomic (C.D.R.), Montreal Heart Institute, Montréal, Québec, Canada; Université de Nantes, L'institut du thorax, Inserm UMR 1087 / CNRS UMR 6291, Nantes, France (B.L.); and Faculty of Pharmacy (H.O.), Université de Montréal, Department of Pharmacology, Faculty of Medicine (S.S., E.T.N.S., G.M.), Department of Nutrition, Faculty of Medicine (C.D.R.), and Department of Medicine (G.M.), Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
76
|
Rostama B, Turner JE, Seavey GT, Norton CR, Gridley T, Vary CPH, Liaw L. DLL4/Notch1 and BMP9 Interdependent Signaling Induces Human Endothelial Cell Quiescence via P27KIP1 and Thrombospondin-1. Arterioscler Thromb Vasc Biol 2015; 35:2626-37. [PMID: 26471266 DOI: 10.1161/atvbaha.115.306541] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/05/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Bone morphogenetic protein-9 (BMP9)/activin-like kinase-1 and delta-like 4 (DLL4)/Notch promote endothelial quiescence, and we aim to understand mechanistic interactions between the 2 pathways. We identify new targets that contribute to endothelial quiescence and test whether loss of Dll4(+/-) in adult vasculature alters BMP signaling. APPROACH AND RESULTS Human endothelial cells respond synergistically to BMP9 and DLL4 stimulation, showing complete quiescence and induction of HEY1 and HEY2. Canonical BMP9 signaling via activin-like kinase-1-Smad1/5/9 was disrupted by inhibition of Notch signaling, even in the absence of exogenous DLL4. Similarly, DLL4 activity was suppressed when the basal activin-like kinase-1-Smad1/5/9 pathway was inhibited, showing that these pathways are interdependent. BMP9/DLL4 required induction of P27(KIP1) for quiescence, although multiple factors are involved. To understand these mechanisms, we used proteomics data to identify upregulation of thrombospondin-1, which contributes to the quiescence phenotype. To test whether Dll4 regulates BMP/Smad pathways and endothelial cell phenotype in vivo, we characterized the vasculature of Dll4(+/-) mice, analyzing endothelial cells in the lung, heart, and aorta. Together with changes in endothelial structure and vascular morphogenesis, we found that loss of Dll4 was associated with a significant upregulation of pSmad1/5/9 signaling in lung endothelial cells. Because steady-state endothelial cell proliferation rates were not different in the Dll4(+/-) mice, we propose that the upregulation of pSmad1/5/9 signaling compensates to maintain endothelial cell quiescence in these mice. CONCLUSIONS DLL4/Notch and BMP9/activin-like kinase-1 signaling rely on each other's pathways for full activity. This represents an important mechanism of cross talk that enhances endothelial quiescence and sensitively coordinates cellular responsiveness to soluble and cell-tethered ligands.
Collapse
Affiliation(s)
- Bahman Rostama
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Jacqueline E Turner
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Guy T Seavey
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Christine R Norton
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Thomas Gridley
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Calvin P H Vary
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Lucy Liaw
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough.
| |
Collapse
|
77
|
Wang JG, Aikawa M. Toll-like receptors and Src-family kinases in atherosclerosis -- focus on macrophages. Circ J 2015; 79:2332-4. [PMID: 26467082 DOI: 10.1253/circj.cj-15-1039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jian-Guo Wang
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham Women's Hospital, Harvard Medical School
| | | |
Collapse
|
78
|
Ghosh S, Geahlen RL. Stress Granules Modulate SYK to Cause Microglial Cell Dysfunction in Alzheimer's Disease. EBioMedicine 2015; 2:1785-98. [PMID: 26870803 PMCID: PMC4740304 DOI: 10.1016/j.ebiom.2015.09.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022] Open
Abstract
Microglial cells in the brains of Alzheimer's patients are known to be recruited to amyloid-beta (Aβ) plaques where they exhibit an activated phenotype, but are defective for plaque removal by phagocytosis. In this study, we show that microglia stressed by exposure to sodium arsenite or Aβ(1–42) peptides or fibrils form extensive stress granules (SGs) to which the tyrosine kinase, SYK, is recruited. SYK enhances the formation of SGs, is active within the resulting SGs and stimulates the production of reactive oxygen and nitrogen species that are toxic to neuronal cells. This sequestration of SYK inhibits the ability of microglial cells to phagocytose Escherichia coli or Aβ fibrils. We find that aged microglial cells are more susceptible to the formation of SGs; and SGs containing SYK and phosphotyrosine are prevalent in the brains of patients with severe Alzheimer's disease. Phagocytic activity can be restored to stressed microglial cells by treatment with IgG, suggesting a mechanism to explain the therapeutic efficacy of intravenous IgG. These studies describe a mechanism by which stress, including exposure to Aβ, compromises the function of microglial cells in Alzheimer's disease and suggest approaches to restore activity to dysfunctional microglial cells. Chronic stress promotes the formation of large, persistent stress granules in microglial cells. SYK is recruited to stress granules, which promotes inflammatory responses and inhibits phagocytosis. Phagocytic activity of stressed cells can be recovered by treatment with IgG.
Microglial cells in the brains of patients with Alzheimer's disease are activated, but are defective at phagocytosis of amyloid plaques. Activation and phagocytosis require the SYK tyrosine kinase. Chronic exposure to amyloid-beta promotes the formation of persistent stress granules to which active SYK binds and these are found in the brains of patients with severe Alzheimer's disease. This activation and sequestration of SYK promotes inflammation and inhibits phagocytosis. Phagocytic activity can be recovered by treatment with IgG, which causes a redistribution of SYK within the cell, suggesting potential therapeutic approaches to restoring microglial cell function to diseased or aged brains.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
79
|
Chen Y, Kennedy DJ, Ramakrishnan DP, Yang M, Huang W, Li Z, Xie Z, Chadwick AC, Sahoo D, Silverstein RL. Oxidized LDL-bound CD36 recruits an Na⁺/K⁺-ATPase-Lyn complex in macrophages that promotes atherosclerosis. Sci Signal 2015; 8:ra91. [PMID: 26350901 DOI: 10.1126/scisignal.aaa9623] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One characteristic of atherosclerosis is the accumulation of lipid-laden macrophage foam cells in the arterial wall. We have previously shown that the binding of oxidized low-density lipoprotein (oxLDL) to the scavenger receptor CD36 activates the kinase Lyn, initiating a cascade that inhibits macrophage migration and is necessary for foam cell generation. We identified the plasma membrane ion transporter Na(+)/K(+)-ATPase as a key component in the macrophage oxLDL-CD36 signaling axis. Using peritoneal macrophages isolated from Atp1a1 heterozygous or Cd36-null mice, we demonstrated that CD36 recruited an Na(+)/K(+)-ATPase-Lyn complex for Lyn activation in response to oxLDL. Macrophages deficient in the α1 Na(+)/K(+)-ATPase catalytic subunit did not respond to activation of CD36, showing attenuated oxLDL uptake and foam cell formation, and oxLDL failed to inhibit migration of these macrophages. Furthermore, Apoe-null mice, which are a model of atherosclerosis, were protected from diet-induced atherosclerosis by global deletion of a single allele encoding the α1 Na(+)/K(+)-ATPase subunit or reconstitution with macrophages that lacked an allele encoding the α1 Na(+)/K(+)-ATPase subunit. These findings identify Na(+)/K(+)-ATPase as a potential target for preventing or treating atherosclerosis.
Collapse
Affiliation(s)
- Yiliang Chen
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - David J Kennedy
- Department of Medicine, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Devi Prasadh Ramakrishnan
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA. Department of Molecular Medicine, Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Moua Yang
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA. Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wenxin Huang
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - Zhichuan Li
- Department of Physiology and Pharmacology, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Zijian Xie
- Department of Physiology and Pharmacology, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Alexandra C Chadwick
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA. Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA. Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Roy L Silverstein
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA. Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
80
|
Freeman SA, Grinstein S. Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 2015; 262:193-215. [PMID: 25319336 DOI: 10.1111/imr.12212] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phagocytosis is a remarkably complex and versatile process: it contributes to innate immunity through the ingestion and elimination of pathogens, while also being central to tissue homeostasis and remodeling by clearing effete cells. The ability of phagocytes to perform such diverse functions rests, in large part, on their vast repertoire of receptors. In this review, we address the various receptor types, their mobility in the plane of the membrane, and two modes of receptor crosstalk: priming and synergy. A major section is devoted to the actin cytoskeleton, which not only governs receptor mobility and clustering but also is instrumental in particle engulfment. Four stages of the actin remodeling process are identified and discussed: (i) the 'resting' stage that precedes receptor engagement, (ii) the disruption of the cortical actin prior to formation of the phagocytic cup, (iii) the actin polymerization that propels pseudopod extension, and (iv) the termination of polymerization and removal of preassembled actin that are required for focal delivery of endomembranes and phagosomal sealing. These topics are viewed in the larger context of the differentiation and polarization of the phagocytic cells.
Collapse
Affiliation(s)
- Spencer A Freeman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
81
|
Chronic HIV infection impairs nonopsonic phagocytosis of malaria parasites. J Acquir Immune Defic Syndr 2015; 68:128-32. [PMID: 25415293 DOI: 10.1097/qai.0000000000000427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Malaria-specific immune responses are altered in HIV/malaria-coinfected individuals and are associated with higher parasite burdens and more severe clinical disease. Monocyte/macrophage phagocytosis is a major mechanism of malaria parasite clearance. We hypothesized that phagocytosis of malaria-parasitized erythrocytes is impaired in coinfected individuals and could contribute to the increased parasite burdens observed. We show that nonopsonic phagocytosis of Plasmodium falciparum parasitized erythrocytes is impaired in monocytes isolated from HIV-infected individuals. The observed defects in phagocytic capacity were rescued after 6 months of antiretroviral therapy, demonstrating the importance of HIV treatment and immune reconstitution in the context of coinfection.
Collapse
|
82
|
Di Gioia M, Zanoni I. Toll-like receptor co-receptors as master regulators of the immune response. Mol Immunol 2015; 63:143-52. [DOI: 10.1016/j.molimm.2014.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/24/2014] [Accepted: 05/25/2014] [Indexed: 12/12/2022]
|
83
|
Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 2015; 33:257-90. [PMID: 25581309 DOI: 10.1146/annurev-immunol-032414-112240] [Citation(s) in RCA: 1074] [Impact Index Per Article: 107.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Receptors of the innate immune system detect conserved determinants of microbial and viral origin. Activation of these receptors initiates signaling events that culminate in an effective immune response. Recently, the view that innate immune signaling events rely on and operate within a complex cellular infrastructure has become an important framework for understanding the regulation of innate immunity. Compartmentalization within this infrastructure provides the cell with the ability to assign spatial information to microbial detection and regulate immune responses. Several cell biological processes play a role in the regulation of innate signaling responses; at the same time, innate signaling can engage cellular processes as a form of defense or to promote immunological memory. In this review, we highlight these aspects of cell biology in pattern-recognition receptor signaling by focusing on signals that originate from the cell surface, from endosomal compartments, and from within the cytosol.
Collapse
Affiliation(s)
- Sky W Brubaker
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; , , ,
| | | | | | | |
Collapse
|
84
|
Gianni T, Campadelli-Fiume G. The epithelial αvβ3-integrin boosts the MYD88-dependent TLR2 signaling in response to viral and bacterial components. PLoS Pathog 2014; 10:e1004477. [PMID: 25375272 PMCID: PMC4223072 DOI: 10.1371/journal.ppat.1004477] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/16/2014] [Indexed: 12/15/2022] Open
Abstract
TLR2 is a cell surface receptor which elicits an immediate response to a wide repertoire of bacteria and viruses. Its response is usually thought to be proinflammatory rather than an antiviral. In monocytic cells TLR2 cooperates with coreceptors, e.g. CD14, CD36 and αMβ2-integrin. In an earlier work we showed that αvβ3-integrin acts in concert with TLR2 to elicit an innate response to HSV, and to lipopolysaccharide. This response is characterized by production of IFN-α and -β, a specific set of cytokines, and NF-κB activation. We investigated the basis of the cooperation between αvβ3-integrin and TLR2. We report that β3-integrin participates by signaling through Y residues located in the C-tail, known to be involved in signaling activity. αvβ3-integrin boosts the MYD88-dependent TLR2 signaling and IRAK4 phosphorylation in 293T and in epithelial, keratinocytic and neuronal cell lines. The replication of ICP0minus HSV is greatly enhanced by DN versions of MYD88, of Akt – a hub of this pathway, or by β3integrin-silencing. αvβ3-integrin enables the recruitment of TLR2, MAL, MYD88 at lipid rafts, the platforms from where the signaling starts. The PAMP of the HSV-induced innate response is the gH/gL virion glycoprotein, which interacts with αvβ3-integrin and TLR2 independently one of the other, and cross-links the two receptors. Given the preferential distribution of αvβ3-integrin to epithelial cells, we propose that αvβ3-integrin serves as coreceptor of TLR2 in these cells. The results open the possibility that TLR2 makes use of coreceptors in a variety of cells to broaden its spectrum of activity and tissue specificity. In an earlier work we showed that a relevant contribution to the overall IFN-based antiviral response of the cell to herpes simplex virus is exerted by αvβ3-integrin which acts in concert with TLR2 in eliciting this response. Major characteristics of this branch of the innate response are the secretion of IFN-α and -β, of a specific set of cytokines, and the activation of NF-κB. The response is elicited also by LPS, indicating that the αvβ3-integrin TLR2 sentinels sense both bacteria and viruses. The IFN response is usually thought to be elicited by the endosomal and cytoplasmic sensors. Here we have investigated the basis of the αvβ3-integrin–TLR2 response, and found that αvβ3-integrin acts through its signaling C-tail, and boosts the MYD88- IRAK4-dependent TLR2 response. This is seen also in epithelial and neuronal cells which exemplify targets of HSV infection. Altogether, the results argue that αvβ3-integrin may serve as a coreceptor of TLR2 in epithelial cells. A point of novelty is that the TLR2 coreceptors known to date - CD14, CD36 and αMβ2-integrins - are typical of monocytic-derived cells (macrophages, DCs). To our knowledge a TLR2 coreceptor for epithelial cells was not known to date.
Collapse
Affiliation(s)
- Tatiana Gianni
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum–University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
85
|
Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2014; 72:557-581. [PMID: 25332099 PMCID: PMC4293489 DOI: 10.1007/s00018-014-1762-5] [Citation(s) in RCA: 558] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/01/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
Abstract
Toll-like receptor 4 (TLR4) is activated by lipopolysaccharide (LPS), a component of Gram-negative bacteria to induce production of pro-inflammatory mediators aiming at eradication of the bacteria. Dysregulation of the host responses to LPS can lead to a systemic inflammatory condition named sepsis. In a typical scenario, activation of TLR4 is preceded by binding of LPS to CD14 protein anchored in cholesterol- and sphingolipid-rich microdomains of the plasma membrane called rafts. CD14 then transfers the LPS to the TLR4/MD-2 complex which dimerizes and triggers MyD88- and TRIF-dependent production of pro-inflammatory cytokines and type I interferons. The TRIF-dependent signaling is linked with endocytosis of the activated TLR4, which is controlled by CD14. In addition to CD14, other raft proteins like Lyn tyrosine kinase of the Src family, acid sphingomyelinase, CD44, Hsp70, and CD36 participate in the TLR4 signaling triggered by LPS and non-microbial endogenous ligands. In this review, we summarize the current state of the knowledge on the involvement of rafts in TLR4 signaling, with an emphasis on how the raft proteins regulate the TLR4 signaling pathways. CD14-bearing rafts, and possibly CD36-rich rafts, are believed to be preferred sites of the assembly of a multimolecular complex which mediates the endocytosis of activated TLR4.
Collapse
Affiliation(s)
- Agnieszka Płóciennikowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Aneta Hromada-Judycka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Kinga Borzęcka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland.
| |
Collapse
|
86
|
Wong HS, Jaumouillé V, Heit B, Doodnauth SA, Patel S, Huang YW, Grinstein S, Robinson LA. Cytoskeletal confinement of CX3CL1 limits its susceptibility to proteolytic cleavage by ADAM10. Mol Biol Cell 2014; 25:3884-99. [PMID: 25253723 PMCID: PMC4244198 DOI: 10.1091/mbc.e13-11-0633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CX3CL1 diffuses within confined regions of the plasma membrane. CX3CL1 is confined by the cortical actin cytoskeleton, not lipid rafts. Actin confinement regions protect CX3CL1 from proteolysis by limiting its interactions with ADAM10. CX3CL1 is a unique chemokine that acts both as a transmembrane endothelial adhesion molecule and, upon proteolytic cleavage, a soluble chemoattractant for circulating leukocytes. The constitutive release of soluble CX3CL1 requires the interaction of its transmembrane species with the integral membrane metalloprotease ADAM10, yet the mechanisms governing this process remain elusive. Using single-particle tracking and subdiffraction imaging, we studied how ADAM10 interacts with CX3CL1. We observed that the majority of cell surface CX3CL1 diffused within restricted confinement regions structured by the cortical actin cytoskeleton. These confinement regions sequestered CX3CL1 from ADAM10, precluding their association. Disruption of the actin cytoskeleton reduced CX3CL1 confinement and increased CX3CL1–ADAM10 interactions, promoting the release of soluble chemokine. Our results demonstrate a novel role for the cytoskeleton in limiting membrane protein proteolysis, thereby regulating both cell surface levels and the release of soluble ligand.
Collapse
Affiliation(s)
- Harikesh S Wong
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Valentin Jaumouillé
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sasha A Doodnauth
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Sajedabanu Patel
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Yi-Wei Huang
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Lisa A Robinson
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Paediatrics, University of Toronto, Toronto, ON M5S 2J7, Canada
| |
Collapse
|
87
|
Nanì S, Fumagalli L, Sinha U, Kamen L, Scapini P, Berton G. Src family kinases and Syk are required for neutrophil extracellular trap formation in response to β-glucan particles. J Innate Immun 2014; 7:59-73. [PMID: 25277753 DOI: 10.1159/000365249] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/16/2014] [Indexed: 12/22/2022] Open
Abstract
We report that particles of β-glucan, one of the surface components of yeasts, are powerful inducers of neutrophil extracellular trap (NET) formation in human neutrophils. β-Glucan triggered a prolonged phosphorylation of Src family kinases and Syk that were suppressed by the Src family inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3, 4-d] pyrimidine (PP2) and a novel Syk inhibitor, PRT-060318, respectively. PP2 and PRT-060318 also inhibited β-glucan-induced NET formation and reactive oxygen species (ROS) generation, suggesting that both responses are triggered by a Src/Syk-regulated signaling pathway. Given that the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) markedly inhibited NET formation, our findings suggest that ROS are required for the full-blown formation of NETs in response to β-glucan particles. Contrary to β-glucan, ROS generation triggered by phorbol myristate acetate (PMA) was unaffected by PP2 and PRT-060318, but these compounds, as well as DPI, suppressed Src/Syk phosphorylation triggered by PMA. Whereas PP2 had no effect on PMA-induced NET formation, PRT-060318 had a significant, albeit partial, inhibitory effect, thus suggesting that ROS induce NET formation in part via activation of Syk. These findings were substantiated by the evidence that neutrophils from mice with the conditional deletion of Syk were defective in formation of NETs in response to β-glucan.
Collapse
Affiliation(s)
- Sara Nanì
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | | | | | | | | | | |
Collapse
|
88
|
Kim E, Yoon KD, Lee WS, Yang WS, Kim SH, Sung NY, Baek KS, Kim Y, Htwe KM, Kim YD, Hong S, Kim JH, Cho JY. Syk/Src-targeted anti-inflammatory activity of Codariocalyx motorius ethanolic extract. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:185-193. [PMID: 24866386 DOI: 10.1016/j.jep.2014.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/11/2014] [Accepted: 05/14/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Codariocalyx motorius (Houtt.) H. Ohashi (Fabaceae) is one of several ethnopharmacologically valuable South Asian species prescribed as an herbal medicine for various inflammatory diseases. Due to the lack of systematic studies on this plant, we aimed to explore the inhibitory activity of Codariocalyx motorius toward inflammatory responses using its ethanolic extract (Cm-EE). MATERIALS AND METHODS Lipopolysaccharide (LPS)-treated macrophages and a HCl/EtOH-induced gastritis model were used for evaluation of the anti-inflammatory activity of Cm-EE. HPLC and spectroscopic analysis were employed to identify potential active components. Mechanistic approaches to determine target enzymes included kinase assays, reporter gene assays, and overexpression of target enzymes. RESULTS Cm-EE strongly suppressed nitric oxide (NO) and prostaglandin E2 (PGE2) release. Cm-EE-mediated inhibition was observed at the transcriptional level in the form of suppression of NF-κB (p65) translocation and activation. This extract also lowered the levels of phosphorylation of Src and Syk, their kinase activity, and their formation of signalling complexes by binding to the downstream enzyme p85/PI3K. In accord with these findings, the phosphorylation of p85 induced by overexpression of Src or Syk was also diminished by Cm-EE. Orally administered Cm-EE clearly inhibited gastritic ulcer formation and the phosphorylation of IκBα and Src in HCl/EtOH-treated stomachs of mice. By phytochemical analysis, luteolin and its glycoside, apigenin-7-O-glucuronide, and scutellarein-6-O-glucuronide were identified as major components of Cm-EE. Among these, it was found that luteolin was able to strongly suppress NO and PGE2 production under the same conditions. CONCLUSION Syk/Src-targeted inhibition of NF-κB by Cm-EE could be a major anti-inflammatory mechanism contributing to its ethno pharmacological role as an anti-inflammatory herbal medicine.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Kee Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| | - Woo-Shin Lee
- Department of Forest Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Woo Seok Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Shi Hyoung Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Nak Yoon Sung
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Yong Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Khin Myo Htwe
- Popa Mountain Park, Forest Department, Kyaukpadaung Township, Mandalay Division, Myanmar
| | - Young-Dong Kim
- Department of Life Science, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Sungyoul Hong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
89
|
Park YM. CD36, a scavenger receptor implicated in atherosclerosis. Exp Mol Med 2014; 46:e99. [PMID: 24903227 PMCID: PMC4081553 DOI: 10.1038/emm.2014.38] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 03/17/2014] [Accepted: 04/08/2014] [Indexed: 12/17/2022] Open
Abstract
CD36 is a membrane glycoprotein that is present on various types of cells, including monocytes, macrophages, microvascular endothelial cells, adipocytes and platelets. Macrophage CD36 participates in atherosclerotic arterial lesion formation through its interaction with oxidized low-density lipoprotein (oxLDL), which triggers signaling cascades for inflammatory responses. CD36 functions in oxLDL uptake and foam cell formation, which is the initial critical stage of atherosclerosis. In addition, oxLDL via CD36 inhibits macrophage migration, which may be a macrophage-trapping mechanism in atherosclerotic lesions. The role of CD36 was examined in in vitro studies and in vivo experiments, which investigated various functions of CD36 in atherosclerosis and revealed that CD36 deficiency reduces atherosclerotic lesion formation. Platelet CD36 also promotes atherosclerotic inflammatory processes and is involved in thrombus formation after atherosclerotic plaque rupture. Because CD36 is an essential component of atherosclerosis, defining the function of CD36 and its corresponding signaling pathway may lead to a new treatment strategy for atherosclerosis.
Collapse
Affiliation(s)
- Young Mi Park
- Department of Molecular Medicine, Ewha Womans University School of Medicine, Seoul, Republic of Korea
- Ewha Global Top 5 Research Program, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
90
|
Cambi A, Lakadamyali M, Lidke DS, Garcia-Parajo MF. Meeting report--Visualizing signaling nanoplatforms at a higher spatiotemporal resolution. J Cell Sci 2014; 126:3817-21. [PMID: 23995382 DOI: 10.1242/jcs.137901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The International Symposium entitled ‘Visualizing signaling nanoplatforms at a higher spatiotemporal resolution’ sponsored by the Institució Catalana de Recerca i Estudis Avançats (ICREA) was held on 29–31 May 2013 at the ICFO-Institute of Photonic Sciences, in Barcelona, Spain. The meeting brought together a multidisciplinary group of international leaders in the fields of super-resolution imaging (nanoscopy) and cell membrane biology, and served as a forum to further our understanding of the fundamental mechanisms that govern nanostructures and protein–function relationships at the cell membrane.
Collapse
Affiliation(s)
- Alessandra Cambi
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
91
|
Ozdener MH, Subramaniam S, Sundaresan S, Sery O, Hashimoto T, Asakawa Y, Besnard P, Abumrad NA, Khan NA. CD36- and GPR120-mediated Ca²⁺ signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice. Gastroenterology 2014; 146:995-1005. [PMID: 24412488 PMCID: PMC3979457 DOI: 10.1053/j.gastro.2014.01.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/24/2013] [Accepted: 01/04/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS It is important to increase our understanding of gustatory detection of dietary fat and its contribution to fat preference. We studied the roles of the fat taste receptors CD36 and GPR120 and their interactions via Ca(2+) signaling in fungiform taste bud cells (TBC). METHODS We measured Ca(2+) signaling in human TBC, transfected with small interfering RNAs against messenger RNAs encoding CD36 and GPR120 (or control small interfering RNAs). We also studied Ca(2+) signaling in TBC from CD36(-/-) mice and from wild-type lean and obese mice. Additional studies were conducted with mouse enteroendocrine cell line STC-1 that express GPR120 and stably transfected with human CD36. We measured release of serotonin and glucagon-like peptide-1 from human and mice TBC in response to CD36 and GPR120 activation. RESULTS High concentrations of linoleic acid induced Ca(2+) signaling via CD36 and GPR120 in human and mice TBC, as well as in STC-1 cells, and low concentrations induced Ca(2+) signaling via only CD36. Incubation of human and mice fungiform TBC with lineoleic acid down-regulated CD36 and up-regulated GPR120 in membrane lipid rafts. Obese mice had decreased spontaneous preference for fat. Fungiform TBC from obese mice had reduced Ca(2+) and serotonin responses, but increased release of glucagon-like peptide-1, along with reduced levels of CD36 and increased levels of GPR120 in lipid rafts. CONCLUSIONS CD36 and GPR120 have nonoverlapping roles in TBC signaling during orogustatory perception of dietary lipids; these are differentially regulated by obesity.
Collapse
Affiliation(s)
| | | | - Sinju Sundaresan
- Center for Human Nutrition and Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110, USA
| | - Omar Sery
- Academy of Science, Veveří 97, 602 00 Brno, Czech Republic
| | - Toshihiro Hashimoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Yoshinori Asakawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | | | - Nada A. Abumrad
- Center for Human Nutrition and Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
92
|
Flannagan RS, Canton J, Furuya W, Glogauer M, Grinstein S. The phosphatidylserine receptor TIM4 utilizes integrins as coreceptors to effect phagocytosis. Mol Biol Cell 2014; 25:1511-22. [PMID: 24623723 PMCID: PMC4004599 DOI: 10.1091/mbc.e13-04-0212] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
TIM4 is a receptor for phosphatidylserine that mediates engulfment of apoptotic cells. Remarkably, it does not require its cytosolic or transmembrane domains to mediate phagocytosis. TIM4 associates with integrins that serve as signal-transducing coreceptors. T-cell immunoglobulin mucin protein 4 (TIM4), a phosphatidylserine (PtdSer)-binding receptor, mediates the phagocytosis of apoptotic cells. How TIM4 exerts its function is unclear, and conflicting data have emerged. To define the mode of action of TIM4, we used two distinct but complementary approaches: 1) we compared bone marrow–derived macrophages from wild-type and TIM4−/− mice, and 2) we heterologously expressed TIM4 in epithelioid AD293 cells, which rendered them competent for engulfment of PtdSer-bearing targets. Using these systems, we demonstrate that rather than serving merely as a tether, as proposed earlier by others, TIM4 is an active participant in the phagocytic process. Furthermore, we find that TIM4 operates independently of lactadherin, which had been proposed to act as a bridging molecule. Of interest, TIM4-driven phagocytosis depends on the activation of integrins and involves stimulation of Src-family kinases and focal adhesion kinase, as well as the localized accumulation of phosphatidylinositol 3,4,5-trisphosphate. These mediators promote recruitment of the nucleotide-exchange factor Vav3, which in turn activates small Rho-family GTPases. Gene silencing or ablation experiments demonstrated that RhoA, Rac1, and Rac2 act synergistically to drive the remodeling of actin that underlies phagocytosis. Single-particle detection experiments demonstrated that TIM4 and β1 integrins associate upon receptor clustering. These findings support a model in which TIM4 engages integrins as coreceptors to evoke the signal transduction needed to internalize PtdSer-bearing targets such as apoptotic cells.
Collapse
Affiliation(s)
- Ronald S Flannagan
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5C 1N8, Canada
| | | | | | | | | |
Collapse
|
93
|
Zuidscherwoude M, de Winde CM, Cambi A, van Spriel AB. Microdomains in the membrane landscape shape antigen-presenting cell function. J Leukoc Biol 2013; 95:251-63. [PMID: 24168856 DOI: 10.1189/jlb.0813440] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The plasma membrane of immune cells is a highly organized cell structure that is key to the initiation and regulation of innate and adaptive immune responses. It is well-established that immunoreceptors embedded in the plasma membrane have a nonrandom spatial distribution that is important for coupling to components of intracellular signaling cascades. In the last two decades, specialized membrane microdomains, including lipid rafts and TEMs, have been identified. These domains are preformed structures ("physical entities") that compartmentalize proteins, lipids, and signaling molecules into multimolecular assemblies. In APCs, different microdomains containing immunoreceptors (MHC proteins, PRRs, integrins, among others) have been reported that are imperative for efficient pathogen recognition, the formation of the immunological synapse, and subsequent T cell activation. In addition, recent work has demonstrated that tetraspanin microdomains and lipid rafts are involved in BCR signaling and B cell activation. Research into the molecular mechanisms underlying membrane domain formation is fundamental to a comprehensive understanding of membrane-proximal signaling and APC function. This review will also discuss the advances in the microscopy field for the visualization of the plasma membrane, as well as the recent progress in targeting microdomains as novel, therapeutic approach for infectious and malignant diseases.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- 1.Nijmegen Centre for Molecular Life Sciences/278 TIL, Radboud University Medical Centre, Geert Grooteplein 28, 6525GA, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
94
|
Berre S, Gaudin R, Cunha de Alencar B, Desdouits M, Chabaud M, Naffakh N, Rabaza-Gairi M, Gobert FX, Jouve M, Benaroch P. CD36-specific antibodies block release of HIV-1 from infected primary macrophages and its transmission to T cells. ACTA ACUST UNITED AC 2013; 210:2523-38. [PMID: 24145510 PMCID: PMC3832921 DOI: 10.1084/jem.20130566] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
HIV-1-infected macrophages likely represent viral reservoirs, as they accumulate newly formed virions in internal virus-containing compartments (VCCs). However, the nature and biogenesis of VCCs remain poorly defined. We show that upon HIV-1 infection of primary human macrophages, Gag is recruited to preexisting compartments containing the scavenger receptor CD36, which then become VCCs. Silencing of CD36 in HIV-1-infected macrophages decreases the amount of virions released. Strikingly, soluble anti-CD36 antibodies, but not the natural ligands of CD36, inhibit release of virions from HIV-1-infected macrophages and the transmission of virus to CD4(+) T cells. The effect of the antibodies is potent, rapid, and induces the retention of virions within VCCs. Ectopic expression of CD36 in HeLa cells renders them susceptible to the inhibitory effect of the anti-CD36 mAb upon HIV-1 infection. We show that the anti-CD36 mAb inhibits HIV-1 release by clustering newly formed virions at their site of budding, and that signaling via CD36 is not required. Thus, HIV-1 reservoirs in macrophages may be tackled therapeutically using anti-CD36 antibodies to prevent viral dissemination.
Collapse
Affiliation(s)
- Stefano Berre
- Institut Curie, Centre de Recherche, F-75248 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
van Bergenhenegouwen J, Plantinga TS, Joosten LAB, Netea MG, Folkerts G, Kraneveld AD, Garssen J, Vos AP. TLR2 & Co: a critical analysis of the complex interactions between TLR2 and coreceptors. J Leukoc Biol 2013; 94:885-902. [PMID: 23990624 DOI: 10.1189/jlb.0113003] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
TLRs play a major role in microbe-host interactions and innate immunity. Of the 10 functional TLRs described in humans, TLR2 is unique in its requirement to form heterodimers with TLR1 or TLR6 for the initiation of signaling and cellular activation. The ligand specificity of TLR2 heterodimers has been studied extensively, using specific bacterial and synthetic lipoproteins to gain insight into the structure-function relationship, the minimal active motifs, and the critical dependence on TLR1 or TLR6 for activation. Different from that for specific well-defined TLR2 agonists, recognition of more complex ligands like intact microbes or molecules from endogenous origin requires TLR2 to interact with additional coreceptors. A breadth of data has been published on ligand-induced interactions of TLR2 with additional pattern recognition receptors such as CD14, scavenger receptors, integrins, and a range of other receptors, all of them important factors in TLR2 function. This review summarizes the roles of TLR2 in vivo and in specific immune cell types and integrates this information with a detailed review of our current understanding of the roles of specific coreceptors and ligands in regulating TLR2 functions. Understanding how these processes affect intracellular signaling and drive functional immune responses will lead to a better understanding of host-microbe interactions and will aid in the design of new agents to target TLR2 function in health and disease.
Collapse
|
96
|
Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 2013; 13:621-34. [PMID: 23928573 DOI: 10.1038/nri3515] [Citation(s) in RCA: 593] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scavenger receptors were originally identified by their ability to recognize and to remove modified lipoproteins; however, it is now appreciated that they carry out a striking range of functions, including pathogen clearance, lipid transport, the transport of cargo within the cell and even functioning as taste receptors. The large repertoire of ligands recognized by scavenger receptors and their broad range of functions are not only due to the wide range of receptors that constitute this family but also to their ability to partner with various co-receptors. The ability of individual scavenger receptors to associate with different co-receptors makes their responsiveness extremely versatile. This Review highlights recent insights into the structural features that determine the function of scavenger receptors and the emerging role that these receptors have in immune responses, notably in macrophage polarization and in the pathogenesis of diseases such as atherosclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Johnathan Canton
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
97
|
Aly R, Maibach HI, Bagatell FK, Dittmar W, Hänel H, Falanga V, Leyden JJ, Roth HL, Stoughton RB, Willis I. Ciclopirox olamine lotion 1%: bioequivalence to ciclopirox olamine cream 1% and clinical efficacy in tinea pedis. Clin Ther 1989; 96:151-76. [PMID: 2663159 DOI: 10.1152/physrev.00002.2015] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Studies were conducted to assess the bioequivalence of a new antimycotic formulation, ciclopirox olamine lotion 1%, to an established compound, ciclopirox olamine cream 1%. Results of in vitro studies, using skin samples from human cadavers and domestic pigs, demonstrated that the two formulations equally penetrate all layers of the stratum corneum and inhibit the growth of Trichophyton mentagrophytes and Candida albicans. In vivo studies in guinea pigs and in human volunteers demonstrated the comparable therapeutic efficacy of the lotion and the cream in experimental trichophytosis. In addition, a multicenter, double-blind clinical trial was undertaken to compare ciclopirox olamine lotion 1% with the vehicle alone in the treatment of patients with tinea pedis. Patients with plantar, interdigital, or vesicular tinea pedis were enrolled in the studies. Patients were treated for 28 days. Clinical and mycological responses were determined during treatment and two weeks posttreatment. Ciclopirox olamine lotion 1% was found to be significantly more effective than its vehicle in the treatment of patients with common tinea pedis. Minor localized side effects (pruritus, burning sensation) were reported in 2% of 89 patients treated with ciclopirox olamine lotion 1%. The results demonstrate the bioequivalence of ciclopirox olamine lotion 1% and ciclopirox olamine cream 1% and confirm the clinical effectiveness and safety of the lotion in the treatment of tinea pedis, a generally recalcitrant fungal infection. It is concluded that ciclopirox olamine lotion 1% can be used as an alternative to ciclopirox olamine cream 1% for treatment of tinea pedis, tinea versicolor, tinea cruris, tinea corporis, and cutaneous candidiasis when the convenience and/or cosmetic elegance of a lotion is desired.
Collapse
Affiliation(s)
- R Aly
- Department of Dermatology, University of California School of Medicine, San Francisco
| | | | | | | | | | | | | | | | | | | |
Collapse
|