51
|
Lee SN, Yoon SA, Song JM, Kim HC, Cho HJ, Choi AMK, Yoon JH. Cell-Type Specific Expression of Hyaluronan Synthases HAS2 and HAS3 Promotes Goblet Cell Hyperplasia in Allergic Airway Inflammation. Am J Respir Cell Mol Biol 2022; 67:360-374. [PMID: 35679095 DOI: 10.1165/rcmb.2021-0527oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Allergic rhinitis (AR) is a multifactorial airway disease characterized by basal and goblet cell hyperplasia. Hyaluronic acid (HA) is a major component of extracellular matrix and a critical contributor to tissue repair and remodeling after injury. We previously demonstrated that the intermediate progenitor cell (IPC) surface marker CD44v3 is upregulated in the basal and suprabasal layers of well-differentiated primary human nasal epithelial (HNE) cells after stimulation with the Th2 cytokine interleukin (IL)-4, and an antibody blocking the CD44v3-HA interaction suppressed IL-4-induced goblet cell hyperplasia. We now show that the expression of HA and two HA synthases, HAS2 and HAS3, was upregulated in both the nasal surface epithelium of subjects with AR and IL-4-stimulated HNE cells. Inhibition of HA synthesis by 4-methylumbelliferone (4-MU) suppressed IL-4-induced goblet cell hyperplasia. Moreover, HAS2 and HAS3 were expressed in IPCs depending on the differentiation events, as follows: the rapid, transient upregulation of HAS2 induced basal IPC proliferation and basal-to-suprabasal transition, whereas the delayed upregulation of HAS3 promoted the transition of suprabasal IPCs to a goblet cell fate. 4-MU treatment in house dust mite-induced murine AR model attenuated goblet cell metaplasia. Lastly, HA levels in nasal epithelial lining fluids from AR patients positively correlated with the levels of mediators causing allergic inflammation. These data suggest that HA produced following the sequential upregulation of HAS2 and HAS3 contributes to goblet cell hyperplasia in allergic airway inflammation and modulates disease progression.
Collapse
Affiliation(s)
- Sang-Nam Lee
- Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Seol Ah Yoon
- Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Ji Min Song
- Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Hyung Chul Kim
- Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Hyung-Ju Cho
- Yonsei university college of medicine, otorhinolaryngology, Seoul, Korea (the Republic of)
| | - Augustine M K Choi
- Cornell University Joan and Sanford I Weill Medical College, 12295, New York, New York, United States
| | - Joo-Heon Yoon
- Yonsei University College of Medicine, Department of Otorhinolaryngology, Seoul, Korea (the Republic of);
| |
Collapse
|
52
|
Wu M, Zhang X, Lin Y, Zeng Y. Roles of airway basal stem cells in lung homeostasis and regenerative medicine. Respir Res 2022; 23:122. [PMID: 35562719 PMCID: PMC9102684 DOI: 10.1186/s12931-022-02042-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/01/2022] [Indexed: 11/10/2022] Open
Abstract
Airway basal stem cells (BSCs) in the proximal airways are recognized as resident stem cells capable of self-renewing and differentiating to virtually every pseudostratified epithelium cell type under steady-state and after acute injury. In homeostasis, BSCs typically maintain a quiescent state. However, when exposed to acute injuries by either physical insults, chemical damage, or pathogen infection, the remaining BSCs increase their proliferation rate apace within the first 24 h and differentiate to restore lung homeostasis. Given the progenitor property of airway BSCs, it is attractive to research their biological characteristics and how they maintain homeostatic airway structure and respond to injury. In this review, we focus on the roles of BSCs in lung homeostasis and regeneration, detail the research progress in the characteristics of airway BSCs, the cellular and molecular signaling communications involved in BSCs-related airway repair and regeneration, and further discuss the in vitro models for airway BSC propagation and their applications in lung regenerative medicine therapy.
Collapse
Affiliation(s)
- Meirong Wu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Xiaojing Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Yijian Lin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Yiming Zeng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China. .,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
53
|
Abstract
The lung is the primary site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced immunopathology whereby the virus enters the host cells by binding to angiotensin-converting enzyme 2 (ACE2). Sophisticated regeneration and repair programs exist in the lungs to replenish injured cell populations. However, known resident stem/progenitor cells have been demonstrated to express ACE2, raising a substantial concern regarding the long-term consequences of impaired lung regeneration after SARS-CoV-2 infection. Moreover, clinical treatments may also affect lung repair from antiviral drug candidates to mechanical ventilation. In this review, we highlight how SARS-CoV-2 disrupts a program that governs lung homeostasis. We also summarize the current efforts of targeted therapy and supportive treatments for COVID-19 patients. In addition, we discuss the pros and cons of cell therapy with mesenchymal stem cells or resident lung epithelial stem/progenitor cells in preventing post-acute sequelae of COVID-19. We propose that, in addition to symptomatic treatments being developed and applied in the clinic, targeting lung regeneration is also essential to restore lung homeostasis in COVID-19 patients.
Collapse
Affiliation(s)
- Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qingwen Ma
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qing Yue
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| |
Collapse
|
54
|
Jeon HY, Choi J, Kraaier L, Kim YH, Eisenbarth D, Yi K, Kang JG, Kim JW, Shim HS, Lee JH, Lim DS. Airway secretory cell fate conversion via YAP-mTORC1-dependent essential amino acid metabolism. EMBO J 2022; 41:e109365. [PMID: 35285539 PMCID: PMC9016350 DOI: 10.15252/embj.2021109365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
Tissue homeostasis requires lineage fidelity of stem cells. Dysregulation of cell fate specification and differentiation leads to various diseases, yet the cellular and molecular mechanisms governing these processes remain elusive. We demonstrate that YAP/TAZ activation reprograms airway secretory cells, which subsequently lose their cellular identity and acquire squamous alveolar type 1 (AT1) fate in the lung. This cell fate conversion is mediated via distinctive transitional cell states of damage-associated transient progenitors (DATPs), recently shown to emerge during injury repair in mouse and human lungs. We further describe a YAP/TAZ signaling cascade to be integral for the fate conversion of secretory cells into AT1 fate, by modulating mTORC1/ATF4-mediated amino acid metabolism in vivo. Importantly, we observed aberrant activation of the YAP/TAZ-mTORC1-ATF4 axis in the altered airway epithelium of bronchiolitis obliterans syndrome, including substantial emergence of DATPs and AT1 cells with severe pulmonary fibrosis. Genetic and pharmacologic inhibition of mTORC1 activity suppresses lineage alteration and subepithelial fibrosis driven by YAP/TAZ activation, proposing a potential therapeutic target for human fibrotic lung diseases.
Collapse
Affiliation(s)
- Hae Yon Jeon
- Department of Biological Sciences, National Creative Research Center for Cell Plasticity, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jinwook Choi
- Jeffrey Cheah Biomedical Centre, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Lianne Kraaier
- Jeffrey Cheah Biomedical Centre, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Young Hoon Kim
- Department of Biological Sciences, National Creative Research Center for Cell Plasticity, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - David Eisenbarth
- Department of Biological Sciences, National Creative Research Center for Cell Plasticity, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,GenomeInsight Inc., Daejeon, South Korea
| | - Ju-Gyeong Kang
- Department of Biological Sciences, National Creative Research Center for Cell Plasticity, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, National Creative Research Center for Cell Plasticity, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Joo-Hyeon Lee
- Jeffrey Cheah Biomedical Centre, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Dae-Sik Lim
- Department of Biological Sciences, National Creative Research Center for Cell Plasticity, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
55
|
Hasegawa K, Fujii S, Kurppa KJ, Maehara T, Oobu K, Nakamura S, Kiyoshima T. Clear Cell Squamous Cell Carcinoma of the Tongue Exhibits Characteristics as an Undifferentiated Squamous Cell Carcinoma. Pathol Res Pract 2022; 235:153909. [DOI: 10.1016/j.prp.2022.153909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022]
|
56
|
Raslan AA, Oh YJ, Jin YR, Yoon JK. R-Spondin2, a Positive Canonical WNT Signaling Regulator, Controls the Expansion and Differentiation of Distal Lung Epithelial Stem/Progenitor Cells in Mice. Int J Mol Sci 2022; 23:ijms23063089. [PMID: 35328508 PMCID: PMC8954098 DOI: 10.3390/ijms23063089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The lungs have a remarkable ability to regenerate damaged tissues caused by acute injury. Many lung diseases, especially chronic lung diseases, are associated with a reduced or disrupted regeneration potential of the lungs. Therefore, understanding the underlying mechanisms of the regenerative capacity of the lungs offers the potential to identify novel therapeutic targets for these diseases. R-spondin2, a co-activator of WNT/β-catenin signaling, plays an important role in embryonic murine lung development. However, the role of Rspo2 in adult lung homeostasis and regeneration remains unknown. The aim of this study is to determine Rspo2 function in distal lung stem/progenitor cells and adult lung regeneration. In this study, we found that robust Rspo2 expression was detected in different epithelial cells, including airway club cells and alveolar type 2 (AT2) cells in the adult lungs. However, Rspo2 expression significantly decreased during the first week after naphthalene-induced airway injury and was restored by day 14 post-injury. In ex vivo 3D organoid culture, recombinant RSPO2 promoted the colony formation and differentiation of both club and AT2 cells through the activation of canonical WNT signaling. In contrast, Rspo2 ablation in club and AT2 cells significantly disrupted their expansion capacity in the ex vivo 3D organoid culture. Furthermore, mice lacking Rspo2 showed significant defects in airway regeneration after naphthalene-induced injury. Our results strongly suggest that RSPO2 plays a key role in the adult lung epithelial stem/progenitor cells during homeostasis and regeneration, and therefore, it may be a potential therapeutic target for chronic lung diseases with reduced regenerative capability.
Collapse
Affiliation(s)
- Ahmed A. Raslan
- Department of Integrated Biomedical Science, Graduate School, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Korea;
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Korea;
| | - Youn Jeong Oh
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Korea;
| | - Yong Ri Jin
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Jeong Kyo Yoon
- Department of Integrated Biomedical Science, Graduate School, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Korea;
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Korea;
- Correspondence:
| |
Collapse
|
57
|
Hatterschide J, Castagnino P, Kim HW, Sperry SM, Montone KT, Basu D, White EA. YAP1 activation by human papillomavirus E7 promotes basal cell identity in squamous epithelia. eLife 2022; 11:75466. [PMID: 35170430 PMCID: PMC8959598 DOI: 10.7554/elife.75466] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
Persistent human papillomavirus (HPV) infection of stratified squamous epithelial cells causes nearly 5% of cancer cases worldwide. HPV-positive oropharyngeal cancers harbor few mutations in the Hippo signaling pathway compared to HPV-negative cancers at the same anatomical site, prompting the hypothesis that an HPV-encoded protein inactivates the Hippo pathway and activates the Hippo effector yes-associated protein (YAP1). The HPV E7 oncoprotein is required for HPV infection and for HPV-mediated oncogenic transformation. We investigated the effects of HPV oncoproteins on YAP1 and found that E7 activates YAP1, promoting YAP1 nuclear localization in basal epithelial cells. YAP1 activation by HPV E7 required that E7 binds and degrades the tumor suppressor protein tyrosine phosphatase non-receptor type 14 (PTPN14). E7 required YAP1 transcriptional activity to extend the lifespan of primary keratinocytes, indicating that YAP1 activation contributes to E7 carcinogenic activity. Maintaining infection in basal cells is critical for HPV persistence, and here we demonstrate that YAP1 activation causes HPV E7 expressing cells to be retained in the basal compartment of stratified epithelia. We propose that YAP1 activation resulting from PTPN14 inactivation is an essential, targetable activity of the HPV E7 oncoprotein relevant to HPV infection and carcinogenesis. The ‘epithelial’ cells that cover our bodies are in a constant state of turnover. Every few weeks, the outermost layers die and are replaced by new cells from the layers below. For scientists, this raises a difficult question. Cells infected by human papillomaviruses, often known as HPV, can become cancerous over years or even decades. How do infected cells survive while the healthy cells around them mature and get replaced? One clue could lie in PTPN14, a human protein which many papillomaviruses eliminate using their viral E7 protein; this mechanism could be essential for the virus to replicate and cause cancer. To find out the impact of losing PTPN14, Hatterschide et al. used human epithelial cells to make three-dimensional models of infected tissues. These experiments showed that, when papillomaviruses destroy PTPN14, a human protein called YAP1 turns on in the lowest, most long-lived layer of the tissue. Cells in which YAP1 is activated survive while those that carry the inactive version mature and die. This suggests that papillomaviruses turn on YAP1 to remain in tissues for long periods. Papillomaviruses cause about five percent of all human cancers. Finding ways to stop them from activating YAP1 has the potential to prevent disease. Overall, the research by Hatterschide et al. also sheds light on other epithelial cancers which are not caused by viruses.
Collapse
Affiliation(s)
- Joshua Hatterschide
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Paola Castagnino
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Hee Won Kim
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Steven M Sperry
- Department of Otolaryngology-Head and Neck Surgery, Aurora St. Luke's Medical Center, Milwaukee, United States
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Devraj Basu
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Elizabeth A White
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
58
|
ΔNp63 regulates a common landscape of enhancer associated genes in non-small cell lung cancer. Nat Commun 2022; 13:614. [PMID: 35105868 PMCID: PMC8807845 DOI: 10.1038/s41467-022-28202-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Distinct lung stem cells give rise to lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). ΔNp63, the p53 family member and p63 isoform, guides the maturation of these stem cells through the regulation of their self-renewal and terminal differentiation; however, the underlying mechanistic role regulated by ∆Np63 in lung cancer development has remained elusive. By utilizing a ΔNp63-specific conditional knockout mouse model and xenograft models of LUAD and LUSC, we found that ∆Np63 promotes non-small cell lung cancer by maintaining the lung stem cells necessary for lung cancer cell initiation and progression in quiescence. ChIP-seq analysis of lung basal cells, alveolar type 2 (AT2) cells, and LUAD reveals robust ∆Np63 regulation of a common landscape of enhancers of cell identity genes. Importantly, one of these genes, BCL9L, is among the enhancer associated genes regulated by ∆Np63 in Kras-driven LUAD and mediates the oncogenic effects of ∆Np63 in both LUAD and LUSC. Accordingly, high BCL9L levels correlate with poor prognosis in LUAD patients. Taken together, our findings provide a unifying oncogenic role for ∆Np63 in both LUAD and LUSC through the regulation of a common landscape of enhancer associated genes. The mechanistic role regulated by the oncogene ∆Np63 in lung cancer development is currently unclear. Here, the authors show that ΔNp63 is pro-tumorigenic in lung adenocarcinoma as well as squamous cell carcinoma, and maintains lung cancer progenitor cells via regulation of super-enhancer-associated genes, including BCL9L
Collapse
|
59
|
Greaney AM, Raredon MSB, Kochugaeva MP, Niklason LE, Levchenko A. SARS-CoV-2 leverages airway epithelial protective mechanism for viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.29.478335. [PMID: 35132420 PMCID: PMC8820667 DOI: 10.1101/2022.01.29.478335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite much concerted effort to better understand SARS-CoV-2 viral infection, relatively little is known about the dynamics of early viral entry and infection in the airway. Here we analyzed a single-cell RNA sequencing dataset of early SARS-CoV-2 infection in a humanized in vitro model, to elucidate key mechanisms by which the virus triggers a cell-systems-level response in the bronchial epithelium. We find that SARS-CoV-2 virus preferentially enters the tissue via ciliated cell precursors, giving rise to a population of infected mature ciliated cells, which signal to basal cells, inducing further rapid differentiation. This feed-forward loop of infection is mitigated by further cell-cell communication, before interferon signaling begins at three days post-infection. These findings suggest hijacking by the virus of potentially beneficial tissue repair mechanisms, possibly exacerbating the outcome. This work both elucidates the interplay between barrier tissues and viral infections, and may suggest alternative therapeutic approaches targeting non-immune response mechanisms.
Collapse
|
60
|
Wu Q, Xu X, Miao X, Bao X, Li X, Xiang L, Wang W, Du S, Lu Y, Wang X, Yang D, Zhang J, Shen X, Li F, Lu S, Fan Y, Xu S, Chen Z, Wang Y, Teng H, Huang Z. YAP signaling in horizontal basal cells promotes the regeneration of olfactory epithelium after injury. Stem Cell Reports 2022; 17:664-677. [PMID: 35148842 PMCID: PMC9039758 DOI: 10.1016/j.stemcr.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 10/29/2022] Open
Abstract
The horizontal basal cells (HBCs) of olfactory epithelium (OE) serve as reservoirs for stem cells during OE regeneration, through proliferation and differentiation, which is important in recovery of olfactory function. However, the molecular mechanism of regulation of HBC proliferation and differentiation after injury remains unclear. Here, we found that yes-associated protein (YAP) was upregulated and activated in HBCs after OE injury. Deletion of YAP in HBCs led to impairment in OE regeneration and functional recovery of olfaction after injury. Mechanically, YAP was activated by S1P/S1PR2 signaling, thereby promoting the proliferation of HBCs and OE regeneration after injury. Finally, activation of YAP signaling enhanced the proliferation of HBCs and improved functional recovery of olfaction after OE injury or in Alzheimer's disease model mice. Taken together, these results reveal an S1P/S1PR2/YAP pathway in OE regeneration in response to injury, providing a promising therapeutic strategy for OE injury.
Collapse
Affiliation(s)
- Qian Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xingxing Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuemeng Miao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaomei Bao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiuchun Li
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ludan Xiang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Siyu Du
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiwu Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Danlu Yang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingjing Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiya Shen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fayi Li
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sheng Lu
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yiren Fan
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shujie Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zihao Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ying Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Department of Transfusion Medicine, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310053, China.
| | - Honglin Teng
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
61
|
Joshi R, Batie MR, Fan Q, Varisco BM. Mouse lung organoid responses to reduced, increased, and cyclic stretch. Am J Physiol Lung Cell Mol Physiol 2022; 322:L162-L173. [PMID: 34851724 PMCID: PMC8794016 DOI: 10.1152/ajplung.00310.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/03/2023] Open
Abstract
Most lung development occurs in the context of cyclic stretch. Alteration of the mechanical microenvironment is a common feature of many pulmonary diseases, with congenital diaphragmatic hernia (CDH) and fetal tracheal occlusion (FETO, a therapy for CDH) being extreme examples with changes in lung structure, cell differentiation, and function. To address limitations in cell culture and in vivo mechanotransductive models, we developed two mouse lung organoid (mLO) mechanotransductive models using postnatal day 5 (PND5) mouse lung CD326-positive cells and fibroblasts subjected to increased, decreased, and cyclic strain. In the first model, mLOs were exposed to forskolin (FSK) and/or disrupted (DIS) and evaluated at 20 h. mLO cross-sectional area changed by +59%, +24%, and -68% in FSK, control, and DIS mLOs, respectively. FSK-treated organoids had twice as many proliferating cells as other organoids. In the second model, 20 h of 10.25% biaxial cyclic strain increased the mRNAs of lung mesenchymal cell lineages compared with static stretch and no stretch. Cyclic stretch increased TGF-β and integrin-mediated signaling, with upstream analysis indicating roles for histone deacetylases, microRNAs, and long noncoding RNAs. Cyclic stretch mLOs increased αSMA-positive and αSMA-PDGFRα-double-positive cells compared with no stretch and static stretch mLOs. In this PND5 mLO mechanotransductive model, cell proliferation is increased by static stretch, and cyclic stretch induces mesenchymal gene expression changes important in postnatal lung development.
Collapse
Affiliation(s)
- Rashika Joshi
- Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Matthew R Batie
- Biomedical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Qiang Fan
- Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Brian M Varisco
- Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- College of Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
62
|
Foote AG, Lungova V, Thibeault SL. Piezo1-expressing vocal fold epithelia modulate remodeling via effects on self-renewal and cytokeratin differentiation. Cell Mol Life Sci 2022; 79:591. [PMID: 36376494 PMCID: PMC9663367 DOI: 10.1007/s00018-022-04622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Mechanoreceptors are implicated as functional afferents within mucosa of the airways and the recent discovery of mechanosensitive channels Piezo1 and Piezo2 has proved essential for cells of various mechanically sensitive tissues. However, the role for Piezo1/2 in vocal fold (VF) mucosal epithelia, a cell that withstands excessive biomechanical insult, remains unknown. The purpose of this study was to test the hypothesis that Piezo1 is required for VF mucosal repair pathways of epithelial cell injury. Utilizing a sonic hedgehog (shh) Cre line for epithelial-specific ablation of Piezo1/2 mechanoreceptors, we investigated 6wk adult VF mucosa following naphthalene exposure for repair strategies at 1, 3, 7 and 14 days post-injury (dpi). PIEZO1 localized to differentiated apical epithelia and was paramount for epithelial remodeling events. Injury to wildtype epithelium was most appreciated at 3 dpi. Shhcre/+; Piezo1loxP/loxP, Piezo2 loxP/+ mutant epithelium exhibited severe cell/nuclear defects compared to injured controls. Conditional ablation of Piezo1 and/or Piezo2 to uninjured VF epithelium did not result in abnormal phenotypes across P0, P15 and 6wk postnatal stages compared to heterozygote and control tissue. Results demonstrate a role for Piezo1-expressing VF epithelia in regulating self-renewal via effects on p63 transcription and YAP subcellular translocation-altering cytokeratin differentiation.
Collapse
Affiliation(s)
- Alexander G. Foote
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| | - Vlasta Lungova
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| | - Susan L. Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|
63
|
Nasri A, Foisset F, Ahmed E, Lahmar Z, Vachier I, Jorgensen C, Assou S, Bourdin A, De Vos J. Roles of Mesenchymal Cells in the Lung: From Lung Development to Chronic Obstructive Pulmonary Disease. Cells 2021; 10:3467. [PMID: 34943975 PMCID: PMC8700565 DOI: 10.3390/cells10123467] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal cells are an essential cell type because of their role in tissue support, their multilineage differentiation capacities and their potential clinical applications. They play a crucial role during lung development by interacting with airway epithelium, and also during lung regeneration and remodeling after injury. However, much less is known about their function in lung disease. In this review, we discuss the origins of mesenchymal cells during lung development, their crosstalk with the epithelium, and their role in lung diseases, particularly in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Amel Nasri
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Florent Foisset
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Engi Ahmed
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - Zakaria Lahmar
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - Isabelle Vachier
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
| | - Christian Jorgensen
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Said Assou
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Arnaud Bourdin
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - John De Vos
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
- Department of Cell and Tissue Engineering, Université de Montpellier, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France
| |
Collapse
|
64
|
Sun H, Cao X, Gong A, Huang Y, Xu Y, Zhang J, Sun J, Lv B, Li Z, Guan S, Lu L, Yin G. Extracellular vesicles derived from astrocytes facilitated neurite elongation by activating the Hippo pathway. Exp Cell Res 2021; 411:112937. [PMID: 34863709 DOI: 10.1016/j.yexcr.2021.112937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023]
Abstract
Spinal cord injury (SCI) often causes severe neurological dysfunction, and facilitating neurite elongation is particularly important in its treatment. Astrocytes (AS) play an important role in the central nervous system (CNS), and their high plasticity and versatility provide a feasible entry point for relevant research. Our purpose was to explore whether extracellular vesicles (EVs) from astrocytes (AS-EVs) and lipopolysaccharide (LPS)-preactivated astrocytes (LPAS-EVs) facilitate neurite elongation, to explore the underlying mechanism, and to verify whether these EVs promote locomotor recovery in rats. We used LPS to preactivate astrocytes and cocultured them with PC12 cells to observe neurite changes, then extracted and identified AS-EVs and LPAS-EVs and the role and mechanism of these EVs in facilitating neurite elongation was examined in vivo and vitro. We demonstrated that AS-EVs and LPAS-EVs facilitated the elongation of neurites and the recovery of rats with SCI. LPAS-EVs had a stronger effect than AS-EVs, by activating the Hippo pathway, promoting monopole spindle binding protein 1 (MOB1) expression, and reducing Yes-associated protein (YAP) levels. The data also suggest a feedback regulation between MOB1 and p-YAP/YAP. In sum, AS-EVs and LPAS-EVs can play an active role in facilitating neurite elongation by activating the Hippo pathway. These findings provide a new strategy for treating SCI and other CNS-related injuries.
Collapse
Affiliation(s)
- Haitao Sun
- Department of Spinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xingbing Cao
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Spinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Aihua Gong
- Medical College, Jiangsu University, Zhenjiang City, Jiangsu, China
| | - Yonghui Huang
- Department of Spinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yi Xu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jinglong Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jifu Sun
- Department of Spinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Lv
- Department of Orthopedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhen Li
- Department of Spinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shihao Guan
- Department of Spinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Guoyong Yin
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
65
|
Ruysseveldt E, Martens K, Steelant B. Airway Basal Cells, Protectors of Epithelial Walls in Health and Respiratory Diseases. FRONTIERS IN ALLERGY 2021; 2:787128. [PMID: 35387001 PMCID: PMC8974818 DOI: 10.3389/falgy.2021.787128] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
The airway epithelium provides a critical barrier to the outside environment. When its integrity is impaired, epithelial cells and residing immune cells collaborate to exclude pathogens and to heal tissue damage. Healing is achieved through tissue-specific stem cells: the airway basal cells. Positioned near the basal membrane, airway basal cells sense and respond to changes in tissue health by initiating a pro-inflammatory response and tissue repair via complex crosstalks with nearby fibroblasts and specialized immune cells. In addition, basal cells have the capacity to learn from previous encounters with the environment. Inflammation can indeed imprint a certain memory on basal cells by epigenetic changes so that sensitized tissues may respond differently to future assaults and the epithelium becomes better equipped to respond faster and more robustly to barrier defects. This memory can, however, be lost in diseased states. In this review, we discuss airway basal cells in respiratory diseases, the communication network between airway basal cells and tissue-resident and/or recruited immune cells, and how basal cell adaptation to environmental triggers occurs.
Collapse
Affiliation(s)
- Emma Ruysseveldt
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katleen Martens
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Brecht Steelant
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Head and Neck Surgery, Department of Otorhinolaryngology, University of Crete School of Medicine, Heraklion, Greece
| |
Collapse
|
66
|
Gokey JJ, Patel SD, Kropski JA. The Role of Hippo/YAP Signaling in Alveolar Repair and Pulmonary Fibrosis. Front Med (Lausanne) 2021; 8:752316. [PMID: 34671628 PMCID: PMC8520933 DOI: 10.3389/fmed.2021.752316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/09/2021] [Indexed: 01/30/2023] Open
Abstract
Pulmonary fibrosis is characterized by loss of normal alveoli, accumulation of pathologic activated fibroblasts, and exuberant extracellular matrix deposition that over time can lead to progressive loss of respiratory function and death. This loss of respiratory function is associated with the loss of alveolar type 1 cells (AT1) that play a crucial role in gas exchange and the depletion of the alveolar type 2 cells (AT2) that act as progenitor cells to regenerate the AT1 and AT2 cell populations during repair. Understanding the mechanisms that regulate normal alveolar repair and those associated with pathologic repair is essential to identify potential therapeutic targets to treat or delay progression of fibrotic diseases. The Hippo/YAP developmental signaling pathway has been implicated as a regulator of normal alveolar development and repair. In idiopathic pulmonary fibrosis, aberrant activation of YAP/TAZ has been demonstrated in both the alveolar epithelium and activated fibroblasts associated with increased fibrotic remodeling, and there is emerging interest in this pathway as a target for antifibrotic therapies. In this review, we summarize current evidence as to the role of the Hippo-YAP/TAZ pathway in alveolar development, homeostasis, and repair, and highlight key questions that must be resolved to determine effective strategies to modulate YAP/TAZ signaling to prevent progressive pulmonary fibrosis and enhance adaptive alveolar repair.
Collapse
Affiliation(s)
- Jason J Gokey
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Saawan D Patel
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States.,Department of Veterans Affairs Medical Center, Nashville, TN, United States
| |
Collapse
|
67
|
Gokey JJ, Snowball J, Sridharan A, Sudha P, Kitzmiller JA, Xu Y, Whitsett JA. YAP regulates alveolar epithelial cell differentiation and AGER via NFIB/KLF5/NKX2-1. iScience 2021; 24:102967. [PMID: 34466790 PMCID: PMC8383002 DOI: 10.1016/j.isci.2021.102967] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/26/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Ventilation is dependent upon pulmonary alveoli lined by two major epithelial cell types, alveolar type-1 (AT1) and 2 (AT2) cells. AT1 cells mediate gas exchange while AT2 cells synthesize and secrete pulmonary surfactants and serve as progenitor cells which repair the alveoli. We developed transgenic mice in which YAP was activated or deleted to determine its roles in alveolar epithelial cell differentiation. Postnatal YAP activation increased epithelial cell proliferation, increased AT1 cell numbers, and caused indeterminate differentiation of subsets of alveolar cells expressing atypical genes normally restricted to airway epithelial cells. YAP deletion increased expression of genes associated with mature AT2 cells. YAP activation enhanced DNA accessibility in promoters of transcription factors and motif enrichment analysis predicted target genes associated with alveolar cell differentiation. YAP participated with KLF5, NFIB, and NKX2-1 to regulate AGER. YAP plays a central role in a transcriptional network that regulates alveolar epithelial differentiation.
Collapse
Affiliation(s)
- Jason J. Gokey
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John Snowball
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Anusha Sridharan
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Parvathi Sudha
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joseph A. Kitzmiller
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Yan Xu
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jeffrey A. Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
68
|
Van Sciver N, Ohashi M, Pauly NP, Bristol JA, Nelson SE, Johannsen EC, Kenney SC. Hippo signaling effectors YAP and TAZ induce Epstein-Barr Virus (EBV) lytic reactivation through TEADs in epithelial cells. PLoS Pathog 2021; 17:e1009783. [PMID: 34339458 PMCID: PMC8360610 DOI: 10.1371/journal.ppat.1009783] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/12/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) human herpesvirus is associated with B-cell and epithelial-cell malignancies, and both the latent and lytic forms of viral infection contribute to the development of EBV-associated tumors. Here we show that the Hippo signaling effectors, YAP and TAZ, promote lytic EBV reactivation in epithelial cells. The transcriptional co-activators YAP/TAZ (which are inhibited by Hippo signaling) interact with DNA-binding proteins, particularly TEADs, to induce transcription. We demonstrate that depletion of either YAP or TAZ inhibits the ability of phorbol ester (TPA) treatment, cellular differentiation or the EBV BRLF1 immediate-early (IE) protein to induce lytic EBV reactivation in oral keratinocytes, and show that over-expression of constitutively active forms of YAP and TAZ reactivate lytic EBV infection in conjunction with TEAD family members. Mechanistically, we find that YAP and TAZ interact with, and activate, the EBV BZLF1 immediate-early promoter. Furthermore, we demonstrate that YAP, TAZ, and TEAD family members are expressed at much higher levels in epithelial cell lines in comparison to B-cell lines, and find that EBV infection of oral keratinocytes increases the level of activated (dephosphorylated) YAP and TAZ. Finally, we have discovered that lysophosphatidic acid (LPA), a known YAP/TAZ activator that plays an important role in inflammation, induces EBV lytic reactivation in epithelial cells through a YAP/TAZ dependent mechanism. Together these results establish that YAP/TAZ are powerful inducers of the lytic form of EBV infection and suggest that the ability of EBV to enter latency in B cells at least partially reflects the extremely low levels of YAP/TAZ and TEADs in this cell type.
Collapse
Affiliation(s)
- Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Cellular and Molecular Pathology Graduate Training Program, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
69
|
Martens S, Coolens K, Van Bulck M, Arsenijevic T, Casamitjana J, Fernandez Ruiz A, El Kaoutari A, Martinez de Villareal J, Madhloum H, Esni F, Heremans Y, Leuckx G, Heimberg H, Bouwens L, Jacquemin P, De Paep DL, In't Veld P, D'Haene N, Bouchart C, Dusetti N, Van Laethem JL, Waelput W, Lefesvre P, Real FX, Rovira M, Rooman I. Discovery and 3D imaging of a novel ΔNp63-expressing basal cell type in human pancreatic ducts with implications in disease. Gut 2021; 71:gutjnl-2020-322874. [PMID: 34330784 PMCID: PMC9484383 DOI: 10.1136/gutjnl-2020-322874] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 07/20/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aggressive basal-like molecular subtype of pancreatic ductal adenocarcinoma (PDAC) harbours a ΔNp63 (p40) gene expression signature reminiscent of a basal cell type. Distinct from other epithelia with basal tumours, ΔNp63+ basal cells reportedly do not exist in the normal pancreas. DESIGN We evaluated ΔNp63 expression in human pancreas, chronic pancreatitis (CP) and PDAC. We further studied in depth the non-cancerous tissue and developed a three-dimensional (3D) imaging protocol (FLIP-IT, Fluorescence Light sheet microscopic Imaging of Paraffin-embedded or Intact Tissue) to study formalin-fixed paraffin-embedded samples at single cell resolution. Pertinent mouse models and HPDE cells were analysed. RESULTS In normal human pancreas, rare ΔNp63+ cells exist in ducts while their prevalence increases in CP and in a subset of PDAC. In non-cancer tissue, ΔNp63+ cells are atypical KRT19+ duct cells that overall lack SOX9 expression while they do express canonical basal markers and pertain to a niche of cells expressing gastrointestinal stem cell markers. 3D views show that the basal cells anchor on the basal membrane of normal medium to large ducts while in CP they exist in multilayer dome-like structures. In mice, ΔNp63 is not found in adult pancreas nor in selected models of CP or PDAC, but it is induced in organoids from larger Sox9low ducts. In HPDE, ΔNp63 supports a basal cell phenotype at the expense of a classical duct cell differentiation programme. CONCLUSION In larger human pancreatic ducts, basal cells exist. ΔNp63 suppresses duct cell identity. These cells may play an important role in pancreatic disease, including PDAC ontogeny, but are not present in mouse models.
Collapse
Affiliation(s)
- Sandrina Martens
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Katarina Coolens
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Mathias Van Bulck
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Bruxelles, Belgium
- Hopital Erasme Service de Gastroenterologie d'Hepato-Pancreatologie et d'Oncologie Digestive, Bruxelles, Belgium
| | - Joan Casamitjana
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, P-CMR[C], Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Angel Fernandez Ruiz
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, P-CMR[C], Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Abdessamad El Kaoutari
- Centre de Recherche en Cancérologie de Marseille - CRCM, INSERM UMR1068, CRCM, Marseille, France
- COMPO Unit, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | | | - Hediel Madhloum
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Farzad Esni
- Division of Pediatric General and Thoracic Surgery, University of Pittsburgh Department of Surgery, Pittsburgh, Pennsylvania, USA
| | - Yves Heremans
- Laboratory of Beta Cell Neogenesis, Vrije Universiteit Brussel, Brussel, Belgium
| | - Gunter Leuckx
- Laboratory of Beta Cell Neogenesis, Vrije Universiteit Brussel, Brussel, Belgium
| | - Harry Heimberg
- Laboratory of Beta Cell Neogenesis, Vrije Universiteit Brussel, Brussel, Belgium
| | - Luc Bouwens
- Cell Differentiation Laboratory, Vrije Universiteit Brussel, Brussel, Belgium
| | - Patrick Jacquemin
- Institut de Duve, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Peter In't Veld
- Diabetes Research Center, Vrije Universiteit Brussel, Brussel, Belgium
| | - Nicky D'Haene
- Department of Pathology, Hopital Erasme, Bruxelles, Belgium
| | - Christelle Bouchart
- Department of Radiation-Oncology, Jules Bordet Institute, Bruxelles, Belgium
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille - CRCM, INSERM UMR1068, CRCM, Marseille, France
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Bruxelles, Belgium
- Hopital Erasme Service de Gastroenterologie d'Hepato-Pancreatologie et d'Oncologie Digestive, Bruxelles, Belgium
| | - Wim Waelput
- Department of Pathology, UZ Brussel, Brussel, Belgium
- Department of Pathology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Pierre Lefesvre
- Department of Pathology, UZ Brussel, Brussel, Belgium
- Department of Pathology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Meritxell Rovira
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, P-CMR[C], Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Ilse Rooman
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|
70
|
Hicks-Berthet J, Ning B, Federico A, Tilston-Lunel A, Matschulat A, Ai X, Lenburg ME, Beane J, Monti S, Varelas X. Yap/Taz inhibit goblet cell fate to maintain lung epithelial homeostasis. Cell Rep 2021; 36:109347. [PMID: 34260916 PMCID: PMC8346236 DOI: 10.1016/j.celrep.2021.109347] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/22/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Proper lung function relies on the precise balance of specialized epithelial cells that coordinate to maintain homeostasis. Herein, we describe essential roles for the transcriptional regulators YAP/TAZ in maintaining lung epithelial homeostasis, reporting that conditional deletion of Yap and Wwtr1/Taz in the lung epithelium of adult mice results in severe defects, including alveolar disorganization and the development of airway mucin hypersecretion. Through in vivo lineage tracing and in vitro molecular experiments, we reveal that reduced YAP/TAZ activity promotes intrinsic goblet transdifferentiation of secretory airway epithelial cells. Global gene expression and chromatin immunoprecipitation sequencing (ChIP-seq) analyses suggest that YAP/TAZ act cooperatively with TEA domain (TEAD) transcription factors and the NuRD complex to suppress the goblet cell fate program, directly repressing the SPDEF gene. Collectively, our study identifies YAP/TAZ as critical factors in lung epithelial homeostasis and offers molecular insight into the mechanisms promoting goblet cell differentiation, which is a hallmark of many lung diseases.
Collapse
Affiliation(s)
- Julia Hicks-Berthet
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Boting Ning
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony Federico
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA 02118, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Andrew Tilston-Lunel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Adeline Matschulat
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xingbin Ai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marc E Lenburg
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jennifer Beane
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA 02118, USA
| | - Stefano Monti
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA 02118, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
71
|
Zhou Y, Jiang Y, Peng W, Li M, Chen H, Chen S. The diverse roles of YAP in the regulation of human nasal epithelial remodeling. Tissue Cell 2021; 72:101592. [PMID: 34303282 DOI: 10.1016/j.tice.2021.101592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Yes-associated protein (YAP) is essential in maintaining tissue size. Aberrant epithelial remodeling is a key pathological alteration in both inflammation and benign tumors in nasal mucosa. We sought to investigate the expression and localization patterns of YAP in remodeled nasal epithelium of basal cell hyperplasia, goblet cell metaplasia and squamous metaplasia. YAP expression patterns were evaluated in tissues obtained from patients with NP (n = 45) and IP (n = 27), and control subjects with septal deviation (n = 17) and tissue-derived primary cell cultures. Compared to the normal epithelium, expressions of YAP were significantly higher in basal cell hyperplasia (NP, 11.4-fold; IP, 19.6-fold), followed by squamous metaplasia (8.2-fold) and mild to moderate goblet cell metaplasia (2.9-fold); while their expression was lower in severe goblet cell metaplasia (3.3-fold). Our resultsshowed that: 1) ectopic nuclear YAP expression associated with p63+ basal cell hyperplasia and the high proliferative potential epithelial cells; 2) increase of cytoplasmic YAP correlated with mild to moderate goblet cell metaplasia; 3) increase of cytoplasmic YAP correlated with squamous cell metaplasia. The in vitro cell model also demonstrated almost concordant changes of YAP with the mucosa findings. Different YAP expression and localization patterns should play critical but differential roles in the nasal epithelial remodeling processes under mucosal inflammation and benign tumor formation.
Collapse
Affiliation(s)
- Yutao Zhou
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yumei Jiang
- Department of Extracorporeal Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Peng
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingfei Li
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hexin Chen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Songling Chen
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
72
|
Miyachi Y, Nishio M, Otani J, Matsumoto S, Kikuchi A, Mak TW, Maehama T, Suzuki A. TAZ inhibits acinar cell differentiation but promotes immature ductal cell proliferation in adult mouse salivary glands. Genes Cells 2021; 26:714-726. [PMID: 34142411 DOI: 10.1111/gtc.12879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022]
Abstract
There are currently no treatments for salivary gland diseases, making it vital to understand signaling mechanisms operating in acinar and ductal cells so as to develop regenerative therapies. To date, little work has focused on elucidating the signaling cascades controlling the differentiation of these cell types in adult mammals. To analyze the function of the Hippo-TAZ/YAP1 pathway in adult mouse salivary glands, we generated adMOB1DKO mice in which both MOB1A and MOB1B were TAM-inducibly deleted when the animals were adults. Three weeks after TAM treatment, adMOB1DKO mice exhibited smaller submandibular glands (SMGs) than controls with a decreased number of acinar cells and an increased number of immature dysplastic ductal cells. The mutants suffered from reduced saliva production accompanied by mild inflammatory cell infiltration and fibrosis in SMGs, similar to the Sjogren's syndrome. MOB1-deficient acinar cells showed normal proliferation and apoptosis but decreased differentiation, leading to an increase in acinar/ductal bilineage progenitor cells. These changes were TAZ-dependent but YAP1-independent. Biochemically, MOB1-deficient salivary epithelial cells showed activation of the TAZ/YAP1 and β-catenin in ductal cells, but reduced SOX2 and SOX10 expression in acinar cells. Thus, Hippo-TAZ signaling is critical for proper ductal and acinar cell differentiation and function in adult mice.
Collapse
Affiliation(s)
- Yosuke Miyachi
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Junji Otani
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tak Wah Mak
- The Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
73
|
Heng WS, Kruyt FAE, Cheah SC. Understanding Lung Carcinogenesis from a Morphostatic Perspective: Prevention and Therapeutic Potential of Phytochemicals for Targeting Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22115697. [PMID: 34071790 PMCID: PMC8198077 DOI: 10.3390/ijms22115697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is still one of the deadliest cancers, with over two million incidences annually. Prevention is regarded as the most efficient way to reduce both the incidence and death figures. Nevertheless, treatment should still be improved, particularly in addressing therapeutic resistance due to cancer stem cells—the assumed drivers of tumor initiation and progression. Phytochemicals in plant-based diets are thought to contribute substantially to lung cancer prevention and may be efficacious for targeting lung cancer stem cells. In this review, we collect recent literature on lung homeostasis, carcinogenesis, and phytochemicals studied in lung cancers. We provide a comprehensive overview of how normal lung tissue operates and relate it with lung carcinogenesis to redefine better targets for lung cancer stem cells. Nine well-studied phytochemical compounds, namely curcumin, resveratrol, quercetin, epigallocatechin-3-gallate, luteolin, sulforaphane, berberine, genistein, and capsaicin, are discussed in terms of their chemopreventive and anticancer mechanisms in lung cancer and potential use in the clinic. How the use of phytochemicals can be improved by structural manipulations, targeted delivery, concentration adjustments, and combinatorial treatments is also highlighted. We propose that lung carcinomas should be treated differently based on their respective cellular origins. Targeting quiescence-inducing, inflammation-dampening, or reactive oxygen species-balancing pathways appears particularly interesting.
Collapse
Affiliation(s)
- Win Sen Heng
- Faculty of Medical Sciences, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (W.S.H.); (F.A.E.K.)
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Frank A. E. Kruyt
- Faculty of Medical Sciences, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (W.S.H.); (F.A.E.K.)
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
- Correspondence: ; Tel.: +60-3-91018880
| |
Collapse
|
74
|
AP-3-dependent targeting of flippase ATP8A1 to lamellar bodies suppresses activation of YAP in alveolar epithelial type 2 cells. Proc Natl Acad Sci U S A 2021; 118:2025208118. [PMID: 33990468 DOI: 10.1073/pnas.2025208118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lamellar bodies (LBs) are lysosome-related organelles (LROs) of surfactant-producing alveolar type 2 (AT2) cells of the distal lung epithelium. Trafficking pathways to LBs have been understudied but are likely critical to AT2 cell homeostasis given associations between genetic defects of endosome to LRO trafficking and pulmonary fibrosis in Hermansky Pudlak syndrome (HPS). Our prior studies uncovered a role for AP-3, defective in HPS type 2, in trafficking Peroxiredoxin-6 to LBs. We now show that the P4-type ATPase ATP8A1 is sorted by AP-3 from early endosomes to LBs through recognition of a C-terminal dileucine-based signal. Disruption of the AP-3/ATP8A1 interaction causes ATP8A1 accumulation in early sorting and/or recycling endosomes, enhancing phosphatidylserine exposure on the cytosolic leaflet. This in turn promotes activation of Yes-activating protein, a transcriptional coactivator, augmenting cell migration and AT2 cell numbers. Together, these studies illuminate a mechanism whereby loss of AP-3-mediated trafficking contributes to a toxic gain-of-function that results in enhanced and sustained activation of a repair pathway associated with pulmonary fibrosis.
Collapse
|
75
|
Lu Q, Zhang Y, Kasetti RB, Gaddipati S, Cvm NK, Borchman D, Li Q. Heterozygous Loss of Yap1 in Mice Causes Progressive Cataracts. Invest Ophthalmol Vis Sci 2021; 61:21. [PMID: 33085740 PMCID: PMC7585397 DOI: 10.1167/iovs.61.12.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Yap1 encodes an evolutionarily conserved transcriptional coactivator and functions as a down-stream effector of the Hippo signaling pathway that controls tissue size and cell growth. Yap1 contributes to lens epithelial development. However, the effect of Yap1 haplodeficiency on the lens epithelium and its role in the development of cataracts has not been reported. The aim of the current study is to investigate Yap1 function and its regulatory mechanisms in lens epithelial cells (LECs). Methods Lens phenotypes were investigated in Yap1 heterozygous mutant mice by visual observation and histological and biochemical methods. Primary LEC cultures were used to study regulatory molecular mechanism. Results The heterozygous inactivation of Yap1 in mice caused cataracts during adulthood with defective LEC phenotypes. Despite a normal early development of the eye including the lens, the majority of Yap1 heterozygotes developed cataracts in the first six months of age. Cataract was preceded by multiple morphological defects in the lens epithelium, including decreased cell density and abnormal cell junctions. The low LEC density was coincident with reduced LEC proliferation. In addition, expression of the Yap1 target gene Crim1 was reduced in the Yap1+/− LEC, and overexpression of Crim1 restored Yap1+/− LEC cell proliferation in vitro. Conclusions Homozygosity of the Yap1 gene was critical for adequate Crim1 expression needed to maintain the constant proliferation of LEC and to maintain a normal-sized lens. Yap1 haplodeficiency leads to cataracts.
Collapse
Affiliation(s)
- Qingxian Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Yingnan Zhang
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Ramesh Babu Kasetti
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Subhash Gaddipati
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Naresh Kumar Cvm
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| |
Collapse
|
76
|
Tilston-Lunel A, Mazzilli S, Kingston NM, Szymaniak AD, Hicks-Berthet J, Kern JG, Abo K, Reid ME, Perdomo C, Wilson AA, Spira A, Beane J, Varelas X. Aberrant epithelial polarity cues drive the development of precancerous airway lesions. Proc Natl Acad Sci U S A 2021; 118:e2019282118. [PMID: 33903236 PMCID: PMC8106308 DOI: 10.1073/pnas.2019282118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Molecular events that drive the development of precancerous lesions in the bronchial epithelium, which are precursors of lung squamous cell carcinoma (LUSC), are poorly understood. We demonstrate that disruption of epithelial cellular polarity, via the conditional deletion of the apical determinant Crumbs3 (Crb3), initiates and sustains precancerous airway pathology. The loss of Crb3 in adult luminal airway epithelium promotes the uncontrolled activation of the transcriptional regulators YAP and TAZ, which stimulate intrinsic signals that promote epithelial cell plasticity and paracrine signals that induce basal-like cell growth. We show that aberrant polarity and YAP/TAZ-regulated gene expression associates with human bronchial precancer pathology and disease progression. Analyses of YAP/TAZ-regulated genes further identified the ERBB receptor ligand Neuregulin-1 (NRG1) as a key transcriptional target and therapeutic targeting of ERBB receptors as a means of preventing and treating precancerous cell growth. Our observations offer important molecular insight into the etiology of LUSC and provides directions for potential interception strategies of lung cancer.
Collapse
Affiliation(s)
- Andrew Tilston-Lunel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Sarah Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Nathan M Kingston
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | | | - Julia Hicks-Berthet
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Joseph G Kern
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Kristine Abo
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118
| | - Mary E Reid
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203
| | - Catalina Perdomo
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Andrew A Wilson
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118
- Pulmonary Center, Boston University School of Medicine , Boston, MA 02118
| | - Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
- Pulmonary Center, Boston University School of Medicine , Boston, MA 02118
- Lung Cancer Initiative (LCI), Johnson and Johnson, Cambridge, MA 02142
| | - Jennifer Beane
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118;
- Pulmonary Center, Boston University School of Medicine , Boston, MA 02118
| |
Collapse
|
77
|
Influence of Culture Substrates on Morphology and Function of Pulmonary Alveolar Cells In Vitro. Biomolecules 2021; 11:biom11050675. [PMID: 33946440 PMCID: PMC8147120 DOI: 10.3390/biom11050675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Cell's microenvironment has been shown to exert influence on cell behavior. In particular, matrix-cell interactions strongly impact cell morphology and function. The purpose of this study was to analyze the influence of different culture substrate materials on phenotype and functional properties of lung epithelial adenocarcinoma (A549) cells. A549 cells were seeded onto two different biocompatible, commercially available substrates: a polyester coverslip (Thermanox™ Coverslips), that was used as cell culture plate control, and a polydimethylsiloxane membrane (PDMS, Elastosil® Film) investigated in this study as alternative material for A549 cells culture. The two substrates influenced cell morphology and the actin cytoskeleton organization. Further, the Yes-associated protein (YAP) and its transcriptional coactivator PDZ-binding motif (TAZ) were translocated to the nucleus in A549 cells cultured on polyester substrate, yet it remained mostly cytosolic in cells on PDMS substrate. By SEM analysis, we observed that cells grown on Elastosil® Film maintained an alveolar Type II cell morphology. Immunofluorescence staining for surfactant-C revealing a high expression of surfactant-C in cells cultured on Elastosil® Film, but not in cells cultured on Thermanox™ Coverslips. A549 cells grown onto Elastosil® Film exhibited morphology and functionality that suggest retainment of alveolar epithelial Type II phenotype, while A549 cells grown onto conventional plastic substrates acquired an alveolar Type I phenotype.
Collapse
|
78
|
Wang Y, Tang N. The diversity of adult lung epithelial stem cells and their niche in homeostasis and regeneration. SCIENCE CHINA-LIFE SCIENCES 2021; 64:2045-2059. [PMID: 33948870 DOI: 10.1007/s11427-020-1902-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 01/01/2023]
Abstract
The adult lung, a workhorse for gas exchange, is continually subjected to a barrage of assaults from the inhaled particles and pathogens. Hence, homeostatic maintenance is of paramount importance. Epithelial stem cells interact with their particular niche in the adult lung to orchestrate both natural tissue rejuvenation and robust post-injury regeneration. Advances in single-cell sequencing, lineage tracing, and living tissue imaging have deepened our understanding about stem cell heterogeneities, transition states, and specific cell lineage markers. In this review, we provided an overview of the known stem/progenitor cells and their subpopulations in different regions of the adult lung, and explored the regulatory networks in stem cells and their respective niche which collectively coordinated stem cell quiescence and regeneration states. We finally discussed relationships between dysregulated stem cell function and lung disease.
Collapse
Affiliation(s)
- Yanxiao Wang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing, 102206, China.
| |
Collapse
|
79
|
New insights into the Hippo/YAP pathway in idiopathic pulmonary fibrosis. Pharmacol Res 2021; 169:105635. [PMID: 33930530 DOI: 10.1016/j.phrs.2021.105635] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterised by an inexorable decline in lung function. The development of IPF involves multiple positive feedback loops; and a strong support role of the Hippo/YAP signalling pathway, which is essential for regulating cell proliferation and organ size, in IPF pathogenesis has been unveiled recently in cell and animal models. YAP/TAZ contributes to both pulmonary fibrosis and alveolar regeneration via the conventional Hippo/YAP signalling pathway, G protein-coupled receptor signalling, and mechanotransduction. Selectively inhibiting YAP/TAZ in lung fibroblasts may inhibit fibroblast proliferation and extracellular matrix deposition, while activating YAP/TAZ in alveolar epithelial cells may promote alveolar regeneration. In this review, we explore, for the first time, the bidirectional and cell-specific regulation of the Hippo/YAP pathway in IPF pathogenesis and discuss recent research progress and future prospects of IPF treatment based on Hippo/YAP signalling, thus providing a basis for the development of new therapeutic strategies to alleviate or even reverse IPF.
Collapse
|
80
|
Yuan T, Zheng R, Zhou XM, Jin P, Huang ZQ, Zi XX, Wu QW, Wang WH, Deng HY, Kong WF, Qiu HJ, Zhou SZ, Chen QM, Tu YY, Li T, Liu J, Tan KS, Ong HH, Shi L, Chen ZG, Huang XK, Yang QT, Wang DY. Abnormal Expression of YAP Is Associated With Proliferation, Differentiation, Neutrophil Infiltration, and Adverse Outcome in Patients With Nasal Inverted Papilloma. Front Cell Dev Biol 2021; 9:625251. [PMID: 33937228 PMCID: PMC8083899 DOI: 10.3389/fcell.2021.625251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Background Nasal inverted papilloma (NIP) is a common benign tumor. Yes-associated protein (YAP) is the core effector molecule of the Hippo pathway, which regulates the proliferation and differentiation of airway epithelium. While its role in proliferation may be connected to NIP formation, no definitive association has been made between them. Methods We compared the difference of YAP expression and proliferation level between the control inferior turbinate, NP (nasal polyps), and NIP groups. In addition, we further used PCR, immunofluorescence, and immunohistochemistry to investigate YAP's role in the proliferation and differentiation of the nasal epithelium and inflammatory cell infiltration, correlating them with different grades of epithelial remodeling. We further used an IL-13 remodeling condition to investigate YAP's role in differentiation in an in vitro air-liquid interface (ALI) human nasal epithelial cell (hNECs) model. Finally, we also explored the correlation between YAP expression and clinical indicators of NIP. Results The expression of YAP/active YAP in the NIP group was significantly higher than that in the NP group and control group. Moreover, within the NIP group, the higher grade of epithelial remodeling was associated with higher YAP induced proliferation, leading to reduced ciliated cells and goblet cells. The finding was further verified using an IL-13 remodeling condition in differentiating ALI hNECs. Furthermore, YAP expression was positively correlated with proliferation and neutrophil infiltration in NIP. YAP expression was also significantly increased in NIP patients with adverse outcomes. Conclusion Abnormal expression of YAP/active YAP is associated with proliferation, differentiation, neutrophil infiltration, and adverse outcome in NIP and may present a novel target for diagnosis and intervention in NIP.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Otolaryngology-Head and Neck Surgery, Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rui Zheng
- Department of Otolaryngology-Head and Neck Surgery, Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiang-Min Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Jin
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-Qun Huang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Xue Zi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing-Wu Wu
- Department of Otolaryngology-Head and Neck Surgery, Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei-Hao Wang
- Department of Otolaryngology-Head and Neck Surgery, Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui-Yi Deng
- Department of Otolaryngology-Head and Neck Surgery, Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei-Feng Kong
- Department of Otolaryngology-Head and Neck Surgery, Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui-Jun Qiu
- Department of Otolaryngology-Head and Neck Surgery, Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sui-Zi Zhou
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qian-Min Chen
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Yi Tu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUHS Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUHS Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Hsiao Hui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUHS Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhuang-Gui Chen
- Department of Pediatrics, Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xue-Kun Huang
- Department of Otolaryngology-Head and Neck Surgery, Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qin-Tai Yang
- Department of Otolaryngology-Head and Neck Surgery, Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUHS Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
81
|
Pokorná Z, Vysloužil J, Hrabal V, Vojtěšek B, Coates PJ. The foggy world(s) of p63 isoform regulation in normal cells and cancer. J Pathol 2021; 254:454-473. [PMID: 33638205 DOI: 10.1002/path.5656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
The p53 family member p63 exists as two major protein variants (TAp63 and ΔNp63) with distinct expression patterns and functional properties. Whilst downstream target genes of p63 have been studied intensively, how p63 variants are themselves controlled has been relatively neglected. Here, we review advances in understanding ΔNp63 and TAp63 regulation, highlighting their distinct pathways. TAp63 has roles in senescence and metabolism, and in germ cell genome maintenance, where it is activated post-transcriptionally by phosphorylation cascades after DNA damage. The function and regulation of TAp63 in mesenchymal and haematopoietic cells is less clear but may involve epigenetic control through DNA methylation. ΔNp63 functions to maintain stem/progenitor cells in various epithelia and is overexpressed in squamous and certain other cancers. ΔNp63 is transcriptionally regulated through multiple enhancers in concert with chromatin modifying proteins. Many signalling pathways including growth factors, morphogens, inflammation, and the extracellular matrix influence ΔNp63 levels, with inconsistent results reported. There is also evidence for reciprocal regulation, including ΔNp63 activating its own transcription. ΔNp63 is downregulated during cell differentiation through transcriptional regulation, while post-transcriptional events cause proteasomal degradation. Throughout the review, we identify knowledge gaps and highlight discordances, providing potential explanations including cell-context and cell-matrix interactions. Identifying individual p63 variants has roles in differential diagnosis and prognosis, and understanding their regulation suggests clinically approved agents for targeting p63 that may be useful combination therapies for selected cancer patients. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zuzana Pokorná
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jan Vysloužil
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Václav Hrabal
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Borˇivoj Vojtěšek
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Philip J Coates
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
82
|
Li R, Li X, Hagood J, Zhu MS, Sun X. Myofibroblast contraction is essential for generating and regenerating the gas-exchange surface. J Clin Invest 2021; 130:2859-2871. [PMID: 32338642 DOI: 10.1172/jci132189] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/13/2020] [Indexed: 01/05/2023] Open
Abstract
A majority (~95%) of the gas-exchange surface area is generated through septa formation during alveologenesis. Disruption of this process leads to alveolar simplification and bronchopulmonary dysplasia (BPD), a prevalent disorder in premature infants. Although several models have been proposed, the mechanism of septa formation remains under debate. Here we show that inactivation of myosin light chain kinase (MLCK), a key factor required for myofibroblast contraction, disrupted septa formation, supporting the myofibroblast contraction model of alveologenesis. The alveoli simplification phenotype was accompanied by decreased yes-associated protein (YAP), a key effector in the Hippo mechanotransduction pathway. Expression of activated YAP in Mlck-mutant lungs led to partial reversal of alveolar simplification. In the adult, although Mlck inactivation did not lead to simplification, it prevented reseptation during compensatory regrowth in the pneumonectomy model. These findings revealed that myofibroblast reactivation and contraction are requisite steps toward regenerating the gas-exchange surface in diseases such as BPD and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Rongbo Li
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA
| | - Xiaoping Li
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA
| | - James Hagood
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.,Division of Pulmonology, Department of Pediatrics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology.,Model Animal Research Center, and.,MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Xin Sun
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.,Division of Biological Sciences, UCSD, La Jolla, California, USA
| |
Collapse
|
83
|
Lewis M, Stracker TH. Transcriptional regulation of multiciliated cell differentiation. Semin Cell Dev Biol 2021; 110:51-60. [DOI: 10.1016/j.semcdb.2020.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 01/01/2023]
|
84
|
Kim JY, Kim TY, Lee ES, Aryal YP, Pokharel E, Sung S, Sohn WJ, Kim JY, Jung JK. Implications of the specific localization of YAP signaling on the epithelial patterning of circumvallate papilla. J Mol Histol 2021; 52:313-320. [PMID: 33420594 DOI: 10.1007/s10735-020-09951-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/26/2020] [Indexed: 11/24/2022]
Abstract
Circumvallate papilla (CVP) is a distinctively structured with dome-shaped apex, and the surrounding trench which contains over two hundred taste buds on the lateral walls. Although CVP was extensively studied to determine the regulatory mechanisms during organogenesis, it still remains to be elucidated the principle mechanisms of signaling regulations on morphogenesis including taste buds formation. The key role of Yes-associated protein (YAP) in the regulation of organ size and cell proliferation in vertebrates is well understood, but little is known about the role of this signaling pathway in CVP development. We aimed to determine the putative roles of YAP signaling in the epithelial patterning during CVP morphogenesis. To evaluate the precise localization patterns of YAP and other related signaling molecules, including β-catenin, Ki67, cytokeratins, and PGP9.5, in CVP tissue, histology and immunohistochemistry were employed at E16 and adult mice. Our results suggested that there are specific localization patterns of YAP and Wnt signaling molecules in developing and adult CVP. These concrete localization patterns would provide putative involvements of YAP and Wnt signaling for proper epithelial cell differentiation including the formation and maintenance of taste buds.
Collapse
Affiliation(s)
- Ji-Youn Kim
- Department of Dental Hygiene, Gachon University, Inchoen, Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea
| | - Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea
| | - Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea
| | - Elina Pokharel
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea
| | - Shijin Sung
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, 38610, Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea.
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea.
| |
Collapse
|
85
|
Zhu T, Ma Z, Wang H, Jia X, Wu Y, Fu L, Li Z, Zhang C, Yu G. YAP/TAZ affects the development of pulmonary fibrosis by regulating multiple signaling pathways. Mol Cell Biochem 2020; 475:137-149. [PMID: 32813142 DOI: 10.1007/s11010-020-03866-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
YAP and TAZ are important co-activators of various biological processes in human body. YAP/TAZ plays a vital role in the development of pulmonary fibrosis. Dysregulation of the YAP/TAZ signaling pathway is one of the most important causes of pulmonary fibrosis. Therefore, considering its crucial role, summary of the signal mechanism of YAP/TAZ is of certain guiding significance for the research of YAP/TAZ as a therapeutic target. The present review provided a detailed introduction to various YAP/TAZ-related signaling pathways and clarified the specific role of YAP/TAZ in these pathways. In the meantime, we summarized and evaluated possible applications of YAP/TAZ in the treatment of pulmonary fibrosis. Overall, our study is of guiding significance for future research on the functional mechanism of YAP/TAZ underlying lung diseases as well as for identification of novel therapeutic targets specific to pulmonary fibrosis.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Zhifeng Ma
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Haiyong Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Xiaoxiao Jia
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, China
| | - Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Linhai Fu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Zhupeng Li
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Chu Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China.
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China.
| |
Collapse
|
86
|
Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov 2020; 19:480-494. [PMID: 32555376 DOI: 10.1038/s41573-020-0070-z] [Citation(s) in RCA: 536] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The Hippo pathway is an evolutionarily conserved signalling pathway with key roles in organ development, epithelial homeostasis, tissue regeneration, wound healing and immune modulation. Many of these roles are mediated by the transcriptional effectors YAP and TAZ, which direct gene expression via control of the TEAD family of transcription factors. Dysregulated Hippo pathway and YAP/TAZ-TEAD activity is associated with various diseases, most notably cancer, making this pathway an attractive target for therapeutic intervention. This Review highlights the key findings from studies of Hippo pathway signalling across biological processes and diseases, and discusses new strategies and therapeutic implications of targeting this pathway.
Collapse
|
87
|
Cao X, Wang C, Liu J, Zhao B. Regulation and functions of the Hippo pathway in stemness and differentiation. Acta Biochim Biophys Sin (Shanghai) 2020; 52:736-748. [DOI: 10.1093/abbs/gmaa048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Abstract
The Hippo pathway plays important roles in organ development, tissue regeneration, and human diseases, such as cancer. In the canonical Hippo pathway, the MST1/2-LATS1/2 kinase cascade phosphorylates and inhibits transcription coactivators Yes-associated protein and transcription coactivator with PDZ-binding motif and thus regulates transcription of genes important for cell proliferation and apoptosis. However, recent studies have depicted a much more complicate picture of the Hippo pathway with many new components and regulatory stimuli involving both chemical and mechanical signals. Furthermore, accumulating evidence indicates that the Hippo pathway also plays important roles in the determination of cell fates, such as self-renewal and differentiation. Here, we review regulations of the Hippo pathway and its functions in stemness and differentiation emphasizing recent discoveries.
Collapse
Affiliation(s)
- Xiaolei Cao
- MOE key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China, and
| | - Chenliang Wang
- MOE key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China, and
| | - Jiyang Liu
- MOE key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China, and
| | - Bin Zhao
- MOE key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China, and
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
88
|
Lu Q, Scott PA, Vukmanic EV, Kaplan HJ, Dean DC, Li Q. Yap1 is required for maintenance of adult RPE differentiation. FASEB J 2020; 34:6757-6768. [PMID: 32223016 DOI: 10.1096/fj.201903234r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 12/22/2022]
Abstract
Nuclear YAP1 plays a critical role in regulation of stem cell proliferation, tissue regeneration, and organ size in many types of epithelia. Due to rapid turnover of most epithelial cell types, the cytoplasmic function of YAP1 in epithelial cells has not been well studied. The retinal pigment epithelium (RPE) is a highly polarized epithelial cell type maintained at a senescence state, and offers an ideal cell model to study the active role of YAP1 in maintenance of the adult epithelial phenotype. Here, we show that the cytoplasmic function of YAP1 is essential to maintain adult RPE differentiation. Knockout of Yap1 in the adult mouse RPE caused cell depolarization and tight junction breakdown, and led to inhibition of RPE65 expression, diminishment of RPE pigments, and retraction of microvilli and basal infoldings. These changes in RPE further prompted the loss of adjacent photoreceptor outer segments and photoreceptor death, which eventually led to decline of visual function in older mice between 6 and 12 months of age. Furthermore, nuclear β-catenin and its activity were significantly increased in mutant RPE. These results suggest that YAP1 plays an important role in active inhibition of Wnt/β-catenin signaling, and is essential for downregulation of β-catenin nuclear activity and prevention of dedifferentiation of adult RPE.
Collapse
Affiliation(s)
- Qingxian Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Patrick A Scott
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Eric V Vukmanic
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
89
|
Barbry P, Cavard A, Chanson M, Jaffe AB, Plasschaert LW. Regeneration of airway epithelial cells to study rare cell states in cystic fibrosis. J Cyst Fibros 2020; 19 Suppl 1:S42-S46. [DOI: 10.1016/j.jcf.2019.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023]
|
90
|
Yao W, Maitra A, Ying H. Recent insights into the biology of pancreatic cancer. EBioMedicine 2020; 53:102655. [PMID: 32139179 PMCID: PMC7118569 DOI: 10.1016/j.ebiom.2020.102655] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/16/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer (PDAC) is one of the deadliest types of human cancers, owing to late stage at presentation and pervasive therapeutic resistance. The extensive tumour heterogeneity, as well as substantial crosstalk between the neoplastic epithelium and components within the microenvironment are the defining features of PDAC biology that dictate the dismal natural history. Recent advances in genomic and molecular profiling have informed on the genetic makeup and evolutionary patterns of tumour progression, leading to treatment breakthroughs in minor subsets of patients with specific tumour mutational profiles. The nature and function of tumour heterogeneity, including stromal heterogeneity, in PDAC development and therapeutic resistance, are increasingly being elucidated. Deep insight has been gained regarding the metabolic and immunological deregulation, which further sheds light on the complex biology and the observed treatment recalcitrance. Here we will summarize these recent achievements and offer our perspective on the path forward.
Collapse
Affiliation(s)
- Wantong Yao
- Department of Translational Molecular Pathology, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Houston, TX, USA; Sheikh Ahmed Center for Pancreatic Cancer Research, Houston, TX, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
91
|
Abstract
The Hippo pathway and its downstream effectors, the transcriptional co-activators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), regulate organ growth and cell plasticity during animal development and regeneration. Remarkably, experimental activation of YAP/TAZ in the mouse can promote regeneration in organs with poor or compromised regenerative capacity, such as the adult heart and the liver and intestine of old or diseased mice. However, therapeutic YAP/TAZ activation may cause serious side effects. Most notably, YAP/TAZ are hyperactivated in human cancers, and prolonged activation of YAP/TAZ triggers cancer development in mice. Thus, can the power of YAP/TAZ to promote regeneration be harnessed in a safe way? Here, we review the role of Hippo signalling in animal regeneration, examine the promises and risks of YAP/TAZ activation for regenerative medicine and discuss strategies to activate YAP/TAZ for regenerative therapy while minimizing adverse side effects.
Collapse
|
92
|
van Soldt BJ, Cardoso WV. Hippo-Yap/Taz signaling: Complex network interactions and impact in epithelial cell behavior. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e371. [PMID: 31828974 DOI: 10.1002/wdev.371] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
The Hippo pathway has emerged as a crucial integrator of signals in biological events from development to adulthood and in diseases. Although extensively studied in Drosophila and in cell cultures, major gaps of knowledge still remain on how this pathway functions in mammalian systems. The pathway consists of a growing number of components, including core kinases and adaptor proteins, which control the subcellular localization of the transcriptional co-activators Yap and Taz through phosphorylation of serines at key sites. When localized to the nucleus, Yap/Taz interact with TEAD transcription factors to induce transcriptional programs of proliferation, stemness, and growth. In the cytoplasm, Yap/Taz interact with multiple pathways to regulate a variety of cellular functions or are targeted for degradation. The Hippo pathway receives cues from diverse intracellular and extracellular inputs, including growth factor and integrin signaling, polarity complexes, and cell-cell junctions. This review highlights the mechanisms of regulation of Yap/Taz nucleocytoplasmic shuttling and their implications for epithelial cell behavior using the lung as an intriguing example of this paradigm. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Signaling Pathways > Cell Fate Signaling Establishment of Spatial and Temporal Patterns > Cytoplasmic Localization.
Collapse
Affiliation(s)
- Benjamin J van Soldt
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Wellington V Cardoso
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
93
|
Bailey DD, Zhang Y, van Soldt BJ, Jiang M, Suresh S, Nakagawa H, Rustgi AK, Aceves SS, Cardoso WV, Que J. Use of hPSC-derived 3D organoids and mouse genetics to define the roles of YAP in the development of the esophagus. Development 2019; 146:dev.178855. [PMID: 31748205 PMCID: PMC6918786 DOI: 10.1242/dev.178855] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023]
Abstract
Balanced progenitor activities are crucial for the development and maintenance of high turn-over organs such as the esophagus. However, the molecular mechanisms regulating these progenitor activities in the esophagus remain to be elucidated. Here, we demonstrated that Yap is required for the proliferation of esophageal progenitor cells (EPCs) in the developing murine esophagus. We found that Yap deficiency reduces EPC proliferation and stratification whereas persistent Yap activation increases cell proliferation and causes aberrant stratification of the developing esophagus. We further demonstrated that the role of YAP signaling is conserved in the developing human esophagus by utilizing 3D human pluripotent stem cell (hPSC)-derived esophageal organoid culture. Taken together, our studies combining loss/gain-of-function murine models and hPSC differentiation support a key role for YAP in the self-renewal of EPCs and stratification of the esophageal epithelium.
Collapse
Affiliation(s)
- Dominique D. Bailey
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Yongchun Zhang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Benjamin J. van Soldt
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Ming Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Supriya Suresh
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Seema S. Aceves
- Division of Allergy Immunology, Rady Children's Hospital San Diego, University of California, San Diego, CA 92093, USA
| | - Wellington V. Cardoso
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Author for correspondence ()
| |
Collapse
|
94
|
Sivakumar A, Frank DB. Paradigms that define lung epithelial progenitor cell fate in development and regeneration. CURRENT STEM CELL REPORTS 2019; 5:133-144. [PMID: 32587809 DOI: 10.1007/s40778-019-00166-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review Throughout the lifespan, lung injury impedes the primary critical function essential for life-respiration. To repair quickly and efficiently is critical and is orchestrated by a diverse repertoire of progenitor cells and their niche. This review incorporates knowledge gained from early studies in lung epithelial morphogenesis and cell fate and explores its relevance to more recent findings of lung progenitor and stem cells in development and regeneration. Recent Findings Cell fate in the lung is organized into an early specification phase and progressive differentiation phase in lung development. The advent of single cell analysis combined with lineage analysis and projections is uncovering new functional cell types in the lung providing a topographical atlas for progenitor cell lineage commitment during development, homeostasis, and regeneration. Summary Lineage commitment of lung progenitor cells is spatiotemporally regulated during development. Single cell sequencing technologies have significantly advanced our understanding of the similarities and differences between developmental and regenerative cell fate trajectories. Subsequent unraveling of the molecular mechanisms underlying these cell fate decisions will be essential to manipulating progenitor cells for regeneration.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David B Frank
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
95
|
Bae JS, Kim SM, Jeon Y, Sim J, Jang JY, Son J, Hong W, Park MK, Lee H. Loss of Mob1a/b impairs the differentiation of mouse embryonic stem cells into the three germ layer lineages. Exp Mol Med 2019; 51:1-12. [PMID: 31723125 PMCID: PMC6853965 DOI: 10.1038/s12276-019-0342-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 06/24/2019] [Accepted: 09/19/2019] [Indexed: 01/05/2023] Open
Abstract
The Hippo pathway plays a crucial role in cell proliferation and apoptosis and can regulate stem cell maintenance and embryonic development. MOB kinase activators 1A and 1B (Mob1a/b) are key components of the Hippo pathway, whose homozygous deletion in mice causes early embryonic lethality at the preimplantation stage. To investigate the role of Mob1a/b in stem cell maintenance and differentiation, an embryonic stem cell (ESC) clone in which Mob1a/b could be conditionally depleted was generated and characterized. Although Mob1a/b depletion did not affect the stemness or proliferation of mouse ESCs, this depletion caused defects in differentiation into the three germ layers. Yap knockdown rescued the in vitro and in vivo defects in differentiation caused by Mob1a/b depletion, suggesting that differentiation defects caused by Mob1a/b depletion were Yap-dependent. In teratoma experiments, Yap knockdown in Mob1a/b-depleted ESCs partially restored defects in differentiation, indicating that hyperactivation of Taz, another effector of the Hippo pathway, inhibited differentiation into the three germ layers. Taken together, these results suggest that Mob1a/b or Hippo signaling plays a critical role in the differentiation of mouse ESCs into the three germ layers, which is dependent on Yap. These close relationship of the Hippo pathway with the differentiation of stem cells supports its potential as a therapeutic target in regenerative medicine.
Collapse
Affiliation(s)
- June Sung Bae
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Sun Mi Kim
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Yoon Jeon
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Juyeon Sim
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Ji Yun Jang
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Jaehyung Son
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Woosol Hong
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Mi Kyung Park
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Ho Lee
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea. .,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea.
| |
Collapse
|
96
|
Engler AE, Mostoslavsky G, Miller L, Rock JR. Isolation, Maintenance and Differentiation of Primary Tracheal Basal Cells from Adult Rhesus Macaque. Methods Protoc 2019; 2:E79. [PMID: 31581513 PMCID: PMC6961120 DOI: 10.3390/mps2040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 11/16/2022] Open
Abstract
In this report, we describe methodologies for the isolation and culture of primary rhesus macaque tracheal basal cells, their cryopreservation, long term storage and differentiation. These are comparable to state-of-the-art protocols that have been developed for mouse and human airway basal cells. This method is based on the use of proprietary media, providing an easily reproducible and applicable protocol for usage in biosafety level 2 (BSL2) settings. Tracheas from rhesus macaques were isolated after animal euthanasia and subjected to enzymatic digestion overnight. Cells of the epithelial layer were scraped off of the trachea for cell culture. Twenty-four hours after plating basal cells had attached and nonadherent cells were removed. First passages of basal cells can be frozen for early passage storage in liquid nitrogen or propagated and differentiated on an air-liquid interface and in a tracheosphere assay up to passage seven. This protocol provides a platform for the analysis of basal cells from a close evolutionary relative to humans.
Collapse
Affiliation(s)
- Anna E. Engler
- Center for Regenerative Medicine of Boston University and Boston Medical Center, The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA (G.M.)
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA (G.M.)
| | - Lisa Miller
- California National Primate Research Center, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA;
| | - Jason R. Rock
- Center for Regenerative Medicine of Boston University and Boston Medical Center, The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA (G.M.)
| |
Collapse
|
97
|
Fujino N, Brand OJ, Morgan DJ, Fujimori T, Grabiec AM, Jagger CP, Maciewicz RA, Yamada M, Itakura K, Sugiura H, Ichinose M, Hussell T. Sensing of apoptotic cells through Axl causes lung basal cell proliferation in inflammatory diseases. J Exp Med 2019; 216:2184-2201. [PMID: 31289116 PMCID: PMC6719415 DOI: 10.1084/jem.20171978] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/18/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
Epithelial cell proliferation, division, and differentiation are critical for barrier repair following inflammation, but the initial trigger for this process is unknown. Here we define that sensing of apoptotic cells by the TAM receptor tyrosine kinase Axl is a critical indicator for tracheal basal cell expansion, cell cycle reentry, and symmetrical cell division. Furthermore, once the pool of tracheal basal cells has expanded, silencing of Axl is required for their differentiation. Genetic depletion of Axl triggers asymmetrical cell division, leading to epithelial differentiation and ciliated cell regeneration. This discovery has implications for conditions associated with epithelial barrier dysfunction, basal cell hyperplasia, and continued turnover of dying cells in patients with chronic inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Naoya Fujino
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Oliver J Brand
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, the University of Manchester, Manchester, UK
| | - David J Morgan
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, the University of Manchester, Manchester, UK
| | - Toshifumi Fujimori
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
| | - Aleksander M Grabiec
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Christopher P Jagger
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, the University of Manchester, Manchester, UK
| | - Rose A Maciewicz
- Respiratory, Inflammation, and Autoimmunity Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Itakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, the University of Manchester, Manchester, UK
| |
Collapse
|
98
|
Das D, Fletcher RB, Ngai J. Cellular mechanisms of epithelial stem cell self-renewal and differentiation during homeostasis and repair. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e361. [PMID: 31468728 DOI: 10.1002/wdev.361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022]
Abstract
Epithelia in adult mammals exhibit remarkable regenerative capacities owing to the presence of adult stem cells, which self-renew and differentiate to replace cells lost to normal turnover or injury. The mechanisms supporting tissue homeostasis and injury-induced repair often differ from each other as well as from those used in embryonic development. Recent studies have also highlighted the phenomenon of cellular plasticity in adult tissues, in which differentiated cells can change fate and even give rise to new stem cell populations to complement the canonical stem cells in promoting repair following injury. Signaling pathways such as WNT, bone morphogenetic protein, and Sonic Hedgehog play critical roles in stem cell maintenance and cell fate decisions across diverse epithelia and conditions, suggesting that conserved mechanisms underlie the regenerative capacity of adult epithelial structures. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.
Collapse
Affiliation(s)
- Diya Das
- Department of Molecular and Cell Biology, University of California, Berkeley, California.,Berkeley Institute for Data Science, University of California, Berkeley, California
| | - Russell B Fletcher
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - John Ngai
- Department of Molecular and Cell Biology, University of California, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, California.,QB3 Functional Genomics Laboratory, University of California, Berkeley, California
| |
Collapse
|
99
|
Raj N, Bam R. Reciprocal Crosstalk Between YAP1/Hippo Pathway and the p53 Family Proteins: Mechanisms and Outcomes in Cancer. Front Cell Dev Biol 2019; 7:159. [PMID: 31448276 PMCID: PMC6695833 DOI: 10.3389/fcell.2019.00159] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
The YAP1/Hippo and p53 pathways are critical protectors of genome integrity in response to DNA damage. Together, these pathways secure cellular adaptation and maintain overall tissue integrity through transcriptional re-programing downstream of various environmental and biological cues generated during normal tissue growth, cell proliferation, and apoptosis. Genetic perturbations in YAP1/Hippo and p53 pathways are known to contribute to the cells’ ability to turn rogue and initiate tumorigenesis. The Hippo and p53 pathways cooperate on many levels and are closely coordinated through multiple molecular components of their signaling pathways. Several functional and physical interactions have been reported to occur between YAP1/Hippo pathway components and the three p53 family members, p53, p63, and p73. Primarily, functional status of p53 family proteins dictates the subcellular localization, protein stability and transcriptional activity of the core component of the Hippo pathway, Yes-associated protein 1 (YAP1). In this review, we dissect the critical points of crosstalk between the YAP1/Hippo pathway components, with a focus on YAP1, and the p53 tumor suppressor protein family. For each p53 family member, we discuss the biological implications of their interaction with Hippo pathway components in determining cell fate under the conditions of tissue homeostasis and cancer pathogenesis.
Collapse
Affiliation(s)
- Nitin Raj
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Rakesh Bam
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
100
|
Zheng Y, Pan D. The Hippo Signaling Pathway in Development and Disease. Dev Cell 2019; 50:264-282. [PMID: 31386861 PMCID: PMC6748048 DOI: 10.1016/j.devcel.2019.06.003] [Citation(s) in RCA: 598] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/23/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway regulates diverse physiological processes, and its dysfunction has been implicated in an increasing number of human diseases, including cancer. Here, we provide an updated review of the Hippo pathway; discuss its roles in development, homeostasis, regeneration, and diseases; and highlight outstanding questions for future investigation and opportunities for Hippo-targeted therapies.
Collapse
Affiliation(s)
- Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.
| |
Collapse
|