51
|
Reichard J, Zimmer-Bensch G. The Epigenome in Neurodevelopmental Disorders. Front Neurosci 2021; 15:776809. [PMID: 34803599 PMCID: PMC8595945 DOI: 10.3389/fnins.2021.776809] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental diseases (NDDs), such as autism spectrum disorders, epilepsy, and schizophrenia, are characterized by diverse facets of neurological and psychiatric symptoms, differing in etiology, onset and severity. Such symptoms include mental delay, cognitive and language impairments, or restrictions to adaptive and social behavior. Nevertheless, all have in common that critical milestones of brain development are disrupted, leading to functional deficits of the central nervous system and clinical manifestation in child- or adulthood. To approach how the different development-associated neuropathologies can occur and which risk factors or critical processes are involved in provoking higher susceptibility for such diseases, a detailed understanding of the mechanisms underlying proper brain formation is required. NDDs rely on deficits in neuronal identity, proportion or function, whereby a defective development of the cerebral cortex, the seat of higher cognitive functions, is implicated in numerous disorders. Such deficits can be provoked by genetic and environmental factors during corticogenesis. Thereby, epigenetic mechanisms can act as an interface between external stimuli and the genome, since they are known to be responsive to external stimuli also in cortical neurons. In line with that, DNA methylation, histone modifications/variants, ATP-dependent chromatin remodeling, as well as regulatory non-coding RNAs regulate diverse aspects of neuronal development, and alterations in epigenomic marks have been associated with NDDs of varying phenotypes. Here, we provide an overview of essential steps of mammalian corticogenesis, and discuss the role of epigenetic mechanisms assumed to contribute to pathophysiological aspects of NDDs, when being disrupted.
Collapse
Affiliation(s)
- Julia Reichard
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
52
|
Jiménez de la Peña M, Fernández-Mayoralas DM, López-Martín S, Albert J, Calleja-Pérez B, Fernández-Perrone AL, Jiménez de Domingo A, Tirado P, Álvarez S, Fernández-Jaén A. Abnormal frontal gyrification pattern and uncinate development in patients with KBG syndrome caused by ANKRD11 aberrations. Eur J Paediatr Neurol 2021; 35:8-15. [PMID: 34547584 DOI: 10.1016/j.ejpn.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/22/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022]
Abstract
KBG syndrome is characterized by dental, craniofacial and skeletal anomalies, short stature and global developmental delay or intellectual disability. It is caused by microdeletions or truncating mutations of ANKRD11. We report four unrelated probands with this syndrome due to de novo ANKRD11 aberrations that may contribute to a better understanding of the genetics and pathophysiology of this autosomal dominant syndrome. Clinical, cognitive and MRI assessments were performed. Three of the patients showed normal intellectual functioning, whereas the fourth had a borderline level of intellectual functioning. However, all of them showed deficits in various cognitive and socioemotional processes such as attention, executive functions, empathy or pragmatic language. Moreover, all probands displayed marked asymmetry of the uncinate fascicles and an abnormal gyrification pattern in the left frontal lobe. Thus, structural neuroimaging anomalies seem to have been overlooked in this syndrome. Disturbed frontal gyrification and/or lower structural integrity of the uncinate fascisulus might be unrecognized neuroimaging features of KBG syndrome caused by ANKRD11 aberrations. Present results also point out that this syndrome is not necessarily associated with global developmental delay and intellectual disability, but it can be related to other neurodevelopmental disorders or subclinical levels of attention-deficit hyperactivity disorder, autism, communication disorders or specific learning disabilities.
Collapse
Affiliation(s)
| | | | - Sara López-Martín
- Faculty of Psychology, Universidad Autónoma de Madrid, Spain; Neuromottiva, Madrid, Spain
| | - Jacobo Albert
- Faculty of Psychology, Universidad Autónoma de Madrid, Spain
| | | | | | | | - Pilar Tirado
- Department of Pediatric Neurology. Hospital Universitario La Paz, Madrid, Spain
| | - Sara Álvarez
- Genomics and Medicine, NIMGenetics, Madrid, Spain
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology. Hospital Universitario Quirónsalud, Madrid, Spain; School of Medicine, Universidad Europea de Madrid, Spain.
| |
Collapse
|
53
|
Keshavarz M, Savriama Y, Refki P, Reeves RG, Tautz D. Natural copy number variation of tandemly repeated regulatory SNORD RNAs leads to individual phenotypic differences in mice. Mol Ecol 2021; 30:4708-4722. [PMID: 34252239 DOI: 10.1111/mec.16076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022]
Abstract
Genic copy number differences can have phenotypic consequences, but so far this has not been studied in detail in natural populations. Here, we analysed the natural variation of two families of tandemly repeated regulatory small nucleolar RNAs (SNORD115 and SNORD116) in the house mouse (Mus musculus). They are encoded within the Prader-Willi Syndrome gene region, known to be involved in behavioural, metabolic, and osteogenic functions in mammals. We determined that the copy numbers of these SNORD RNAs show substantial natural variation, both in wild-derived mice as well as in an inbred mouse strain (C57BL/6J). We show that copy number differences are subject to change across generations, making them highly variable and resulting in individual differences. In transcriptome data from brain samples, we found SNORD copy-number correlated regulation of possible target genes, including Htr2c, a predicted target gene of SNORD115, as well as Ankrd11, a predicted target gene of SNORD116. Ankrd11 is a chromatin regulator, which has previously been implicated in regulating the development of the skull. Based on morphometric shape analysis of the skulls of individual mice of the inbred strain, we show that shape measures correlate with SNORD116 copy numbers in the respective individuals. Our results suggest that the variable dosage of regulatory RNAs can lead to phenotypic variation between individuals that would typically have been ascribed to environmentally induced variation, while it is actually encoded in individual differences of copy numbers of regulatory molecules.
Collapse
Affiliation(s)
| | - Yoland Savriama
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Peter Refki
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - R Guy Reeves
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
54
|
Gawlińska K, Gawliński D, Borczyk M, Korostyński M, Przegaliński E, Filip M. A Maternal High-Fat Diet during Early Development Provokes Molecular Changes Related to Autism Spectrum Disorder in the Rat Offspring Brain. Nutrients 2021; 13:3212. [PMID: 34579089 PMCID: PMC8467420 DOI: 10.3390/nu13093212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) is a disruptive neurodevelopmental disorder manifested by abnormal social interactions, communication, emotional circuits, and repetitive behaviors and is more often diagnosed in boys than in girls. It is postulated that ASD is caused by a complex interaction between genetic and environmental factors. Epigenetics provides a mechanistic link between exposure to an unbalanced maternal diet and persistent modifications in gene expression levels that can lead to phenotype changes in the offspring. To better understand the impact of the early development environment on the risk of ASD in offspring, we assessed the effect of maternal high-fat (HFD), high-carbohydrate, and mixed diets on molecular changes in adolescent and young adult offspring frontal cortex and hippocampus. Our results showed that maternal HFD significantly altered the expression of 48 ASD-related genes in the frontal cortex of male offspring. Moreover, exposure to maternal HFD led to sex- and age-dependent changes in the protein levels of ANKRD11, EIF4E, NF1, SETD1B, SHANK1 and TAOK2, as well as differences in DNA methylation levels in the frontal cortex and hippocampus of the offspring. Taken together, it was concluded that a maternal HFD during pregnancy and lactation periods can lead to abnormal brain development within the transcription and translation of ASD-related genes mainly in male offspring.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna Street 12, 31-343 Kraków, Poland; (K.G.); (E.P.); (M.F.)
| | - Dawid Gawliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna Street 12, 31-343 Kraków, Poland; (K.G.); (E.P.); (M.F.)
| | - Małgorzata Borczyk
- Maj Institute of Pharmacology Polish Academy of Sciences, Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Smętna Street 12, 31-343 Kraków, Poland; (M.B.); (M.K.)
| | - Michał Korostyński
- Maj Institute of Pharmacology Polish Academy of Sciences, Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Smętna Street 12, 31-343 Kraków, Poland; (M.B.); (M.K.)
| | - Edmund Przegaliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna Street 12, 31-343 Kraków, Poland; (K.G.); (E.P.); (M.F.)
| | - Małgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna Street 12, 31-343 Kraków, Poland; (K.G.); (E.P.); (M.F.)
| |
Collapse
|
55
|
Perea-Resa C, Wattendorf L, Marzouk S, Blower MD. Cohesin: behind dynamic genome topology and gene expression reprogramming. Trends Cell Biol 2021; 31:760-773. [PMID: 33766521 PMCID: PMC8364472 DOI: 10.1016/j.tcb.2021.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 01/01/2023]
Abstract
Beyond its originally discovered role tethering replicated sister chromatids, cohesin has emerged as a master regulator of gene expression. Recent advances in chromatin topology resolution and single-cell studies have revealed that cohesin has a pivotal role regulating highly dynamic chromatin interactions linked to transcription control. The dynamic association of cohesin with chromatin and its capacity to perform loop extrusion contribute to the heterogeneity of chromatin contacts. Additionally, different cohesin subcomplexes, with specific properties and regulation, control gene expression across the cell cycle and during developmental cell commitment. Here, we discuss the most recent literature in the field to highlight the role of cohesin in gene expression regulation during transcriptional shifts and its relationship with human diseases.
Collapse
Affiliation(s)
- Carlos Perea-Resa
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Lauren Wattendorf
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Sammer Marzouk
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Michael D Blower
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
56
|
Parenti I, Mallozzi MB, Hüning I, Gervasini C, Kuechler A, Agolini E, Albrecht B, Baquero-Montoya C, Bohring A, Bramswig NC, Busche A, Dalski A, Guo Y, Hanker B, Hellenbroich Y, Horn D, Innes AM, Leoni C, Li YR, Lynch SA, Mariani M, Medne L, Mikat B, Milani D, Onesimo R, Ortiz-Gonzalez X, Prott EC, Reutter H, Rossier E, Selicorni A, Wieacker P, Wilkens A, Wieczorek D, Zackai EH, Zampino G, Zirn B, Hakonarson H, Deardorff MA, Gillessen-Kaesbach G, Kaiser FJ. ANKRD11 variants: KBG syndrome and beyond. Clin Genet 2021; 100:187-200. [PMID: 33955014 DOI: 10.1111/cge.13977] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Mutations affecting the transcriptional regulator Ankyrin Repeat Domain 11 (ANKRD11) are mainly associated with the multisystem developmental disorder known as KBG syndrome, but have also been identified in individuals with Cornelia de Lange syndrome (CdLS) and other developmental disorders caused by variants affecting different chromatin regulators. The extensive functional overlap of these proteins results in shared phenotypical features, which complicate the assessment of the clinical diagnosis. Additionally, re-evaluation of individuals at a later age occasionally reveals that the initial phenotype has evolved toward clinical features more reminiscent of a developmental disorder different from the one that was initially diagnosed. For this reason, variants in ANKRD11 can be ascribed to a broader class of disorders that fall within the category of the so-called chromatinopathies. In this work, we report on the clinical characterization of 23 individuals with variants in ANKRD11. The subjects present primarily with developmental delay, intellectual disability and dysmorphic features, and all but two received an initial clinical diagnosis of either KBG syndrome or CdLS. The number and the severity of the clinical signs are overlapping but variable and result in a broad spectrum of phenotypes, which could be partially accounted for by the presence of additional molecular diagnoses and distinct pathogenic mechanisms.
Collapse
Affiliation(s)
- Ilaria Parenti
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Mark B Mallozzi
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Irina Hüning
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Cristina Gervasini
- Genetica Medica, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Beate Albrecht
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Carolina Baquero-Montoya
- Department of Pediatrics, Hospital Pablo Tobón Uribe, Medellín, Colombia
- Genetics Unit, Sura Ayudas Diagnosticas, Medellín, Colombia
| | - Axel Bohring
- Institut für Humangenetik, Westfälische Wilhelms-Universität, Münster, Germany
| | - Nuria C Bramswig
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Andreas Busche
- Institut für Humangenetik, Westfälische Wilhelms-Universität, Münster, Germany
| | - Andreas Dalski
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Yiran Guo
- Center for Applied Genomics and Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Britta Hanker
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | | | - Denise Horn
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Yun R Li
- Center for Applied Genomics and Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Medical Scientist Training Program, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sally Ann Lynch
- Department of Clinical Genetics, Children's Health Ireland (CHI) at Crumlin, Dublin, Ireland
| | - Milena Mariani
- Centro Fondazione Mariani per il Bambino Fragile ASST-Lariana Sant'Anna Hospital, Department of Pediatrics, San Fermo della Battaglia (Como), Italy
| | - Livija Medne
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Barbara Mikat
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Donatella Milani
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Xilma Ortiz-Gonzalez
- Department of Pediatrics, Division of Neurology, Epilepsy Neurogenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eva Christina Prott
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Institut für Praenatale Medizin & Humangenetik, Wuppertal, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany
- Department of Neonatology and Pediatric Intensive Care, University Hospital of Bonn, Bonn, Germany
| | - Eva Rossier
- Institut für Medizinische Genetik und Angewandte Genomik, Universität Tübingen, Tübingen, Germany
- Genetikum Stuttgart, Genetic Counselling and Diagnostics, Stuttgart, Germany
| | - Angelo Selicorni
- Centro Fondazione Mariani per il Bambino Fragile ASST-Lariana Sant'Anna Hospital, Department of Pediatrics, San Fermo della Battaglia (Como), Italy
| | - Peter Wieacker
- Institut für Humangenetik, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alisha Wilkens
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Birgit Zirn
- Genetikum Stuttgart, Genetic Counselling and Diagnostics, Stuttgart, Germany
| | - Hakon Hakonarson
- Center for Applied Genomics and Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew A Deardorff
- Department of Pathology and Laboratory Medicine and Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Frank J Kaiser
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Essener Zentrum für Seltene Erkrankungen (EZSE), Universitätsmedizin Essen, Essen, Germany
| |
Collapse
|
57
|
Banerjee P, Balraj P, Ambhore NS, Wicher SA, Britt RD, Pabelick CM, Prakash YS, Sathish V. Network and co-expression analysis of airway smooth muscle cell transcriptome delineates potential gene signatures in asthma. Sci Rep 2021; 11:14386. [PMID: 34257337 PMCID: PMC8277837 DOI: 10.1038/s41598-021-93845-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Airway smooth muscle (ASM) is known for its role in asthma exacerbations characterized by acute bronchoconstriction and remodeling. The molecular mechanisms underlying multiple gene interactions regulating gene expression in asthma remain elusive. Herein, we explored the regulatory relationship between ASM genes to uncover the putative mechanism underlying asthma in humans. To this end, the gene expression from human ASM was measured with RNA-Seq in non-asthmatic and asthmatic groups. The gene network for the asthmatic and non-asthmatic group was constructed by prioritizing differentially expressed genes (DEGs) (121) and transcription factors (TFs) (116). Furthermore, we identified differentially connected or co-expressed genes in each group. The asthmatic group showed a loss of gene connectivity due to the rewiring of major regulators. Notably, TFs such as ZNF792, SMAD1, and SMAD7 were differentially correlated in the asthmatic ASM. Additionally, the DEGs, TFs, and differentially connected genes over-represented in the pathways involved with herpes simplex virus infection, Hippo and TGF-β signaling, adherens junctions, gap junctions, and ferroptosis. The rewiring of major regulators unveiled in this study likely modulates the expression of gene-targets as an adaptive response to asthma. These multiple gene interactions pointed out novel targets and pathways for asthma exacerbations.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Premanand Balraj
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | | | - Sarah A Wicher
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Rodney D Britt
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Sudro 108A, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
58
|
Man K, Brunet MY, Fernandez‐Rhodes M, Williams S, Heaney LM, Gethings LA, Federici A, Davies OG, Hoey D, Cox SC. Epigenetic reprogramming enhances the therapeutic efficacy of osteoblast-derived extracellular vesicles to promote human bone marrow stem cell osteogenic differentiation. J Extracell Vesicles 2021; 10:e12118. [PMID: 34262674 PMCID: PMC8263905 DOI: 10.1002/jev2.12118] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging in tissue engineering as promising acellular tools, circumventing many of the limitations associated with cell-based therapies. Epigenetic regulation through histone deacetylase (HDAC) inhibition has been shown to increase differentiation capacity. Therefore, this study aimed to investigate the potential of augmenting osteoblast epigenetic functionality using the HDAC inhibitor Trichostatin A (TSA) to enhance the therapeutic efficacy of osteoblast-derived EVs for bone regeneration. TSA was found to substantially alter osteoblast epigenetic function through reduced HDAC activity and increased histone acetylation. Treatment with TSA also significantly enhanced osteoblast alkaline phosphatase activity (1.35-fold), collagen production (2.8-fold) and calcium deposition (1.55-fold) during osteogenic culture (P ≤ 0.001). EVs derived from TSA-treated osteoblasts (TSA-EVs) exhibited reduced particle size (1-05-fold) (P > 0.05), concentration (1.4-fold) (P > 0.05) and protein content (1.16-fold) (P ≤ 0.001) when compared to untreated EVs. TSA-EVs significantly enhanced the proliferation (1.13-fold) and migration (1.3-fold) of human bone marrow stem cells (hBMSCs) when compared to untreated EVs (P ≤ 0.05). Moreover, TSA-EVs upregulated hBMSCs osteoblast-related gene and protein expression (ALP, Col1a, BSP1 and OCN) when compared to cells cultured with untreated EVs. Importantly, TSA-EVs elicited a time-dose dependent increase in hBMSCs extracellular matrix mineralisation. MicroRNA profiling revealed a set of differentially expressed microRNAs from TSA-EVs, which were osteogenic-related. Target prediction demonstrated these microRNAs were involved in regulating pathways such as 'endocytosis' and 'Wnt signalling pathway'. Moreover, proteomics analysis identified the enrichment of proteins involved in transcriptional regulation within TSA-EVs. Taken together, our findings suggest that altering osteoblasts' epigenome accelerates their mineralisation and promotes the osteoinductive potency of secreted EVs partly due to the delivery of pro-osteogenic microRNAs and transcriptional regulating proteins. As such, for the first time we demonstrate the potential to harness epigenetic regulation as a novel engineering approach to enhance EVs therapeutic efficacy for bone repair.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | | | | | - Soraya Williams
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Liam M. Heaney
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Lee A. Gethings
- Waters CorporationStamford AvenueWilmslowUK
- Division of Infection, Immunity and Respiratory MedicineFaculty of Biology, Medicine and HealthManchester Institute of BiotechnologyUniversity of ManchesterManchesterUK
| | - Angelica Federici
- Trinity Biomedical Sciences InstituteTrinity CollegeTrinity Centre for Biomedical EngineeringDublinIreland
- Department of Mechanical, Manufacturing, and Biomedical EngineeringSchool of EngineeringTrinity College DublinIreland
- Trinity College Dublin & RCSIAdvanced Materials and Bioengineering Research CentreDublinIreland
| | - Owen G. Davies
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - David Hoey
- Trinity Biomedical Sciences InstituteTrinity CollegeTrinity Centre for Biomedical EngineeringDublinIreland
- Department of Mechanical, Manufacturing, and Biomedical EngineeringSchool of EngineeringTrinity College DublinIreland
- Trinity College Dublin & RCSIAdvanced Materials and Bioengineering Research CentreDublinIreland
| | - Sophie C. Cox
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| |
Collapse
|
59
|
Cheung MYQ, Roberts C, Scambler P, Stathopoulou A. Setd5 is required in cardiopharyngeal mesoderm for heart development and its haploinsufficiency is associated with outflow tract defects in mouse. Genesis 2021; 59:e23421. [PMID: 34050709 PMCID: PMC8564859 DOI: 10.1002/dvg.23421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Congenital heart defects are a feature of several genetic haploinsufficiency syndromes, often involving transcriptional regulators. One property of haploinsufficient genes is their propensity for network interactions at the gene or protein level. In this article we took advantage of an online dataset of high throughput screening of mutations that are embryonic lethal in mice. Our aim was to identify new genes where the loss of function caused cardiovascular phenotypes resembling the 22q11.2 deletion syndrome models, that is, heterozygous and homozygous loss of Tbx1. One gene with a potentially haploinsufficient phenotype was identified, Setd5, thought to be involved in chromatin modification. We found murine Setd5 haploinsufficiency to be associated with double outlet right ventricle and perimembranous ventricular septal defect, although no genetic interaction with Tbx1 was detected. Conditional mutagenesis revealed that Setd5 was required in cardiopharyngeal mesoderm for progression of the heart tube through the ballooning stage to create a four-chambered heart.
Collapse
Affiliation(s)
- Michelle Yu-Qing Cheung
- Developmental Biology and Cancer, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Catherine Roberts
- Developmental Biology and Cancer, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom.,Institute of Medical and Biomedical Education, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | - Peter Scambler
- Developmental Biology and Cancer, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Athanasia Stathopoulou
- Developmental Biology and Cancer, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| |
Collapse
|
60
|
Borrett MJ, Innes BT, Jeong D, Tahmasian N, Storer MA, Bader GD, Kaplan DR, Miller FD. Single-Cell Profiling Shows Murine Forebrain Neural Stem Cells Reacquire a Developmental State when Activated for Adult Neurogenesis. Cell Rep 2021; 32:108022. [PMID: 32783944 DOI: 10.1016/j.celrep.2020.108022] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022] Open
Abstract
The transitions from developing to adult quiescent and activated neural stem cells (NSCs) are not well understood. Here, we use single-cell transcriptional profiling and lineage tracing to characterize these transitions in the murine forebrain. We show that the two forebrain NSC parental populations, embryonic cortex and ganglionic eminence radial precursors (RPs), are highly similar even though they make glutamatergic versus gabaergic neurons. Both RP populations progress linearly to transition from a highly active embryonic to a dormant adult stem cell state that still shares many similarities with embryonic RPs. When adult NSCs of either embryonic origin become reactivated to make gabaergic neurons, they acquire a developing ganglionic eminence RP-like identity. Thus, transitions from embryonic RPs to adult NSCs and back to neuronal progenitors do not involve fundamental changes in cell identity, but rather reflect conversions between activated and dormant NSC states that may be determined by the niche environment.
Collapse
Affiliation(s)
- Michael J Borrett
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Brendan T Innes
- The Donnelly Centre, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Danielle Jeong
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Nareh Tahmasian
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Mekayla A Storer
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - David R Kaplan
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Freda D Miller
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1A8, Canada.
| |
Collapse
|
61
|
Abe‐Hatano C, Iida A, Kosugi S, Momozawa Y, Terao C, Ishikawa K, Okubo M, Hachiya Y, Nishida H, Nakamura K, Miyata R, Murakami C, Takahashi K, Hoshino K, Sakamoto H, Ohta S, Kubota M, Takeshita E, Ishiyama A, Nakagawa E, Sasaki M, Kato M, Matsumoto N, Kamatani Y, Kubo M, Takahashi Y, Natsume J, Inoue K, Goto Y. Whole genome sequencing of 45 Japanese patients with intellectual disability. Am J Med Genet A 2021; 185:1468-1480. [PMID: 33624935 PMCID: PMC8247954 DOI: 10.1002/ajmg.a.62138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/23/2020] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
Intellectual disability (ID) is characterized by significant limitations in both intellectual functioning and adaptive behaviors, originating before the age of 18 years. However, the genetic etiologies of ID are still incompletely elucidated due to the wide range of clinical and genetic heterogeneity. Whole genome sequencing (WGS) has been applied as a single-step clinical diagnostic tool for ID because it detects genetic variations with a wide range of resolution from single nucleotide variants (SNVs) to structural variants (SVs). To explore the causative genes for ID, we employed WGS in 45 patients from 44 unrelated Japanese families and performed a stepwise screening approach focusing on the coding variants in the genes. Here, we report 12 pathogenic and likely pathogenic variants: seven heterozygous variants of ADNP, SATB2, ANKRD11, PTEN, TCF4, SPAST, and KCNA2, three hemizygous variants of SMS, SLC6A8, and IQSEC2, and one homozygous variant in AGTPBP1. Of these, four were considered novel. Furthermore, a novel 76 kb deletion containing exons 1 and 2 in DYRK1A was identified. We confirmed the clinical and genetic heterogeneity and high frequency of de novo causative variants (8/12, 66.7%). This is the first report of WGS analysis in Japanese patients with ID. Our results would provide insight into the correlation between novel variants and expanded phenotypes of the disease.
Collapse
Affiliation(s)
- Chihiro Abe‐Hatano
- Department of Mental Retardation and Birth Defect ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Aritoshi Iida
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Shunichi Kosugi
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Yukihide Momozawa
- Laboratory for Genotyping DevelopmentRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Chikashi Terao
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical SciencesKanagawaJapan
- Clinical Research CenterShizuoka General HospitalShizuokaJapan
- The Department of Applied GeneticsThe School of Pharmaceutical Sciences, University of ShizuokaShizuokaJapan
| | - Keiko Ishikawa
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Mariko Okubo
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Yasuo Hachiya
- Department of NeuropediatricsTokyo Metropolitan Neurological HospitalTokyoJapan
| | - Hiroya Nishida
- Department of NeuropediatricsTokyo Metropolitan Neurological HospitalTokyoJapan
| | - Kazuyuki Nakamura
- Department of PediatricsYamagata University Faculty of MedicineYamagataJapan
| | - Rie Miyata
- Department of PediatricsTokyo‐Kita Medical CenterTokyoJapan
| | - Chie Murakami
- Department of PediatricsKitakyusyu Children's Rehabilitation CenterFukuokaJapan
| | - Kan Takahashi
- Department of PediatricsOme Municipal General HospitalTokyoJapan
| | - Kyoko Hoshino
- Department of PediatricsMinami Wakayama Medical CenterWakayamaJapan
| | - Haruko Sakamoto
- Department of NeonatologyJapanese Red Cross Osaka HospitalOsakaJapan
| | - Sayaka Ohta
- Division of NeurologyNational Center for Child Health and DevelopmentTokyoJapan
| | - Masaya Kubota
- Division of NeurologyNational Center for Child Health and DevelopmentTokyoJapan
| | - Eri Takeshita
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Akihiko Ishiyama
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Eiji Nakagawa
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Masayuki Sasaki
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Mitsuhiro Kato
- Department of PediatricsYamagata University Faculty of MedicineYamagataJapan
- Department of PediatricsShowa University School of MedicineTokyoJapan
| | - Naomichi Matsumoto
- Department of Human GeneticsYokohama City University Graduate School of MedicineKanagawaJapan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical SciencesKanagawaJapan
- Department of Computational Biology and Medical SciencesGraduate School of Frontier Sciences, The University of TokyoTokyoJapan
| | - Michiaki Kubo
- Laboratory for Genotyping DevelopmentRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Yoshiyuki Takahashi
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Jun Natsume
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Yu‐Ichi Goto
- Department of Mental Retardation and Birth Defect ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| |
Collapse
|
62
|
Roth DM, Baddam P, Lin H, Vidal-García M, Aponte JD, De Souza ST, Godziuk D, Watson AES, Footz T, Schachter NF, Egan SE, Hallgrímsson B, Graf D, Voronova A. The Chromatin Regulator Ankrd11 Controls Palate and Cranial Bone Development. Front Cell Dev Biol 2021; 9:645386. [PMID: 33996804 PMCID: PMC8117352 DOI: 10.3389/fcell.2021.645386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 11/19/2022] Open
Abstract
Epigenetic and chromatin regulation of craniofacial development remains poorly understood. Ankyrin Repeat Domain 11 (ANKRD11) is a chromatin regulator that has previously been shown to control neural stem cell fates via modulation of histone acetylation. ANKRD11 gene variants, or microdeletions of the 16q24.3 chromosomal region encompassing the ANKRD11 gene, cause KBG syndrome, a rare autosomal dominant congenital disorder with variable neurodevelopmental and craniofacial involvement. Craniofacial abnormalities include a distinct facial gestalt, delayed bone age, tooth abnormalities, delayed fontanelle closure, and frequently cleft or submucosal palate. Despite this, the dramatic phenotype and precise role of ANKRD11 in embryonic craniofacial development remain unexplored. Quantitative analysis of 3D images of KBG syndromic subjects shows an overall reduction in the size of the middle and lower face. Here, we report that mice with heterozygous deletion of Ankrd11 in neural crest cells (Ankrd11nchet) display a mild midfacial hypoplasia including reduced midfacial width and a persistent open fontanelle, both of which mirror KBG syndrome patient facial phenotypes. Mice with a homozygous Ankrd11 deletion in neural crest cells (Ankrd11ncko) die at birth. They show increased severity of several clinical manifestations described for KBG syndrome, such as cleft palate, retrognathia, midfacial hypoplasia, and reduced calvarial growth. At E14.5, Ankrd11 expression in the craniofacial complex is closely associated with developing bony structures, while expression at birth is markedly decreased. Conditional deletion of Ankrd11 leads to a reduction in ossification of midfacial bones, with several ossification centers failing to expand and/or fuse. Intramembranous bones show features of delayed maturation, with bone remodeling severely curtailed at birth. Palatal shelves remain hypoplastic at all developmental stages, with a local reduction in proliferation at E13.5. Our study identifies Ankrd11 as a critical regulator of intramembranous ossification and palate development and suggests that Ankrd11nchet and Ankrd11ncko mice may serve as pre-clinical models for KBG syndrome in humans.
Collapse
Affiliation(s)
- Daniela Marta Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Pranidhi Baddam
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Haiming Lin
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Marta Vidal-García
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jose David Aponte
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah-Thea De Souza
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Devyn Godziuk
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Adrianne Eve Scovil Watson
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nathan F. Schachter
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean E. Egan
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
63
|
Cederquist GY, Tchieu J, Callahan SJ, Ramnarine K, Ryan S, Zhang C, Rittenhouse C, Zeltner N, Chung SY, Zhou T, Chen S, Betel D, White RM, Tomishima M, Studer L. A Multiplex Human Pluripotent Stem Cell Platform Defines Molecular and Functional Subclasses of Autism-Related Genes. Cell Stem Cell 2021; 27:35-49.e6. [PMID: 32619517 DOI: 10.1016/j.stem.2020.06.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 01/12/2023]
Abstract
Autism is a clinically heterogeneous neurodevelopmental disorder characterized by impaired social interactions, restricted interests, and repetitive behaviors. Despite significant advances in the genetics of autism, understanding how genetic changes perturb brain development and affect clinical symptoms remains elusive. Here, we present a multiplex human pluripotent stem cell (hPSC) platform, in which 30 isogenic disease lines are pooled in a single dish and differentiated into prefrontal cortex (PFC) lineages to efficiently test early-developmental hypotheses of autism. We define subgroups of autism mutations that perturb PFC neurogenesis and are correlated to abnormal WNT/βcatenin responses. Class 1 mutations (8 of 27) inhibit while class 2 mutations (5 of 27) enhance PFC neurogenesis. Remarkably, autism patient data reveal that individuals carrying subclass-specific mutations differ clinically in their corresponding language acquisition profiles. Our study provides a framework to disentangle genetic heterogeneity associated with autism and points toward converging molecular and developmental pathways of diverse autism-associated mutations.
Collapse
Affiliation(s)
- Gustav Y Cederquist
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Weill-Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Jason Tchieu
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Scott J Callahan
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Cancer Genetics and Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Gerstner Graduate School of Biomedical Sciences, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Kiran Ramnarine
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Sean Ryan
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Chao Zhang
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chelsea Rittenhouse
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Nadja Zeltner
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Center for Molecular Medicine, Department of Cellular Biology, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sun Young Chung
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Ting Zhou
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard M White
- Cancer Genetics and Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Mark Tomishima
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA.
| |
Collapse
|
64
|
Li Q, Sun C, Yang L, Lu W, Luo F. Comprehensive analysis of clinical spectrum and genotype associations in Chinese and literature reported KBG syndrome. Transl Pediatr 2021; 10:834-842. [PMID: 34012832 PMCID: PMC8107870 DOI: 10.21037/tp-20-385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Patients with KBG Syndrome due to ANKRD11 mutations and 16q24.3 microdeletions including ANKRD11 were identified. Classical and most frequent phenotypes include various degrees of intelligence disability (ID), short stature (SS), delayed bone age, macrodontia, distinctive facial features and skeletal anomalies. The variable expressivity of KBG syndrome makes it challenging to establish genotype-phenotype correlations, which also affects further studies for this novel syndrome. We aim to report three unrelated patients with KBG syndrome caused by ANKRD11 gene pathological variants and to evaluate potential associations among ANKRD11 gene variant types, the 16q24.3 microdeletion, and the clinical spectrum of KBG syndrome. METHODS The genetic etiology of three unreported KBG patients was identified by whole exome sequencing and confirmed via Sanger sequencing. Literature review was conducted to summarize the phenotype-genotype relationship based on three unreported Chinese cases and 186 reported cases. RESULTS Two pathological variants (c.7407dupC, p.P2530Rfs*61; c.G3046A, p.D1016N) and one reported variant (c.6792dupC, p. P2271Pfs*8) were detected in our patients. Compared with the 16q24.3 microdeletion, patients harboring ANKRD11 gene mutations showed significantly higher frequency of malformations including macrodontia, long philtrum, abnormal eyebrows, widely spaced eyes, anteverted nares, eyelid ptosis, brachydactyly, brachycephaly (P<0.05), and significantly lower risk of congenital heart diseases and frontal bossing (P<0.05). The intellectual disability (ID) was significantly milder among patients carrying truncating variants located between repression domain 1 (RD1) and activation domain (AD) than those carrying mutations disrupting repression domain 2 (RD2) alone and disrupting all functional domain (RD1, AD or RD2) (P<0.05). CONCLUSIONS Novel pathological variants harbored in the ANKRD11 gene contribute to the KBG syndrome variant spectrum. ANKRD11 gene variants disrupting RD1 and RD2 or RD2 alone are more likely to have more severe ID, which warrants different intervention strategies for KBG syndrome.
Collapse
Affiliation(s)
- Qiuyue Li
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Chengjun Sun
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Lu
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Feihong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
65
|
Chen J, Xia Z, Zhou Y, Ma X, Wang X, Guo Q. A de novo frameshift variant of ANKRD11 (c.1366_1367dup) in a Chinese patient with KBG syndrome. BMC Med Genomics 2021; 14:68. [PMID: 33653342 PMCID: PMC7927266 DOI: 10.1186/s12920-021-00920-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND KBG syndrome is a rare autosomal dominant genetic disease mainly caused by pathogenic variants of ankyrin repeat domain-containing protein 11 (ANKRD11) or deletions involving ANKRD11. Herein, we report a novel de novo heterozygous frameshift ANKRD11 variant via whole exome sequencing in a Chinese girl with KBG syndrome. CASE PRESENTATION A 2-year-2-month-old girl presented with a short stature and developmental delay. Comprehensive physical examinations, endocrine laboratory tests and imaging examination were performed. Whole-exome sequencing and Sanger sequencing were used to detect and confirm the variant associated with KBG in this patient, respectively. The pathogenicity of the variant was further predicted by several in silico prediction tools. The patient was diagnosed as KBG syndrome with a short stature and developmental delay, as well as characteristic craniofacial abnormalities, including a triangular face, long philtrum, wide eyebrows, a broad nasal bridge, prominent and protruding ears, macrodontia of the upper central incisors, dental crowding, and binocular refractive error. Her skeletal anomalies included brachydactyly, fifth finger clinodactyly, and left-skewed caudal vertebrae. Electroencephalographic results generally showed normal background activity with sporadic spikes and slow wave complexes, as well as multiple spikes and slow wave complexes in the bilateral parietal, occipital, and posterior temporal regions during non-rapid-eye-movement sleep. Brain MRI showed a distended change in the bilateral ventricles and third ventricle, as well as malformation of the sixth ventricle. Whole exome sequencing revealed a novel heterozygous frameshift variant in the patient, ANKRD11 c.1366_1367dup, which was predicted to be pathogenic through in silico analysis. The patient had received physical therapy since 4 months of age, and improvement of gross motor dysfunction was evident. CONCLUSIONS The results of this study expand the spectrum of ANKRD11 variants in KBG patients and provide clinical phenotypic data for KBG syndrome at an early age. Our study also demonstrates that whole exome sequencing is an effective method for the diagnosis of rare genetic disorders.
Collapse
Affiliation(s)
- Jing Chen
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Child Health, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhongmin Xia
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xiaomin Ma
- Department of Radiology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xudong Wang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
66
|
Zhang T, Yang Y, Yin X, Wang X, Ni J, Dong Z, Li C, Lu W. Two loss-of-function ANKRD11 variants in Chinese patients with short stature and a possible molecular pathway. Am J Med Genet A 2021; 185:710-718. [PMID: 33354850 PMCID: PMC7898801 DOI: 10.1002/ajmg.a.62024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
KBG syndrome is a rare genetic disease characterized mainly by skeletal abnormalities, distinctive facial features, and intellectual disability. Heterozygous mutations in ANKRD11 gene, or deletion of 16q24.3 that includes ANKRD11 gene are the cause of KBG syndrome. We describe two patients presenting with short stature and partial facial features, whereas no intellectual disability or hearing loss was observed in them. Two ANKRD11 variants, c.4039_4041del (p. Lys1347del) and c.6427C > G (p. Leu2143Val), were identified in this study. Both of them were classified as variants of uncertain significance (VOUS) by ACMG/AMP guidelines and were inherited from their mothers. ANKRD11 could enhance the transactivation of p21 gene, which was identified to participate in chondrogenic differentiation. In this study, we demonstrated that the knockdown of ANKRD11 could reduce the p21-promoter luciferase activities while re-introduction of wild type ANKRD11, but not ANKRD11 variants (p. Lys1347del or p. Leu2143Val), could restore the p21 levels. Thus, our study report two loss-of-function ANKRD11 variants which might provide new insight on pathogenic mechanism that correlates ANKRD11 variants with the short stature phenotype of KBG syndrome.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Yun Yang
- School of MedicineGuizhou UniversityGuiyangGuizhouChina
- Department of AnesthesiologyThe First Affiliated Hospital of Wenzhou Medical UniversityZhejiangChina
| | - Xueling Yin
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Xueqing Wang
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Jihong Ni
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Zhiya Dong
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Chuanyin Li
- Cancer Center, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Wenli Lu
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
67
|
Napoletani G, Vigli D, Cosentino L, Grieco M, Talamo MC, Lacivita E, Leopoldo M, Laviola G, Fuso A, d'Erme M, De Filippis B. Stimulation of the Serotonin Receptor 7 Restores Brain Histone H3 Acetylation and MeCP2 Corepressor Protein Levels in a Female Mouse Model of Rett Syndrome. J Neuropathol Exp Neurol 2021; 80:265-273. [PMID: 33598674 DOI: 10.1093/jnen/nlaa158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene, characterized by severe behavioral and physiological impairments for which no cure is available. The stimulation of serotonin receptor 7 (5-HT7R) with its selective agonist LP-211 (0.25 mg/kg/day for 7 days) was proved to rescue neurobehavioral alterations in a mouse model of RTT. In the present study, we aimed at gaining insight into the mechanisms underpinning the efficacy of 5-HT7R pharmacological stimulation by investigating its epigenetic outcomes in the brain of RTT female mice bearing a truncating MeCP2 mutation. Treatment with LP-211 normalized the reduced histone H3 acetylation and HDAC3/NCoR levels, and increased HDAC1/Sin3a expression in RTT mouse cortex. Repeated 5-HT7R stimulation also appeared to strengthen the association between NCoR and MeCP2 in the same brain region. A different profile was found in RTT hippocampus, where LP-211 rescued H3 hyperacetylation and increased HDAC3 levels. Overall, the present data highlight a new scenario on the relationship between histone acetylation and serotoninergic pathways. 5-HT7R is confirmed as a pivotal therapeutic target for the recovery of neuronal function supporting the translational value of this promising pharmacological approach for RTT.
Collapse
Affiliation(s)
- Giorgia Napoletani
- From the Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | - Daniele Vigli
- From the Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy.,Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Maddalena Grieco
- From the Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | - Maria Cristina Talamo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Enza Lacivita
- Department of Pharmacy, University of Bari "Aldo Moro", Bari, Italy
| | | | - Giovanni Laviola
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Roma, Roma, Italy
| | - Maria d'Erme
- From the Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
68
|
Tomita H, Cornejo F, Aranda-Pino B, Woodard CL, Rioseco CC, Neel BG, Alvarez AR, Kaplan DR, Miller FD, Cancino GI. The Protein Tyrosine Phosphatase Receptor Delta Regulates Developmental Neurogenesis. Cell Rep 2021; 30:215-228.e5. [PMID: 31914388 DOI: 10.1016/j.celrep.2019.11.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/10/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022] Open
Abstract
PTPRD is a receptor protein tyrosine phosphatase that is genetically associated with neurodevelopmental disorders. Here, we asked whether Ptprd mutations cause aberrant neural development by perturbing neurogenesis in the murine cortex. We show that loss of Ptprd causes increases in neurogenic transit-amplifying intermediate progenitor cells and cortical neurons and perturbations in neuronal localization. These effects are intrinsic to neural precursor cells since acute Ptprd knockdown causes similar perturbations. PTPRD mediates these effects by dephosphorylating receptor tyrosine kinases, including TrkB and PDGFRβ, and loss of Ptprd causes the hyperactivation of TrkB and PDGFRβ and their downstream MEK-ERK signaling pathway in neural precursor cells. Moreover, inhibition of aberrant TrkB or MEK activation rescues the increased neurogenesis caused by knockdown or homozygous loss of Ptprd. These results suggest that PTPRD regulates receptor tyrosine kinases to ensure appropriate numbers of intermediate progenitor cells and neurons, suggesting a mechanism for its genetic association with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hideaki Tomita
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
| | - Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Begoña Aranda-Pino
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Cameron L Woodard
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
| | - Constanza C Rioseco
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Alejandra R Alvarez
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada; Institute of Medical Science, University of Toronto, Toronto M5S 1A8, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, ON, Canada
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada; Institute of Medical Science, University of Toronto, Toronto M5S 1A8, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, ON, Canada; Department of Physiology, University of Toronto, Toronto M5S 1A8, ON, Canada
| | - Gonzalo I Cancino
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada; Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile.
| |
Collapse
|
69
|
Wojciechowska K, Nurzyńska-Flak J, Styka B, Kacprzak M, Lejman M. Case Report: Two Newly Diagnosed Patients With KBG Syndrome-Two Different Molecular Changes. Front Pediatr 2021; 9:649043. [PMID: 34604130 PMCID: PMC8485045 DOI: 10.3389/fped.2021.649043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Mutations or deletions of ANKRD11 gene are responsible for the symptoms of KBG syndrome. The KBG syndrome is a rare genetic disorder which is inherited in an autosomal dominant manner. Affected patients usually have characteristic facial features, macrodontia of the upper central incisors, hand abnormalities, developmental delay and short stature. In the present article we would like to report a clinical and molecular case study of two patients affected by KBG syndrome. The diagnosis of the first patient was confirmed by the identification of the novel pathogenic variant in ANKRD11 gene by next-generation sequencing. The second patient was diagnosed after the detection of a 16q24.2q24.3 deletion encompassing the ANKRD11 gene microarray.
Collapse
Affiliation(s)
| | - Joanna Nurzyńska-Flak
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Borys Styka
- Laboratory of Genetic Diagnostic, Children's University Hospital, Lublin, Poland
| | | | - Monika Lejman
- Laboratory of Genetic Diagnostic, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
70
|
Mizuno S, Hirota JN, Ishii C, Iwasaki H, Sano Y, Furuichi T. Comprehensive Profiling of Gene Expression in the Cerebral Cortex and Striatum of BTBRTF/ArtRbrc Mice Compared to C57BL/6J Mice. Front Cell Neurosci 2020; 14:595607. [PMID: 33362469 PMCID: PMC7758463 DOI: 10.3389/fncel.2020.595607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Mouse line BTBR T+ Iptr3tf/J (hereafter referred as to BTBR/J) is a mouse strain that shows lower sociability compared to the C57BL/6J mouse strain (B6) and thus is often utilized as a model for autism spectrum disorder (ASD). In this study, we utilized another subline, BTBRTF/ArtRbrc (hereafter referred as to BTBR/R), and analyzed the associated brain transcriptome compared to B6 mice using microarray analysis, quantitative RT-PCR analysis, various bioinformatics analyses, and in situ hybridization. We focused on the cerebral cortex and the striatum, both of which are thought to be brain circuits associated with ASD symptoms. The transcriptome profiling identified 1,280 differentially expressed genes (DEGs; 974 downregulated and 306 upregulated genes, including 498 non-coding RNAs [ncRNAs]) in BTBR/R mice compared to B6 mice. Among these DEGs, 53 genes were consistent with ASD-related genes already established. Gene Ontology (GO) enrichment analysis highlighted 78 annotations (GO terms) including DNA/chromatin regulation, transcriptional/translational regulation, intercellular signaling, metabolism, immune signaling, and neurotransmitter/synaptic transmission-related terms. RNA interaction analysis revealed novel RNA–RNA networks, including 227 ASD-related genes. Weighted correlation network analysis highlighted 10 enriched modules including DNA/chromatin regulation, neurotransmitter/synaptic transmission, and transcriptional/translational regulation. Finally, the behavioral analyses showed that, compared to B6 mice, BTBR/R mice have mild but significant deficits in social novelty recognition and repetitive behavior. In addition, the BTBR/R data were comprehensively compared with those reported in the previous studies of human subjects with ASD as well as ASD animal models, including BTBR/J mice. Our results allow us to propose potentially important genes, ncRNAs, and RNA interactions. Analysis of the altered brain transcriptome data of the BTBR/R and BTBR/J sublines can contribute to the understanding of the genetic underpinnings of autism susceptibility.
Collapse
Affiliation(s)
- Shota Mizuno
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Jun-Na Hirota
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Chiaki Ishii
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Hirohide Iwasaki
- Department of Anatomy, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| |
Collapse
|
71
|
Kim SJ, Yang A, Park JS, Kwon DG, Lee JS, Kwon YS, Lee JE. Two Novel Mutations of ANKRD11 Gene and Wide Clinical Spectrum in KBG Syndrome: Case Reports and Literature Review. Front Genet 2020; 11:579805. [PMID: 33262785 PMCID: PMC7687677 DOI: 10.3389/fgene.2020.579805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Background KBG syndrome (OMIM #148050) is a rare, autosomal dominant inherited genetic disorder caused by heterozygous mutations in the ankyrin repeat domain-containing protein 11 (ANKRD11) gene or by microdeletion of chromosome 16q24.3. It is characterized by macrodontia of the upper central incisors, distinctive facial dysmorphism, short stature, vertebral abnormalities, hand anomaly including clinodactyly, and various degrees of developmental delay. KBG syndrome presents with variable clinical feature and severity among individuals. Here, we report two KBG patients who have different novel heterozygous mutations of ANKRD11 gene with wide range of clinical manifestations. Case presentation Two novel heterozygous mutations of ANKRD11 gene were identified in two unrelated Korean patients with variable clinical presentations. The first patient presented with short stature and early puberty and was treated with growth hormone and gonadotropin-releasing hormone agonist without adverse effects. He had mild intellectual disability. In targeted exome sequencing, a novel de novo frameshift variant was identified in ANKRD11, c.5889del, and p. (Ile1963MetfsX9). The second patient had severe intellectual disability with epilepsy. He had normal height and prepubertal stage at the age of 11 years. He had behavioral problems such as autism-like features, anxiety, and stereotypical movements. Whole exome sequencing (WES) was performed, and the novel heterozygous mutation, c3310dup, p. (Glu110GlyfsTer5) in ANKRD11 was identified. Conclusion KBG syndrome is often underdiagnosed because of its non-specific features and phenotypic variability. Performing a next—generation sequencing panel, including the ANKRD11 gene for cases of developmental delay with/without short stature may be helpful to identify hitherto undiagnosed KBG syndrome patients.
Collapse
Affiliation(s)
- Su Jin Kim
- Department of Pediatrics, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Aram Yang
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ji Sun Park
- Department of Pediatrics, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Dae Gyu Kwon
- Department of Orthopaedic Surgery, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Jeong-Seop Lee
- Department of Psychiatry, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Young Se Kwon
- Department of Pediatrics, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Ji Eun Lee
- Department of Pediatrics, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| |
Collapse
|
72
|
LRIG1-Mediated Inhibition of EGF Receptor Signaling Regulates Neural Precursor Cell Proliferation in the Neocortex. Cell Rep 2020; 33:108257. [PMID: 33053360 DOI: 10.1016/j.celrep.2020.108257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/17/2020] [Accepted: 09/21/2020] [Indexed: 11/21/2022] Open
Abstract
Here, we ask how neural stem cells (NSCs) transition in the developing neocortex from a rapidly to a slowly proliferating state, a process required to maintain lifelong stem cell pools. We identify LRIG1, known to regulate receptor tyrosine kinase signaling in other cell types, as a negative regulator of cortical NSC proliferation. LRIG1 is expressed in murine cortical NSCs as they start to proliferate more slowly during embryogenesis and then peaks postnatally when they transition to give rise to a portion of adult NSCs. Constitutive or acute loss of Lrig1 in NSCs over this developmental time frame causes stem cell expansion due to increased proliferation. LRIG1 controls NSC proliferation by associating with and negatively regulating the epidermal growth factor receptor (EGFR). These data support a model in which LRIG1 dampens the stem cell response to EGFR ligands within the cortical environment to slow their proliferation as they transition to postnatal adult NSCs.
Collapse
|
73
|
Crippa M, Bestetti I, Maitz S, Weiss K, Spano A, Masciadri M, Smithson S, Larizza L, Low K, Cohen L, Finelli P. SETD5 Gene Haploinsufficiency in Three Patients With Suspected KBG Syndrome. Front Neurol 2020; 11:631. [PMID: 32793091 PMCID: PMC7393934 DOI: 10.3389/fneur.2020.00631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/28/2020] [Indexed: 01/28/2023] Open
Abstract
Mendelian disorders of the epigenetic machinery (MDEMs), also named chromatin modifying disorders, are a broad group of neurodevelopmental disorders, caused by mutations in functionally related chromatin genes. Mental retardation autosomal dominant 23 (MRD23) syndrome, due to SETD5 gene mutations, falls into this group of disorders. KBG syndrome, caused by ANKRD11 gene haploinsufficiency, is a chromatin related syndrome not formally belonging to this category. We performed high resolution array CGH and trio-based WES on three molecularly unsolved patients with an initial KBGS clinical diagnosis. A de novo deletion of 116 kb partially involving SETD5 and two de novo frameshift variants in SETD5 were identified in the patients. The clinical re-evaluation of the patients was consistent with the molecular findings, though still compatible with KBGS due to overlapping phenotypic features of KBGS and MRD23. Careful detailed expert phenotyping ascertained some facial and physical features that were consistent with MRD23 rather than KBGS. Our results provide further examples that loss-of-function pathogenic variants in genes encoding factors shaping the epigenetic landscape, lead to a wide phenotypic range with significant clinical overlap. We recommend that clinicians consider SETD5 gene haploinsufficiency in the differential diagnosis of KBGS. Due to overlap of clinical features, careful and detailed phenotyping is important and a large gene panel approach is recommended in the diagnostic workup of patients with a clinical suspicion of KBGS.
Collapse
Affiliation(s)
- Milena Crippa
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ilaria Bestetti
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Silvia Maitz
- Clinical Pediatric Genetic Unit, Pediatric Clinic, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Karin Weiss
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Alice Spano
- Clinical Pediatric Genetic Unit, Pediatric Clinic, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Maura Masciadri
- Medical Cytogenetics and Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Sarah Smithson
- Clinical Genetics, St. Michael's Hospital, University Hospitals NHS Trust, Bristol, United Kingdom
| | - Lidia Larizza
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Karen Low
- Clinical Genetics, St. Michael's Hospital, University Hospitals NHS Trust, Bristol, United Kingdom
| | - Lior Cohen
- Genetics Unit, Barzilai University Medical Center, Ashkelon, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Palma Finelli
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
74
|
Chan WK, Griffiths R, Price DJ, Mason JO. Cerebral organoids as tools to identify the developmental roots of autism. Mol Autism 2020; 11:58. [PMID: 32660622 PMCID: PMC7359249 DOI: 10.1186/s13229-020-00360-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Some autism spectrum disorders (ASD) likely arise as a result of abnormalities during early embryonic development of the brain. Studying human embryonic brain development directly is challenging, mainly due to ethical and practical constraints. However, the recent development of cerebral organoids provides a powerful tool for studying both normal human embryonic brain development and, potentially, the origins of neurodevelopmental disorders including ASD. Substantial evidence now indicates that cerebral organoids can mimic normal embryonic brain development and neural cells found in organoids closely resemble their in vivo counterparts. However, with prolonged culture, significant differences begin to arise. We suggest that cerebral organoids, in their current form, are most suitable to model earlier neurodevelopmental events and processes such as neurogenesis and cortical lamination. Processes implicated in ASDs which occur at later stages of development, such as synaptogenesis and neural circuit formation, may also be modeled using organoids. The accuracy of such models will benefit from continuous improvements to protocols for organoid differentiation.
Collapse
Affiliation(s)
- Wai Kit Chan
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - Rosie Griffiths
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - David J Price
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - John O Mason
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
75
|
Abstract
IMPACT STATEMENT Brain development and degeneration are highly complex processes that are regulated by a large number of molecules and signaling pathways the identities of which are being unraveled. Accumulating evidence points to histone deacetylases and epigenetic mechanisms as being important regulators of these processes. In this review, we describe that histone deacetylase-3 (HDAC3) is a particularly crucial regulator of both neurodevelopment and neurodegeneration. In addition, HDAC3 regulates memory formation, synaptic plasticity, and the cognitive impairment associated with normal aging. Understanding how HDAC3 functions contributes to the normal development and functioning of the brain while also promoting neurodegeneration could lead to the development of therapeutic approaches for neurodevelopmental, neuropsychiatric, and neurodegenerative disorders.
Collapse
|
76
|
Cucco F, Sarogni P, Rossato S, Alpa M, Patimo A, Latorre A, Magnani C, Puisac B, Ramos FJ, Pié J, Musio A. Pathogenic variants in EP300 and ANKRD11 in patients with phenotypes overlapping Cornelia de Lange syndrome. Am J Med Genet A 2020; 182:1690-1696. [PMID: 32476269 DOI: 10.1002/ajmg.a.61611] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/20/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
Cornelia de Lange syndrome (CdLS), Rubinstein-Taybi syndrome (RSTS), and KBG syndrome are three distinct developmental human disorders. Variants in seven genes belonging to the cohesin pathway, NIPBL, SMC1A, SMC3, HDAC8, RAD21, ANKRD11, and BRD4, were identified in about 80% of patients with CdLS, suggesting that additional causative genes remain to be discovered. Two genes, CREBBP and EP300, have been associated with RSTS, whereas KBG results from variants in ANKRD11. By exome sequencing, a genetic cause was elucidated in two patients with clinical diagnosis of CdLS but without variants in known CdLS genes. In particular, genetic variants in EP300 and ANKRD11 were identified in the two patients with CdLS. EP300 and ANKRD11 pathogenic variants caused the reduction of the respective proteins suggesting that their low levels contribute to CdLS-like phenotype. These findings highlight the clinical overlap between CdLS, RSTS, and KBG and support the notion that these rare disorders are linked to abnormal chromatin remodeling, which in turn affects the transcriptional machinery.
Collapse
Affiliation(s)
- Francesco Cucco
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Patrizia Sarogni
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Sara Rossato
- U.O.C. Pediatria, Ospedale San Bortolo, Vicenza, Italy
| | - Mirella Alpa
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, Turin, Italy
| | - Alessandra Patimo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Ana Latorre
- Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, Unidad de Genética Clínica y Genómica Funcional, Zaragoza, Spain
| | - Cinzia Magnani
- Neonatology and Neonatal Intensive Care Unit, Maternal and Child Department, University of Parma, Parma, Italy
| | - Beatriz Puisac
- Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, Unidad de Genética Clínica y Genómica Funcional, Zaragoza, Spain
| | - Feliciano J Ramos
- Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, Unidad de Genética Clínica y Genómica Funcional, Zaragoza, Spain
| | - Juan Pié
- Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, Unidad de Genética Clínica y Genómica Funcional, Zaragoza, Spain
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
77
|
Sarogni P, Pallotta MM, Musio A. Cornelia de Lange syndrome: from molecular diagnosis to therapeutic approach. J Med Genet 2020; 57:289-295. [PMID: 31704779 PMCID: PMC7231464 DOI: 10.1136/jmedgenet-2019-106277] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/08/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Cornelia de Lange syndrome (CdLS) is a severe genetic disorder characterised by multisystemic malformations. CdLS is due to pathogenetic variants in NIPBL, SMC1A, SMC3, RAD21 and HDAC8 genes which belong to the cohesin pathway. Cohesin plays a pivotal role in chromatid cohesion, gene expression, and DNA repair. In this review, we will discuss how perturbations in those biological processes contribute to CdLS phenotype and will emphasise the state-of-art of CdLS therapeutic approaches.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Maria M Pallotta
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
78
|
Gnazzo M, Lepri FR, Dentici ML, Capolino R, Pisaneschi E, Agolini E, Rinelli M, Alesi V, Versacci P, Genovese S, Cesario C, Sinibaldi L, Baban A, Bartuli A, Marino B, Cappa M, Dallapiccola B, Novelli A, Digilio MC. KBG syndrome: Common and uncommon clinical features based on 31 new patients. Am J Med Genet A 2020; 182:1073-1083. [PMID: 32124548 DOI: 10.1002/ajmg.a.61524] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/08/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
KBG syndrome (MIM #148050) is an autosomal dominant disorder characterized by developmental delay, intellectual disability, distinct craniofacial anomalies, macrodontia of permanent upper central incisors, skeletal abnormalities, and short stature. This study describes clinical features of 28 patients, confirmed by molecular testing of ANKRD11 gene, and three patients with 16q24 deletion encompassing ANKRD11 gene, diagnosed in a single center. Common clinical features are reported, together with uncommon findings, clinical expression in the first years of age, distinctive associations, and familial recurrences. Unusual manifestations emerging from present series include juvenile idiopathic arthritis, dysfunctional dysphonia, multiple dental agenesis, idiopathic precocious telarche, oral frenula, motor tics, and lipoma of corpus callosum, pilomatrixoma, and endothelial corneal polymorphic dystrophy. Facial clinical markers suggesting KBG syndrome before 6 years of age include ocular and mouth conformation, wide eyebrows, synophrys, long black eyelashes, long philtrum, thin upper lip. General clinical symptoms leading to early genetic evaluation include developmental delay, congenital malformations, hearing anomalies, and feeding difficulties. It is likely that atypical clinical presentation and overlapping features in patients with multiple variants are responsible for underdiagnosis in KBG syndrome. Improved knowledge of common and atypical features of this disorder improves clinical management.
Collapse
Affiliation(s)
- Maria Gnazzo
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Francesca R Lepri
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Rossella Capolino
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Elisa Pisaneschi
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Martina Rinelli
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Viola Alesi
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Paolo Versacci
- Pediatric Cardiology, Department of Pediatrics, Sapienza University, Rome, Italy
| | - Silvia Genovese
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Claudia Cesario
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Lorenzo Sinibaldi
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Anwar Baban
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Andrea Bartuli
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Bruno Marino
- Pediatric Cardiology, Department of Pediatrics, Sapienza University, Rome, Italy
| | - Marco Cappa
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Bruno Dallapiccola
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Digilio
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| |
Collapse
|
79
|
Bucerzan S, Miclea D, Lazea C, Asavoaie C, Kulcsar A, Grigorescu-Sido P. 16q24.3 Microduplication in a Patient With Developmental Delay, Intellectual Disability, Short Stature, and Nonspecific Dysmorphic Features: Case Report and Review of the Literature. Front Pediatr 2020; 8:390. [PMID: 32760686 PMCID: PMC7373721 DOI: 10.3389/fped.2020.00390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
We describe the case of a seven-year-old female patient who presented in our service with severe developmental delay, intellectual disability, facial dysmorphism, and femur fracture, observed in the context of very low bone mineral density. Array-based single nucleotide polymorphism (SNP array) analysis identified a 113 kb duplication involving the morbid OMIM genes: ANKRD11 (exon1), RPL13, and PGN genes. ANKRD11 deletions are frequently described in association with KBG syndrome, the duplications being less frequent (one case described before). The exome sequencing was negative for pathogenic variants or of uncertain significance in genes possibly associated with this phenotype. The patient presented subtle signs of KBG syndrome. It is known that the phenotype of KBG syndrome has a wide clinical spectrum, this syndrome being often underdiagnosed due to overlapping features with other conditions, also characterized by multiple congenital anomalies and intellectual disability. The particularity of this case is represented by the very low bone mineral density in a patient with 16q24.3 duplication. ANKRD11 haploinsufficiency is known to be associated with skeletal involvement, such as short stature, or delayed bone age. An effect on bone density has been observed only in experimental studies on mice with induced missense mutations in the ANKRD11 gene. This CNV also involved the duplication of the very conserved RPL13 gene, which could have a role for the skeletal phenotype of this patient, knowing the high level of gene expression in bone tissue and also the association with spondyloepimetaphyseal dysplasia Isidor Toutain type, in case of splicing mutations.
Collapse
Affiliation(s)
- Simona Bucerzan
- Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Children's Emergency Clinical Hospital Cluj-Napoca, Cluj-Napoca, Romania
| | - Diana Miclea
- Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Children's Emergency Clinical Hospital Cluj-Napoca, Cluj-Napoca, Romania
| | - Cecilia Lazea
- Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Children's Emergency Clinical Hospital Cluj-Napoca, Cluj-Napoca, Romania
| | - Carmen Asavoaie
- Children's Emergency Clinical Hospital Cluj-Napoca, Cluj-Napoca, Romania
| | - Andrea Kulcsar
- Children's Emergency Clinical Hospital Cluj-Napoca, Cluj-Napoca, Romania
| | | |
Collapse
|
80
|
Prem S, Millonig JH, DiCicco-Bloom E. Dysregulation of Neurite Outgrowth and Cell Migration in Autism and Other Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2020; 25:109-153. [PMID: 32578146 DOI: 10.1007/978-3-030-45493-7_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite decades of study, elucidation of the underlying etiology of complex developmental disorders such as autism spectrum disorder (ASD), schizophrenia (SCZ), intellectual disability (ID), and bipolar disorder (BPD) has been hampered by the inability to study human neurons, the heterogeneity of these disorders, and the relevance of animal model systems. Moreover, a majority of these developmental disorders have multifactorial or idiopathic (unknown) causes making them difficult to model using traditional methods of genetic alteration. Examination of the brains of individuals with ASD and other developmental disorders in both post-mortem and MRI studies shows defects that are suggestive of dysregulation of embryonic and early postnatal development. For ASD, more recent genetic studies have also suggested that risk genes largely converge upon the developing human cerebral cortex between weeks 8 and 24 in utero. Yet, an overwhelming majority of studies in autism rodent models have focused on postnatal development or adult synaptic transmission defects in autism related circuits. Thus, studies looking at early developmental processes such as proliferation, cell migration, and early differentiation, which are essential to build the brain, are largely lacking. Yet, interestingly, a few studies that did assess early neurodevelopment found that alterations in brain structure and function associated with neurodevelopmental disorders (NDDs) begin as early as the initial formation and patterning of the neural tube. By the early to mid-2000s, the derivation of human embryonic stem cells (hESCs) and later induced pluripotent stem cells (iPSCs) allowed us to study living human neural cells in culture for the first time. Specifically, iPSCs gave us the unprecedented ability to study cells derived from individuals with idiopathic disorders. Studies indicate that iPSC-derived neural cells, whether precursors or "matured" neurons, largely resemble cortical cells of embryonic humans from weeks 8 to 24. Thus, these cells are an excellent model to study early human neurodevelopment, particularly in the context of genetically complex diseases. Indeed, since 2011, numerous studies have assessed developmental phenotypes in neurons derived from individuals with both genetic and idiopathic forms of ASD and other NDDs. However, while iPSC-derived neurons are fetal in nature, they are post-mitotic and thus cannot be used to study developmental processes that occur before terminal differentiation. Moreover, it is important to note that during the 8-24-week window of human neurodevelopment, neural precursor cells are actively undergoing proliferation, migration, and early differentiation to form the basic cytoarchitecture of the brain. Thus, by studying NPCs specifically, we could gain insight into how early neurodevelopmental processes contribute to the pathogenesis of NDDs. Indeed, a few studies have explored NPC phenotypes in NDDs and have uncovered dysregulations in cell proliferation. Yet, few studies have explored migration and early differentiation phenotypes of NPCs in NDDs. In this chapter, we will discuss cell migration and neurite outgrowth and the role of these processes in neurodevelopment and NDDs. We will begin by reviewing the processes that are important in early neurodevelopment and early cortical development. We will then delve into the roles of neurite outgrowth and cell migration in the formation of the brain and how errors in these processes affect brain development. We also provide review of a few key molecules that are involved in the regulation of neurite outgrowth and migration while discussing how dysregulations in these molecules can lead to abnormalities in brain structure and function thereby highlighting their contribution to pathogenesis of NDDs. Then we will discuss whether neurite outgrowth, migration, and the molecules that regulate these processes are associated with ASD. Lastly, we will review the utility of iPSCs in modeling NDDs and discuss future goals for the study of NDDs using this technology.
Collapse
Affiliation(s)
- Smrithi Prem
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology/Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
81
|
Watson AES, Goodkey K, Footz T, Voronova A. Regulation of CNS precursor function by neuronal chemokines. Neurosci Lett 2020; 715:134533. [DOI: 10.1016/j.neulet.2019.134533] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
|
82
|
Krieger TG, Moran CM, Frangini A, Visser WE, Schoenmakers E, Muntoni F, Clark CA, Gadian D, Chong WK, Kuczynski A, Dattani M, Lyons G, Efthymiadou A, Varga-Khadem F, Simons BD, Chatterjee K, Livesey FJ. Mutations in thyroid hormone receptor α1 cause premature neurogenesis and progenitor cell depletion in human cortical development. Proc Natl Acad Sci U S A 2019; 116:22754-22763. [PMID: 31628250 PMCID: PMC6842615 DOI: 10.1073/pnas.1908762116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mutations in the thyroid hormone receptor α 1 gene (THRA) have recently been identified as a cause of intellectual deficit in humans. Patients present with structural abnormalities including microencephaly, reduced cerebellar volume and decreased axonal density. Here, we show that directed differentiation of THRA mutant patient-derived induced pluripotent stem cells to forebrain neural progenitors is markedly reduced, but mutant progenitor cells can generate deep and upper cortical layer neurons and form functional neuronal networks. Quantitative lineage tracing shows that THRA mutation-containing progenitor cells exit the cell cycle prematurely, resulting in reduced clonal output. Using a micropatterned chip assay, we find that spatial self-organization of mutation-containing progenitor cells in vitro is impaired, consistent with down-regulated expression of cell-cell adhesion genes. These results reveal that thyroid hormone receptor α1 is required for normal neural progenitor cell proliferation in human cerebral cortical development. They also exemplify quantitative approaches for studying neurodevelopmental disorders using patient-derived cells in vitro.
Collapse
Affiliation(s)
- Teresa G Krieger
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Carla M Moran
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Alberto Frangini
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - W Edward Visser
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Erik Schoenmakers
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre and National Institute for Health Research (NIHR) Great Ormond Street (GOS) Hospital Biomedical Research Centre, London WC1N 1EH, United Kingdom
| | - Chris A Clark
- Developmental Imaging and Biophysics Section, University College London (UCL) GOS Institute of Child Health, London WC1N 1EH, United Kingdom
| | - David Gadian
- Developmental Imaging and Biophysics Section, University College London (UCL) GOS Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Wui K Chong
- Department of Radiology, Great Ormond Street Children's Hospital, London WC1N 3JH, United Kingdom
| | - Adam Kuczynski
- Department of Neuropsychology, Great Ormond Street Children's Hospital, London WC1N 1EH, United Kingdom
| | - Mehul Dattani
- Department of Endocrinology, Great Ormond Street Children's Hospital and Genetics and Genomic Medicine Programme, UCL GOS Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Greta Lyons
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | | | - Faraneh Varga-Khadem
- Department of Neuropsychology, Great Ormond Street Children's Hospital, London WC1N 1EH, United Kingdom
- Cognitive Neuroscience and Neuropsychiatry Section, UCL GOS Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Benjamin D Simons
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Krishna Chatterjee
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Frederick J Livesey
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom;
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| |
Collapse
|
83
|
Yang G, Shcheglovitov A. Probing disrupted neurodevelopment in autism using human stem cell-derived neurons and organoids: An outlook into future diagnostics and drug development. Dev Dyn 2019; 249:6-33. [PMID: 31398277 DOI: 10.1002/dvdy.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorders (ASDs) represent a spectrum of neurodevelopmental disorders characterized by impaired social interaction, repetitive or restrictive behaviors, and problems with speech. According to a recent report by the Centers for Disease Control and Prevention, one in 68 children in the US is diagnosed with ASDs. Although ASD-related diagnostics and the knowledge of ASD-associated genetic abnormalities have improved in recent years, our understanding of the cellular and molecular pathways disrupted in ASD remains very limited. As a result, no specific therapies or medications are available for individuals with ASDs. In this review, we describe the neurodevelopmental processes that are likely affected in the brains of individuals with ASDs and discuss how patient-specific stem cell-derived neurons and organoids can be used for investigating these processes at the cellular and molecular levels. Finally, we propose a discovery pipeline to be used in the future for identifying the cellular and molecular deficits and developing novel personalized therapies for individuals with idiopathic ASDs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| | - Alex Shcheglovitov
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
84
|
Kang Y, He D, Li Y, Zhang Y, Shao Q, Zhang M, Ban B. A heterozygous point mutation of the ANKRD11 (c.2579C>T) in a Chinese patient with idiopathic short stature. Mol Genet Genomic Med 2019; 7:e988. [PMID: 31566922 PMCID: PMC6900381 DOI: 10.1002/mgg3.988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/29/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Background Pathogenic variants of ANKRD11 have been reported to cause KBG syndrome characterized by short stature, characteristic facial appearance, intellectual disability, macrodontia, and skeletal anomalies. However, the direct clinical relevance of ANKRD11 mutation with short stature is yet unknown. Methods Here, we report a Chinese boy with idiopathic short stature (ISS) based on clinical and genetic characteristics. Comprehensive medical evaluations were performed including metabolic studies, endocrine function tests, bone X‐rays, and echocardiography. Whole‐exome and Sanger sequencing was used to detect and confirm genetic mutations associated with short stature in this patient, respectively. The pathogenicity of the variant was further predicted by several in silico prediction tools and repositories of sequence variation. Twenty‐four months follow‐up was performed to observe the growth rate of the patient treated with recombinant human growth hormone (GH). Results One heterozygous point mutation (c.2579C>T) was confirmed in the ANKRD11 gene of the patient and inherited from his mother. This mutation site was located within the highly conservative region of ANKRD11 protein and predicted to be possibly damaging in several in silico prediction programs and repositories of sequence variation. Additionally, patient underwent GH replacement therapy for 24 months exhibited good response to the treatment. Conclusion A heterozygous point mutation of AKNRD11 gene was identified in a Chinese patient with short stature phenotype. The patient was treated effectively with GH supplementation.
Collapse
Affiliation(s)
- Yabin Kang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Dongye He
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Yanying Li
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Yanhong Zhang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Qian Shao
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Mei Zhang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Bo Ban
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| |
Collapse
|
85
|
Smirnova L, Seregin A, Boksha I, Dmitrieva E, Simutkin G, Kornetova E, Savushkina O, Letova A, Bokhan N, Ivanova S, Zgoda V. The difference in serum proteomes in schizophrenia and bipolar disorder. BMC Genomics 2019; 20:535. [PMID: 31291891 PMCID: PMC6620192 DOI: 10.1186/s12864-019-5848-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Purpose of study is revealing significant differences in serum proteomes in schizophrenia and bipolar disorder (BD). RESULTS Quantitative mass-spectrometry based proteomic analysis was used to quantify proteins in the blood serum samples after the depletion of six major blood proteins. Comparison of proteome profiles of different groups revealed 27 proteins being specific for schizophrenia, and 18 - for BD. Protein set in schizophrenia was mostly associated with immune response, cell communication, cell growth and maintenance, protein metabolism and regulation of nucleic acid metabolism. Protein set in BD was mostly associated with immune response, regulating transport processes across cell membrane and cell communication, development of neurons and oligodendrocytes and cell growth. Concentrations of ankyrin repeat domain-containing protein 12 (ANKRD12) and cadherin 5 in serum samples were determined by ELISA. Significant difference between three groups was revealed in ANKRD12 concentration (p = 0.02), with maximum elevation of ANKRD12 concentration (median level) in schizophrenia followed by BD. Cadherin 5 concentration differed significantly (p = 0.035) between schizophrenic patients with prevailing positive symptoms (4.78 [2.71, 7.12] ng/ml) and those with prevailing negative symptoms (1.86 [0.001, 4.11] ng/ml). CONCLUSIONS Our results are presumably useful for discovering the new pathways involved in endogenous psychotic disorders.
Collapse
Affiliation(s)
- Liudmila Smirnova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alexander Seregin
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | | | - Elena Dmitrieva
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
- Siberian State Medical University, Tomsk, Russia
| | - German Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Elena Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
- Siberian State Medical University, Tomsk, Russia
| | | | | | - Nikolay Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Svetlana Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
- Siberian State Medical University, Tomsk, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
86
|
Libianto R, Wu KH, Devery S, Eisman JA, Center JR. KBG syndrome presenting with brachydactyly type E. Bone 2019; 123:18-22. [PMID: 30877071 DOI: 10.1016/j.bone.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
We report the case of a young woman who presented at age 10 years with height on the tenth centile, brachydactyly type E and mild developmental delay. Biochemistry and hormonal profiles were normal. Differential diagnoses considered included Albright hereditary osteodystrophy without hormone resistance (a.k.a pseudopseudohypoparathyroidism), 2q37 microdeletion syndrome and acrodysostosis. She had a normal karyotype and normal FISH of 2q37. Whole genome sequencing (WGS) identified a mutation in the ANKRD11 gene associated with KBG syndrome. We review the clinical features of the genetic syndromes considered, and suggest KBG syndrome be considered in patients presenting with syndromic brachydactyly type E, especially if short stature and developmental delay are also present.
Collapse
Affiliation(s)
- Renata Libianto
- Bone Division, Garvan Institute of Medical Research, Sydney, Australia; Department of Endocrinology, St Vincent's Hospital Sydney, Australia; Department of Medicine, The University of Melbourne, Australia.
| | - Kathy Hc Wu
- Clinical Genomics Unit, St Vincent's Hospital Sydney, Australia; Discipline of Genetic Medicine, University of Sydney, Australia; School of Medicine, UNSW, Sydney, Australia; Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Sophie Devery
- Clinical Genomics Unit, St Vincent's Hospital Sydney, Australia
| | - John A Eisman
- Bone Division, Garvan Institute of Medical Research, Sydney, Australia; Department of Endocrinology, St Vincent's Hospital Sydney, Australia; School of Medicine, UNSW, Sydney, Australia; School of Medicine Sydney, University of Notre Dame, Australia
| | - Jackie R Center
- Bone Division, Garvan Institute of Medical Research, Sydney, Australia; Department of Endocrinology, St Vincent's Hospital Sydney, Australia; School of Medicine, UNSW, Sydney, Australia; School of Medicine Sydney, University of Notre Dame, Australia
| |
Collapse
|
87
|
Microorganisms in the Placenta: Links to Early-Life Inflammation and Neurodevelopment in Children. Clin Microbiol Rev 2019; 32:32/3/e00103-18. [PMID: 31043389 DOI: 10.1128/cmr.00103-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Prenatal exposure to various stressors can influence both early and later life childhood health. Microbial infection of the intrauterine environment, specifically within the placenta, has been associated with deleterious birth outcomes, such as preterm birth, as well as adverse neurological outcomes later in life. The relationships among microorganisms in the placenta, placental function, and fetal development are not well understood. Microorganisms have been associated with perinatal inflammatory responses that have the potential for disrupting fetal brain development. Microbial presence has also been associated with epigenetic modifications in the placenta, as well other tissues. Here we review research detailing the presence of microorganisms in the placenta and associations among such microorganisms, placental DNA methylation, perinatal inflammation, and neurodevelopmental outcomes.
Collapse
|
88
|
Alagoz M, Kherad N, Gavaz M, Yuksel A. New Genetic Approaches for Early Diagnosis and Treatment of Autism Spectrum Disorders. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2019. [DOI: 10.1007/s40489-019-00167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
89
|
Scarano E, Tassone M, Graziano C, Gibertoni D, Tamburrino F, Perri A, Gnazzo M, Severi G, Lepri F, Mazzanti L. Novel Mutations and Unreported Clinical Features in KBG Syndrome. Mol Syndromol 2019; 10:130-138. [PMID: 31191201 DOI: 10.1159/000496172] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 01/06/2023] Open
Abstract
KBG syndrome is an autosomal dominant disorder caused by pathogenic variants within ANKRD11 or deletions of 16q24.3 which include ANKRD11. It is characterized by distinctive facial features, developmental delay, short stature, and skeletal anomalies. We report 12 unrelated patients where a clinical diagnosis of KBG was suspected and confirmed by targeted analyses. Nine patients showed a point mutation in ANKRD11 (none of which were previously reported) and 3 carried a 16q24.3 deletion. All patients presented with typical facial features and macrodontia. Skeletal abnormalities were constant, and the majority of patients showed joint stiffness. Three patients required growth hormone treatment with a significant increase of height velocity. Brain malformations were identified in 8 patients. All patients showed behavioral abnormalities and most had developmental delay. Two patients had hematological abnormalities. We emphasize that genetic analysis of ANKRD11 can easily reach a detection rate higher than 50% thanks to clinical phenotyping, although it is known that a subset of ANKRD11-mutated patients show very mild features and will be more easily identified through the implementation of gene panels or exome sequencing. Joint stiffness was reported previously in few patients, but it seems to be a common feature and can be helpful for the diagnosis. Hematological abnormalities could be present and warrant a specific follow-up.
Collapse
Affiliation(s)
- Emanuela Scarano
- Rare Disease Unit, Department of Pediatrics, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Martina Tassone
- Rare Disease Unit, Department of Pediatrics, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Claudio Graziano
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, University Alma Mater Studiorum, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Dino Gibertoni
- Unit of Hygiene and Medical Statistics, Department of Biomedical and Neuromotor Sciences, University Alma Mater Studiorum, Bologna, Italy
| | - Federica Tamburrino
- Rare Disease Unit, Department of Pediatrics, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Annamaria Perri
- Rare Disease Unit, Department of Pediatrics, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Maria Gnazzo
- Laboratory of Medical Genetics, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Giulia Severi
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, University Alma Mater Studiorum, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Francesca Lepri
- Laboratory of Medical Genetics, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Laura Mazzanti
- Rare Disease Unit, Department of Pediatrics, St. Orsola-Malpighi Hospital, Bologna, Italy
| |
Collapse
|
90
|
Haploinsufficiency of the intellectual disability gene SETD5 disturbs developmental gene expression and cognition. Nat Neurosci 2018; 21:1717-1727. [DOI: 10.1038/s41593-018-0266-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022]
|
91
|
Elsen GE, Bedogni F, Hodge RD, Bammler TK, MacDonald JW, Lindtner S, Rubenstein JLR, Hevner RF. The Epigenetic Factor Landscape of Developing Neocortex Is Regulated by Transcription Factors Pax6→ Tbr2→ Tbr1. Front Neurosci 2018; 12:571. [PMID: 30186101 PMCID: PMC6113890 DOI: 10.3389/fnins.2018.00571] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic factors (EFs) regulate multiple aspects of cerebral cortex development, including proliferation, differentiation, laminar fate, and regional identity. The same neurodevelopmental processes are also regulated by transcription factors (TFs), notably the Pax6→ Tbr2→ Tbr1 cascade expressed sequentially in radial glial progenitors (RGPs), intermediate progenitors, and postmitotic projection neurons, respectively. Here, we studied the EF landscape and its regulation in embryonic mouse neocortex. Microarray and in situ hybridization assays revealed that many EF genes are expressed in specific cortical cell types, such as intermediate progenitors, or in rostrocaudal gradients. Furthermore, many EF genes are directly bound and transcriptionally regulated by Pax6, Tbr2, or Tbr1, as determined by chromatin immunoprecipitation-sequencing and gene expression analysis of TF mutant cortices. Our analysis demonstrated that Pax6, Tbr2, and Tbr1 form a direct feedforward genetic cascade, with direct feedback repression. Results also revealed that each TF regulates multiple EF genes that control DNA methylation, histone marks, chromatin remodeling, and non-coding RNA. For example, Tbr1 activates Rybp and Auts2 to promote the formation of non-canonical Polycomb repressive complex 1 (PRC1). Also, Pax6, Tbr2, and Tbr1 collectively drive massive changes in the subunit isoform composition of BAF chromatin remodeling complexes during differentiation: for example, a novel switch from Bcl7c (Baf40c) to Bcl7a (Baf40a), the latter directly activated by Tbr2. Of 11 subunits predominantly in neuronal BAF, 7 were transcriptionally activated by Pax6, Tbr2, or Tbr1. Using EFs, Pax6→ Tbr2→ Tbr1 effect persistent changes of gene expression in cell lineages, to propagate features such as regional and laminar identity from progenitors to neurons.
Collapse
Affiliation(s)
- Gina E. Elsen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Francesco Bedogni
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Rebecca D. Hodge
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Robert F. Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
92
|
The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal axes. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:306-327. [PMID: 29309830 DOI: 10.1016/j.pnpbp.2017.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/13/2022]
Abstract
The complexity of the human brain emerges from a long and finely tuned developmental process orchestrated by the crosstalk between genome and environment. Vis à vis other species, the human brain displays unique functional and morphological features that result from this extensive developmental process that is, unsurprisingly, highly vulnerable to both genetically and environmentally induced alterations. One of the most striking outcomes of the recent surge of sequencing-based studies on neurodevelopmental disorders (NDDs) is the emergence of chromatin regulation as one of the two domains most affected by causative mutations or Copy Number Variations besides synaptic function, whose involvement had been largely predicted for obvious reasons. These observations place chromatin dysfunction at the top of the molecular pathways hierarchy that ushers in a sizeable proportion of NDDs and that manifest themselves through synaptic dysfunction and recurrent systemic clinical manifestation. Here we undertake a conceptual investigation of chromatin dysfunction in NDDs with the aim of systematizing the available evidence in a new framework: first, we tease out the developmental vulnerabilities in human corticogenesis as a structuring entry point into the causation of NDDs; second, we provide a much needed clarification of the multiple meanings and explanatory frameworks revolving around "epigenetics", highlighting those that are most relevant for the analysis of these disorders; finally we go in-depth into paradigmatic examples of NDD-causing chromatin dysregulation, with a special focus on human experimental models and datasets.
Collapse
|
93
|
Larizza L, Finelli P. Developmental disorders with intellectual disability driven by chromatin dysregulation: Clinical overlaps and molecular mechanisms. Clin Genet 2018; 95:231-240. [DOI: 10.1111/cge.13365] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/28/2018] [Accepted: 04/14/2018] [Indexed: 12/30/2022]
Affiliation(s)
- L. Larizza
- Laboratory of Cytogenetics and Molecular Genetics; Istituto Auxologico Italiano; Milan Italy
| | - P. Finelli
- Laboratory of Cytogenetics and Molecular Genetics; Istituto Auxologico Italiano; Milan Italy
- Department of Medical Biotechnology and Translational Medicine; Università degli Studi di Milano; Milan Italy
| |
Collapse
|
94
|
Zahr SK, Yang G, Kazan H, Borrett MJ, Yuzwa SA, Voronova A, Kaplan DR, Miller FD. A Translational Repression Complex in Developing Mammalian Neural Stem Cells that Regulates Neuronal Specification. Neuron 2018; 97:520-537.e6. [PMID: 29395907 DOI: 10.1016/j.neuron.2017.12.045] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/22/2017] [Accepted: 12/28/2017] [Indexed: 01/28/2023]
Abstract
The mechanisms instructing genesis of neuronal subtypes from mammalian neural precursors are not well understood. To address this issue, we have characterized the transcriptional landscape of radial glial precursors (RPs) in the embryonic murine cortex. We show that individual RPs express mRNA, but not protein, for transcriptional specifiers of both deep and superficial layer cortical neurons. Some of these mRNAs, including the superficial versus deep layer neuron transcriptional regulators Brn1 and Tle4, are translationally repressed by their association with the RNA-binding protein Pumilio2 (Pum2) and the 4E-T protein. Disruption of these repressive complexes in RPs mid-neurogenesis by knocking down 4E-T or Pum2 causes aberrant co-expression of deep layer neuron specification proteins in newborn superficial layer neurons. Thus, cortical RPs are transcriptionally primed to generate diverse types of neurons, and a Pum2/4E-T complex represses translation of some of these neuronal identity mRNAs to ensure appropriate temporal specification of daughter neurons.
Collapse
Affiliation(s)
- Siraj K Zahr
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Guang Yang
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Hilal Kazan
- Department of Computer Engineering, Antalya Bilim University, Antalya, Turkey
| | - Michael J Borrett
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Scott A Yuzwa
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Anastassia Voronova
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1A8, Canada.
| |
Collapse
|
95
|
Ka M, Kim WY. ANKRD11 associated with intellectual disability and autism regulates dendrite differentiation via the BDNF/TrkB signaling pathway. Neurobiol Dis 2017; 111:138-152. [PMID: 29274743 DOI: 10.1016/j.nbd.2017.12.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 01/29/2023] Open
Abstract
Haploinsufficiency of ANKRD11 due to deletion or truncation mutations causes KBG syndrome, a rare genetic disorder characterized by intellectual disability, autism spectrum disorder, and craniofacial abnormalities. However, little is known about the neurobiological role of ANKRD11 during brain development. Here we show that ANKRD11 regulates pyramidal neuron migration and dendritic differentiation in the developing mouse cerebral cortex. Using an in utero manipulation approach, we found that Ankrd11 knockdown delayed radial migration of cortical neurons. ANKRD11-deficient neurons displayed markedly reduced dendrite growth and branching as well as abnormal dendritic spine morphology. Ankrd11 knockdown suppressed acetylation of epigenetic molecules such as p53 and Histone H3. Furthermore, the mRNA levels of Trkb, Bdnf, and neurite growth-related genes were downregulated in ANKRD11-deficient cortical neurons. The Trkb promoter region was largely devoid of acetylated Histone H3 and p53, and was instead occupied with MeCP2 and DNMT1. Overexpression of TrkB rescued abnormal dendrite growth in these cells. Our findings demonstrate a novel role for ANKRD11 in neuron differentiation during brain development and suggest an epigenetic modification as a potential key molecular feature underlying KBG syndrome.
Collapse
Affiliation(s)
- Minhan Ka
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Woo-Yang Kim
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
96
|
Abstract
CLINICAL DESCRIPTION KBG syndrome is characterized by macrodontia of upper central incisors, distinctive craniofacial features such as triangular face, prominent nasal bridge, thin upper lip and synophrys; skeletal findings including short stature, delayed bone age, and costovertebral anomalies; and developmental delay/intellectual disability sometimes associated with seizures and EEG abnormalities. The condition was named KBG syndrome after the initials of the last names of three original families reported in 1975. EPIDEMIOLOGY The prevalence of KBG syndrome is not established. There are over 100 patients reported in the literature. It is likely that KBG syndrome is underreported due to incomplete recognition and very mild presentations of the disorder in some individuals. KBG syndrome is typically milder in females. ETIOLOGY Causative variants in ANKRD11 have been identified in affected individuals. The vast majority of identified variants are loss of function, which include nonsense and frameshift variants and larger deletions at 16q24.3. Haploinsufficiency appears to be the mechanism of pathogenicity. GENETIC COUNSELING Familial and de novo cases have been reported. Causative de novo variants occur approximately one third of the time. Transmission follows an autosomal dominant pattern. The syndrome displays inter- and intra-familial variability.
Collapse
Affiliation(s)
- Dayna Morel Swols
- Division of Clinical and Translational Genetics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB-336 (M-860), Miami, FL, 33136, USA
| | - Joseph Foster
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Graduate Education, School of Medicine, 130 Mason Farm Road, CB7108, Chapel Hill, 27599, USA
| | - Mustafa Tekin
- Division of Clinical and Translational Genetics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB-336 (M-860), Miami, FL, 33136, USA. .,John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
97
|
Guo Q, Liao S, Zhu Z, Li Y, Li F, Xu C. Structural basis for the recognition of kinesin family member 21A (KIF21A) by the ankyrin domains of KANK1 and KANK2 proteins. J Biol Chem 2017; 293:557-566. [PMID: 29183992 DOI: 10.1074/jbc.m117.817494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/21/2017] [Indexed: 01/09/2023] Open
Abstract
A well-controlled microtubule organization is essential for intracellular transport, cytoskeleton maintenance, and cell development. KN motif and ankyrin repeat domain-containing protein 1 (KANK1), a member of KANK family, recruits kinesin family member 21A (KIF21A) to the cell cortex to control microtubule growth via its C-terminal ankyrin domain. However, how the KANK1 ankyrin domain recognizes KIF21A and whether other KANK proteins can also bind KIF21A remain unknown. Here, using a combination of structural, site-directed mutagenesis, and biochemical studies, we found that a stretch of ∼22 amino acids in KIF21A is sufficient for binding to KANK1 and its close homolog KANK2. We further solved the complex structure of the KIF21A peptide with either the KANK1 ankyrin domain or the KANK2 ankyrin domain. In each complex, KIF21A is recognized by two distinct pockets of the ankyrin domain and adopts helical conformations upon binding to the ankyrin domain. The elucidated KANK structures may advance our understanding of the role of KANK1 as a scaffolding molecule in controlling microtubule growth at the cell periphery.
Collapse
Affiliation(s)
- Qiong Guo
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and.,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Shanhui Liao
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and .,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Zhongliang Zhu
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and.,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Yue Li
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and.,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Fudong Li
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and.,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Chao Xu
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and .,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| |
Collapse
|
98
|
Kleyner R, Malcolmson J, Tegay D, Ward K, Maughan A, Maughan G, Nelson L, Wang K, Robison R, Lyon GJ. KBG syndrome involving a single-nucleotide duplication in ANKRD11. Cold Spring Harb Mol Case Stud 2017; 2:a001131. [PMID: 27900361 PMCID: PMC5111005 DOI: 10.1101/mcs.a001131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
KBG syndrome is a rare autosomal dominant genetic condition characterized by neurological involvement and distinct facial, hand, and skeletal features. More than 70 cases have been reported; however, it is likely that KBG syndrome is underdiagnosed because of lack of comprehensive characterization of the heterogeneous phenotypic features. We describe the clinical manifestations in a male currently 13 years of age, who exhibited symptoms including epilepsy, severe developmental delay, distinct facial features, and hand anomalies, without a positive genetic diagnosis. Subsequent exome sequencing identified a novel de novo heterozygous single base pair duplication (c.6015dupA) in ANKRD11, which was validated by Sanger sequencing. This single-nucleotide duplication is predicted to lead to a premature stop codon and loss of function in ANKRD11, thereby implicating it as contributing to the proband's symptoms and yielding a molecular diagnosis of KBG syndrome. Before molecular diagnosis, this syndrome was not recognized in the proband, as several key features of the disorder were mild and were not recognized by clinicians, further supporting the concept of variable expressivity in many disorders. Although a diagnosis of cerebral folate deficiency has also been given, its significance for the proband's condition remains uncertain.
Collapse
Affiliation(s)
- Robert Kleyner
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Janet Malcolmson
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;; Genetic Counseling Graduate Program, Long Island University (LIU), Brookville, New York 11548, USA
| | - David Tegay
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Kenneth Ward
- Affiliated Genetics, Inc., Salt Lake City, Utah 84109, USA
| | | | - Glenn Maughan
- KBG Syndrome Foundation, West Jordan, Utah 84088, USA
| | - Lesa Nelson
- Affiliated Genetics, Inc., Salt Lake City, Utah 84109, USA
| | - Kai Wang
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90089, USA;; Department of Psychiatry & Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA;; Utah Foundation for Biomedical Research, Salt Lake City, Utah 84107, USA
| | - Reid Robison
- Utah Foundation for Biomedical Research, Salt Lake City, Utah 84107, USA
| | - Gholson J Lyon
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;; Utah Foundation for Biomedical Research, Salt Lake City, Utah 84107, USA
| |
Collapse
|
99
|
Kawada K, Mimori S. Implication of Endoplasmic Reticulum Stress in Autism Spectrum Disorder. Neurochem Res 2017; 43:147-152. [PMID: 28770435 DOI: 10.1007/s11064-017-2370-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/23/2017] [Accepted: 07/29/2017] [Indexed: 12/31/2022]
Abstract
Autism spectrum disorder (ASD) is categorized as a neurodevelopmental disorder according to the Diagnostic and Statistical Manual of Disorders, Fifth Edition and is defined as a congenital impairment of the central nervous system. ASD may be caused by a chromosomal abnormality or gene mutation. However, these etiologies are insufficient to account for the pathogenesis of ASD. Therefore, we propose that the etiology and pathogenesis of ASD are related to the stress of the endoplasmic reticulum (ER). ER stress, induced by valproic acid, increased in ASD mouse model, characterized by an unfolded protein response that is activated by this stress. The inhibition of neurite outgrowth and expression of synaptic factors are observed in ASD. Similarly, ER stress suppresses the neurite outgrowth and expression of synaptic factors. Additionally, hyperplasia of the brain is observed in patients with ASD. ER stress also enhances neuronal differentiation. Synaptic factors, such as cell adhesion molecule and shank, play important roles in the formation of neural circuits. Thus, ER stress is associated with the abnormalities of neuronal differentiation, neurite outgrowth, and synaptic protein expression. ER stress elevates the expression of the ubiquitin-protein ligase HRD1 for the degradation of unfolded proteins. HRD1 expression significantly increased in the middle frontal cortex in the postmortem of patients with ASD. Moreover, HRD1 silencing improved the abnormalities induced by ER stress. Because other ubiquitin ligases are related with neurite outgrowth, ER stress may be related to the pathogenesis of neuronal developmental diseases via abnormalities of neuronal differentiation or maturation.
Collapse
Affiliation(s)
- Koichi Kawada
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan.
| | - Seisuke Mimori
- Department of Clinical Medicine, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, Choshi, Chiba, 288-0025, Japan
| |
Collapse
|
100
|
Wang Q, Shi N, Shang Y, Liu X, Fu W, Zhao Y, Pan D, Xu W, Lin X. Comprehensive molecular characterization of a transgenic pig expressing hCD46 gene. Gene 2017; 626:376-385. [DOI: 10.1016/j.gene.2017.05.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|