51
|
The role of RNA-binding and ribosomal proteins as specific RNA translation regulators in cellular differentiation and carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166046. [PMID: 33383105 DOI: 10.1016/j.bbadis.2020.166046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Tight control of mRNA expression is required for cell differentiation; imbalanced regulation may lead to developmental disorders and cancer. The activity of the translational machinery (including ribosomes and translation factors) regulates the rate (slow or fast) of translation of encoded proteins, and the quality of these proteins highly depends on which mRNAs are available for translation. Specific RNA-binding and ribosomal proteins seem to play a key role in controlling gene expression to determine the differentiation fate of the cell. This demonstrates the important role of RNA-binding proteins, specific ribosome-binding proteins and microRNAs as key molecules in controlling the specific proteins required for the differentiation or dedifferentiation of cells. This delicate balance between specific proteins (in terms of quality and availability) and post-translational modifications occurring in the cytoplasm is crucial for cell differentiation, dedifferentiation and oncogenic potential. In this review, we report how defects in the regulation of mRNA translation can be dependent on specific proteins and can induce an imbalance between differentiation and dedifferentiation in cell fate determination.
Collapse
|
52
|
Paul I, White C, Turcinovic I, Emili A. Imaging the future: the emerging era of single-cell spatial proteomics. FEBS J 2020; 288:6990-7001. [PMID: 33351222 DOI: 10.1111/febs.15685] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
The proteome of a human cell is partitioned within organelles, such as the nucleus, and other subcellular compartments, such as the cytoplasm, forming a myriad of membrane-bound and membrane-free ultrastructures. This compartmentalization allows discrete biochemical processes to occur efficiently in isolation, with relevant proteins localized to appropriate niches to fulfill their biological function(s). Proper delivery and dynamic exchange of proteins between compartments underlie the regulation of many cellular processes, such as cell signaling, division, and programmed cell death. To this end, cells deploy dedicated trafficking mechanisms to ensure correct protein localization, as mis-localization can result in pathology. In addition to trafficking, variation in the expression, modification, and physical associations of proteins within and between cells can result in biological heterogeneity, motivating the need for single-cell measurements. In this review, we introduce diverse platform technologies developed for subcellular proteomics and high-throughput systems biology, with the aim of providing mechanistic insights into fundamental cell biological processes underlying healthy and diseased states, and valuable public data resources. In contrast to the rapidly advancing field of single-cell genomics, the single-cell spatial proteomics toolbox remains in its infancy, but is poised to make considerable advances in the coming years.
Collapse
Affiliation(s)
- Indranil Paul
- Center for Network Systems Biology, Department of Biochemistry, Boston University, MA, USA
| | - Carl White
- Center for Network Systems Biology, Department of Biochemistry, Boston University, MA, USA
| | - Isabella Turcinovic
- Center for Network Systems Biology, Department of Biochemistry, Boston University, MA, USA
| | - Andrew Emili
- Center for Network Systems Biology, Department of Biochemistry, Boston University, MA, USA
| |
Collapse
|
53
|
Dermit M, Dodel M, Lee FCY, Azman MS, Schwenzer H, Jones JL, Blagden SP, Ule J, Mardakheh FK. Subcellular mRNA Localization Regulates Ribosome Biogenesis in Migrating Cells. Dev Cell 2020; 55:298-313.e10. [PMID: 33171110 PMCID: PMC7660134 DOI: 10.1016/j.devcel.2020.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/01/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Translation of ribosomal protein-coding mRNAs (RP-mRNAs) constitutes a key step in ribosome biogenesis, but the mechanisms that modulate RP-mRNA translation in coordination with other cellular processes are poorly defined. Here, we show that subcellular localization of RP-mRNAs acts as a key regulator of their translation during cell migration. As cells migrate into their surroundings, RP-mRNAs localize to the actin-rich cell protrusions. This localization is mediated by La-related protein 6 (LARP6), an RNA-binding protein that is enriched in protrusions. Protrusions act as hotspots of translation for RP-mRNAs, enhancing RP synthesis, ribosome biogenesis, and the overall protein synthesis in migratory cells. In human breast carcinomas, epithelial-to-mesenchymal transition (EMT) upregulates LARP6 expression to enhance protein synthesis and support invasive growth. Our findings reveal LARP6-mediated mRNA localization as a key regulator of ribosome biogenesis during cell migration and demonstrate a role for this process in cancer progression downstream of EMT.
Collapse
Affiliation(s)
- Maria Dermit
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Flora C Y Lee
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Muhammad S Azman
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Hagen Schwenzer
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sarah P Blagden
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Jernej Ule
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
54
|
Abstract
Specific RNAs are enriched at protrusive regions of migrating cells. This localization is important for cell migration on 2D surfaces. However, in vivo, tumor cells navigate complex 3D environments often in collective groups. Here, we investigated protrusion-enriched RNAs during collective 3D invasion. We show that specific RNAs exhibit a striking accumulation at the front of invasive leader cells. We provide insights into the mechanism underlying RNA accumulation at the invasive front, and we further demonstrate that it is required for efficient 3D invasion of tumor cells. We additionally observe RNA enrichment at invasive sites of in vivo tumors, supporting the physiological relevance of this mechanism and suggesting a targeting opportunity for perturbing cancer cell invasion. Localization of RNAs at protrusive regions of cells is important for single-cell migration on two-dimensional surfaces. Protrusion-enriched RNAs encode factors linked to cancer progression, such as the RAB13 GTPase and the NET1 guanine nucleotide exchange factor, and are regulated by the tumor-suppressor protein APC. However, tumor cells in vivo often do not move as single cells but rather utilize collective modes of invasion and dissemination. Here, we developed an inducible system of three-dimensional (3D) collective invasion to study the behavior and importance of protrusion-enriched RNAs. We find that, strikingly, both the RAB13 and NET1 RNAs are enriched specifically at the invasive front of leader cells in invasive cell strands. This localization requires microtubules and coincides with sites of high laminin concentration. Indeed, laminin association and integrin engagement are required for RNA accumulation at the invasive front. Importantly, perturbing RNA accumulation reduces collective 3D invasion. Examination of in vivo tumors reveals a similar localization of the RAB13 and NET1 RNAs at potential invasive sites, suggesting that this mechanism could provide a targeting opportunity for interfering with collective cancer cell invasion.
Collapse
|
55
|
Moissoglu K, Stueland M, Gasparski AN, Wang T, Jenkins LM, Hastings ML, Mili S. RNA localization and co-translational interactions control RAB13 GTPase function and cell migration. EMBO J 2020; 39:e104958. [PMID: 32946136 PMCID: PMC7604616 DOI: 10.15252/embj.2020104958] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/30/2022] Open
Abstract
Numerous RNAs exhibit specific distribution patterns in mammalian cells. However, the functional and mechanistic consequences are relatively unknown. Here, we investigate the functional role of RNA localization at cellular protrusions of migrating mesenchymal cells, using as a model the RAB13 RNA, which encodes a GTPase important for vesicle‐mediated membrane trafficking. While RAB13 RNA is enriched at peripheral protrusions, the expressed protein is concentrated perinuclearly. By specifically preventing RAB13 RNA localization, we show that peripheral RAB13 translation is not important for the overall distribution of the RAB13 protein or its ability to associate with membranes, but is required for full activation of the GTPase and for efficient cell migration. RAB13 translation leads to a co‐translational association of nascent RAB13 with the exchange factor RABIF. Our results indicate that RAB13‐RABIF association at the periphery is required for directing RAB13 GTPase activity to promote cell migration. Thus, translation of RAB13 in specific subcellular environments imparts the protein with distinct properties and highlights a means of controlling protein function through local RNA translation.
Collapse
Affiliation(s)
- Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael Stueland
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alexander N Gasparski
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Tianhong Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
56
|
Costa G, Bradbury JJ, Tarannum N, Herbert SP. RAB13 mRNA compartmentalisation spatially orients tissue morphogenesis. EMBO J 2020; 39:e106003. [PMID: 32946121 PMCID: PMC7604621 DOI: 10.15252/embj.2020106003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Polarised targeting of diverse mRNAs to cellular protrusions is a hallmark of cell migration. Although a widespread phenomenon, definitive functions for endogenous targeted mRNAs and their relevance to modulation of in vivo tissue dynamics remain elusive. Here, using single-molecule analysis, gene editing and zebrafish live-cell imaging, we report that mRNA polarisation acts as a molecular compass that orients motile cell polarity and spatially directs tissue movement. Clustering of protrusion-derived RNAseq datasets defined a core 192-nt localisation element underpinning precise mRNA targeting to sites of filopodia formation. Such targeting of the small GTPase RAB13 generated tight spatial coupling of mRNA localisation, translation and protein activity, achieving precise subcellular compartmentalisation of RAB13 protein function to create a polarised domain of filopodia extension. Consequently, genomic excision of this localisation element and perturbation of RAB13 mRNA targeting-but not translation-depolarised filopodia dynamics in motile endothelial cells and induced mispatterning of blood vessels in zebrafish. Hence, mRNA polarisation, not expression, is the primary determinant of the site of RAB13 action, preventing ectopic functionality at inappropriate subcellular loci and orienting tissue morphogenesis.
Collapse
Affiliation(s)
- Guilherme Costa
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, UK
| | - Joshua J Bradbury
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Nawseen Tarannum
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shane P Herbert
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
57
|
Seetharaman S, Etienne-Manneville S. Cytoskeletal Crosstalk in Cell Migration. Trends Cell Biol 2020; 30:720-735. [DOI: 10.1016/j.tcb.2020.06.004] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/15/2023]
|
58
|
Mofatteh M. mRNA localization and local translation in neurons. AIMS Neurosci 2020; 7:299-310. [PMID: 32995487 PMCID: PMC7519968 DOI: 10.3934/neuroscience.2020016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
The spatial and temporal regulation of gene expression in neurons is an important step in creating functional and structural neuronal networks. The complexity of neurons require differential expression of various proteins in different compartments. Highly polarised cells, such as neurons, respond rapidly to different external stimuli by changing their local protein abundance and composition. Neurons can have extensions up to a meter away from their cell body in humans, so it is easy to envisage why they need to manage the synthesis of new proteins locally and on-demand. Recent research has demonstrated that neurons can control the expression of different proteins by localising translationally silent mRNAs, followed by subsequent translation. Neurons use mRNA localization and local translation to achieve different purposes during their life cycle. While developing neurons rely on mRNA localization for axon guidance and synaptogenesis, mature neurons can use mRNA localization for maintenance of essential physiological processes. mRNA localization also plays a role in response to neuron injury to regenerate and restore neuronal connections. Recent microscopic imaging techniques such as live imaging of fluorescently tagged molecules combined with genetic and biochemical studies in neurons have illustrated evolutionarily conserved mechanisms for targeting mRNAs into their correct compartments. This review provides an overview of mRNA localization and local translation in vertebrate and invertebrate neurons and discusses the mechanism by which mRNAs are trafficked into axons. Furthermore, the role of mRNA localization in synaptic activation, as well as axonal injury is explored.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- Lincoln College, University of Oxford, Turl Street, Oxford, OX1 3DR, United Kingdom
- Merton College, University of Oxford, Merton Street, Oxford, OX1 4DJ, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| |
Collapse
|
59
|
Buoso E, Masi M, Long A, Chiappini C, Travelli C, Govoni S, Racchi M. Ribosomes as a nexus between translation and cancer progression: Focus on ribosomal Receptor for Activated C Kinase 1 (RACK1) in breast cancer. Br J Pharmacol 2020; 179:2813-2828. [PMID: 32726469 DOI: 10.1111/bph.15218] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ribosomes coordinate spatiotemporal control of gene expression, contributing to the acquisition and maintenance of cancer phenotype. The link between ribosomes and cancer is found in the roles of individual ribosomal proteins in tumorigenesis and cancer progression, including the ribosomal protein, receptor for activated C kinase 1 (RACK1). RACK1 regulates cancer cell invasion and is localized in spreading initiation centres, structural adhesion complexes containing RNA binding proteins and poly-adenylated mRNAs that suggest a local translation process. As RACK1 is a ribosomal protein directly involved in translation and in breast cancer progression, we propose a new molecular mechanism for breast cancer cell migration and invasion, which considers the molecular differences between epithelial and mesenchymal cell profiles in order to characterize and provide novel targets for therapeutic strategies. Hence, we provide an analysis on how ribosomes translate cancer progression with a final focus on the ribosomal protein RACK1 in breast cancer.
Collapse
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy
| | - Aideen Long
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | | | | | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
60
|
Engel KL, Arora A, Goering R, Lo HYG, Taliaferro JM. Mechanisms and consequences of subcellular RNA localization across diverse cell types. Traffic 2020; 21:404-418. [PMID: 32291836 PMCID: PMC7304542 DOI: 10.1111/tra.12730] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Essentially all cells contain a variety of spatially restricted regions that are important for carrying out specialized functions. Often, these regions contain specialized transcriptomes that facilitate these functions by providing transcripts for localized translation. These transcripts play a functional role in maintaining cell physiology by enabling a quick response to changes in the cellular environment. Here, we review how RNA molecules are trafficked within cells, with a focus on the subcellular locations to which they are trafficked, mechanisms that regulate their transport and clinical disorders associated with misregulation of the process.
Collapse
Affiliation(s)
- Krysta L Engel
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ankita Arora
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hei-Yong G Lo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
61
|
Sending messages in moving cells: mRNA localization and the regulation of cell migration. Essays Biochem 2020; 63:595-606. [PMID: 31324705 DOI: 10.1042/ebc20190009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
Cell migration is a fundamental biological process involved in tissue formation and homeostasis. The correct polarization of motile cells is critical to ensure directed movement, and is orchestrated by many intrinsic and extrinsic factors. Of these, the subcellular distribution of mRNAs and the consequent spatial control of translation are key modulators of cell polarity. mRNA transport is dependent on cis-regulatory elements within transcripts, which are recognized by trans-acting proteins that ensure the efficient delivery of certain messages to the leading edge of migrating cells. At their destination, translation of localized mRNAs then participates in regional cellular responses underlying cell motility. In this review, we summarize the key findings that established mRNA targetting as a critical driver of cell migration and how the characterization of polarized mRNAs in motile cells has been expanded from just a few species to hundreds of transcripts. We also describe the molecular control of mRNA trafficking, subsequent mechanisms of local protein synthesis and how these ultimately regulate cell polarity during migration.
Collapse
|
62
|
Abstract
RNA localization is a key biological strategy for organizing the cytoplasm and generating both cellular and developmental polarity. During RNA localization, RNAs are targeted asymmetrically to specific subcellular destinations, resulting in spatially and temporally restricted gene expression through local protein synthesis. First discovered in oocytes and embryos, RNA localization is now recognized as a significant regulatory strategy for diverse RNAs, both coding and non-coding, in a wide range of cell types. Yet, the highly polarized cytoplasm of the oocyte remains a leading model to understand not only the principles and mechanisms underlying RNA localization, but also links to the formation of biomolecular condensates through phase separation. Here, we discuss both RNA localization and biomolecular condensates in oocytes with a particular focus on the oocyte of the frog, Xenopus laevis.
Collapse
Affiliation(s)
- Sarah E Cabral
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
63
|
Kashida S, Wang DO, Saito H, Gueroui Z. Nanoparticle-based local translation reveals mRNA as a translation-coupled scaffold with anchoring function. Proc Natl Acad Sci U S A 2019; 116:13346-13351. [PMID: 31217293 PMCID: PMC6613171 DOI: 10.1073/pnas.1900310116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The spatial regulation of messenger RNA (mRNA) translation is central to cellular functions and relies on numerous complex processes. Biomimetic approaches could bypass these endogenous complex processes, improve our comprehension of the regulation, and allow for controlling local translation regulations and functions. However, the causality between local translation and nascent protein function remains elusive. Here, we developed a nanoparticle (NP)-based strategy to magnetically control mRNA spatial patterns in mammalian cell extracts and investigate how local translation impacts nascent protein localization and function. By monitoring the translation of the magnetically localized mRNAs, we show that mRNA-NP complexes operate as a source for the continuous production of proteins from defined positions. By applying this approach to actin-binding proteins, we triggered the local formation of actin cytoskeletons and identified the minimal requirements for spatial control of the actin filament network. In addition, our bottom-up approach identified a role for mRNA as a translation-coupled scaffold for the function of nascent N-terminal protein domains. Our approach will serve as a platform for regulating mRNA localization and investigating the function of nascent protein domains during translation.
Collapse
Affiliation(s)
- Shunnichi Kashida
- PASTEUR, Département de chimie, École normale supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Dan Ohtan Wang
- Institute for Integrated Cell-Material Sciences, Kyoto University, 606-8501 Kyoto, Japan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, People's Republic of China
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, 606-8507 Kyoto, Japan
| | - Zoher Gueroui
- PASTEUR, Département de chimie, École normale supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne Université, CNRS, 75005 Paris, France;
| |
Collapse
|
64
|
Genome-wide analysis of RNA and protein localization and local translation in mESC-derived neurons. Methods 2019; 162-163:31-41. [PMID: 30742998 DOI: 10.1016/j.ymeth.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 01/18/2023] Open
Abstract
The subcellular localization and translation of mRNAs are fundamental biological processes. In neurons, they underlie cell growth and synaptic plasticity, which serves as a foundation of learning and memory. Multiple approaches have been developed to separate neurons on subcellular compartments - cell bodies (soma) and cell extensions (axons and dendrites) - for further biochemical analyses. Here we describe neurite/soma separation approach in combination with RNA sequencing and proteomic analyses to identify localized and locally translated RNAs and proteins. This approach allows quantification of around 7000 of local proteins and the entire local transcriptome. It provides a powerful tool for investigation of the mechanisms underlying RNA localization and local translation in neurons.
Collapse
|
65
|
Shi H, Wei J, He C. Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Mol Cell 2019; 74:640-650. [PMID: 31100245 PMCID: PMC6527355 DOI: 10.1016/j.molcel.2019.04.025] [Citation(s) in RCA: 1279] [Impact Index Per Article: 213.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
Abstract
Cellular RNAs are naturally decorated with a variety of chemical modifications. The structural diversity of the modified nucleosides provides regulatory potential to sort groups of RNAs for organized metabolism and functions, thus affecting gene expression. Recent years have witnessed a burst of interest in and understanding of RNA modification biology, thanks to the emerging transcriptome-wide sequencing methods for mapping modified sites, highly sensitive mass spectrometry for precise modification detection and quantification, and extensive characterization of the modification "effectors," including enzymes ("writers" and "erasers") that alter the modification level and binding proteins ("readers") that recognize the chemical marks. However, challenges remain due to the vast heterogeneity in expression abundance of different RNA species, further complicated by divergent cell-type-specific and tissue-specific expression and localization of the effectors as well as modifications. In this review, we highlight recent progress in understanding the function of N6-methyladenosine (m6A), the most abundant internal mark on eukaryotic mRNA, in light of the specific biological contexts of m6A effectors. We emphasize the importance of context for RNA modification regulation and function.
Collapse
Affiliation(s)
- Hailing Shi
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
66
|
Pizzinga M, Bates C, Lui J, Forte G, Morales-Polanco F, Linney E, Knotkova B, Wilson B, Solari CA, Berchowitz LE, Portela P, Ashe MP. Translation factor mRNA granules direct protein synthetic capacity to regions of polarized growth. J Cell Biol 2019; 218:1564-1581. [PMID: 30877141 PMCID: PMC6504908 DOI: 10.1083/jcb.201704019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/12/2018] [Accepted: 02/28/2019] [Indexed: 12/22/2022] Open
Abstract
mRNA localization serves key functions in localized protein production, making it critical that the translation machinery itself is present at these locations. Here we show that translation factor mRNAs are localized to distinct granules within yeast cells. In contrast to many messenger RNP granules, such as processing bodies and stress granules, which contain translationally repressed mRNAs, these granules harbor translated mRNAs under active growth conditions. The granules require Pab1p for their integrity and are inherited by developing daughter cells in a She2p/She3p-dependent manner. These results point to a model where roughly half the mRNA for certain translation factors is specifically directed in granules or translation factories toward the tip of the developing daughter cell, where protein synthesis is most heavily required, which has particular implications for filamentous forms of growth. Such a feedforward mechanism would ensure adequate provision of the translation machinery where it is to be needed most over the coming growth cycle.
Collapse
Affiliation(s)
- Mariavittoria Pizzinga
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Christian Bates
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jennifer Lui
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gabriella Forte
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Fabián Morales-Polanco
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emma Linney
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Barbora Knotkova
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Beverley Wilson
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Clara A Solari
- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Luke E Berchowitz
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Medical Center, New York, NY
| | - Paula Portela
- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mark P Ashe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
67
|
Latysheva NS, Babu MM. Molecular Signatures of Fusion Proteins in Cancer. ACS Pharmacol Transl Sci 2019; 2:122-133. [PMID: 32219217 PMCID: PMC7088938 DOI: 10.1021/acsptsci.9b00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 01/07/2023]
Abstract
![]()
Although gene fusions
are recognized as driver mutations in a wide
variety of cancers, the general molecular mechanisms underlying oncogenic
fusion proteins are insufficiently understood. Here, we employ large-scale
data integration and machine learning and (1) identify three functionally
distinct subgroups of gene fusions and their molecular signatures;
(2) characterize the cellular pathways rewired by fusion events across
different cancers; and (3) analyze the relative importance of over
100 structural, functional, and regulatory features of ∼2200
gene fusions. We report subgroups of fusions that likely act as driver
mutations and find that gene fusions disproportionately affect pathways
regulating cellular shape and movement. Although fusion proteins are
similar across different cancer types, they affect cancer type-specific
pathways. Key indicators of fusion-forming proteins include high and
nontissue specific expression, numerous splice sites, and higher centrality
in protein-interaction networks. Together, these findings provide
unifying and cancer type-specific trends across diverse oncogenic
fusion proteins.
Collapse
Affiliation(s)
- Natasha S Latysheva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
68
|
Bovaird S, Patel D, Padilla JCA, Lécuyer E. Biological functions, regulatory mechanisms, and disease relevance of RNA localization pathways. FEBS Lett 2018; 592:2948-2972. [PMID: 30132838 DOI: 10.1002/1873-3468.13228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
The asymmetric subcellular distribution of RNA molecules from their sites of transcription to specific compartments of the cell is an important aspect of post-transcriptional gene regulation. This involves the interplay of intrinsic cis-regulatory elements within the RNA molecules with trans-acting RNA-binding proteins and associated factors. Together, these interactions dictate the intracellular localization route of RNAs, whose downstream impacts have wide-ranging implications in cellular physiology. In this review, we examine the mechanisms underlying RNA localization and discuss their biological significance. We also review the growing body of evidence pointing to aberrant RNA localization pathways in the development and progression of diseases.
Collapse
Affiliation(s)
- Samantha Bovaird
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dhara Patel
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Juan-Carlos Alberto Padilla
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, QC, Canada
| |
Collapse
|
69
|
Dermit M, Dodel M, Mardakheh FK. Methods for monitoring and measurement of protein translation in time and space. MOLECULAR BIOSYSTEMS 2018; 13:2477-2488. [PMID: 29051942 PMCID: PMC5795484 DOI: 10.1039/c7mb00476a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regulation of protein translation constitutes a crucial step in control of gene expression. Here we review recent methods for system-wide monitoring and measurement of protein translation.
Regulation of protein translation constitutes a crucial step in control of gene expression. In comparison to transcriptional regulation, however, translational control has remained a significantly under-studied layer of gene expression. This trend is now beginning to shift thanks to recent advances in next-generation sequencing, proteomics, and microscopy based methodologies which allow accurate monitoring of protein translation rates, from single target messenger RNA molecules to genome-wide scale studies. In this review, we summarize these recent advances, and discuss how they are enabling researchers to study translational regulation in a wide variety of in vitro and in vivo biological systems, with unprecedented depth and spatiotemporal resolution.
Collapse
Affiliation(s)
- Maria Dermit
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - Martin Dodel
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - Faraz K Mardakheh
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
70
|
Emerman AB, Blower MD. The RNA-binding complex ESCRT-II in Xenopus laevis eggs recognizes purine-rich sequences through its subunit, Vps25. J Biol Chem 2018; 293:12593-12605. [PMID: 29903915 DOI: 10.1074/jbc.ra118.003718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/12/2018] [Indexed: 12/29/2022] Open
Abstract
RNA-binding proteins (RBP) are critical regulators of gene expression. Recent studies have uncovered hundreds of mRNA-binding proteins that do not contain annotated RNA-binding domains and have well-established roles in other cellular processes. Investigation of these nonconventional RBPs is critical for revealing novel RNA-binding domains and may disclose connections between RNA regulation and other aspects of cell biology. The endosomal sorting complex required for transport II (ESCRT-II) is a nonconventional RNA-binding complex that has a canonical role in multivesicular body formation. ESCRT-II was identified previously as an RNA-binding complex in Drosophila oocytes, but whether its RNA-binding properties extend beyond Drosophila is unknown. In this study, we found that the RNA-binding properties of ESCRT-II are conserved in Xenopus eggs, where ESCRT-II interacted with hundreds of mRNAs. Using a UV cross-linking approach, we demonstrated that ESCRT-II binds directly to RNA through its subunit, Vps25. UV cross-linking and immunoprecipitation (CLIP)-Seq revealed that Vps25 specifically recognizes a polypurine (i.e. GA-rich) motif in RNA. Using purified components, we could reconstitute the selective Vps25-mediated binding of the polypurine motif in vitro Our results provide insight into the mechanism by which ESCRT-II selectively binds to mRNA and also suggest an unexpected link between endosome biology and RNA regulation.
Collapse
Affiliation(s)
- Amy B Emerman
- From the Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114 and the Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Michael D Blower
- From the Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114 and the Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
71
|
Morphoregulatory functions of the RNA-binding motif protein 3 in cell spreading, polarity and migration. Sci Rep 2018; 8:7367. [PMID: 29743635 PMCID: PMC5943363 DOI: 10.1038/s41598-018-25668-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/27/2018] [Indexed: 02/01/2023] Open
Abstract
RNA-binding proteins are emerging as key regulators of transitions in cell morphology. The RNA-binding motif protein 3 (RBM3) is a cold-inducible RNA-binding protein with broadly relevant roles in cellular protection, and putative functions in cancer and development. Several findings suggest that RBM3 has morphoregulatory functions germane to its roles in these contexts. For example, RBM3 helps maintain the morphological integrity of cell protrusions during cell stress and disease. Moreover, it is highly expressed in migrating neurons of the developing brain and in cancer invadopodia, suggesting roles in migration. We here show that RBM3 regulates cell polarity, spreading and migration. RBM3 was present in spreading initiation centers, filopodia and blebs that formed during cell spreading in cell lines and primary myoblasts. Reducing RBM3 triggered exaggerated spreading, increased RhoA expression, and a loss of polarity that was rescued by Rho kinase inhibition and overexpression of CRMP2. High RBM3 expression enhanced the motility of cells migrating by a mesenchymal mode involving extension of long protrusions, whereas RBM3 knockdown slowed migration, greatly reducing the ability of cells to extend protrusions and impairing multiple processes that require directional migration. These data establish novel functions of RBM3 of potential significance to tissue repair, metastasis and development.
Collapse
|
72
|
Wang W, Chen S, Das S, Losert W, Parent CA. Adenylyl cyclase A mRNA localized at the back of cells is actively translated in live chemotaxing Dictyostelium. J Cell Sci 2018; 131:jcs.216176. [PMID: 29618632 DOI: 10.1242/jcs.216176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium discoideum cells transport adenylyl cyclase A (ACA)-containing vesicles to the back of polarized cells to relay exogenous cAMP signals during chemotaxis. Fluorescence in situ hybridization (FISH) experiments showed that ACA mRNA is also asymmetrically distributed at the back of polarized cells. By using the MS2 bacteriophage system, we now visualize the distribution of ACA mRNA in live chemotaxing cells. We found that the ACA mRNA localization is not dependent on the translation of the protein product and requires multiple cis-acting elements within the ACA-coding sequence. We show that ACA mRNA is associated with actively translating ribosomes and is transported along microtubules towards the back of cells. By monitoring the recovery of ACA-YFP after photobleaching, we observed that local translation of ACA-YFP occurs at the back of cells. These data represent a novel functional role for localized translation in the relay of chemotactic signals during chemotaxis.
Collapse
Affiliation(s)
- Weiye Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Song Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA.,Department of Pharmacology, Michigan Medicine, Ann Arbor, MI 48109, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Satarupa Das
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA .,Department of Pharmacology, Michigan Medicine, Ann Arbor, MI 48109, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
73
|
Abstract
Koppel & Fainzilber review translatomics and proteomics methods for studying protein synthesis at subcellular resolution.
Collapse
Affiliation(s)
- Indrek Koppel
- Department of Biomolecular Sciences
- Weizmann Institute of Science
- 76100 Rehovot
- Israel
| | - Mike Fainzilber
- Department of Biomolecular Sciences
- Weizmann Institute of Science
- 76100 Rehovot
- Israel
| |
Collapse
|
74
|
Benoit Bouvrette LP, Cody NAL, Bergalet J, Lefebvre FA, Diot C, Wang X, Blanchette M, Lécuyer E. CeFra-seq reveals broad asymmetric mRNA and noncoding RNA distribution profiles in Drosophila and human cells. RNA (NEW YORK, N.Y.) 2018; 24:98-113. [PMID: 29079635 PMCID: PMC5733575 DOI: 10.1261/rna.063172.117] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/13/2017] [Indexed: 05/26/2023]
Abstract
Cells are highly asymmetrical, a feature that relies on the sorting of molecular constituents, including proteins, lipids, and nucleic acids, to distinct subcellular locales. The localization of RNA molecules is an important layer of gene regulation required to modulate localized cellular activities, although its global prevalence remains unclear. We combine biochemical cell fractionation with RNA-sequencing (CeFra-seq) analysis to assess the prevalence and conservation of RNA asymmetric distribution on a transcriptome-wide scale in Drosophila and human cells. This approach reveals that the majority (∼80%) of cellular RNA species are asymmetrically distributed, whether considering coding or noncoding transcript populations, in patterns that are broadly conserved evolutionarily. Notably, a large number of Drosophila and human long noncoding RNAs and circular RNAs display enriched levels within specific cytoplasmic compartments, suggesting that these RNAs fulfill extra-nuclear functions. Moreover, fraction-specific mRNA populations exhibit distinctive sequence characteristics. Comparative analysis of mRNA fractionation profiles with that of their encoded proteins reveals a general lack of correlation in subcellular distribution, marked by strong cases of asymmetry. However, coincident distribution profiles are observed for mRNA/protein pairs related to a variety of functional protein modules, suggesting complex regulatory inputs of RNA localization to cellular organization.
Collapse
Affiliation(s)
- Louis Philip Benoit Bouvrette
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
- Département de Biochimie, Université de Montréal, Montréal H3C 3J7, Canada
| | - Neal A L Cody
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
| | - Julie Bergalet
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
| | - Fabio Alexis Lefebvre
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
- Département de Biochimie, Université de Montréal, Montréal H3C 3J7, Canada
| | - Cédric Diot
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
- Département de Biochimie, Université de Montréal, Montréal H3C 3J7, Canada
| | - Xiaofeng Wang
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
| | - Mathieu Blanchette
- McGill School of Computer Science, McGill University, Montréal H3A 0E9, Canada
| | - Eric Lécuyer
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
- Département de Biochimie, Université de Montréal, Montréal H3C 3J7, Canada
- Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Canada
| |
Collapse
|
75
|
Abstract
The last past decade has witnessed a revolution in our appreciation of transcriptome complexity and regulation. This remarkable expansion in our knowledge largely originates from the advent of high-throughput methodologies, and the consecutive discovery that up to 90% of eukaryotic genomes are transcribed, thus generating an unanticipated large range of noncoding RNAs (Hangauer et al., 15(4):112, 2014). Besides leading to the identification of new noncoding RNA species, transcriptome-wide studies have uncovered novel layers of posttranscriptional regulatory mechanisms controlling RNA processing, maturation or translation, and each contributing to the precise and dynamic regulation of gene expression. Remarkably, the development of systems-level studies has been accompanied by tremendous progress in the visualization of individual RNA molecules in single cells, such that it is now possible to image RNA species with a single-molecule resolution from birth to translation or decay. Monitoring quantitatively, with unprecedented spatiotemporal resolution, the fate of individual molecules has been key to understanding the molecular mechanisms underlying the different steps of RNA regulation. This has also revealed biologically relevant, intracellular and intercellular heterogeneities in RNA distribution or regulation. More recently, the convergence of imaging and high-throughput technologies has led to the emergence of spatially resolved transcriptomic techniques that provide a means to perform large-scale analyses while preserving spatial information. By generating transcriptome-wide data on single-cell RNA content, or even subcellular RNA distribution, these methodologies are opening avenues to a wide range of network-level studies at the cell and organ-level, and promise to strongly improve disease diagnostic and treatment.In this introductory chapter, we highlight how recently developed technologies aiming at detecting and visualizing RNA molecules have contributed to the emergence of entirely new research fields, and to dramatic progress in our understanding of gene expression regulation.
Collapse
Affiliation(s)
- Caroline Medioni
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France.
| |
Collapse
|
76
|
Terenzio M, Schiavo G, Fainzilber M. Compartmentalized Signaling in Neurons: From Cell Biology to Neuroscience. Neuron 2017; 96:667-679. [PMID: 29096079 DOI: 10.1016/j.neuron.2017.10.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022]
Abstract
Neurons are the largest known cells, with complex and highly polarized morphologies. As such, neuronal signaling is highly compartmentalized, requiring sophisticated transfer mechanisms to convey and integrate information within and between sub-neuronal compartments. Here, we survey different modes of compartmentalized signaling in neurons, highlighting examples wherein the fundamental cell biological processes of protein synthesis and degradation, membrane trafficking, and organelle transport are employed to enable the encoding and integration of information, locally and globally within a neuron. Comparisons to other cell types indicate that neurons accentuate widely shared mechanisms, providing invaluable models for the compartmentalization and transfer mechanisms required and used by most eukaryotic cells.
Collapse
Affiliation(s)
- Marco Terenzio
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK; Discoveries Centre for Regenerative and Precision Medicine at UCL, London WC1N 3BG, UK; UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
77
|
Extracellular matrix stiffness and cell contractility control RNA localization to promote cell migration. Nat Commun 2017; 8:896. [PMID: 29026081 PMCID: PMC5638855 DOI: 10.1038/s41467-017-00884-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 08/02/2017] [Indexed: 01/13/2023] Open
Abstract
Numerous RNAs are enriched within cellular protrusions, but the underlying mechanisms are largely unknown. We had shown that the APC (adenomatous polyposis coli) protein controls localization of some RNAs at protrusions. Here, using protrusion-isolation schemes and RNA-Seq, we find that RNAs localized in protrusions of migrating fibroblasts can be distinguished in two groups, which are differentially enriched in distinct types of protrusions, and are additionally differentially dependent on APC. APC-dependent RNAs become enriched in high-contractility protrusions and, accordingly, their localization is promoted by increasing stiffness of the extracellular matrix. Dissecting the underlying mechanism, we show that actomyosin contractility activates a RhoA-mDia1 signaling pathway that leads to formation of a detyrosinated-microtubule network, which in turn is required for localization of APC-dependent RNAs. Importantly, a competition-based approach to specifically mislocalize APC-dependent RNAs suggests that localization of the APC-dependent RNA subgroup is functionally important for cell migration.Adenomatous polyposis coli (APC) regulates the localization of some mRNAs at cellular protrusions but the underlying mechanisms and functional roles are not known. Here the authors show that APC-dependent RNAs are enriched in contractile protrusions, via detyrosinated microtubules, and enhance cell migration.
Collapse
|
78
|
Zappulo A, van den Bruck D, Ciolli Mattioli C, Franke V, Imami K, McShane E, Moreno-Estelles M, Calviello L, Filipchyk A, Peguero-Sanchez E, Müller T, Woehler A, Birchmeier C, Merino E, Rajewsky N, Ohler U, Mazzoni EO, Selbach M, Akalin A, Chekulaeva M. RNA localization is a key determinant of neurite-enriched proteome. Nat Commun 2017; 8:583. [PMID: 28928394 PMCID: PMC5605627 DOI: 10.1038/s41467-017-00690-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/19/2017] [Indexed: 11/09/2022] Open
Abstract
Protein subcellular localization is fundamental to the establishment of the body axis, cell migration, synaptic plasticity, and a vast range of other biological processes. Protein localization occurs through three mechanisms: protein transport, mRNA localization, and local translation. However, the relative contribution of each process to neuronal polarity remains unknown. Using neurons differentiated from mouse embryonic stem cells, we analyze protein and RNA expression and translation rates in isolated cell bodies and neurites genome-wide. We quantify 7323 proteins and the entire transcriptome, and identify hundreds of neurite-localized proteins and locally translated mRNAs. Our results demonstrate that mRNA localization is the primary mechanism for protein localization in neurites that may account for half of the neurite-localized proteome. Moreover, we identify multiple neurite-targeted non-coding RNAs and RNA-binding proteins with potential regulatory roles. These results provide further insight into the mechanisms underlying the establishment of neuronal polarity. Subcellular localization of RNAs and proteins is important for polarized cells such as neurons. Here the authors differentiate mouse embryonic stem cells into neurons, and analyze the local transcriptome, proteome, and translated transcriptome in their cell bodies and neurites, providing a unique resource for future studies on neuronal polarity.
Collapse
Affiliation(s)
- Alessandra Zappulo
- Non-coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - David van den Bruck
- Non-coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Camilla Ciolli Mattioli
- Non-coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Vedran Franke
- BIMSB Bioinformatics Platform, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Koshi Imami
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Erik McShane
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | | | - Lorenzo Calviello
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Andrei Filipchyk
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Esteban Peguero-Sanchez
- Non-coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.,Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP, 62210, Mexico
| | - Thomas Müller
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Andrew Woehler
- BIMSB Light Microscopy Platform, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP, 62210, Mexico
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Uwe Ohler
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Esteban O Mazzoni
- Department of Biology, New York University, New York, NY, 10003-6688, USA
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Altuna Akalin
- BIMSB Bioinformatics Platform, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Marina Chekulaeva
- Non-coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.
| |
Collapse
|
79
|
Kourtidis A, Necela B, Lin WH, Lu R, Feathers RW, Asmann YW, Thompson EA, Anastasiadis PZ. Cadherin complexes recruit mRNAs and RISC to regulate epithelial cell signaling. J Cell Biol 2017; 216:3073-3085. [PMID: 28877994 PMCID: PMC5626537 DOI: 10.1083/jcb.201612125] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 06/15/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
Cumulative evidence demonstrates that most RNAs exhibit specific subcellular distribution. However, the mechanisms regulating this phenomenon and its functional consequences are still under investigation. Here, we reveal that cadherin complexes at the apical zonula adherens (ZA) of epithelial adherens junctions recruit the core components of the RNA-induced silencing complex (RISC) Ago2, GW182, and PABPC1, as well as a set of 522 messenger RNAs (mRNAs) and 28 mature microRNAs (miRNAs or miRs), via PLEKHA7. Top canonical pathways represented by these mRNAs include Wnt/β-catenin, TGF-β, and stem cell signaling. We specifically demonstrate the presence and silencing of MYC, JUN, and SOX2 mRNAs by miR-24 and miR-200c at the ZA. PLEKHA7 knockdown dissociates RISC from the ZA, decreases loading of the ZA-associated mRNAs and miRNAs to Ago2, and results in a corresponding increase of MYC, JUN, and SOX2 protein expression. The present work reveals a mechanism that directly links junction integrity to the silencing of a set of mRNAs that critically affect epithelial homeostasis.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL .,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Brian Necela
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
| | - Ruifeng Lu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
| | | | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| | | | | |
Collapse
|
80
|
Gharibi A, La Kim S, Molnar J, Brambilla D, Adamian Y, Hoover M, Hong J, Lin J, Wolfenden L, Kelber JA. ITGA1 is a pre-malignant biomarker that promotes therapy resistance and metastatic potential in pancreatic cancer. Sci Rep 2017; 7:10060. [PMID: 28855593 PMCID: PMC5577248 DOI: 10.1038/s41598-017-09946-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has single-digit 5-year survival rates at <7%. There is a dire need to improve pre-malignant detection methods and identify new therapeutic targets for abrogating PDAC progression. To this end, we mined our previously published pseudopodium-enriched (PDE) protein/phosphoprotein datasets to identify novel PDAC-specific biomarkers and/or therapeutic targets. We discovered that integrin alpha 1 (ITGA1) is frequently upregulated in pancreatic cancers and associated precursor lesions. Expression of ITGA1-specific collagens within the pancreatic cancer microenvironment significantly correlates with indicators of poor patient prognosis, and depleting ITGA1 from PDAC cells revealed that it is required for collagen-induced tumorigenic potential. Notably, collagen/ITGA1 signaling promotes the survival of ALDH1-positive stem-like cells and cooperates with TGFβ to drive gemcitabine resistance. Finally, we report that ITGA1 is required for TGFβ/collagen-induced EMT and metastasis. Our data suggest that ITGA1 is a new diagnostic biomarker and target that can be leveraged to improve patient outcomes.
Collapse
Affiliation(s)
- Armen Gharibi
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Sa La Kim
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Justin Molnar
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Daniel Brambilla
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Yvess Adamian
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Malachia Hoover
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Julie Hong
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Joy Lin
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Laurelin Wolfenden
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Jonathan A Kelber
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA.
| |
Collapse
|
81
|
Bergeman J, Huot MÉ. Quantitative Immunofluorescence to Measure Global Localized Translation. J Vis Exp 2017. [PMID: 28872115 DOI: 10.3791/55909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The mechanisms regulating mRNA translation are involved in various biological processes, such as germ line development, cell differentiation, and organogenesis, as well as in multiple diseases. Numerous publications have convincingly shown that specific mechanisms tightly regulate mRNA translation. Increased interest in the translation-induced regulation of protein expression has led to the development of novel methods to study and follow de novo protein synthesis in cellulo. However, most of these methods are complex, making them costly and often limiting the number of mRNA targets that can be studied. This manuscript proposes a method that requires only basic reagents and a confocal fluorescence imaging system to measure and visualize the changes in mRNA translation that occur in any cell line under various conditions. This method was recently used to show localized translation in the subcellular structures of adherent cells over a short period of time, thus offering the possibility of visualizing de novo translation for a short period during a variety of biological processes or of validating changes in translational activity in response to specific stimuli.
Collapse
Affiliation(s)
- Jonathan Bergeman
- Centre de Recherche sur le Cancer de l'Université Laval, Faculté de Médecine, Département de Biologie moléculaire, biochimie médicale et pathologie, Université Laval
| | - Marc-Étienne Huot
- Centre de Recherche sur le Cancer de l'Université Laval, Faculté de Médecine, Département de Biologie moléculaire, biochimie médicale et pathologie, Université Laval; CRCHU de Québec: L'Hôtel-Dieu de Québec;
| |
Collapse
|
82
|
Abstract
Cells are highly organized entities that rely on intricate addressing mechanisms to sort their constituent molecules to precise subcellular locations. These processes are crucial for cells to maintain their proper organization and carry out specialized functions in the body, consequently genetic perturbations that clog up these addressing systems can contribute to disease aetiology. The trafficking of RNA molecules represents an important layer in the control of cellular organization, a process that is both highly prevalent and for which features of the regulatory machineries have been deeply conserved evolutionarily. RNA localization is commonly driven by trans-regulatory factors, including RNA binding proteins at the core, which recognize specific cis-acting zipcode elements within the RNA transcripts. Here, we first review the functions and biological benefits of intracellular RNA trafficking, from the perspective of both coding and non-coding RNAs. Next, we discuss the molecular mechanisms that modulate this localization, emphasizing the diverse features of the cis- and trans-regulators involved, while also highlighting emerging technologies and resources that will prove instrumental in deciphering RNA targeting pathways. We then discuss recent findings that reveal how co-transcriptional regulatory mechanisms operating in the nucleus can dictate the downstream cytoplasmic localization of RNAs. Finally, we survey the growing number of human diseases in which RNA trafficking pathways are impacted, including spinal muscular atrophy, Alzheimer's disease, fragile X syndrome and myotonic dystrophy. Such examples highlight the need to further dissect RNA localization mechanisms, which could ultimately pave the way for the development of RNA-oriented diagnostic and therapeutic strategies. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Ashley Chin
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, Quebec, Canada.
| |
Collapse
|
83
|
Weinberg F, Reischmann N, Fauth L, Taromi S, Mastroianni J, Köhler M, Halbach S, Becker AC, Deng N, Schmitz T, Uhl FM, Herbener N, Riedel B, Beier F, Swarbrick A, Lassmann S, Dengjel J, Zeiser R, Brummer T. The Atypical Kinase RIOK1 Promotes Tumor Growth and Invasive Behavior. EBioMedicine 2017; 20:79-97. [PMID: 28499923 PMCID: PMC5478185 DOI: 10.1016/j.ebiom.2017.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/27/2022] Open
Abstract
Despite being overexpressed in different tumor entities, RIO kinases are hardly characterized in mammalian cells. We investigated the role of these atypical kinases in different cancer cells. Using isogenic colon-, breast- and lung cancer cell lines, we demonstrate that knockdown of RIOK1, but not of RIOK2 or RIOK3, strongly impairs proliferation and invasiveness in conventional and 3D culture systems. Interestingly, these effects were mainly observed in RAS mutant cancer cells. In contrast, growth of RAS wildtype Caco-2 and Bcr-Abl-driven K562 cells is not affected by RIOK1 knockdown, suggesting a specific requirement for RIOK1 in the context of oncogenic RAS signaling. Furthermore, we show that RIOK1 activates NF-κB signaling and promotes cell cycle progression. Using proteomics, we identified the pro-invasive proteins Metadherin and Stathmin1 to be regulated by RIOK1. Additionally, we demonstrate that RIOK1 promotes lung colonization in vivo and that RIOK1 is overexpressed in different subtypes of human lung- and breast cancer. Altogether, our data suggest RIOK1 as a potential therapeutic target, especially in RAS-driven cancers.
Collapse
Affiliation(s)
- Florian Weinberg
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany
| | - Nadine Reischmann
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Lisa Fauth
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany
| | - Sanaz Taromi
- Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Justin Mastroianni
- Faculty of Biology, ALU, Freiburg, Germany; Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Martin Köhler
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Sebastian Halbach
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Andrea C Becker
- Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany; Department of Dermatology, University Medical Center - ALU, Freiburg, Germany
| | - Niantao Deng
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Tatjana Schmitz
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany
| | - Franziska Maria Uhl
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Nicola Herbener
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany
| | - Bianca Riedel
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany
| | - Fabian Beier
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany
| | - Alexander Swarbrick
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Silke Lassmann
- BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany; Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany; German Cancer Consortium (DKTK, Freiburg) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörn Dengjel
- BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany; Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany; Department of Dermatology, University Medical Center - ALU, Freiburg, Germany; Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Robert Zeiser
- BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany; Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany; German Cancer Consortium (DKTK, Freiburg) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
84
|
Donlin-Asp PG, Rossoll W, Bassell GJ. Spatially and temporally regulating translation via mRNA-binding proteins in cellular and neuronal function. FEBS Lett 2017; 591:1508-1525. [PMID: 28295262 DOI: 10.1002/1873-3468.12621] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/20/2022]
Abstract
Coordinated regulation of mRNA localization and local translation are essential steps in cellular asymmetry and function. It is increasingly evident that mRNA-binding proteins play critical functions in controlling the fate of mRNA, including when and where translation occurs. In this review, we discuss the robust and complex roles that mRNA-binding proteins play in the regulation of local translation that impact cellular function in vertebrates. First, we discuss the role of local translation in cellular polarity and possible links to vertebrate development and patterning. Next, we discuss the expanding role for local protein synthesis in neuronal development and function, with special focus on how a number of neurological diseases have given us insight into the importance of translational regulation. Finally, we discuss the ever-increasing set of tools to study regulated translation and how these tools will be vital in pushing forward and addressing the outstanding questions in the field.
Collapse
Affiliation(s)
- Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
85
|
Eliscovich C, Singer RH. RNP transport in cell biology: the long and winding road. Curr Opin Cell Biol 2017; 45:38-46. [PMID: 28258033 DOI: 10.1016/j.ceb.2017.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 01/08/2023]
Abstract
Regulation of gene expression is key determinant to cell structure and function. RNA localization, where specific mRNAs are transported to subcellular regions and then translated, is highly conserved in eukaryotes ranging from yeast to extremely specialized and polarized cells such as neurons. Messenger RNA and associated proteins (mRNP) move from the site of transcription in the nucleus to their final destination in the cytoplasm both passively through diffusion and actively via directed transport. Dysfunction of RNA localization, transport and translation machinery can lead to pathology. Single-molecule live-cell imaging techniques have revealed unique features of this journey with unprecedented resolution. In this review, we highlight key recent findings that have been made using these approaches and possible implications for spatial control of gene function.
Collapse
Affiliation(s)
- Carolina Eliscovich
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States; Current address: Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, United States; Janelia Research Campus of the HHMI, Ashburn, VA, 20147, United States.
| |
Collapse
|
86
|
Mardakheh FK, Sailem HZ, Kümper S, Tape CJ, McCully RR, Paul A, Anjomani-Virmouni S, Jørgensen C, Poulogiannis G, Marshall CJ, Bakal C. Proteomics profiling of interactome dynamics by colocalisation analysis (COLA). MOLECULAR BIOSYSTEMS 2016; 13:92-105. [PMID: 27824369 PMCID: PMC5315029 DOI: 10.1039/c6mb00701e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022]
Abstract
Localisation and protein function are intimately linked in eukaryotes, as proteins are localised to specific compartments where they come into proximity of other functionally relevant proteins. Significant co-localisation of two proteins can therefore be indicative of their functional association. We here present COLA, a proteomics based strategy coupled with a bioinformatics framework to detect protein-protein co-localisations on a global scale. COLA reveals functional interactions by matching proteins with significant similarity in their subcellular localisation signatures. The rapid nature of COLA allows mapping of interactome dynamics across different conditions or treatments with high precision.
Collapse
Affiliation(s)
- Faraz K Mardakheh
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| | - Heba Z Sailem
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK. and Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Sandra Kümper
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| | - Christopher J Tape
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK. and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ryan R McCully
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| | - Angela Paul
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| | - Sara Anjomani-Virmouni
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| | - Claus Jørgensen
- Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - George Poulogiannis
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| | - Christopher J Marshall
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| | - Chris Bakal
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
87
|
Mardakheh FK, Self A, Marshall CJ. RHO binding to FAM65A regulates Golgi reorientation during cell migration. J Cell Sci 2016; 129:4466-4479. [PMID: 27807006 PMCID: PMC5201024 DOI: 10.1242/jcs.198614] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022] Open
Abstract
Directional cell migration involves reorientation of the secretory machinery. However, the molecular mechanisms that control this reorientation are not well characterised. Here, we identify a new Rho effector protein, named FAM65A, which binds to active RHOA, RHOB and RHOC. FAM65A links RHO proteins to Golgi-localising cerebral cavernous malformation-3 protein (CCM3; also known as PDCD10) and its interacting proteins mammalian STE20-like protein kinases 3 and 4 (MST3 and MST4; also known as STK24 and STK26, respectively). Binding of active RHO proteins to FAM65A does not affect the kinase activity of MSTs but results in their relocation from the Golgi in a CCM3-dependent manner. This relocation is crucial for reorientation of the Golgi towards the leading edge and subsequent directional cell migration. Our results reveal a previously unidentified pathway downstream of RHO that regulates the polarity of migrating cells through Golgi reorientation in a FAM65A-, CCM3- and MST3- and MST4-dependent manner.
Collapse
Affiliation(s)
- Faraz K Mardakheh
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK
| | - Annette Self
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK
| | - Christopher J Marshall
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
88
|
Jacob AE, Turner CE, Amack JD. Evolution and Expression of Paxillin Genes in Teleost Fish. PLoS One 2016; 11:e0165266. [PMID: 27806088 PMCID: PMC5091871 DOI: 10.1371/journal.pone.0165266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/07/2016] [Indexed: 01/05/2023] Open
Abstract
Background Paxillin family proteins regulate intracellular signaling downstream of extracellular matrix adhesion. Tissue expression patterns and cellular functions of Paxillin proteins during embryo development remain poorly understood. Additionally, the evolution of this gene family has not been thoroughly investigated. Results This report characterizes the evolution and expression of a novel Paxillin gene, called Paxillin-b, in Teleosts. Alignments indicate that Teleost Paxillin-a and Paxillin-b proteins are highly homologous to each other and to human Paxillin. Phylogenetic and synteny analyses suggest that these genes originated from the duplication of an ancestral Paxillin gene that was in a common ancestor of Teleosts and Tetrapods. Analysis of the spatiotemporal expression profiles of Paxillin-a and Paxillin-b using zebrafish revealed both overlapping and distinct domains for Paxillin-a and Paxillin-b during embryo development. Localization of zebrafish Paxillin orthologs expressed in mammalian cells demonstrated that both proteins localize to focal adhesions, similar to mammalian Paxillin. This suggests these proteins regulate adhesion-dependent processes in their endogenous tissues. Conclusion Paxillin-a and Paxillin-b were generated by duplication in Teleosts. These genes likely play similar roles as Paxillin genes in other organisms. This work provides a framework for functional investigation of Paxillin family members during development using the zebrafish as an in vivo model system.
Collapse
Affiliation(s)
- Andrew E. Jacob
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York, 13210, United States of America
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York, 13210, United States of America
- * E-mail: (CET); (JDA)
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York, 13210, United States of America
- * E-mail: (CET); (JDA)
| |
Collapse
|
89
|
Tape CJ. Systems Biology Analysis of Heterocellular Signaling. Trends Biotechnol 2016; 34:627-637. [DOI: 10.1016/j.tibtech.2016.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
|
90
|
Liu YH, Jin JL, Wang YZ, Tan Y, Zhou YY, Peng T, Li F, Liang WD, Chartrand P, Jiang YY, Shen ZF. Protrusion-localized STAT3 mRNA promotes metastasis of highly metastatic hepatocellular carcinoma cells in vitro. Acta Pharmacol Sin 2016; 37:805-13. [PMID: 27133294 DOI: 10.1038/aps.2015.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/24/2015] [Indexed: 02/06/2023]
Abstract
AIM Recent evidence shows that localization of mRNAs and their protein products at cellular protrusions plays a decisive function in the metastasis of cancer cells. The aim of this study was to identify the variety of proteins encoded by protrusion-localized mRNAs and their roles in the metastasis and invasion of liver cancer cells. METHODS Highly metastatic hepatocellular carcinoma cell line HCCLM3 and non-metastatic hepatocellular carcinoma cell line SMMC-7721 were examined. Cell protrusions (Ps) were separated from cell bodies (CB) using a Boyden chamber assay; total mRNA population in CB and Ps fractions was analyzed using high-throughput direct RNA sequencing. The localization of STAT3 mRNA and protein at Ps was confirmed using RT-qPCR, RNA FISH, and immunofluorescence assays. Cell migration capacity and invasiveness of HCCLM3 cells were evaluated using MTT, wound healing migration and in vitro invasion assays. The interaction between Stat3 and growth factor receptors was explored with co-immunoprecipitation assays. RESULTS In HCCLM3 cells, 793 mRNAs were identified as being localized in the Ps fraction according to a cut-off value (Ps/CB ratio) >1.6. The Ps-localized mRNAs could be divided into 4 functional groups, and were all closely related to the invasive and metastatic properties. STAT3 mRNA accumulated in the Ps of HCCLM3 cells compared with non-metastatic SMMC-7721 cells. Treatment of HCCLM3 cells with siRNAs against STAT3 mRNA drastically decreased the cell migration and invasion. Moreover, Ps-localized Stat3 was found to interact with pseudopod-enriched platelet-derived growth factor receptor tyrosine kinase (PDGFRTK) in a growth factor-dependent manner. CONCLUSION This study reveals STAT3 mRNA localization at the Ps of metastatic hepatocellular carcinoma HCCLM3 cells by combining application of genome-wide and gene specific description and functional analysis.
Collapse
|
91
|
Bergeman J, Caillier A, Houle F, Gagné LM, Huot MÉ. Localized translation regulates cell adhesion and transendothelial migration. J Cell Sci 2016; 129:4105-4117. [DOI: 10.1242/jcs.191320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022] Open
Abstract
By progressing through the epithelial to mesenchymal transition (EMT), cancer cells gain the ability to leave the primary tumor site and invade surrounding tissues. These metastatic cancers cells can further increase their plasticity by adopting an amoeboid-like morphology, by undergoing mesenchymal to amoeboid transition (MAT). We found that adhering cells producing spreading initiation centers (SIC), a transient structure localized above nascent adhesion complexes, share common biological and morphological characteristics associated with amoeboid cells. Meanwhile, spreading cells seem to return to a mesenchymal-like morphology. Thus, our results indicate that SIC-induced adhesion recapitulate events associated with amoeboid to mesenchymal transition (AMT). We found that polyadenylated RNAs were enriched within SIC and blocking their translation decreased adhesion potential of metastatic cells that progressed through EMT. These results point to a novel checkpoint regulating cell adhesion and allowing metastatic cells to alter adhesion strength in order to modulate their dissemination.
Collapse
Affiliation(s)
- Jonathan Bergeman
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada, G1R 3S3
| | - Alexia Caillier
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada, G1R 3S3
| | - François Houle
- CRCHU de Québec: Hôtel-Dieu de Québec; Québec, Canada, G1R 3S3
| | - Laurence M. Gagné
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada, G1R 3S3
| | - Marc-Étienne Huot
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada, G1R 3S3
- CRCHU de Québec: Hôtel-Dieu de Québec; Québec, Canada, G1R 3S3
| |
Collapse
|