51
|
Silveira SR, Le Gloanec C, Gómez-Felipe A, Routier-Kierzkowska AL, Kierzkowski D. Live-imaging provides an atlas of cellular growth dynamics in the stamen. PLANT PHYSIOLOGY 2022; 188:769-781. [PMID: 34618064 PMCID: PMC8825458 DOI: 10.1093/plphys/kiab363] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Development of multicellular organisms is a complex process involving precise coordination of growth among individual cells. Understanding organogenesis requires measurements of cellular behaviors over space and time. In plants, such a quantitative approach has been successfully used to dissect organ development in both leaves and external floral organs, such as sepals. However, the observation of floral reproductive organs is hampered as they develop inside tightly closed floral buds, and are therefore difficult to access for imaging. We developed a confocal time-lapse imaging method, applied here to Arabidopsis (Arabidopsis thaliana), which allows full quantitative characterization of the development of stamens, the male reproductive organs. Our lineage tracing reveals the early specification of the filament and the anther. Formation of the anther lobes is associated with a temporal increase of growth at the lobe surface that correlates with intensive growth of the developing locule. Filament development is very dynamic and passes through three distinct phases: (1) initial intense, anisotropic growth, and high cell proliferation; (2) restriction of growth and proliferation to the filament proximal region; and (3) resumption of intense and anisotropic growth, displaced to the distal portion of the filament, without cell proliferation. This quantitative atlas of cellular growth dynamics provides a solid framework for future studies into stamen development.
Collapse
Affiliation(s)
- Sylvia R Silveira
- Department of Biological Sciences, IRBV, University of Montréal, Montréal, Quebec, Canada H1X 2B2
| | - Constance Le Gloanec
- Department of Biological Sciences, IRBV, University of Montréal, Montréal, Quebec, Canada H1X 2B2
| | - Andrea Gómez-Felipe
- Department of Biological Sciences, IRBV, University of Montréal, Montréal, Quebec, Canada H1X 2B2
| | | | - Daniel Kierzkowski
- Department of Biological Sciences, IRBV, University of Montréal, Montréal, Quebec, Canada H1X 2B2
| |
Collapse
|
52
|
Sablowski R, Gutierrez C. Cycling in a crowd: Coordination of plant cell division, growth, and cell fate. THE PLANT CELL 2022; 34:193-208. [PMID: 34498091 PMCID: PMC8774096 DOI: 10.1093/plcell/koab222] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 05/25/2023]
Abstract
The reiterative organogenesis that drives plant growth relies on the constant production of new cells, which remain encased by interconnected cell walls. For these reasons, plant morphogenesis strictly depends on the rate and orientation of both cell division and cell growth. Important progress has been made in recent years in understanding how cell cycle progression and the orientation of cell divisions are coordinated with cell and organ growth and with the acquisition of specialized cell fates. We review basic concepts and players in plant cell cycle and division, and then focus on their links to growth-related cues, such as metabolic state, cell size, cell geometry, and cell mechanics, and on how cell cycle progression and cell division are linked to specific cell fates. The retinoblastoma pathway has emerged as a major player in the coordination of the cell cycle with both growth and cell identity, while microtubule dynamics are central in the coordination of oriented cell divisions. Future challenges include clarifying feedbacks between growth and cell cycle progression, revealing the molecular basis of cell division orientation in response to mechanical and chemical signals, and probing the links between cell fate changes and chromatin dynamics during the cell cycle.
Collapse
Affiliation(s)
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
53
|
Roeder AHK, Otegui MS, Dixit R, Anderson CT, Faulkner C, Zhang Y, Harrison MJ, Kirchhelle C, Goshima G, Coate JE, Doyle JJ, Hamant O, Sugimoto K, Dolan L, Meyer H, Ehrhardt DW, Boudaoud A, Messina C. Fifteen compelling open questions in plant cell biology. THE PLANT CELL 2022; 34:72-102. [PMID: 34529074 PMCID: PMC8774073 DOI: 10.1093/plcell/koab225] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2021] [Indexed: 05/02/2023]
Abstract
As scientists, we are at least as excited about the open questions-the things we do not know-as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such "rules" conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.
Collapse
Affiliation(s)
- Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, Missouri 63130, USA
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christine Faulkner
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | | | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Jeremy E Coate
- Department of Biology, Reed College, Portland, Oregon 97202, USA
| | - Jeff J Doyle
- School of Integrative Plant Science, Section of Plant Biology and Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Keiko Sugimoto
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Liam Dolan
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Vienna 1030, Austria
| | - Heather Meyer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau Cedex 91128 France
| | | |
Collapse
|
54
|
Gorelova V, Sprakel J, Weijers D. Plant cell polarity as the nexus of tissue mechanics and morphogenesis. NATURE PLANTS 2021; 7:1548-1559. [PMID: 34887521 DOI: 10.1038/s41477-021-01021-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/13/2021] [Indexed: 05/20/2023]
Abstract
How reproducible body patterns emerge from the collective activity of individual cells is a key question in developmental biology. Plant cells are encaged in their walls and unable to migrate. Morphogenesis thus relies on directional cell division, by precise positioning of division planes, and anisotropic cellular growth, mediated by regulated mechanical inhomogeneity of the walls. Both processes require the prior establishment of cell polarity, marked by the formation of polar domains at the plasma membrane, in a number of developmental contexts. The establishment of cell polarity involves biochemical cues, but increasing evidence suggests that mechanical forces also play a prominent instructive role. While evidence for mutual regulation between cell polarity and tissue mechanics is emerging, the nature of this bidirectional feedback remains unclear. Here we review the role of cell polarity at the interface of tissue mechanics and morphogenesis. We also aim to integrate biochemistry-centred insights with concepts derived from physics and physical chemistry. Lastly, we propose a set of questions that will help address the fundamental nature of cell polarization and its mechanistic basis.
Collapse
Affiliation(s)
- Vera Gorelova
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
55
|
Hilty J, Muller B, Pantin F, Leuzinger S. Plant growth: the What, the How, and the Why. THE NEW PHYTOLOGIST 2021; 232:25-41. [PMID: 34245021 DOI: 10.1111/nph.17610] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/19/2021] [Indexed: 05/28/2023]
Abstract
Growth is a widely used term in plant science and ecology, but it can have different meanings depending on the context and the spatiotemporal scale of analysis. At the meristem level, growth is associated with the production of cells and initiation of new organs. At the organ or plant scale and over short time periods, growth is often used synonymously with tissue expansion, while over longer time periods the increase in biomass is a common metric. At even larger temporal and spatial scales, growth is mostly described as net primary production. Here, we first address the question 'what is growth?'. We propose a general framework to distinguish between the different facets of growth, and the corresponding physiological processes, environmental drivers and mathematical formalisms. Based on these different definitions, we then review how plant growth can be measured and analysed at different organisational, spatial and temporal scales. We conclude by discussing why gaining a better understanding of the different facets of plant growth is essential to disentangle genetic and environmental effects on the phenotype, and to uncover the causalities around source or sink limitations of plant growth.
Collapse
Affiliation(s)
- Jonas Hilty
- School of Science, Auckland University of Technology, 46 Wakefield Street, Auckland, 1142, New Zealand
| | - Bertrand Muller
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, 34000, France
| | - Florent Pantin
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, 34000, France
| | - Sebastian Leuzinger
- School of Science, Auckland University of Technology, 46 Wakefield Street, Auckland, 1142, New Zealand
| |
Collapse
|
56
|
Denk-Lobnig M, Totz JF, Heer NC, Dunkel J, Martin AC. Combinatorial patterns of graded RhoA activation and uniform F-actin depletion promote tissue curvature. Development 2021; 148:dev199232. [PMID: 34124762 PMCID: PMC8254875 DOI: 10.1242/dev.199232] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/04/2021] [Indexed: 01/03/2023]
Abstract
During development, gene expression regulates cell mechanics and shape to sculpt tissues. Epithelial folding proceeds through distinct cell shape changes that occur simultaneously in different regions of a tissue. Here, using quantitative imaging in Drosophila melanogaster, we investigate how patterned cell shape changes promote tissue bending during early embryogenesis. We find that the transcription factors Twist and Snail combinatorially regulate a multicellular pattern of lateral F-actin density that differs from the previously described Myosin-2 gradient. This F-actin pattern correlates with whether cells apically constrict, stretch or maintain their shape. We show that the Myosin-2 gradient and F-actin depletion do not depend on force transmission, suggesting that transcriptional activity is required to create these patterns. The Myosin-2 gradient width results from a gradient in RhoA activation that is refined through the balance between RhoGEF2 and the RhoGAP C-GAP. Our experimental results and simulations of a 3D elastic shell model show that tuning gradient width regulates tissue curvature.
Collapse
Affiliation(s)
- Marlis Denk-Lobnig
- Biology Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Jan F. Totz
- Mathematics Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Natalie C. Heer
- Biology Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Jörn Dunkel
- Mathematics Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Adam C. Martin
- Biology Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
57
|
Autran D, Bassel GW, Chae E, Ezer D, Ferjani A, Fleck C, Hamant O, Hartmann FP, Jiao Y, Johnston IG, Kwiatkowska D, Lim BL, Mahönen AP, Morris RJ, Mulder BM, Nakayama N, Sozzani R, Strader LC, ten Tusscher K, Ueda M, Wolf S. What is quantitative plant biology? QUANTITATIVE PLANT BIOLOGY 2021; 2:e10. [PMID: 37077212 PMCID: PMC10095877 DOI: 10.1017/qpb.2021.8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Quantitative plant biology is an interdisciplinary field that builds on a long history of biomathematics and biophysics. Today, thanks to high spatiotemporal resolution tools and computational modelling, it sets a new standard in plant science. Acquired data, whether molecular, geometric or mechanical, are quantified, statistically assessed and integrated at multiple scales and across fields. They feed testable predictions that, in turn, guide further experimental tests. Quantitative features such as variability, noise, robustness, delays or feedback loops are included to account for the inner dynamics of plants and their interactions with the environment. Here, we present the main features of this ongoing revolution, through new questions around signalling networks, tissue topology, shape plasticity, biomechanics, bioenergetics, ecology and engineering. In the end, quantitative plant biology allows us to question and better understand our interactions with plants. In turn, this field opens the door to transdisciplinary projects with the society, notably through citizen science.
Collapse
Affiliation(s)
- Daphné Autran
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - George W. Bassel
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Daphne Ezer
- The Alan Turing Institute, London, United Kingdom
- Department of Statistics, University of Warwick, Coventry, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Christian Fleck
- Freiburg Center for Data Analysis and Modeling (FDM), University of Freiburg, Breisgau, Germany
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, École normale supérieure (ENS) de Lyon, Université Claude Bernard Lyon (UCBL), Lyon, France
- Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), CNRS, Université de Lyon, Lyon, France
| | | | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Dorota Kwiatkowska
- Institute of Biology, Biotechnology and Environment Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Boon L. Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Ari Pekka Mahönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Richard J. Morris
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Bela M. Mulder
- Department of Living Matter, Institute AMOLF, Amsterdam, The Netherlands
| | - Naomi Nakayama
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ross Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North CarolinaUSA
| | - Lucia C. Strader
- Department of Biology, Duke University, Durham, North Carolina, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MissouriUSA
| | - Kirsten ten Tusscher
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Minako Ueda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Sebastian Wolf
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
58
|
Koneru SL, Quah FX, Ghose R, Hintze M, Gritti N, van Zon JS, Barkoulas M. A role for the fusogen eff-1 in epidermal stem cell number robustness in Caenorhabditis elegans. Sci Rep 2021; 11:9787. [PMID: 33963222 PMCID: PMC8105389 DOI: 10.1038/s41598-021-88500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
Developmental patterning in Caenorhabditis elegans is known to proceed in a highly stereotypical manner, which raises the question of how developmental robustness is achieved despite the inevitable stochastic noise. We focus here on a population of epidermal cells, the seam cells, which show stem cell-like behaviour and divide symmetrically and asymmetrically over post-embryonic development to generate epidermal and neuronal tissues. We have conducted a mutagenesis screen to identify mutants that introduce phenotypic variability in the normally invariant seam cell population. We report here that a null mutation in the fusogen eff-1 increases seam cell number variability. Using time-lapse microscopy and single molecule fluorescence hybridisation, we find that seam cell division and differentiation patterns are mostly unperturbed in eff-1 mutants, indicating that cell fusion is uncoupled from the cell differentiation programme. Nevertheless, seam cell losses due to the inappropriate differentiation of both daughter cells following division, as well as seam cell gains through symmetric divisions towards the seam cell fate were observed at low frequency. We show that these stochastic errors likely arise through accumulation of defects interrupting the continuity of the seam and changing seam cell shape, highlighting the role of tissue homeostasis in suppressing phenotypic variability during development.
Collapse
Affiliation(s)
- Sneha L Koneru
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Fu Xiang Quah
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Ritobrata Ghose
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Mark Hintze
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Nicola Gritti
- AMOLF, Science Park 104, 1098 XG, Amsterdam, the Netherlands
| | | | | |
Collapse
|
59
|
Kitazawa MS. Developmental stochasticity and variation in floral phyllotaxis. JOURNAL OF PLANT RESEARCH 2021; 134:403-416. [PMID: 33821352 PMCID: PMC8106590 DOI: 10.1007/s10265-021-01283-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Floral phyllotaxis is a relatively robust phenotype; trimerous and pentamerous arrangements are widely observed in monocots and core eudicots. Conversely, it also shows variability in some angiosperm clades such as 'ANA' grade (Amborellales, Nymphaeales, and Austrobaileyales), magnoliids, and Ranunculales. Regardless of the phylogenetic relationship, however, phyllotactic pattern formation appears to be a common process. What are the causes of the variability in floral phyllotaxis and how has the variation of floral phyllotaxis contributed to floral diversity? In this review, I summarize recent progress in studies on two related fields to develop answers to these questions. First, it is known that molecular and cellular stochasticity are inevitably found in biological systems, including plant development. Organisms deal with molecular stochasticity in several ways, such as dampening noise through gene networks or maintaining function through cellular redundancy. Recent studies on molecular and cellular stochasticity suggest that stochasticity is not always detrimental to plants and that it is also essential in development. Second, studies on vegetative and inflorescence phyllotaxis have shown that plants often exhibit variability and flexibility in phenotypes. Three types of phyllotaxis variations are observed, namely, fluctuation around the mean, transition between regular patterns, and a transient irregular organ arrangement called permutation. Computer models have demonstrated that stochasticity in the phyllotactic pattern formation plays a role in pattern transitions and irregularities. Variations are also found in the number and positioning of floral organs, although it is not known whether such variations provide any functional advantages. Two ways of diversification may be involved in angiosperm floral evolution: precise regulation of organ position and identity that leads to further specialization of organs and organ redundancy that leads to flexibility in floral phyllotaxis.
Collapse
Affiliation(s)
- Miho S Kitazawa
- Center for Education in Liberal Arts and Sciences, Osaka University, 1-16 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
60
|
Reduction in organ-organ friction is critical for corolla elongation in morning glory. Commun Biol 2021; 4:285. [PMID: 33674689 PMCID: PMC7935917 DOI: 10.1038/s42003-021-01814-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
In complex structures such as flowers, organ-organ interactions are critical for morphogenesis. The corolla plays a central role in attracting pollinators: thus, its proper development is important in nature, agriculture, and horticulture. Although the intraorgan mechanism of corolla development has been studied, the importance of organ-organ interactions during development remains unknown. Here, using corolla mutants of morning glory described approximately 200 years ago, we show that glandular secretory trichomes (GSTs) regulate floral organ interactions needed for corolla morphogenesis. Defects in GST development in perianth organs result in folding of the corolla tube, and release of mechanical stress by sepal removal restores corolla elongation. Computational modeling shows that the folding occurs because of buckling caused by mechanical stress from friction at the distal side of the corolla. Our results suggest a novel function of GSTs in regulating the physical interaction of floral organs for macroscopic morphogenesis of the corolla.
Collapse
|
61
|
Fujiwara M, Goh T, Tsugawa S, Nakajima K, Fukaki H, Fujimoto K. Tissue growth constrains root organ outlines into an isometrically scalable shape. Development 2021; 148:148/4/dev196253. [PMID: 33637613 PMCID: PMC7929931 DOI: 10.1242/dev.196253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022]
Abstract
Organ morphologies are diverse but also conserved under shared developmental constraints among species. Any geometrical similarities in the shape behind diversity and the underlying developmental constraints remain unclear. Plant root tip outlines commonly exhibit a dome shape, which likely performs physiological functions, despite the diversity in size and cellular organization among distinct root classes and/or species. We carried out morphometric analysis of the primary roots of ten angiosperm species and of the lateral roots (LRs) of Arabidopsis, and found that each root outline was isometrically scaled onto a parameter-free catenary curve, a stable structure adopted for arch bridges. Using the physical model for bridges, we analogized that localized and spatially uniform occurrence of oriented cell division and expansion force the LR primordia (LRP) tip to form a catenary curve. These growth rules for the catenary curve were verified by tissue growth simulation of developing LRP development based on time-lapse imaging. Consistently, LRP outlines of mutants compromised in these rules were found to deviate from catenary curves. Our analyses demonstrate that physics-inspired growth rules constrain plant root tips to form isometrically scalable catenary curves. Highlighted Article: The dome-shaped outlines of plant root tips converge to a parameter-free catenary curve seen in arch bridges, owing to a constraint from anisotropic and localized tissue growth.
Collapse
Affiliation(s)
- Motohiro Fujiwara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka 560-0043, Japan
| | - Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama, Ikoma 630-0192, Japan
| | - Satoru Tsugawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama, Ikoma 630-0192, Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama, Ikoma 630-0192, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai, Kobe 657-8501, Japan
| | - Koichi Fujimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka 560-0043, Japan
| |
Collapse
|
62
|
Trinh DC, Alonso-Serra J, Asaoka M, Colin L, Cortes M, Malivert A, Takatani S, Zhao F, Traas J, Trehin C, Hamant O. How Mechanical Forces Shape Plant Organs. Curr Biol 2021; 31:R143-R159. [PMID: 33561417 DOI: 10.1016/j.cub.2020.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plants produce organs of various shapes and sizes. While much has been learned about genetic regulation of organogenesis, the integration of mechanics in the process is also gaining attention. Here, we consider the role of forces as instructive signals in organ morphogenesis. Turgor pressure is the primary cause of mechanical signals in developing organs. Because plant cells are glued to each other, mechanical signals act, in essence, at multiple scales, through cell wall contiguity and water flux. In turn, cells use such signals to resist mechanical stress, for instance, by reinforcing their cell walls. We show that the three elemental shapes behind plant organs - spheres, cylinders and lamina - can be actively maintained by such a mechanical feedback. Combinations of this 3-letter alphabet can generate more complex shapes. Furthermore, mechanical conflicts emerge at the boundary between domains exhibiting different growth rates or directions. These secondary mechanical signals contribute to three other organ shape features - folds, shape reproducibility and growth arrest. The further integration of mechanical signals with the molecular network offers many fruitful prospects for the scientific community, including the role of proprioception in organ shape robustness or the definition of cell and organ identities as a result of an interplay between biochemical and mechanical signals.
Collapse
Affiliation(s)
- Duy-Chi Trinh
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France; Department of Pharmacological, Medical and Agronomical Biotechnology, University of Science and Technology of Hanoi, Cau Giay District, Hanoi, Vietnam
| | - Juan Alonso-Serra
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mariko Asaoka
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Leia Colin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Matthieu Cortes
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Alice Malivert
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Shogo Takatani
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Feng Zhao
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
63
|
Vijayan A, Tofanelli R, Strauss S, Cerrone L, Wolny A, Strohmeier J, Kreshuk A, Hamprecht FA, Smith RS, Schneitz K. A digital 3D reference atlas reveals cellular growth patterns shaping the Arabidopsis ovule. eLife 2021; 10:e63262. [PMID: 33404501 PMCID: PMC7787667 DOI: 10.7554/elife.63262] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/19/2020] [Indexed: 12/23/2022] Open
Abstract
A fundamental question in biology is how morphogenesis integrates the multitude of processes that act at different scales, ranging from the molecular control of gene expression to cellular coordination in a tissue. Using machine-learning-based digital image analysis, we generated a three-dimensional atlas of ovule development in Arabidopsis thaliana, enabling the quantitative spatio-temporal analysis of cellular and gene expression patterns with cell and tissue resolution. We discovered novel morphological manifestations of ovule polarity, a new mode of cell layer formation, and previously unrecognized subepidermal cell populations that initiate ovule curvature. The data suggest an irregular cellular build-up of WUSCHEL expression in the primordium and new functions for INNER NO OUTER in restricting nucellar cell proliferation and the organization of the interior chalaza. Our work demonstrates the analytical power of a three-dimensional digital representation when studying the morphogenesis of an organ of complex architecture that eventually consists of 1900 cells.
Collapse
Affiliation(s)
- Athul Vijayan
- Plant Developmental Biology, School of Life Sciences, Technical University of MunichFreisingGermany
| | - Rachele Tofanelli
- Plant Developmental Biology, School of Life Sciences, Technical University of MunichFreisingGermany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding ResearchCologneGermany
| | - Lorenzo Cerrone
- Heidelberg Collaboratory for Image Processing, Dept. of Physics and Astronomy, Heidelberg UniversityHeidelbergGermany
| | - Adrian Wolny
- Heidelberg Collaboratory for Image Processing, Dept. of Physics and Astronomy, Heidelberg UniversityHeidelbergGermany
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Joanna Strohmeier
- Plant Developmental Biology, School of Life Sciences, Technical University of MunichFreisingGermany
| | - Anna Kreshuk
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Fred A Hamprecht
- Heidelberg Collaboratory for Image Processing, Dept. of Physics and Astronomy, Heidelberg UniversityHeidelbergGermany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding ResearchCologneGermany
| | - Kay Schneitz
- Plant Developmental Biology, School of Life Sciences, Technical University of MunichFreisingGermany
| |
Collapse
|
64
|
Roeder AHK. Arabidopsis sepals: A model system for the emergent process of morphogenesis. QUANTITATIVE PLANT BIOLOGY 2021; 2:e14. [PMID: 36798428 PMCID: PMC9931181 DOI: 10.1017/qpb.2021.12] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During development, Arabidopsis thaliana sepal primordium cells grow, divide and interact with their neighbours, giving rise to a sepal with the correct size, shape and form. Arabidopsis sepals have proven to be a good system for elucidating the emergent processes driving morphogenesis due to their simplicity, their accessibility for imaging and manipulation, and their reproducible development. Sepals undergo a basipetal gradient of growth, with cessation of cell division, slow growth and maturation starting at the tip of the sepal and progressing to the base. In this review, I discuss five recent examples of processes during sepal morphogenesis that yield emergent properties: robust size, tapered tip shape, laminar shape, scattered giant cells and complex gene expression patterns. In each case, experiments examining the dynamics of sepal development led to the hypotheses of local rules. In each example, a computational model was used to demonstrate that these local rules are sufficient to give rise to the emergent properties of morphogenesis.
Collapse
Affiliation(s)
- Adrienne H. K. Roeder
- Section of Plant Biology, School of Integrative Plant Science and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Author for correspondence: Adrienne H. K. Roeder, E-mail:
| |
Collapse
|
65
|
Harline K, Martínez-Gómez J, Specht CD, Roeder AHK. A Life Cycle for Modeling Biology at Different Scales. FRONTIERS IN PLANT SCIENCE 2021; 12:710590. [PMID: 34539702 PMCID: PMC8446664 DOI: 10.3389/fpls.2021.710590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/22/2021] [Indexed: 05/12/2023]
Abstract
Modeling has become a popular tool for inquiry and discovery across biological disciplines. Models allow biologists to probe complex questions and to guide experimentation. Modeling literacy among biologists, however, has not always kept pace with the rise in popularity of these techniques and the relevant advances in modeling theory. The result is a lack of understanding that inhibits communication and ultimately, progress in data gathering and analysis. In an effort to help bridge this gap, we present a blueprint that will empower biologists to interrogate and apply models in their field. We demonstrate the applicability of this blueprint in two case studies from distinct subdisciplines of biology; developmental-biomechanics and evolutionary biology. The models used in these fields vary from summarizing dynamical mechanisms to making statistical inferences, demonstrating the breadth of the utility of models to explore biological phenomena.
Collapse
Affiliation(s)
- Kate Harline
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
- *Correspondence: Kate Harline,
| | - Jesús Martínez-Gómez
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Chelsea D. Specht
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Adrienne H. K. Roeder
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
66
|
Zhou L, Du F, Feng S, Hu J, Lü S, Long M, Jiao Y. Epidermal restriction confers robustness to organ shapes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1853-1867. [PMID: 32725947 DOI: 10.1111/jipb.12998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The shape of comparable tissues and organs is consistent among individuals of a given species, but how this consistency or robustness is achieved remains an open question. The interaction between morphogenetic factors determines organ formation and subsequent shaping, which is ultimately a mechanical process. Using a computational approach, we show that the epidermal layer is essential for the robustness of organ geometry control. Specifically, proper epidermal restriction allows organ asymmetry maintenance, and the tensile epidermal layer is sufficient to suppress local variability in growth, leading to shape robustness. The model explains the enhanced organ shape variations in epidermal mutant plants. In addition, differences in the patterns of epidermal restriction may underlie the initial establishment of organ asymmetry. Our results show that epidermal restriction can answer the longstanding question of how cellular growth noise is averaged to produce precise organ shapes, and the findings also shed light on organ asymmetry establishment.
Collapse
Affiliation(s)
- Lüwen Zhou
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211, China
| | - Fei Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shiliang Feng
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211, China
| | - Jinrong Hu
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shouqin Lü
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mian Long
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
67
|
Abstract
Abstract
Background
Organisms show an incredibly diverse array of body and organ shapes that are both unique to their taxon and important for adapting to their environment. Achieving these specific shapes involves coordinating the many processes that transform single cells into complex organs, and regulating their growth so that they can function within a fully-formed body.
Main text
Conceptually, body and organ shape can be separated in two categories, although in practice these categories need not be mutually exclusive. Body shape results from the extent to which organs, or parts of organs, grow relative to each other. The patterns of relative organ size are characterized using allometry. Organ shape, on the other hand, is defined as the geometric features of an organ’s component parts excluding its size. Characterization of organ shape is frequently described by the relative position of homologous features, known as landmarks, distributed throughout the organ. These descriptions fall into the domain of geometric morphometrics.
Conclusion
In this review, we discuss the methods of characterizing body and organ shape, the developmental programs thought to underlie each, highlight when and how the mechanisms regulating body and organ shape might overlap, and provide our perspective on future avenues of research.
Collapse
|
68
|
Du F, Jiao Y. Mechanical control of plant morphogenesis: concepts and progress. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:16-23. [PMID: 32619966 DOI: 10.1016/j.pbi.2020.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/07/2020] [Accepted: 05/23/2020] [Indexed: 05/27/2023]
Abstract
Understanding how the genome encodes organismal shape is fundamental to biology. Extensive molecular genetic studies have uncovered genes regulating morphogenesis, that is, the generation of shape, however, such genes do not directly determine cell and tissue shape. Recent studies have started to elucidate how mechanical cues mediate the physical shaping of cells and tissues. In particular, the mechanical force generated during cell and tissue growth coordinates deformation at the tissue and organ scale. In this review, we summarize the recent progress of mechanical regulation of plant development. We focus our discussion on how patterns of mechanical stresses are formed, how mechanical cues are perceived, and how they guide cell and organ morphogenesis.
Collapse
Affiliation(s)
- Fei Du
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
69
|
Cortijo S, Locke JCW. Does Gene Expression Noise Play a Functional Role in Plants? TRENDS IN PLANT SCIENCE 2020; 25:1041-1051. [PMID: 32467064 DOI: 10.1016/j.tplants.2020.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 05/20/2023]
Abstract
Gene expression in individual cells can be surprisingly noisy. In unicellular organisms this noise can be functional; for example, by allowing a subfraction of the population to prepare for environmental stress. The role of gene expression noise in multicellular organisms has, however, remained unclear. In this review, we discuss how new techniques are revealing an unexpected level of variability in gene expression between and within genetically identical plants. We describe recent progress as well as speculate on the function of transcriptional noise as a mechanism for generating functional phenotypic diversity in plants.
Collapse
Affiliation(s)
- Sandra Cortijo
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - James C W Locke
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK.
| |
Collapse
|
70
|
Liu J, Shi M, Wang J, Zhang B, Li Y, Wang J, El-Sappah AH, Liang Y. Comparative Transcriptomic Analysis of the Development of Sepal Morphology in Tomato ( Solanum Lycopersicum L.). Int J Mol Sci 2020; 21:ijms21165914. [PMID: 32824631 PMCID: PMC7460612 DOI: 10.3390/ijms21165914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Sepal is an important component of the tomato flower and fruit that typically protects the flower in bud and functions as a support for petals and fruits. Moreover, sepal appearance influences the commercial property of tomato nowadays. However, the phenotype information and development mechanism of the natural variation of sepal morphology in the tomato is still largely unexplored. To study the developmental mechanism and to determine key genes related to downward sepal in the tomato, we compared the transcriptomes of sepals between downward sepal (dsp) mutation and the wild-type by RNA sequencing and found that the differentially expressed genes were dominantly related to cell expansion, auxin, gibberellins and cytokinin. dsp mutation affected cell size and auxin, and gibberellins and cytokinin contents in sepals. The results showed that cell enlargement or abnormal cell expansion in the adaxial part of sepals in dsp. As reported, auxin, gibberellins and cytokinin were important factors for cell expansion. Hence, dsp mutation regulated cell expansion to control sepal morphology, and auxin, gibberellins and cytokinin may mediate this process. One ARF gene and nine SAUR genes were dramatically upregulated in the sepal of the dsp mutant, whereas seven AUX/IAA genes were significantly downregulated in the sepal of dsp mutant. Further bioinformatic analyses implied that seven AUX/IAA genes might function as negative regulators, while one ARF gene and nine SAUR genes might serve as positive regulators of auxin signal transduction, thereby contributing to cell expansion in dsp sepal. Thus, our data suggest that 17 auxin-responsive genes are involved in downward sepal formation in the tomato. This study provides valuable information for dissecting the molecular mechanism of sepal morphology control in the tomato.
Collapse
Affiliation(s)
- Jingyi Liu
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Meijing Shi
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Jing Wang
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Bo Zhang
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Yushun Li
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Jin Wang
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Ahmed. H. El-Sappah
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
- Correspondence: ; Tel.: +86-29-8708-2179
| |
Collapse
|
71
|
Zhu M, Roeder AHK. Plants are better engineers: the complexity of plant organ morphogenesis. Curr Opin Genet Dev 2020; 63:16-23. [DOI: 10.1016/j.gde.2020.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 01/28/2023]
|
72
|
Abstract
Development encapsulates the morphogenesis of an organism from a single fertilized cell to a functional adult. A critical part of development is the specification of organ forms. Beyond the molecular control of morphogenesis, shape in essence entails structural constraints and thus mechanics. Revisiting recent results in biophysics and development, and comparing animal and plant model systems, we derive key overarching principles behind the formation of organs across kingdoms. In particular, we highlight how growing organs are active rather than passive systems and how such behavior plays a role in shaping the organ. We discuss the importance of considering different scales in understanding how organs form. Such an integrative view of organ development generates new questions while calling for more cross-fertilization between scientific fields and model system communities.
Collapse
Affiliation(s)
- O Hamant
- Laboratoire de Reproduction et Développement des Plantes, École normale supérieure (ENS) de Lyon, Université Claude Bernard Lyon (UCBL), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), CNRS, Université de Lyon, 69364 Lyon, France;
| | - T E Saunders
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117411; .,Institute of Molecular and Cell Biology, A*Star, Proteos, Singapore 138673
| |
Collapse
|
73
|
Moreno S, Canales J, Hong L, Robinson D, Roeder AH, Gutiérrez RA. Nitrate Defines Shoot Size through Compensatory Roles for Endoreplication and Cell Division in Arabidopsis thaliana. Curr Biol 2020; 30:1988-2000.e3. [DOI: 10.1016/j.cub.2020.03.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/29/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
|
74
|
Zhu M, Chen W, Mirabet V, Hong L, Bovio S, Strauss S, Schwarz EM, Tsugawa S, Wang Z, Smith RS, Li CB, Hamant O, Boudaoud A, Roeder AHK. Robust organ size requires robust timing of initiation orchestrated by focused auxin and cytokinin signalling. NATURE PLANTS 2020; 6:686-698. [PMID: 32451448 PMCID: PMC7299778 DOI: 10.1038/s41477-020-0666-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/15/2020] [Indexed: 05/02/2023]
Abstract
Organ size and shape are precisely regulated to ensure proper function. The four sepals in each Arabidopsis thaliana flower must maintain the same size throughout their growth to continuously enclose and protect the developing bud. Here we show that DEVELOPMENT RELATED MYB-LIKE 1 (DRMY1) is required for both timing of organ initiation and proper growth, leading to robust sepal size in Arabidopsis. Within each drmy1 flower, the initiation of some sepals is variably delayed. Late-initiating sepals in drmy1 mutants remain smaller throughout development, resulting in variability in sepal size. DRMY1 focuses the spatiotemporal signalling patterns of the plant hormones auxin and cytokinin, which jointly control the timing of sepal initiation. Our findings demonstrate that timing of organ initiation, together with growth and maturation, contribute to robust organ size.
Collapse
Affiliation(s)
- Mingyuan Zhu
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY, USA
| | - Weiwei Chen
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY, USA
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, China
| | - Vincent Mirabet
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France
- Lycée Auguste et Louis Lumière, Lyon, France
| | - Lilan Hong
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY, USA
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Simone Bovio
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France
| | - Soeren Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Satoru Tsugawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Zhou Wang
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY, USA
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- John Innes Centre, Norwich, UK
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, Stockholm, Sweden
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France
| | - Arezki Boudaoud
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France.
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
75
|
Rambaud-Lavigne L, Hay A. Floral organ development goes live. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2472-2478. [PMID: 31970400 PMCID: PMC7210761 DOI: 10.1093/jxb/eraa038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/20/2020] [Indexed: 05/19/2023]
Abstract
The chance to watch floral organs develop live is not to be missed! Here, we outline reasons why quantitative, live-cell imaging is an important approach to study floral morphogenesis, and provide a basic workflow of how to get started. We highlight key advances in morphodynamics of lateral organ development, and discuss recent work that uses live confocal imaging to address the regulation of floral organ number, its robustness, and patterning mechanisms that exploit stochasticity.
Collapse
Affiliation(s)
- Léa Rambaud-Lavigne
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Köln, Germany
| |
Collapse
|
76
|
3D morphological analysis of Arabidopsis sepals. Methods Cell Biol 2020. [PMID: 32896325 DOI: 10.1016/bs.mcb.2020.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
How complicated cell activities produce characteristic tissue and organ morphologies is an important question in plant morphogenesis. To address this question, 3D morphometry of plant organs on multiscales is indispensable. In recent years, advances in confocal microscopy with fluorescent probes that mark the cell wall or plasma membrane enable the visualization of organ morphology with submicron precision. In parallel, new quantitative and correlative imaging pipelines realize 3D image processing on 2D curved surface, facilitating the study of cell and tissue behaviors in plant organogenesis. Here, we describe methods for 3D morphometry of Arabidopsis sepals, focusing on live imaging coupled with MorphoGraphX-based 3D image processing for cellular growth analysis.
Collapse
|
77
|
Tissue-Scale Mechanical Coupling Reduces Morphogenetic Noise to Ensure Precision during Epithelial Folding. Dev Cell 2020; 53:212-228.e12. [PMID: 32169160 DOI: 10.1016/j.devcel.2020.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 12/13/2019] [Accepted: 02/13/2020] [Indexed: 12/18/2022]
Abstract
Morphological constancy is universal in developing systems. It is unclear whether precise morphogenesis stems from faithful mechanical interpretation of gene expression patterns. We investigate the formation of the cephalic furrow, an epithelial fold that is precisely positioned with a linear morphology. Fold initiation is specified by a precise genetic code with single-cell row resolution. This positional code activates and spatially confines lateral myosin contractility to induce folding. However, 20% of initiating cells are mis-specified because of fluctuating myosin intensities at the cellular level. Nevertheless, the furrow remains linearly aligned. We find that lateral myosin is planar polarized, integrating contractile membrane interfaces into supracellular "ribbons." Local reduction of mechanical coupling at the "ribbons" using optogenetics decreases furrow linearity. Furthermore, 3D vertex modeling indicates that polarized, interconnected contractility confers morphological robustness against noise. Thus, tissue-scale mechanical coupling functions as a denoising mechanism to ensure morphogenetic precision despite noisy decoding of positional information.
Collapse
|
78
|
Long Y, Cheddadi I, Mosca G, Mirabet V, Dumond M, Kiss A, Traas J, Godin C, Boudaoud A. Cellular Heterogeneity in Pressure and Growth Emerges from Tissue Topology and Geometry. Curr Biol 2020; 30:1504-1516.e8. [PMID: 32169211 DOI: 10.1016/j.cub.2020.02.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 01/22/2023]
Abstract
Cell-to-cell heterogeneity prevails in many systems, as exemplified by cell growth, although the origin and function of such heterogeneity are often unclear. In plants, growth is physically controlled by cell wall mechanics and cell hydrostatic pressure, alias turgor pressure. Whereas cell wall heterogeneity has received extensive attention, the spatial variation of turgor pressure is often overlooked. Here, combining atomic force microscopy and a physical model of pressurized cells, we show that turgor pressure is heterogeneous in the Arabidopsis shoot apical meristem, a population of stem cells that generates all plant aerial organs. In contrast with cell wall mechanical properties that appear to vary stochastically between neighboring cells, turgor pressure anticorrelates with cell size and cell neighbor number (local topology), in agreement with the prediction by our model of tissue expansion, which couples cell wall mechanics and tissue hydraulics. Additionally, our model predicts two types of correlations between pressure and cellular growth rate, where high pressure may lead to faster- or slower-than-average growth, depending on cell wall extensibility, yield threshold, osmotic pressure, and hydraulic conductivity. The meristem exhibits one of these two regimes, depending on conditions, suggesting that, in this tissue, water conductivity may contribute to growth control. Our results unravel cell pressure as a source of patterned heterogeneity and illustrate links between local topology, cell mechanical state, and cell growth, with potential roles in tissue homeostasis.
Collapse
Affiliation(s)
- Yuchen Long
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France.
| | - Ibrahim Cheddadi
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Gabriella Mosca
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Vincent Mirabet
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France; Lycée A. et L. Lumière, 69372 Lyon Cedex 08, France
| | - Mathilde Dumond
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Annamaria Kiss
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Jan Traas
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France.
| |
Collapse
|
79
|
Huizar F, Soundarrajan D, Paravitorghabeh R, Zartman J. Interplay between morphogen-directed positional information systems and physiological signaling. Dev Dyn 2020; 249:328-341. [PMID: 31794137 PMCID: PMC7328709 DOI: 10.1002/dvdy.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
The development of an organism from an undifferentiated single cell into a spatially complex structure requires spatial patterning of cell fates across tissues. Positional information, proposed by Lewis Wolpert in 1969, has led to the characterization of many components involved in regulating morphogen signaling activity. However, how morphogen gradients are established, maintained, and interpreted by cells still is not fully understood. Quantitative and systems-based approaches are increasingly needed to define general biological design rules that govern positional information systems in developing organisms. This short review highlights a selective set of studies that have investigated the roles of physiological signaling in modulating and mediating morphogen-based pattern formation. Similarities between neural transmission and morphogen-based pattern formation mechanisms suggest underlying shared principles of active cell-based communication. Within larger tissues, neural networks provide directed information, via physiological signaling, that supplements positional information through diffusion. Further, mounting evidence demonstrates that physiological signaling plays a role in ensuring robustness of morphogen-based signaling. We conclude by highlighting several outstanding questions regarding the role of physiological signaling in morphogen-based pattern formation. Elucidating how physiological signaling impacts positional information is critical for understanding the close coupling of developmental and cellular processes in the context of development, disease, and regeneration.
Collapse
Affiliation(s)
- Francisco Huizar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, South Bend, Indiana
- Bioengineering Graduate Program, University of Notre Dame, South Bend, Indiana
| | - Dharsan Soundarrajan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, South Bend, Indiana
| | - Ramezan Paravitorghabeh
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, South Bend, Indiana
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, South Bend, Indiana
- Bioengineering Graduate Program, University of Notre Dame, South Bend, Indiana
| |
Collapse
|
80
|
Li X, Zhao Z, Xu W, Fan R, Xiao L, Ma X, Du Z. Systems Properties and Spatiotemporal Regulation of Cell Position Variability during Embryogenesis. Cell Rep 2020; 26:313-321.e7. [PMID: 30625313 DOI: 10.1016/j.celrep.2018.12.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/06/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
An intriguing question in developmental biology is how do developmental processes achieve high reproducibility among individuals? An in-depth analysis of information contained in phenotypic variability provides an important perspective to address this question. In this work, we present a quantitative and functional analysis of cell position variability during Caenorhabditis elegans embryogenesis. We find that cell position variability is highly deterministic and regulated by intrinsic and extrinsic mechanisms. Positional variability is determined by cell lineage identity and is coupled to diverse developmental properties of cells, including embryonic localization, cell contact, and left-right symmetry. Temporal dynamics of cell position variability are highly concordant, and fate specification contributes to a systems-wide reduction of variability that could provide a buffering strategy. Positional variability is stringently regulated throughout embryogenesis and cell-cell junctions function to restrict variability. Our results provide insight into systems properties and spatiotemporal control of cellular variability during development.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguang Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weina Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehua Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
81
|
Tsugawa S. Suppression of soft spots and excited modes in the shape deformation model with spatio-temporal growth noise. J Theor Biol 2020; 486:110092. [DOI: 10.1016/j.jtbi.2019.110092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/20/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
|
82
|
Olas JJ, Fichtner F, Apelt F. All roads lead to growth: imaging-based and biochemical methods to measure plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:11-21. [PMID: 31613967 PMCID: PMC6913701 DOI: 10.1093/jxb/erz406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/28/2019] [Indexed: 05/31/2023]
Abstract
Plant growth is a highly complex biological process that involves innumerable interconnected biochemical and signalling pathways. Many different techniques have been developed to measure growth, unravel the various processes that contribute to plant growth, and understand how a complex interaction between genotype and environment determines the growth phenotype. Despite this complexity, the term 'growth' is often simplified by researchers; depending on the method used for quantification, growth is viewed as an increase in plant or organ size, a change in cell architecture, or an increase in structural biomass. In this review, we summarise the cellular and molecular mechanisms underlying plant growth, highlight state-of-the-art imaging and non-imaging-based techniques to quantitatively measure growth, including a discussion of their advantages and drawbacks, and suggest a terminology for growth rates depending on the type of technique used.
Collapse
Affiliation(s)
- Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
| | - Franziska Fichtner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| |
Collapse
|
83
|
Gebreselassie G, Berihulay H, Jiang L, Ma Y. Review on Genomic Regions and Candidate Genes Associated with Economically Important Production and Reproduction Traits in Sheep ( Ovies aries). Animals (Basel) 2019; 10:E33. [PMID: 31877963 PMCID: PMC7022721 DOI: 10.3390/ani10010033] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/24/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
Sheep (Ovis aries) is one of the most economically, culturally, and socially important domestic animals. They are reared primarily for meat, milk, wool, and fur production. Sheep were reared using natural selection for a long period of time to offer these traits. In fact, this production system has been slowing the productivity and production potential of the sheep. To improve production efficiency and productivity of this animal through genetic improvement technologies, understanding the genetic background of traits such as body growth, weight, carcass quality, fat percent, fertility, milk yield, wool quality, horn type, and coat color is essential. With the development and utilization of animal genotyping technologies and gene identification methods, many functional genes and genetic variants associated with economically important phenotypic traits have been identified and annotated. This is useful and presented an opportunity to increase the pace of animal genetic gain. Quantitative trait loci and genome wide association study have been playing an important role in identifying candidate genes and animal characterization. This review provides comprehensive information on the identified genomic regions and candidate genes associated with production and reproduction traits, and gene function in sheep.
Collapse
Affiliation(s)
- Gebremedhin Gebreselassie
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (G.G.); (H.B.); (L.J.)
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Department of Agricultural Biotechnology, Biotechnology Center, Ethiopian Biotechnology Institute, Ministry of Innovation and Technology, Addis Ababa 1000, Ethiopia
| | - Haile Berihulay
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (G.G.); (H.B.); (L.J.)
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Lin Jiang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (G.G.); (H.B.); (L.J.)
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuehui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (G.G.); (H.B.); (L.J.)
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
84
|
Ripoll JJ, Zhu M, Brocke S, Hon CT, Yanofsky MF, Boudaoud A, Roeder AHK. Growth dynamics of the Arabidopsis fruit is mediated by cell expansion. Proc Natl Acad Sci U S A 2019; 116:25333-25342. [PMID: 31757847 PMCID: PMC6911193 DOI: 10.1073/pnas.1914096116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fruit have evolved a sophisticated tissue and cellular architecture to secure plant reproductive success. Postfertilization growth is perhaps the most dramatic event during fruit morphogenesis. Several studies have proposed that fertilized ovules and developing seeds initiate signaling cascades to coordinate and promote the growth of the accompanying fruit tissues. This dynamic process allows the fruit to conspicuously increase its size and acquire its final shape and means for seed dispersal. All these features are key for plant survival and crop yield. Despite its importance, we lack a high-resolution spatiotemporal map of how postfertilization fruit growth proceeds at the cellular level. In this study, we have combined live imaging, mutant backgrounds in which fertilization can be controlled, and computational modeling to monitor and predict postfertilization fruit growth in Arabidopsis We have uncovered that, unlike leaves, sepals, or roots, fruit do not exhibit a spatial separation of cell division and expansion domains; instead, there is a separation into temporal stages with fertilization as the trigger for transitioning to cell expansion, which drives postfertilization fruit growth. We quantified the coordination between fertilization and fruit growth by imaging no transmitting tract (ntt) mutants, in which fertilization fails in the bottom half of the fruit. By combining our experimental data with computational modeling, we delineated the mobility properties of the seed-derived signaling cascades promoting growth in the fruit. Our study provides the basis for generating a comprehensive understanding of the molecular and cellular mechanisms governing fruit growth and shape.
Collapse
Affiliation(s)
- Juan-José Ripoll
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116;
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093-0116
| | - Mingyuan Zhu
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Stephanie Brocke
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Cindy T Hon
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116
| | - Martin F Yanofsky
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093-0116
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieur de Lyon, Claud Bernard University Lyon 1, CNRS, Institut National de la Recherche Agronomique, F-69342 Lyon, France
| | - Adrienne H K Roeder
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853;
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
85
|
Osmotic Treatment for Quantifying Cell Wall Elasticity in the Sepal of Arabidopsis thaliana. Methods Mol Biol 2019; 2094:101-112. [PMID: 31797295 DOI: 10.1007/978-1-0716-0183-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Elastic properties of the cell wall play a key role in regulating plant growth and morphogenesis; however, measuring them in vivo remains a challenge. Although several new methods have recently become available, they all have substantial drawbacks. Here we describe a detailed protocol for osmotic treatments, which is based on the idea of releasing the turgor pressure within the cell and measuring the resulting deformation. When placed in hyperosmotic solution, cells lose water via osmosis and shrink. Confocal images of the tissue, taken before and after this treatment, are quantified using high-resolution surface projections in MorphoGraphX. The cell shrinkage observed can then be used to estimate cell wall elasticity. This allows qualitative comparisons of cell wall properties within organs or between genotypes and can be combined with mechanical simulations to give quantitative estimates of the cells' Young's moduli. We use the abaxial sepal of Arabidopsis thaliana as an easily accessible model system to present our approach, but it can potentially be used on many other plant organs. The main challenges of this technique are choosing the optimal concentration of the hyperosmotic solution and producing high-quality confocal images (with cell walls visualized) good enough for segmentation in MorphoGraphX.
Collapse
|
86
|
Abstract
The genetic control of the characteristic cell sizes of different species and tissues is a long-standing enigma. Plants are convenient for studying this question in a multicellular context, as their cells do not move and are easily tracked and measured from organ initiation in the meristems to subsequent morphogenesis and differentiation. In this article, we discuss cell size control in plants compared with other organisms. As seen from yeast cells to mammalian cells, size homeostasis is maintained cell autonomously in the shoot meristem. In developing organs, vacuolization contributes to cell size heterogeneity and may resolve conflicts between growth control at the cellular and organ levels. Molecular mechanisms for cell size control have implications for how cell size responds to changes in ploidy, which are particularly important in plant development and evolution. We also discuss comparatively the functional consequences of cell size and their potential repercussions at higher scales, including genome evolution.
Collapse
Affiliation(s)
- Marco D'Ario
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Robert Sablowski
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
87
|
Khadka J, Julien JD, Alim K. Feedback from Tissue Mechanics Self-Organizes Efficient Outgrowth of Plant Organ. Biophys J 2019; 117:1995-2004. [PMID: 31727319 DOI: 10.1016/j.bpj.2019.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/30/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Plant organ outgrowth superficially appears like the continuous mechanical deformation of a sheet of cells. Yet, how precisely cells as individual mechanical entities can act to morph a tissue reliably and efficiently into three dimensions during outgrowth is still puzzling, especially when cells are tightly connected as in plant tissue. In plants, the mechanics of cells within a tissue is particularly well-defined because individual cell growth is essentially the mechanical yielding of the cell wall in response to internal turgor pressure. Cell-wall stiffness is controlled by biological signaling, which is impacted by stresses, and hence, cell growth is observed to respond to mechanical stresses building up within a tissue. What is the role of the mechanical feedback during morphing of tissue in three dimensions? Here, we develop a three-dimensional vertex model to investigate tissue mechanics at the onset of organ outgrowth at the tip of a plant shoot. We find that organ height is primarily governed by the ratio of growth rates of faster-growing cells initiating the organ versus slower-growing cells surrounding them. Remarkably, the outgrowth rate is higher when cell growth responds to the tissue-wide mechanical stresses. Our quantitative analysis of simulation data shows that tissue mechanical feedback on cell growth can act via a twofold mechanism. First, the feedback guides patterns of cellular growth. Second, the feedback modifies the stress patterns on the cells, consequently amplifying and propagating growth anisotropies. This mechanism may allow plants to grow organs efficiently out of the meristem by reorganizing the cellular growth rather than inflating growth rates.
Collapse
Affiliation(s)
- Jason Khadka
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Jean-Daniel Julien
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Karen Alim
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany; Physik Department, Technical University of Munich, Munich, Germany.
| |
Collapse
|
88
|
NEEDLE1 encodes a mitochondria localized ATP-dependent metalloprotease required for thermotolerant maize growth. Proc Natl Acad Sci U S A 2019; 116:19736-19742. [PMID: 31501327 DOI: 10.1073/pnas.1907071116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meristems are highly regulated structures ultimately responsible for the formation of branches, lateral organs, and stems, and thus directly affect plant architecture and crop yield. In meristems, genetic networks, hormones, and signaling molecules are tightly integrated to establish robust systems that can adapt growth to continuous inputs from the environment. Here we characterized needle1 (ndl1), a temperature-sensitive maize mutant that displays severe reproductive defects and strong genetic interactions with known mutants affected in the regulation of the plant hormone auxin. NDL1 encodes a mitochondria-localized ATP-dependent metalloprotease belonging to the FILAMENTATION TEMPERATURE-SENSITIVE H (FTSH) family. Together with the hyperaccumulation of reactive oxygen species (ROS), ndl1 inflorescences show up-regulation of a plethora of stress-response genes. We provide evidence that these conditions alter endogenous auxin levels and disrupt primordia initiation in meristems. These findings connect meristem redox status and auxin in the control of maize growth.
Collapse
|
89
|
Kirchhelle C, Garcia-Gonzalez D, Irani NG, Jérusalem A, Moore I. Two mechanisms regulate directional cell growth in Arabidopsis lateral roots. eLife 2019; 8:e47988. [PMID: 31355749 PMCID: PMC6748828 DOI: 10.7554/elife.47988] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/27/2019] [Indexed: 12/11/2022] Open
Abstract
Morphogenesis in plants depends critically on directional (anisotropic) growth. This occurs principally perpendicular to the net orientation of cellulose microfibrils (CMFs), which is in turn controlled by cortical microtubules (CMTs). In young lateral roots of Arabidopsis thaliana, growth anisotropy also depends on RAB-A5c, a plant-specific small GTPase that specifies a membrane trafficking pathway to the geometric edges of cells. Here we investigate the functional relationship between structural anisotropy at faces and RAB-A5c activity at edges during lateral root development. We show that surprisingly, inhibition of RAB-A5c function is associated with increased CMT/CMF anisotropy. We present genetic, pharmacological, and modelling evidence that this increase in CMT/CMF anisotropy partially compensates for loss of an independent RAB-A5c-mediated mechanism that maintains anisotropic growth in meristematic cells. We show that RAB-A5c associates with CMTs at cell edges, indicating that CMTs act as an integration point for both mechanisms controlling cellular growth anisotropy in lateral roots.
Collapse
Affiliation(s)
| | - Daniel Garcia-Gonzalez
- Department of Engineering ScienceUniversity of OxfordOxfordUnited Kingdom
- Department of Continuum Mechanics and Structural AnalysisUniversity Carlos III of MadridMadridSpain
| | - Niloufer G Irani
- Department of Plant SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Antoine Jérusalem
- Department of Engineering ScienceUniversity of OxfordOxfordUnited Kingdom
| | - Ian Moore
- Department of Plant SciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
90
|
Zheng L, Nagpal P, Villarino G, Trinidad B, Bird L, Huang Y, Reed JW. miR167 limits anther growth to potentiate anther dehiscence. Development 2019; 146:dev.174375. [PMID: 31262724 DOI: 10.1242/dev.174375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/21/2019] [Indexed: 01/28/2023]
Abstract
In flowering plants, anther dehiscence and pollen release are essential for sexual reproduction. Anthers dehisce after cell wall degradation weakens stomium cell junctions in each anther locule, and desiccation creates mechanical forces that open the locules. Either effect or both together may break stomium cell junctions. The microRNA miR167 negatively regulates ARF6 and ARF8, which encode auxin response transcription factors. Arabidopsis mARF6 or mARF8 plants with mutated miR167 target sites have defective anther dehiscence and ovule development. Null mir167a mutations recapitulated mARF6 and mARF8 anther and ovule phenotypes, indicating that MIR167a is the main miR167 precursor gene that delimits ARF6 and ARF8 expression in these organs. Anthers of mir167a or mARF6/8 plants overexpressed genes encoding cell wall loosening functions associated with cell expansion, and grew larger than wild-type anthers did starting at flower stage 11. Experimental desiccation enabled dehiscence of miR167-deficient anthers, indicating competence to dehisce. Conversely, high humidity conditions delayed anther dehiscence in wild-type flowers. These results support a model in which miR167-mediated anther growth arrest permits anther dehiscence. Without miR167 regulation, excess anther growth delays dehiscence by prolonging desiccation.
Collapse
Affiliation(s)
- Lanjie Zheng
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.,College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Punita Nagpal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Gonzalo Villarino
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Brendan Trinidad
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Laurina Bird
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jason W Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA .,Laboratoire de Reproduction et Developpement des Plantes, Ecole Normale Superieure de Lyon, 69342 Lyon, France
| |
Collapse
|
91
|
Echevin E, Le Gloanec C, Skowrońska N, Routier-Kierzkowska AL, Burian A, Kierzkowski D. Growth and biomechanics of shoot organs. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3573-3585. [PMID: 31037307 DOI: 10.1093/jxb/erz205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Plant organs arise through complex interactions between biological and physical factors that control morphogenesis. While there has been tremendous progress in the understanding of the genetics behind development, we know much less about how mechanical forces control growth in plants. In recent years, new multidisciplinary research combining genetics, live-imaging, physics, and computational modeling has begun to fill this gap by revealing the crucial role of biomechanics in the establishment of plant organs. In this review, we provide an overview of our current understanding of growth during initiation, patterning, and expansion of shoot lateral organs. We discuss how growth is controlled by physical forces, and how mechanical stresses generated during growth can control morphogenesis at the level of both cells and tissues. Understanding the mechanical basis of growth and morphogenesis in plants is in its early days, and many puzzling facts are yet to be deciphered.
Collapse
Affiliation(s)
- Emilie Echevin
- Institut de Recherche en Biologie Végétale, Department of Biological Sciences, University of Montreal, Montréal, QC, Canada
| | - Constance Le Gloanec
- Institut de Recherche en Biologie Végétale, Department of Biological Sciences, University of Montreal, Montréal, QC, Canada
| | - Nikolina Skowrońska
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska, Katowice, Poland
| | - Anne-Lise Routier-Kierzkowska
- Institut de Recherche en Biologie Végétale, Department of Biological Sciences, University of Montreal, Montréal, QC, Canada
| | - Agata Burian
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska, Katowice, Poland
| | - Daniel Kierzkowski
- Institut de Recherche en Biologie Végétale, Department of Biological Sciences, University of Montreal, Montréal, QC, Canada
| |
Collapse
|
92
|
Abstract
Differential growth is the driver of tissue morphogenesis in plants, and also plays a fundamental role in animal development. Although the contributions of growth to shape change have been captured through modelling tissue sheets or isotropic volumes, a framework for modelling both isotropic and anisotropic volumetric growth in three dimensions over large changes in size and shape has been lacking. Here, we describe an approach based on finite-element modelling of continuous volumetric structures, and apply it to a range of forms and growth patterns, providing mathematical validation for examples that admit analytic solution. We show that a major difference between sheet and bulk tissues is that the growth of bulk tissue is more constrained, reducing the possibility of tissue conflict resolution through deformations such as buckling. Tissue sheets or cylinders may be generated from bulk shapes through anisotropic specified growth, oriented by a polarity field. A second polarity field, orthogonal to the first, allows sheets with varying lengths and widths to be generated, as illustrated by the wide range of leaf shapes observed in nature. The framework we describe thus provides a key tool for developing hypotheses for plant morphogenesis and is also applicable to other tissues that deform through differential growth or contraction.
Collapse
Affiliation(s)
- Richard Kennaway
- Cell and Developmental Biology, John Innes Centre , Norwich , UK
| | - Enrico Coen
- Cell and Developmental Biology, John Innes Centre , Norwich , UK
| |
Collapse
|
93
|
Nakamasu A, Higaki T. Theoretical models for branch formation in plants. JOURNAL OF PLANT RESEARCH 2019; 132:325-333. [PMID: 31004242 PMCID: PMC7082385 DOI: 10.1007/s10265-019-01107-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Various branch architectures are observed in living organisms including plants. Branch formation has traditionally been an area of interest in the field of developmental biology, and theoretical approaches are now commonly used to understand the complex mechanisms involved. In this review article, we provide an overview of theoretical approaches including mathematical models and computer simulations for studying plant branch formation. These approaches cover a wide range of topics. In particular, we focus on the importance of positional information in branch formation, which has been especially revealed by theoretical research in plants including computations of developmental processes.
Collapse
Affiliation(s)
- Akiko Nakamasu
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuou-ku, Kumamoto, 860-8555, Japan.
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuou-ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
94
|
Verger S, Liu M, Hamant O. Mechanical Conflicts in Twisting Growth Revealed by Cell-Cell Adhesion Defects. FRONTIERS IN PLANT SCIENCE 2019; 10:173. [PMID: 30858857 PMCID: PMC6397936 DOI: 10.3389/fpls.2019.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/01/2019] [Indexed: 05/31/2023]
Abstract
Many plants grow organs and tissues with twisted shapes. Arabidopsis mutants with impaired microtubule dynamics exhibit such a phenotype constitutively. Although the activity of the corresponding microtubule regulators is better understood at the molecular level, how large-scale twisting can emerge in the mutants remains largely unknown. Classically, oblique cortical microtubules would constrain the deposition of cellulose microfibrils in cells, and such conflicts at the cell level would be relaxed at the tissue scale by supracellular torsion. This model implicitly assumes that cell-cell adhesion is a key step to transpose local mechanical conflicts into a macroscopic twisting phenotype. Here we tested this prediction using the quasimodo1 mutant, which displays cell-cell adhesion defects. Using the spriral2/tortifolia1 mutant with hypocotyl helical growth, we found that qua1-induced cell-cell adhesion defects restore straight growth in qua1-1 spr2-2. Detached cells in qua1-1 spr2-2 displayed helical growth, confirming that straight growth results from the lack of mechanical coupling between cells rather than a restoration of SPR2 activity in the qua1 mutant. Because adhesion defects in qua1 depend on tension in the outer wall, we also showed that hypocotyl twisting in qua1-1 spr2-2 could be restored when decreasing the matrix potential of the growth medium, i.e., by reducing the magnitude of the pulling force between adjacent cells, in the double mutant. Interestingly, the induction of straight growth in qua1-1 spr2-2 could be achieved beyond hypocotyls, as leaves also displayed a flat phenotype in the double mutant. Altogether, these results provide formal experimental support for a scenario in which twisted growth in spr2 mutant would result from the relaxation of local mechanical conflicts between adjacent cells via global organ torsion.
Collapse
|
95
|
Long Y, Boudaoud A. Emergence of robust patterns from local rules during plant development. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:127-137. [PMID: 30577002 DOI: 10.1016/j.pbi.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The formation of spatial and temporal patterns is an essential component of organismal development. Patterns can be observed on every level from subcellular to organismal and may emerge from local rules that correspond to the interactions between molecules, cells, or tissues. The emergence of robust patterns may seem in contradiction with the prominent heterogeneity at subcellular and cellular scales, however it has become increasingly clear that heterogeneity can be instrumental for pattern formation. Here we review recent examples in plant development, involving genetic regulation, cell arrangement, growth and signal gradient. We discuss how patterns emerge from local rules, whether heterogeneity is stochastic or can be patterned, and whether stochastic noise is amplified or requires filtering for robust patterns to be achieved. We also stress the importance of modelling in investigating such questions.
Collapse
Affiliation(s)
- Yuchen Long
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| |
Collapse
|
96
|
Kierzkowski D, Routier-Kierzkowska AL. Cellular basis of growth in plants: geometry matters. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:56-63. [PMID: 30308452 DOI: 10.1016/j.pbi.2018.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 05/28/2023]
Abstract
The growth of individual cells underlies the development of biological forms. In plants, cells are interconnected by rigid walls, fixing their position with respect to one another and generating mechanical feedbacks between cells. Current research is shedding new light on how plant growth is controlled by physical inputs at the level of individual cells and growing tissues. In this review, we discuss recent progress in our understanding of the cellular basis of growth from a biomechanical perspective. We describe the role of the cell wall and turgor pressure in growth and highlight the often-overlooked role of cell geometry in this process. It is becoming apparent that a combination of experimental and theoretical approaches is required to answer new emerging questions in the biomechanics of plant morphogenesis. We summarise how this multidisciplinary approach brings us closer to a unified understanding of the generation of biological forms in plants.
Collapse
Affiliation(s)
- Daniel Kierzkowski
- Plant Science Research Institute, Department of Biological Sciences, University of Montreal, 4101 Sherbrooke Est, Montréal H1X 2B2, QC, Canada
| | - Anne-Lise Routier-Kierzkowska
- Plant Science Research Institute, Department of Biological Sciences, University of Montreal, 4101 Sherbrooke Est, Montréal H1X 2B2, QC, Canada.
| |
Collapse
|
97
|
Cortijo S, Aydin Z, Ahnert S, Locke JC. Widespread inter-individual gene expression variability in Arabidopsis thaliana. Mol Syst Biol 2019; 15:e8591. [PMID: 30679203 PMCID: PMC6346214 DOI: 10.15252/msb.20188591] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A fundamental question in biology is how gene expression is regulated to give rise to a phenotype. However, transcriptional variability is rarely considered although it could influence the relationship between genotype and phenotype. It is known in unicellular organisms that gene expression is often noisy rather than uniform, and this has been proposed to be beneficial when environmental conditions are unpredictable. However, little is known about inter-individual transcriptional variability in multicellular organisms. Using transcriptomic approaches, we analysed gene expression variability between individual Arabidopsis thaliana plants growing in identical conditions over a 24-h time course. We identified hundreds of genes that exhibit high inter-individual variability and found that many are involved in environmental responses, with different classes of genes variable between the day and night. We also identified factors that might facilitate gene expression variability, such as gene length, the number of transcription factors regulating the genes and the chromatin environment. These results shed new light on the impact of transcriptional variability in gene expression regulation in plants.
Collapse
Affiliation(s)
- Sandra Cortijo
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Zeynep Aydin
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Sebastian Ahnert
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - James Cw Locke
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
98
|
Modulation of tissue growth heterogeneity by responses to mechanical stress. Proc Natl Acad Sci U S A 2019; 116:1940-1945. [PMID: 30674660 DOI: 10.1073/pnas.1815342116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Morphogenesis often yields organs with robust size and shapes, whereas cell growth and deformation feature significant spatiotemporal variability. Here, we investigate whether tissue responses to mechanical signals contribute to resolve this apparent paradox. We built a model of growing tissue made of fiber-like material, which may account for the cytoskeleton, polar cell-cell adhesion, or the extracellular matrix in animals and for the cell wall in plants. We considered the synthesis and remodeling of this material, as well as the modulation of synthesis by isotropic and anisotropic response to mechanical stress. Formally, our model describes an expanding, mechanoresponsive, nematic, and active fluid. We show that mechanical responses buffer localized perturbations, with two possible regimes-hyporesponsive and hyperresponsive-and the transition between the two corresponds to a minimum value of the relaxation time. Whereas robustness of shapes suggests that growth fluctuations are confined to small scales, our model yields growth fluctuations that have long-range correlations. This indicates that growth fluctuations are a significant source of heterogeneity in development. Nevertheless, we find that mechanical responses may dampen such fluctuations, with a specific magnitude of anisotropic response that minimizes heterogeneity of tissue contours. We finally discuss how our predictions might apply to the development of plants and animals. Altogether, our results call for the systematic quantification of fluctuations in growing tissues.
Collapse
|
99
|
Tofanelli R, Vijayan A, Scholz S, Schneitz K. Protocol for rapid clearing and staining of fixed Arabidopsis ovules for improved imaging by confocal laser scanning microscopy. PLANT METHODS 2019; 15:120. [PMID: 31673277 PMCID: PMC6814113 DOI: 10.1186/s13007-019-0505-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/17/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND A salient topic in developmental biology relates to the molecular and genetic mechanisms that underlie tissue morphogenesis. Modern quantitative approaches to this central question frequently involve digital cellular models of the organ or tissue under study. The ovules of the model species Arabidopsis thaliana have long been established as a model system for the study of organogenesis in plants. While ovule development in Arabidopsis can be followed by a variety of different imaging techniques, no experimental strategy presently exists that enables an easy and straightforward investigation of the morphology of internal tissues of the ovule with cellular resolution. RESULTS We developed a protocol for rapid and robust confocal microscopy of fixed Arabidopsis ovules of all stages. The method combines clearing of fixed ovules in ClearSee solution with marking the cell outline using the cell wall stain SCRI Renaissance 2200 and the nuclei with the stain TO-PRO-3 iodide. We further improved the microscopy by employing a homogenous immersion system aimed at minimizing refractive index differences. The method allows complete inspection of the cellular architecture even deep within the ovule. Using the new protocol we were able to generate digital three-dimensional models of ovules of various stages. CONCLUSIONS The protocol enables the quick and reproducible imaging of fixed Arabidopsis ovules of all developmental stages. From the imaging data three-dimensional digital ovule models with cellular resolution can be rapidly generated using image analysis software, for example MorphographX. Such digital models will provide the foundation for a future quantitative analysis of ovule morphogenesis in a model species.
Collapse
Affiliation(s)
- Rachele Tofanelli
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Athul Vijayan
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Sebastian Scholz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
- Present Address: EU Research Lab, Technische Hochschule Wildau, 15745 Wildau, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
| |
Collapse
|
100
|
Williamson JJ, Salbreux G. Stability and Roughness of Interfaces in Mechanically Regulated Tissues. PHYSICAL REVIEW LETTERS 2018; 121:238102. [PMID: 30576196 PMCID: PMC6420071 DOI: 10.1103/physrevlett.121.238102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 07/03/2018] [Indexed: 05/26/2023]
Abstract
Cell division and death can be regulated by the mechanical forces within a tissue. We study the consequences for the stability and roughness of a propagating interface by analyzing a model of mechanically regulated tissue growth in the regime of small driving forces. For an interface driven by homeostatic pressure imbalance or leader-cell motility, long and intermediate-wavelength instabilities arise, depending, respectively, on an effective viscosity of cell number change, and on substrate friction. A further mechanism depends on the strength of directed motility forces acting in the bulk. We analyze the fluctuations of a stable interface subjected to cell-level stochasticity, and find that mechanical feedback can help preserve reproducibility at the tissue scale. Our results elucidate mechanisms that could be important for orderly interface motion in developing tissues.
Collapse
Affiliation(s)
- John J Williamson
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Guillaume Salbreux
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| |
Collapse
|