51
|
Repina NA, Johnson HJ, Bao X, Zimmermann JA, Joy DA, Bi SZ, Kane RS, Schaffer DV. Optogenetic control of Wnt signaling models cell-intrinsic embryogenic patterning using 2D human pluripotent stem cell culture. Development 2023; 150:dev201386. [PMID: 37401411 PMCID: PMC10399980 DOI: 10.1242/dev.201386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
In embryonic stem cell (ESC) models for early development, spatially and temporally varying patterns of signaling and cell types emerge spontaneously. However, mechanistic insight into this dynamic self-organization is limited by a lack of methods for spatiotemporal control of signaling, and the relevance of signal dynamics and cell-to-cell variability to pattern emergence remains unknown. Here, we combine optogenetic stimulation, imaging and transcriptomic approaches to study self-organization of human ESCs (hESC) in two-dimensional (2D) culture. Morphogen dynamics were controlled via optogenetic activation of canonical Wnt/β-catenin signaling (optoWnt), which drove broad transcriptional changes and mesendoderm differentiation at high efficiency (>99% cells). When activated within cell subpopulations, optoWnt induced cell self-organization into distinct epithelial and mesenchymal domains, mediated by changes in cell migration, an epithelial to mesenchymal-like transition and TGFβ signaling. Furthermore, we demonstrate that such optogenetic control of cell subpopulations can be used to uncover signaling feedback mechanisms between neighboring cell types. These findings reveal that cell-to-cell variability in Wnt signaling is sufficient to generate tissue-scale patterning and establish a hESC model system for investigating feedback mechanisms relevant to early human embryogenesis.
Collapse
Affiliation(s)
- Nicole A. Repina
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
| | - Hunter J. Johnson
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
| | - Xiaoping Bao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Joshua A. Zimmermann
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - David A. Joy
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Shirley Z. Bi
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Ravi S. Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David V. Schaffer
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
52
|
Overeem AW, Chang YW, Moustakas I, Roelse CM, Hillenius S, Helm TVD, Schrier VFVD, Gonçalves MA, Mei H, Freund C, Chuva de Sousa Lopes SM. Efficient and scalable generation of primordial germ cells in 2D culture using basement membrane extract overlay. CELL REPORTS METHODS 2023; 3:100488. [PMID: 37426764 PMCID: PMC10326346 DOI: 10.1016/j.crmeth.2023.100488] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/02/2023] [Accepted: 05/02/2023] [Indexed: 07/11/2023]
Abstract
Current methods to generate human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs) can be inefficient, and it is challenging to generate sufficient hPGCLCs to optimize in vitro gametogenesis. We present a differentiation method that uses diluted basement membrane extract (BMEx) and low BMP4 concentration to efficiently induce hPGCLC differentiation in scalable 2D cell culture. We show that BMEx overlay potentiated BMP/SMAD signaling, induced lumenogenesis, and increased expression of key hPGCLC-progenitor markers such as TFAP2A and EOMES. hPGCLCs that were generated using the BMEx overlay method were able to upregulate more mature germ cell markers, such as DAZL and DDX4, in human fetal ovary reconstitution culture. These findings highlight the importance of BMEx during hPGCLC differentiation and demonstrate the potential of the BMEx overlay method to interrogate the formation of PGCs and amnion in humans, as well as to investigate the next steps to achieve in vitro gametogenesis.
Collapse
Affiliation(s)
- Arend W. Overeem
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Yolanda W. Chang
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Celine M. Roelse
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Sanne Hillenius
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Talia Van Der Helm
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | | | - Manuel A.F.V. Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Christian Freund
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- Leiden University Medical Center hiPSC Hotel, Leiden University Medical Centre, 2333 ZC Leiden, the Netherlands
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
53
|
Liu W, Shrestha R, Lowe A, Zhang X, Spaeth L. Self-formation of concentric zones of telencephalic and ocular tissues and directional retinal ganglion cell axons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533827. [PMID: 36993285 PMCID: PMC10055356 DOI: 10.1101/2023.03.22.533827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The telencephalon and eye in mammals are originated from adjacent fields at the anterior neural plate. Morphogenesis of these fields generates telencephalon, optic-stalk, optic-disc, and neuroretina along a spatial axis. How these telencephalic and ocular tissues are specified coordinately to ensure directional retinal ganglion cell (RGC) axon growth is unclear. Here, we report the self-formation of human telencephalon-eye organoids comprising concentric zones of telencephalic, optic-stalk, optic-disc, and neuroretinal tissues along the center-periphery axis. Initially-differentiated RGCs grew axons towards and then along a path defined by adjacent PAX2+ optic-disc cells. Single-cell RNA sequencing of CONCEPT organoids not only confirmed telencephalic and ocular identities but also identified expression signatures of early optic-disc, optic-stalk, and RGCs. These signatures were similar to those in human fetal retinas. Optic-disc cells in CONCEPT organoids differentially expressed FGF8 and FGF9 ; FGFR inhibitions drastically decreased RGC differentiation and directional axon growth. Through the identified RGC-specific cell-surface marker CNTN2, electrophysiologically-excitable RGCs were isolated under a native condition. Our findings provide insight into the coordinated specification of early telencephalic and ocular tissues in humans and establish resources for studying RGC-related diseases such as glaucoma. Impact statement A human telencephalon-eye organoid model that exhibited axon growth and pathfinding from retinal ganglion cell (RGC) axons is reported; via cell surface marker CNTN2 identified using scRNA-seq, early RGCs were isolated under a native condition.
Collapse
Affiliation(s)
- Wei Liu
- Department of Ophthalmology and Visual Sciences
- Department of Genetics
- The Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine
| | - Rupendra Shrestha
- Department of Ophthalmology and Visual Sciences
- Department of Genetics
- The Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine
| | - Albert Lowe
- Department of Ophthalmology and Visual Sciences
- Department of Genetics
| | | | - Ludovic Spaeth
- Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
54
|
Yang X, Chen D, Sun Q, Wang Y, Xia Y, Yang J, Lin C, Dang X, Cen Z, Liang D, Wei R, Xu Z, Xi G, Xue G, Ye C, Wang LP, Zou P, Wang SQ, Rivera-Fuentes P, Püntener S, Chen Z, Liu Y, Zhang J, Zhao Y. A live-cell image-based machine learning strategy for reducing variability in PSC differentiation systems. Cell Discov 2023; 9:53. [PMID: 37280224 DOI: 10.1038/s41421-023-00543-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/13/2023] [Indexed: 06/08/2023] Open
Abstract
The differentiation of pluripotent stem cells (PSCs) into diverse functional cell types provides a promising solution to support drug discovery, disease modeling, and regenerative medicine. However, functional cell differentiation is currently limited by the substantial line-to-line and batch-to-batch variabilities, which severely impede the progress of scientific research and the manufacturing of cell products. For instance, PSC-to-cardiomyocyte (CM) differentiation is vulnerable to inappropriate doses of CHIR99021 (CHIR) that are applied in the initial stage of mesoderm differentiation. Here, by harnessing live-cell bright-field imaging and machine learning (ML), we realize real-time cell recognition in the entire differentiation process, e.g., CMs, cardiac progenitor cells (CPCs), PSC clones, and even misdifferentiated cells. This enables non-invasive prediction of differentiation efficiency, purification of ML-recognized CMs and CPCs for reducing cell contamination, early assessment of the CHIR dose for correcting the misdifferentiation trajectory, and evaluation of initial PSC colonies for controlling the start point of differentiation, all of which provide a more invulnerable differentiation method with resistance to variability. Moreover, with the established ML models as a readout for the chemical screen, we identify a CDK8 inhibitor that can further improve the cell resistance to the overdose of CHIR. Together, this study indicates that artificial intelligence is able to guide and iteratively optimize PSC differentiation to achieve consistently high efficiency across cell lines and batches, providing a better understanding and rational modulation of the differentiation process for functional cell manufacturing in biomedical applications.
Collapse
Affiliation(s)
- Xiaochun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Daichao Chen
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Qiushi Sun
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Yao Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Xia
- College of Engineering, Peking University, Beijing, China
| | - Jinyu Yang
- College of Engineering, Peking University, Beijing, China
| | - Chang Lin
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China
| | - Xin Dang
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Zimu Cen
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Dongdong Liang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Rong Wei
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ze Xu
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Guangyin Xi
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Gang Xue
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Can Ye
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Li-Peng Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | | | - Salome Püntener
- Department of Chemistry, University of Zurich, Zurich, Switzerland
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédéral de Lausanne, Lausanne, Switzerland
| | - Zhixing Chen
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yi Liu
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China.
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- College of Engineering, Peking University, Beijing, China.
| | - Yang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
55
|
Suppinger S, Zinner M, Aizarani N, Lukonin I, Ortiz R, Azzi C, Stadler MB, Vianello S, Palla G, Kohler H, Mayran A, Lutolf MP, Liberali P. Multimodal characterization of murine gastruloid development. Cell Stem Cell 2023; 30:867-884.e11. [PMID: 37209681 PMCID: PMC10241222 DOI: 10.1016/j.stem.2023.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023]
Abstract
Gastruloids are 3D structures generated from pluripotent stem cells recapitulating fundamental principles of embryonic pattern formation. Using single-cell genomic analysis, we provide a resource mapping cell states and types during gastruloid development and compare them with the in vivo embryo. We developed a high-throughput handling and imaging pipeline to spatially monitor symmetry breaking during gastruloid development and report an early spatial variability in pluripotency determining a binary response to Wnt activation. Although cells in the gastruloid-core revert to pluripotency, peripheral cells become primitive streak-like. These two populations subsequently break radial symmetry and initiate axial elongation. By performing a compound screen, perturbing thousands of gastruloids, we derive a phenotypic landscape and infer networks of genetic interactions. Finally, using a dual Wnt modulation, we improve the formation of anterior structures in the existing gastruloid model. This work provides a resource to understand how gastruloids develop and generate complex patterns in vitro.
Collapse
Affiliation(s)
- Simon Suppinger
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Marietta Zinner
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Nadim Aizarani
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Ilya Lukonin
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Roche Institute of Human Biology, 4058 Basel, Switzerland
| | - Raphael Ortiz
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Chiara Azzi
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Babraham Institute, Cambridge CB22 3AT, UK
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Stefano Vianello
- School of Life Sciences, Federal Institute of Technology EPFL, 1015 Lausanne, Switzerland
| | - Giovanni Palla
- Institute of Computational Biology, Helmholtz Center Munich, 85764 Munich, Germany; TUM School of Life Sciences Weihenstephan, Technical University of Munich, 80333 Munich, Germany
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Alexandre Mayran
- School of Life Sciences, Federal Institute of Technology EPFL, 1015 Lausanne, Switzerland
| | - Matthias P Lutolf
- Roche Institute of Human Biology, 4058 Basel, Switzerland; School of Life Sciences, Federal Institute of Technology EPFL, 1015 Lausanne, Switzerland
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland.
| |
Collapse
|
56
|
Teague S, Primavera G, Chen B, Freeburne E, Khan H, Jo K, Johnson C, Heemskerk I. The time integral of BMP signaling determines fate in a stem cell model for early human development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536068. [PMID: 37090515 PMCID: PMC10120633 DOI: 10.1101/2023.04.10.536068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
How paracrine signals are interpreted to yield multiple cell fate decisions in a dynamic context during human development in vivo and in vitro remains poorly understood. Here we report an automated tracking method to follow signaling histories linked to cell fate in large numbers of human pluripotent stem cells (hPSCs). Using an unbiased statistical approach, we discovered that measured BMP signaling history correlates strongly with fate in individual cells. We found that BMP response in hPSCs varies more strongly in the duration of signaling than the level. However, we discovered that both the level and duration of signaling activity control cell fate choices only by changing the time integral of signaling and that duration and level are therefore interchangeable in this context. In a stem cell model for patterning of the human embryo, we showed that signaling histories predict the fate pattern and that the integral model correctly predicts changes in cell fate domains when signaling is perturbed. Using an RNA-seq screen we then found that mechanistically, BMP signaling is integrated by SOX2.
Collapse
Affiliation(s)
- Seth Teague
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Gillian Primavera
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Bohan Chen
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Emily Freeburne
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Hina Khan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kyoung Jo
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Idse Heemskerk
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Center for Cell Plasticity and Organ Design, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Physics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
57
|
Kim MH, Kuroda M, Ke D, Thanuthanakhun N, Kino-Oka M. An in vitro culture platform for studying the effect of collective cell migration on spatial self-organization within induced pluripotent stem cell colonies. J Biol Eng 2023; 17:25. [PMID: 36998087 PMCID: PMC10064534 DOI: 10.1186/s13036-023-00341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Human induced pluripotent stem cells (hiPSCs) provide an in vitro system to identify the impact of cell behavior on the earliest stages of cell fate specification during human development. Here, we developed an hiPSC-based model to study the effect of collective cell migration in meso-endodermal lineage segregation and cell fate decisions through the control of space confinement using a detachable ring culture system. RESULTS The actomyosin organization of cells at the edge of undifferentiated colonies formed in a ring barrier differed from that of the cells in the center of the colony. In addition, even in the absence of exogenous supplements, ectoderm, mesoderm, endoderm, and extraembryonic cells differentiated following the induction of collective cell migration at the colony edge by removing the ring-barrier. However, when collective cell migration was inhibited by blocking E-cadherin function, this fate decision within an hiPSC colony was altered to an ectodermal fate. Furthermore, the induction of collective cell migration at the colony edge using an endodermal induction media enhanced endodermal differentiation efficiency in association with cadherin switching, which is involved in the epithelial-mesenchymal transition. CONCLUSIONS Our findings suggest that collective cell migration can be an effective way to drive the segregation of mesoderm and endoderm lineages, and cell fate decisions of hiPSCs.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masaki Kuroda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ding Ke
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Research Base for Cell Manufacturability, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
58
|
Zeevaert K, Goetzke R, Elsafi Mabrouk MH, Schmidt M, Maaßen C, Henneke AC, He C, Gillner A, Zenke M, Wagner W. YAP1 is essential for self-organized differentiation of pluripotent stem cells. BIOMATERIALS ADVANCES 2023; 146:213308. [PMID: 36774716 DOI: 10.1016/j.bioadv.2023.213308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
Induced pluripotent stem cells (iPSCs) form aggregates that recapitulate aspects of the self-organization in early embryogenesis. Within few days, cells undergo a transition from epithelial-like structures to organized three-dimensional embryoid bodies (EBs) with upregulation of germ layer-specific genes. However, it is largely unclear, which signaling cascades regulate self-organized differentiation. The Yes-associated protein 1 (YAP1) is a downstream effector of the Hippo pathway and essential mechanotransducer. YAP1 has been suggested to play a crucial role for early embryo development, but the relevance for early germ layer commitment of human iPSCs remains to be elucidated. To gain insights into the function of YAP1 in early cell-fate decisions, we generated YAP1 knockout (YAP-/-) iPSC lines with CRISPR/Cas9 technology and analyzed transcriptomic and epigenetic modifications. YAP-/- iPSCs showed increased expression of several YAP1 targets and of NODAL, an important regulator of cell differentiation. Furthermore, YAP1 deficiency evoked global DNA methylation changes. Directed differentiation of adherent iPSC colonies towards endoderm, mesoderm, and ectoderm could be induced, albeit endodermal and ectodermal differentiation showed transcriptomic and epigenetic changes in YAP-/- lines. Notably, in undirected self-organized YAP-/- EBs germ layer specification was clearly impaired. This phenotype was rescued via lentiviral overexpression of YAP1 and also by NODAL inhibitors. Our results demonstrate that YAP1 plays an important role during early germ layer specification of iPSCs, particularly for the undirected self-organization of EBs, and this is at least partly attributed to activation of the NODAL signaling.
Collapse
Affiliation(s)
- Kira Zeevaert
- Helmholtz-Institute for Biomedical Engineering, Medical Faculty of RWTH Aachen University, 52074 Aachen, Germany; Institute for Stem Cell Biology, University Hospital of RWTH Aachen, 52074 Aachen, Germany.
| | - Roman Goetzke
- Helmholtz-Institute for Biomedical Engineering, Medical Faculty of RWTH Aachen University, 52074 Aachen, Germany; Institute for Stem Cell Biology, University Hospital of RWTH Aachen, 52074 Aachen, Germany; PL BioScience, Technology Centre Aachen, 52068 Aachen, Germany
| | - Mohamed H Elsafi Mabrouk
- Helmholtz-Institute for Biomedical Engineering, Medical Faculty of RWTH Aachen University, 52074 Aachen, Germany; Institute for Stem Cell Biology, University Hospital of RWTH Aachen, 52074 Aachen, Germany
| | - Marco Schmidt
- Helmholtz-Institute for Biomedical Engineering, Medical Faculty of RWTH Aachen University, 52074 Aachen, Germany; Institute for Stem Cell Biology, University Hospital of RWTH Aachen, 52074 Aachen, Germany
| | - Catharina Maaßen
- Helmholtz-Institute for Biomedical Engineering, Medical Faculty of RWTH Aachen University, 52074 Aachen, Germany; Institute for Stem Cell Biology, University Hospital of RWTH Aachen, 52074 Aachen, Germany
| | - Ann-Christine Henneke
- Helmholtz-Institute for Biomedical Engineering, Medical Faculty of RWTH Aachen University, 52074 Aachen, Germany; Institute for Stem Cell Biology, University Hospital of RWTH Aachen, 52074 Aachen, Germany
| | - Chao He
- Chair for Laser Technology LLT, RWTH Aachen University, 52074 Aachen, Germany
| | - Arnold Gillner
- Chair for Laser Technology LLT, RWTH Aachen University, 52074 Aachen, Germany
| | - Martin Zenke
- Helmholtz-Institute for Biomedical Engineering, Medical Faculty of RWTH Aachen University, 52074 Aachen, Germany; Institute for Stem Cell Biology, University Hospital of RWTH Aachen, 52074 Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Medical Faculty of RWTH Aachen University, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Medical Faculty of RWTH Aachen University, 52074 Aachen, Germany; Institute for Stem Cell Biology, University Hospital of RWTH Aachen, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.
| |
Collapse
|
59
|
Dullweber T, Erzberger A. Mechanochemical feedback loops in contact-dependent fate patterning. CURRENT OPINION IN SYSTEMS BIOLOGY 2023; 32-33:None. [PMID: 37090955 PMCID: PMC10112234 DOI: 10.1016/j.coisb.2023.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To reliably form and maintain structures with specific functions, many multicellular systems evolved to leverage the interplay between biochemical signaling, mechanics, and morphology. We review mechanochemical feedback loops in cases where cell-cell contact-based Notch signaling drives fate decisions, and the corresponding differentiation process leads to contact remodeling. We compare different mechanisms for initial symmetry breaking and subsequent pattern refinement, as well as discuss how patterning outcomes depend on the relationship between biochemical and mechanical timescales. We conclude with an overview of new approaches, including the study of synthetic circuits, and give an outlook on future experimental and theoretical developments toward dissecting and harnessing mechanochemical feedback.
Collapse
Affiliation(s)
- T. Dullweber
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, 69120, Germany
| | - A. Erzberger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, 69120, Germany
| |
Collapse
|
60
|
Legier T, Rattier D, Llewellyn J, Vannier T, Sorre B, Maina F, Dono R. Epithelial disruption drives mesendoderm differentiation in human pluripotent stem cells by enabling TGF-β protein sensing. Nat Commun 2023; 14:349. [PMID: 36681697 PMCID: PMC9867713 DOI: 10.1038/s41467-023-35965-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
The processes of primitive streak formation and fate specification in the mammalian epiblast rely on complex interactions between morphogens and tissue organization. Little is known about how these instructive cues functionally interact to regulate gastrulation. We interrogated the interplay between tissue organization and morphogens by using human induced pluripotent stem cells (hiPSCs) downregulated for the morphogen regulator GLYPICAN-4, in which defects in tight junctions result in areas of disrupted epithelial integrity. Remarkably, this phenotype does not affect hiPSC stemness, but impacts on cell fate acquisition. Strikingly, cells within disrupted areas become competent to perceive the gastrulation signals BMP4 and ACTIVIN A, an in vitro surrogate for NODAL, and thus differentiate into mesendoderm. Yet, disruption of epithelial integrity sustains activation of BMP4 and ACTIVIN A downstream effectors and correlates with enhanced hiPSC endoderm/mesoderm differentiation. Altogether, our results disclose epithelial integrity as a key determinant of TGF-β activity and highlight an additional mechanism guiding morphogen sensing and spatial cell fate change within an epithelium.
Collapse
Affiliation(s)
- Thomas Legier
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Diane Rattier
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Jack Llewellyn
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Thomas Vannier
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Benoit Sorre
- Institut Curie, Universite ́PSL, Sorbonne Universite ́, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Flavio Maina
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Rosanna Dono
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France.
| |
Collapse
|
61
|
Pfeffer PL. Alternative mammalian strategies leading towards gastrulation: losing polar trophoblast (Rauber's layer) or gaining an epiblast cavity. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210254. [PMID: 36252216 PMCID: PMC9574635 DOI: 10.1098/rstb.2021.0254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/29/2022] [Indexed: 11/12/2022] Open
Abstract
Using embryological data from 14 mammalian orders, the hypothesis is presented that in placental mammals, epiblast cavitation and polar trophoblast loss are alternative developmental solutions to shield the central epiblast from extraembryonic signalling. It is argued that such reciprocal signalling between the edge of the epiblast and the adjoining polar trophoblast or edge of the mural trophoblast or with the amniotic ectoderm is necessary for the induction of gastrulation. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Peter L. Pfeffer
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6010, New Zealand
| |
Collapse
|
62
|
Hamidi S, Alev C. In vitro models of pre- and post-gastrulation embryonic development. Curr Opin Genet Dev 2022; 77:101985. [PMID: 36244078 DOI: 10.1016/j.gde.2022.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 01/27/2023]
Abstract
The successful derivation and culture of pluripotent stem cells (PSCs) is tightly connected with the study of embryonic development, and was made largely possible by advances in in vitro fertilization and blastocyst culture during the latter half of the last century [1,2]. Since then, embryonic and induced pluripotent stem cells have been extensively used to derive a plethora of functional cell types in vitro, heavily relying on and utilizing insights into cellular differentiation won from developmental biological studies in model organisms. Excitingly, PSCs are now being increasingly used to reconstitute and analyze complex aspects of mouse and human embryonic development. These bottom-up approaches are starting to provide novel insights into core developmental processes and biological questions and may ultimately help decipher the biological principles that underlie the emergence of form and function during development. This mini review summarizes the latest advances and recent breakthroughs in this rapidly growing field of research on PSC-based in vitro models of early embryonic development.
Collapse
Affiliation(s)
- Sofiane Hamidi
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Cantas Alev
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
63
|
Thanuthanakhun N, Kim MH, Kino-oka M. Cell Behavioral Dynamics as a Cue in Optimizing Culture Stabilization in the Bioprocessing of Pluripotent Stem Cells. Bioengineering (Basel) 2022; 9:669. [PMID: 36354580 PMCID: PMC9687444 DOI: 10.3390/bioengineering9110669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 04/23/2024] Open
Abstract
Pluripotent stem cells (PSCs) are important for future regenerative medicine therapies. However, in the production of PSCs and derivatives, the control of culture-induced fluctuations in the outcome of cell quality remains challenging. A detailed mechanistic understanding of how PSC behaviors are altered in response to biomechanical microenvironments within a culture is necessary for rational bioprocessing optimization. In this review, we discuss recent insights into the role of cell behavioral and mechanical homeostasis in modulating the states and functions of PSCs during culture processes. We delineate promising ways to manipulate the culture variability through regulating cell behaviors using currently developed tools. Furthermore, we anticipate their potential implementation for designing a culture strategy based on the concept of Waddington's epigenetic landscape that may provide a feasible solution for tuning the culture quality and stability in the bioprocessing space.
Collapse
Affiliation(s)
- Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- Research Base for Cell Manufacturability, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
64
|
Virtual cells in a virtual microenvironment recapitulate early development-like patterns in human pluripotent stem cell colonies. Stem Cell Reports 2022; 18:377-393. [PMID: 36332630 PMCID: PMC9859929 DOI: 10.1016/j.stemcr.2022.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which morphogenetic signals engage the regulatory networks responsible for early embryonic tissue patterning is incompletely understood. Here, we developed a minimal gene regulatory network (GRN) model of human pluripotent stem cell (hPSC) lineage commitment and embedded it into "cellular" agents that respond to a dynamic morphogenetic signaling microenvironment. Simulations demonstrated that GRN wiring had significant non-intuitive effects on tissue pattern order, composition, and dynamics. Experimental perturbation of GRN connectivities supported model predictions and demonstrated the role of OCT4 as a master regulator of peri-gastrulation fates. Our so-called GARMEN strategy provides a multiscale computational platform to understand how single-cell-based regulatory interactions scale to tissue domains. This foundation provides new opportunities to simulate the impact of network motifs on normal and aberrant tissue development.
Collapse
|
65
|
Sozen B, Conkar D, Veenvliet JV. Carnegie in 4D? Stem-cell-based models of human embryo development. Semin Cell Dev Biol 2022; 131:44-57. [PMID: 35701286 DOI: 10.1016/j.semcdb.2022.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
How cells build embryos is still a major mystery. Many unresolved questions require the study of the processes that pattern and shape the embryo in live specimens, in toto, across spatial and temporal scales. In mammalian embryogenesis, this remains a major challenge as the embryo develops in utero, precluding easy accessibility. For human embryos, technical, ethical and legal limitations further hamper the in-depth investigation of embryogenesis, especially beyond gastrulation stages. This has resulted in an over-reliance on model organisms, particularly mice, to understand mammalian development. However, recent efforts show critical differences between rodent and primate embryos, including timing, architecture and transcriptional regulation. Thus, a human-centric understanding of embryogenesis is much needed. To empower this, novel in vitro approaches, which coax human pluripotent stem cells to form embryonic organoids that model embryo development, are pivotal. Here, we summarize these emergent technologies that recapitulate aspects of human development "in a dish". We show how these technologies can provide insights into the molecular, cellular and morphogenetic processes that fuel the formation of a fully formed fetus, and discuss the potential of these platforms to revolutionize our understanding of human development in health and disease. Despite their clear promise, we caution against over-interpreting the extent to which these in vitro platforms model the natural embryo. In particular, we discuss how fate, form and function - a tightly coupled trinity in vivo, can be disconnected in vitro. Finally, we propose how careful benchmarking of existing models, in combination with rational protocol design based on an increased understanding of in vivo developmental dynamics and insights from mouse in vitro models of embryo development, will help guide the establishment of better models of human embryo development.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.
| | - Deniz Conkar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jesse V Veenvliet
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
66
|
Prochazka L, Michaels YS, Lau C, Jones RD, Siu M, Yin T, Wu D, Jang E, Vázquez‐Cantú M, Gilbert PM, Kaul H, Benenson Y, Zandstra PW. Synthetic gene circuits for cell state detection and protein tuning in human pluripotent stem cells. Mol Syst Biol 2022; 18:e10886. [PMID: 36366891 PMCID: PMC9650275 DOI: 10.15252/msb.202110886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
During development, cell state transitions are coordinated through changes in the identity of molecular regulators in a cell type‐ and dose‐specific manner. The ability to rationally engineer such transitions in human pluripotent stem cells (hPSC) will enable numerous applications in regenerative medicine. Herein, we report the generation of synthetic gene circuits that can detect a desired cell state using AND‐like logic integration of endogenous miRNAs (classifiers) and, upon detection, produce fine‐tuned levels of output proteins using an miRNA‐mediated output fine‐tuning technology (miSFITs). Specifically, we created an “hPSC ON” circuit using a model‐guided miRNA selection and circuit optimization approach. The circuit demonstrates robust PSC‐specific detection and graded output protein production. Next, we used an empirical approach to create an “hPSC‐Off” circuit. This circuit was applied to regulate the secretion of endogenous BMP4 in a state‐specific and fine‐tuned manner to control the composition of differentiating hPSCs. Our work provides a platform for customized cell state‐specific control of desired physiological factors in hPSC, laying the foundation for programming cell compositions in hPSC‐derived tissues and beyond.
Collapse
Affiliation(s)
- Laura Prochazka
- Institute of Biomedical Engineering (BME) University of Toronto Toronto ON Canada
- Donnelly Centre for Cellular & Biomolecular Research University of Toronto Toronto ON Canada
| | - Yale S Michaels
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
- School of Biomedical Engineering University of British Columbia Vancouver BC Canada
| | - Charles Lau
- Institute of Biomedical Engineering (BME) University of Toronto Toronto ON Canada
- Donnelly Centre for Cellular & Biomolecular Research University of Toronto Toronto ON Canada
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
- School of Biomedical Engineering University of British Columbia Vancouver BC Canada
| | - Ross D Jones
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
- School of Biomedical Engineering University of British Columbia Vancouver BC Canada
| | - Mona Siu
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
- School of Biomedical Engineering University of British Columbia Vancouver BC Canada
| | - Ting Yin
- Institute of Biomedical Engineering (BME) University of Toronto Toronto ON Canada
- Donnelly Centre for Cellular & Biomolecular Research University of Toronto Toronto ON Canada
| | - Diana Wu
- Institute of Biomedical Engineering (BME) University of Toronto Toronto ON Canada
- Donnelly Centre for Cellular & Biomolecular Research University of Toronto Toronto ON Canada
| | - Esther Jang
- Institute of Biomedical Engineering (BME) University of Toronto Toronto ON Canada
- Donnelly Centre for Cellular & Biomolecular Research University of Toronto Toronto ON Canada
| | - Mercedes Vázquez‐Cantú
- Institute of Biomedical Engineering (BME) University of Toronto Toronto ON Canada
- Donnelly Centre for Cellular & Biomolecular Research University of Toronto Toronto ON Canada
- Swiss Federal Institute of Technology (ETH) Zürich, Department of Biosystems Science and Engineering (D‐BSSE) Basel Switzerland
| | - Penney M Gilbert
- Institute of Biomedical Engineering (BME) University of Toronto Toronto ON Canada
- Donnelly Centre for Cellular & Biomolecular Research University of Toronto Toronto ON Canada
- Department of Cell and Systems Biology University of Toronto Toronto ON Canada
| | - Himanshu Kaul
- School of Engineering University of Leicester Leicester UK
- Department of Respiratory Sciences University of Leicester Leicester UK
| | - Yaakov Benenson
- Swiss Federal Institute of Technology (ETH) Zürich, Department of Biosystems Science and Engineering (D‐BSSE) Basel Switzerland
| | - Peter W Zandstra
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
- School of Biomedical Engineering University of British Columbia Vancouver BC Canada
| |
Collapse
|
67
|
Abstract
The complex process by which a single-celled zygote develops into a viable embryo is nothing short of a miraculous wonder of the natural world. Elucidating how this process is orchestrated in humans has long eluded the grasp of scientists due to ethical and practical limitations. Thankfully, pluripotent stem cells that resemble early developmental cell types possess the ability to mimic specific embryonic events. As such, murine and human stem cells have been leveraged by scientists to create in vitro models that aim to recapitulate different stages of early mammalian development. Here, we examine the wide variety of stem cell-based embryo models that have been developed to recapitulate and study embryonic events, from pre-implantation development through to early organogenesis. We discuss the applications of these models, key considerations regarding their importance within the field, and how such models are expected to grow and evolve to achieve exciting new milestones in the future.
Collapse
Affiliation(s)
- Aidan H. Terhune
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeyoon Bok
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiyu Sun
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
68
|
Bao M, Cornwall-Scoones J, Zernicka-Goetz M. Stem-cell-based human and mouse embryo models. Curr Opin Genet Dev 2022; 76:101970. [PMID: 35988317 PMCID: PMC10309046 DOI: 10.1016/j.gde.2022.101970] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
Synthetic embryology aims to develop embryo-like structures from stem cells to provide new insight into early stages of mammalian development. Recent advances in synthetic embryology have highlighted the remarkable capacity of stem cells to self-organize under certain biochemical or biophysical stimulations, generating structures that recapitulate the fate and form of early mouse/human embryos, in which symmetry breaking, pattern formation, or proper morphogenesis can be observed spontaneously. Here we review recent progress on the design principles for different types of embryoids and discuss the impact of different biochemical and biophysical factors on the process of stem-cell self-organization. We also offer our thoughts about the principal future challenges.
Collapse
Affiliation(s)
- Min Bao
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA 91125, USA; Mammalian Embryo and Stem Cell Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK. https://twitter.com/@Min_Bao_
| | - Jake Cornwall-Scoones
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA 91125, USA; The Francis Crick Institute, London NW1 1AT, UK. https://twitter.com/@jake_cs_
| | - Magdalena Zernicka-Goetz
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA 91125, USA; Mammalian Embryo and Stem Cell Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
69
|
Metzger JJ, Pereda C, Adhikari A, Haremaki T, Galgoczi S, Siggia ED, Brivanlou AH, Etoc F. Deep-learning analysis of micropattern-based organoids enables high-throughput drug screening of Huntington's disease models. CELL REPORTS METHODS 2022; 2:100297. [PMID: 36160045 PMCID: PMC9500000 DOI: 10.1016/j.crmeth.2022.100297] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/06/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022]
Abstract
Organoids are carrying the promise of modeling complex disease phenotypes and serving as a powerful basis for unbiased drug screens, potentially offering a more efficient drug-discovery route. However, unsolved technical bottlenecks of reproducibility and scalability have prevented the use of current organoids for high-throughput screening. Here, we present a method that overcomes these limitations by using deep-learning-driven analysis for phenotypic drug screens based on highly standardized micropattern-based neural organoids. This allows us to distinguish between disease and wild-type phenotypes in complex tissues with extremely high accuracy as well as quantify two predictors of drug success: efficacy and adverse effects. We applied our approach to Huntington's disease (HD) and discovered that bromodomain inhibitors revert complex phenotypes induced by the HD mutation. This work demonstrates the power of combining machine learning with phenotypic drug screening and its successful application to reveal a potentially new druggable target for HD.
Collapse
Affiliation(s)
- Jakob J. Metzger
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Carlota Pereda
- RUMI Scientific, Alexandria LaunchLabs, New York, NY 10016, USA
| | - Arjun Adhikari
- RUMI Scientific, Alexandria LaunchLabs, New York, NY 10016, USA
| | - Tomomi Haremaki
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
- RUMI Scientific, Alexandria LaunchLabs, New York, NY 10016, USA
| | - Szilvia Galgoczi
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Eric D. Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ali H. Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Fred Etoc
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
- RUMI Scientific, Alexandria LaunchLabs, New York, NY 10016, USA
| |
Collapse
|
70
|
Iyer NR, Ashton RS. Bioengineering the human spinal cord. Front Cell Dev Biol 2022; 10:942742. [PMID: 36092702 PMCID: PMC9458954 DOI: 10.3389/fcell.2022.942742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Three dimensional, self-assembled organoids that recapitulate key developmental and organizational events during embryogenesis have proven transformative for the study of human central nervous system (CNS) development, evolution, and disease pathology. Brain organoids have predominated the field, but human pluripotent stem cell (hPSC)-derived models of the spinal cord are on the rise. This has required piecing together the complex interactions between rostrocaudal patterning, which specifies axial diversity, and dorsoventral patterning, which establishes locomotor and somatosensory phenotypes. Here, we review how recent insights into neurodevelopmental biology have driven advancements in spinal organoid research, generating experimental models that have the potential to deepen our understanding of neural circuit development, central pattern generation (CPG), and neurodegenerative disease along the body axis. In addition, we discuss the application of bioengineering strategies to drive spinal tissue morphogenesis in vitro, current limitations, and future perspectives on these emerging model systems.
Collapse
Affiliation(s)
- Nisha R. Iyer
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
| | - Randolph S. Ashton
- Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
71
|
Yang Y, Laterza C, Stuart HT, Michielin F, Gagliano O, Urciuolo A, Elvassore N. Human Pluripotent Stem Cell-Derived Micropatterned Ectoderm Allows Cell Sorting of Meso-Endoderm Lineages. Front Bioeng Biotechnol 2022; 10:907159. [PMID: 35935488 PMCID: PMC9354750 DOI: 10.3389/fbioe.2022.907159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
The human developmental processes during the early post-implantation stage instruct the specification and organization of the lineage progenitors into a body plan. These processes, which include patterning, cell sorting, and establishment of the three germ layers, have been classically studied in non-human model organisms and only recently, through micropatterning technology, in a human-specific context. Micropatterning technology has unveiled mechanisms during patterning and germ layer specification; however, cell sorting and their segregation in specific germ layer combinations have not been investigated yet in a human-specific in vitro system. Here, we developed an in vitro model of human ectodermal patterning, in which human pluripotent stem cells (hPSCs) self-organize to form a radially regionalized neural and non-central nervous system (CNS) ectoderm. We showed that by using micropatterning technology and by modulating BMP and WNT signals, we can regulate the appearance and spatial distribution of the different ectodermal populations. This pre-patterned ectoderm can be used to investigate the cell sorting behavior of hPSC-derived meso-endoderm cells, with an endoderm that segregates from the neural ectoderm. Thus, the combination of micro-technology with germ layer cross-mixing enables the study of cell sorting of different germ layers in a human context.
Collapse
Affiliation(s)
- Yang Yang
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Cecilia Laterza
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Hannah T. Stuart
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Federica Michielin
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Onelia Gagliano
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Anna Urciuolo
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica, Città della Speranza, Padova, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
- Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
72
|
Nikitina TV, Lebedev IN. Stem Cell-Based Trophoblast Models to Unravel the Genetic Causes of Human Miscarriages. Cells 2022; 11:1923. [PMID: 35741051 PMCID: PMC9221414 DOI: 10.3390/cells11121923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Miscarriage affects approximately 15% of clinically recognized pregnancies, and 1-3% of couples experience pregnancy loss recurrently. Approximately 50-60% of miscarriages result from chromosomal abnormalities, whereas up to 60% of euploid recurrent abortions harbor variants in candidate genes. The growing number of detected genetic variants requires an investigation into their role in adverse pregnancy outcomes. Since placental defects are the main cause of first-trimester miscarriages, the purpose of this review is to provide a survey of state-of-the-art human in vitro trophoblast models that can be used for the functional assessment of specific abnormalities/variants implicated in pregnancy loss. Since 2018, when primary human trophoblast stem cells were first derived, there has been rapid growth in models of trophoblast lineage. It has been found that a proper balance between self-renewal and differentiation in trophoblast progenitors is crucial for the maintenance of pregnancy. Different responses to aneuploidy have been shown in human embryonic and extra-embryonic lineages. Stem cell-based models provide a powerful tool to explore the effect of a specific aneuploidy/variant on the fetus through placental development, which is important, from a clinical point of view, for deciding on the suitability of embryos for transfer after preimplantation genetic testing for aneuploidy.
Collapse
Affiliation(s)
- Tatiana V. Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, 634050 Tomsk, Russia;
| | | |
Collapse
|
73
|
Plouhinec JL, Simon G, Vieira M, Collignon J, Sorre B. Dissecting signaling hierarchies in the patterning of the mouse primitive streak using micropatterned EpiLC colonies. Stem Cell Reports 2022; 17:1757-1771. [PMID: 35714597 PMCID: PMC9287665 DOI: 10.1016/j.stemcr.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Embryo studies have established that the patterning of the mouse gastrula depends on a regulatory network in which the WNT, BMP, and NODAL signaling pathways cooperate, but aspects of their respective contributions remain unclear. Studying their impact on the spatial organization and developmental trajectories of micropatterned epiblast-like cell (EpiLC) colonies, we show that NODAL is required prior to BMP action to establish the mesoderm and endoderm lineages. The presence of BMP then forces NODAL and WNT to support the formation of posterior primitive streak (PS) derivatives, while its absence allows them to promote that of anterior PS derivatives. Also, a Nodal mutation elicits more severe patterning defects in vitro than in the embryo, suggesting that ligands of extra-embryonic origin can rescue them. These results support the implication of a combinatorial process in PS patterning and illustrate how the study of micropatterned EpiLC colonies can complement that of embryos. BMP or WNT cannot rescue the impact a Nodal KO has on primitive streak formation BMP exposure results in Nodal promoting posterior rather than anterior PS formation The maintenance of posterior mesodermal identities is dependent on Nodal expression Low Nodal expression does not prevent the emergence of anterior PS derivatives
Collapse
Affiliation(s)
- Jean-Louis Plouhinec
- Université Paris Cité, CNRS, Laboratoire Matière et Systèmes Complexes, 75013 Paris, France
| | - Gaël Simon
- Université Paris Cité, CNRS, Laboratoire Matière et Systèmes Complexes, 75013 Paris, France; Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Mathieu Vieira
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Jérôme Collignon
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France.
| | - Benoit Sorre
- Université Paris Cité, CNRS, Laboratoire Matière et Systèmes Complexes, 75013 Paris, France; Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France.
| |
Collapse
|
74
|
Ai Z, Yin Y, Niu B, Li T. Deconstructing human peri-implantation embryogenesis based on embryos and embryoids. Biol Reprod 2022; 107:212-225. [PMID: 35552636 DOI: 10.1093/biolre/ioac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022] Open
Abstract
The peri-implantation period from blastula to gastrula is one of the crucial stages of human embryo and stem cell development. During development, human embryos undergo many crucial events, such as embryonic lineage differentiation and development, structural self-assembly, pluripotency state transition, cell communication between lineages, and crosstalk between the embryo and uterus. Abnormalities in these developmental events will result in implantation failure or pregnancy loss. However, because of ethical and technical limits, the developmental dynamics of human peri-implantation embryos and the underlying mechanisms of abnormal development remain in a "black box". In this review, we summarize recent progress made towards our understanding of human peri-implantation embryogenesis based on extended in vitro cultured embryos and stem cell-based embryoids. These findings lay an important foundation for understanding early life, promoting research into human stem cells and their application, and preventing and treating infertility. We also propose key scientific issues regarding peri-implantation embryogenesis and provide an outlook on future study directions. Finally, we sum up China's contribution to the field and future opportunities.
Collapse
Affiliation(s)
- Zongyong Ai
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, 650500, China
| | - Yu Yin
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, 650500, China
| | - Baohua Niu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, 650500, China
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, 650500, China
| |
Collapse
|
75
|
Abstract
Embryoids and organoids hold great promise for human biology and medicine. Herein, we discuss conceptual and technological frameworks useful for developing high-fidelity embryoids and organoids that display tissue- and organ-level phenotypes and functions, which are critically needed for decoding developmental programs and improving translational applications. Through dissecting the layers of inputs controlling mammalian embryogenesis, we review recent progress in reconstructing multiscale structural orders in embryoids and organoids. Bioengineering tools useful for multiscale, multimodal structural engineering of tissue- and organ-level cellular organization and microenvironment are also discussed to present integrative, bioengineering-directed approaches to achieve next-generation, high-fidelity embryoids and organoids.
Collapse
Affiliation(s)
- Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
76
|
Peterson AJ, Murphy SJ, Mundt MG, Shimell M, Leof EB, O’Connor MB. A juxtamembrane basolateral targeting motif regulates signaling through a TGF-β pathway receptor in Drosophila. PLoS Biol 2022; 20:e3001660. [PMID: 35594316 PMCID: PMC9162340 DOI: 10.1371/journal.pbio.3001660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/02/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
In polarized epithelial cells, receptor-ligand interactions can be restricted by different spatial distributions of the 2 interacting components, giving rise to an underappreciated layer of regulatory complexity. We explored whether such regulation occurs in the Drosophila wing disc, an epithelial tissue featuring the TGF-β family member Decapentaplegic (Dpp) as a morphogen controlling growth and patterning. Dpp protein has been observed in an extracellular gradient within the columnar cell layer of the disc, but also uniformly in the disc lumen, leading to the question of how graded signaling is achieved in the face of 2 distinctly localized ligand pools. We find the Dpp Type II receptor Punt, but not the Type I receptor Tkv, is enriched at the basolateral membrane and depleted at the junctions and apical surface. Wit, a second Type II receptor, shows a markedly different behavior, with the protein detected on all membrane regions but enriched at the apical side. Mutational studies identified a short juxtamembrane sequence required for basolateral restriction of Punt in both wing discs and mammalian Madin-Darby canine kidney (MDCK) cells. This basolateral targeting (BLT) determinant can dominantly confer basolateral localization on an otherwise apical receptor. Rescue of punt mutants with transgenes altered in the targeting motif showed that flies expressing apicalized Punt due to the lack of a functional BLT displayed developmental defects, female sterility, and significant lethality. We also show that apicalized Punt does not produce an ectopic signal, indicating that the apical pool of Dpp is not a significant signaling source even when presented with Punt. Instead, we find that basolateral presentation of Punt is required for optimal signaling. Finally, we present evidence that the BLT acts through polarized sorting machinery that differs between types of epithelia. This suggests a code whereby each epithelial cell type may differentially traffic common receptors to enable distinctive responses to spatially localized pools of extracellular ligands.
Collapse
Affiliation(s)
- Aidan J. Peterson
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stephen J. Murphy
- Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Melinda G. Mundt
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - MaryJane Shimell
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Edward B. Leof
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
77
|
Gordeeva O, Gordeev A, Erokhov P. Archetypal Architecture Construction, Patterning, and Scaling Invariance in a 3D Embryoid Body Differentiation Model. Front Cell Dev Biol 2022; 10:852071. [PMID: 35573693 PMCID: PMC9091174 DOI: 10.3389/fcell.2022.852071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Self-organized patterning and architecture construction studying is a priority goal for fundamental developmental and stem cell biology. To study the spatiotemporal patterning of pluripotent stem cells of different origins, we developed a three-dimensional embryoid body (EB) differentiation model quantifying volumetric parameters and investigated how the EB architecture formation, patterning, and scaling depend on the proliferation, cavitation, and differentiation dynamics, external environmental factors, and cell numbers. We identified three similar spatiotemporal patterns in the EB architectures, regardless of cell origin, which constitute the EB archetype and mimick the pre-gastrulation embryonic patterns. We found that the EB patterning depends strongly on cellular positional information, culture media factor/morphogen content, and free diffusion from the external environment and between EB cell layers. However, the EB archetype formation is independent of the EB size and initial cell numbers forming EBs; therefore, it is capable of scaling invariance and patterning regulation. Our findings indicate that the underlying principles of reaction-diffusion and positional information concepts can serve as the basis for EB architecture construction, patterning, and scaling. Thus, the 3D EB differentiation model represents a highly reproducible and reliable platform for experimental and theoretical research on developmental and stem cell biology issues.
Collapse
Affiliation(s)
- Olga Gordeeva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Gordeev
- National Institutes of Health’s National Library of Medicine, Bethesda, MD, United States
| | - Pavel Erokhov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
78
|
Piccolo FM, Kastan NR, Haremaki T, Tian Q, Laundos TL, De Santis R, Beaudoin AJ, Carroll TS, Luo JD, Gnedeva K, Etoc F, Hudspeth AJ, Brivanlou AH. Role of YAP in early ectodermal specification and a Huntington's Disease model of human neurulation. eLife 2022; 11:e73075. [PMID: 35451959 PMCID: PMC9033270 DOI: 10.7554/elife.73075] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The Hippo pathway, a highly conserved signaling cascade that functions as an integrator of molecular signals and biophysical states, ultimately impinges upon the transcription coactivator Yes-associated protein 1 (YAP). Hippo-YAP signaling has been shown to play key roles both at the early embryonic stages of implantation and gastrulation, and later during neurogenesis. To explore YAP's potential role in neurulation, we used self-organizing neuruloids grown from human embryonic stem cells on micropatterned substrates. We identified YAP activation as a key lineage determinant, first between neuronal ectoderm and nonneuronal ectoderm, and later between epidermis and neural crest, indicating that YAP activity can enhance the effect of BMP4 stimulation and therefore affect ectodermal specification at this developmental stage. Because aberrant Hippo-YAP signaling has been implicated in the pathology of Huntington's Disease (HD), we used isogenic mutant neuruloids to explore the relationship between signaling and the disease. We found that HD neuruloids demonstrate ectopic activation of gene targets of YAP and that pharmacological reduction of YAP's transcriptional activity can partially rescue the HD phenotype.
Collapse
Affiliation(s)
- Francesco M Piccolo
- Laboratory of of Stem Cell Biology and Molecular Embryology, The Rockefeller UniversityNew YorkUnited States
| | - Nathaniel R Kastan
- Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
- Laboratory of Sensory Neuroscience, The Rockefeller UniversityNew YorkUnited States
| | - Tomomi Haremaki
- Laboratory of of Stem Cell Biology and Molecular Embryology, The Rockefeller UniversityNew YorkUnited States
| | - Qingyun Tian
- Laboratory of of Stem Cell Biology and Molecular Embryology, The Rockefeller UniversityNew YorkUnited States
| | - Tiago L Laundos
- Laboratory of of Stem Cell Biology and Molecular Embryology, The Rockefeller UniversityNew YorkUnited States
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do PortoPortoPortugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
- INEB - Instituto de Engenharia Biomédica, Universidade do PortoPortoPortugal
| | - Riccardo De Santis
- Laboratory of of Stem Cell Biology and Molecular Embryology, The Rockefeller UniversityNew YorkUnited States
| | - Andrew J Beaudoin
- Laboratory of of Stem Cell Biology and Molecular Embryology, The Rockefeller UniversityNew YorkUnited States
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Ksenia Gnedeva
- Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
- Laboratory of Sensory Neuroscience, The Rockefeller UniversityNew YorkUnited States
| | - Fred Etoc
- Laboratory of of Stem Cell Biology and Molecular Embryology, The Rockefeller UniversityNew YorkUnited States
| | - AJ Hudspeth
- Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
- Laboratory of Sensory Neuroscience, The Rockefeller UniversityNew YorkUnited States
| | - Ali H Brivanlou
- Laboratory of of Stem Cell Biology and Molecular Embryology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
79
|
Hashmi A, Tlili S, Perrin P, Lowndes M, Peradziryi H, Brickman JM, Martínez Arias A, Lenne PF. Cell-state transitions and collective cell movement generate an endoderm-like region in gastruloids. eLife 2022; 11:59371. [PMID: 35404233 PMCID: PMC9033300 DOI: 10.7554/elife.59371] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 04/08/2022] [Indexed: 12/04/2022] Open
Abstract
Shaping the animal body plan is a complex process that involves the spatial organization and patterning of the different germ layers. Recent advances in live imaging have started to unravel the cellular choreography underlying this process in mammals, however, the sequence of events transforming an unpatterned cell ensemble into structured territories is largely unknown. Here, using gastruloids –3D aggregates of mouse embryonic stem cells- we study the formation of one of the three germ layers, the endoderm. We show that the endoderm is generated from an epiblast-like homogeneous state by a three-step mechanism: (i) a loss of E-cadherin mediated contacts in parts of the aggregate leading to the appearance of islands of E-cadherin expressing cells surrounded by cells devoid of E-cadherin, (ii) a separation of these two populations with islands of E-cadherin expressing cells flowing toward the aggregate tip, and (iii) their differentiation into an endoderm population. During the flow, the islands of E-cadherin expressing cells are surrounded by cells expressing T-Brachyury, reminiscent of the process occurring at the primitive streak. Consistent with recent in vivo observations, the endoderm formation in the gastruloids does not require an epithelial-to-mesenchymal transition, but rather a maintenance of an epithelial state for a subset of cells coupled with fragmentation of E-cadherin contacts in the vicinity, and a sorting process. Our data emphasize the role of signaling and tissue flows in the establishment of the body plan.
Collapse
Affiliation(s)
- Ali Hashmi
- IBDM, Aix Marseille University, CNRS, Marseille, France
| | - Sham Tlili
- IBDM, Aix Marseille University, CNRS, Marseille, France
| | - Pierre Perrin
- IBDM, Aix Marseille University, CNRS, Marseille, France
| | - Molly Lowndes
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Hanna Peradziryi
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
80
|
Jo K, Teague S, Chen B, Khan HA, Freeburne E, Li H, Li B, Ran R, Spence JR, Heemskerk I. Efficient differentiation of human primordial germ cells through geometric control reveals a key role for Nodal signaling. eLife 2022; 11:e72811. [PMID: 35394424 PMCID: PMC9106331 DOI: 10.7554/elife.72811] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Human primordial germ cells (hPGCs) form around the time of implantation and are the precursors of eggs and sperm. Many aspects of hPGC specification remain poorly understood because of the inaccessibility of the early postimplantation human embryo for study. Here, we show that micropatterned human pluripotent stem cells (hPSCs) treated with BMP4 give rise to hPGC-like cells (hPGCLC) and use these as a quantitatively reproducible and simple in vitro model to interrogate this important developmental event. We characterize micropatterned hPSCs up to 96 hr and show that hPGCLC populations are stable and continue to mature. By perturbing signaling during hPGCLC differentiation, we identify a previously unappreciated role for Nodal signaling and find that the relative timing and duration of BMP and Nodal signaling are critical parameters controlling the number of hPGCLCs. We formulate a mathematical model for a network of cross-repressive fates driven by Nodal and BMP signaling, which predicts the measured fate patterns after signaling perturbations. Finally, we show that hPSC colony size dictates the efficiency of hPGCLC specification, which led us to dramatically improve the efficiency of hPGCLC differentiation.
Collapse
Affiliation(s)
- Kyoung Jo
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Seth Teague
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Bohan Chen
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Hina Aftab Khan
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Emily Freeburne
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Hunter Li
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Bolin Li
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Ran Ran
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Center for Organogenesis, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Center for Organogenesis, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Physics, University of MichiganAnn ArborUnited States
| |
Collapse
|
81
|
Gsell S, Merkel M. Phase separation dynamics in deformable droplets. SOFT MATTER 2022; 18:2672-2683. [PMID: 35311835 DOI: 10.1039/d1sm01647d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phase separation can drive spatial organization of multicomponent mixtures. For instance in developing animal embryos, effective phase separation descriptions have been used to account for the spatial organization of different tissue types. Similarly, separation of different tissue types is also observed in stem cell aggregates, where the emergence of a polar organization can mimic early embryonic axis formation. Here, we describe such aggregates as deformable two-phase fluid droplets, which are suspended in a fluid environment (third phase). Using hybrid finite-volume Lattice-Boltzmann simulations, we numerically explore the out-of-equilibrium routes that can lead to the polar equilibrium state of such a droplet. We focus on the interplay between spinodal decomposition and advection with hydrodynamic flows driven by interface tensions, which we characterize by a Peclet number Pe. Consistent with previous work, for large Pe the coarsening process is generally accelerated. However, for intermediate Pe we observe long-lived, strongly elongated droplets, where both phases form an alternating stripe pattern. We show that these "croissant" states are close to mechanical equilibrium and coarsen only slowly through diffusive fluxes in an Ostwald-ripening-like process. Finally, we show that a surface tension asymmetry between both droplet phases leads to transient, rotationally symmetric states whose resolution leads to flows reminiscent of Marangoni flows. Our work highlights the importance of advection for the phase separation process in finite, deformable systems.
Collapse
Affiliation(s)
- Simon Gsell
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living Systems, Marseille, France.
- Aix Marseille Univ, CNRS, IBDM (UMR 7288), Turing Centre for Living Systems, Marseille, France
| | - Matthias Merkel
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
82
|
Hill CS. Establishment and interpretation of NODAL and BMP signaling gradients in early vertebrate development. Curr Top Dev Biol 2022; 149:311-340. [PMID: 35606059 DOI: 10.1016/bs.ctdb.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transforming growth factor β (TGF-β) family ligands play crucial roles in orchestrating early embryonic development. Most significantly, two family members, NODAL and BMP form signaling gradients and indeed in fish, frogs and sea urchins these two opposing gradients are sufficient to organize a complete embryonic axis. This review focuses on how these gradients are established and interpreted during early vertebrate development. The review highlights key principles that are emerging, in particular the importance of signaling duration as well as ligand concentration in both gradient generation and their interpretation. Feedforward and feedback loops involving other signaling pathways are also essential for providing spatial and temporal information downstream of the NODAL and BMP signaling pathways. Finally, new data suggest the existence of buffering mechanisms, whereby early signaling defects can be readily corrected downstream later in development, suggesting that signaling gradients do not have to be as precise as previously thought.
Collapse
Affiliation(s)
- Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
83
|
Barhouse PS, Andrade MJ, Smith Q. Home Away From Home: Bioengineering Advancements to Mimic the Developmental and Adult Stem Cell Niche. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.832754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The inherent self-organizing capacity of pluripotent and adult stem cell populations has advanced our fundamental understanding of processes that drive human development, homeostasis, regeneration, and disease progression. Translating these principles into in vitro model systems has been achieved with the advent of organoid technology, driving innovation to harness patient-specific, cell-laden regenerative constructs that can be engineered to augment or replace diseased tissue. While developmental organization and regenerative adult stem cell niches are tightly regulated in vivo, in vitro analogs lack defined architecture and presentation of physicochemical cues, leading to the unhindered arrangement of mini-tissues that lack complete physiological mimicry. This review aims to highlight the recent integrative engineering approaches that elicit spatio-temporal control of the extracellular niche to direct the structural and functional maturation of pluripotent and adult stem cell derivatives. While the advances presented here leverage multi-pronged strategies ranging from synthetic biology to microfabrication technologies, the methods converge on recreating the biochemical and biophysical milieu of the native tissue to be modeled or regenerated.
Collapse
|
84
|
Liu L, Nemashkalo A, Rezende L, Jung JY, Chhabra S, Guerra MC, Heemskerk I, Warmflash A. Nodal is a short-range morphogen with activity that spreads through a relay mechanism in human gastruloids. Nat Commun 2022; 13:497. [PMID: 35079017 PMCID: PMC8789905 DOI: 10.1038/s41467-022-28149-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Morphogens are signaling molecules that convey positional information and dictate cell fates during development. Although ectopic expression in model organisms suggests that morphogen gradients form through diffusion, little is known about how morphogen gradients are created and interpreted during mammalian embryogenesis due to the combined difficulties of measuring endogenous morphogen levels and observing development in utero. Here we take advantage of a human gastruloid model to visualize endogenous Nodal protein in living cells, during specification of germ layers. We show that Nodal is extremely short range so that Nodal protein is limited to the immediate neighborhood of source cells. Nodal activity spreads through a relay mechanism in which Nodal production induces neighboring cells to transcribe Nodal. We further show that the Nodal inhibitor Lefty, while biochemically capable of long-range diffusion, also acts locally to control the timing of Nodal spread and therefore of mesoderm differentiation during patterning. Our study establishes a paradigm for tissue patterning by an activator-inhibitor pair.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Luisa Rezende
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Ji Yoon Jung
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Sapna Chhabra
- Department of Biosciences, Rice University, Houston, TX, USA
- Developmental Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | | | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
85
|
The spatial self-organization within pluripotent stem cell colonies is continued in detaching aggregates. Biomaterials 2022; 282:121389. [PMID: 35121357 DOI: 10.1016/j.biomaterials.2022.121389] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 01/23/2022] [Indexed: 12/13/2022]
Abstract
Colonies of induced pluripotent stem cells (iPSCs) reveal aspects of self-organization even under culture conditions that maintain pluripotency. To investigate the dynamics of this process under spatial confinement, we used either polydimethylsiloxane (PDMS) pillars or micro-contact printing of vitronectin. There was a progressive upregulation of OCT4, E-cadherin, and NANOG within 70 μm from the outer rim of iPSC colonies. Single-cell RNA-sequencing and spatial reconstruction of gene expression demonstrated that OCT4high subsets, residing at the edge of the colony, have pronounced up-regulation of the TGF-β pathway, particularly of NODAL and its inhibitor LEFTY. Interestingly, after 5-7 days, iPSC colonies detached spontaneously from micro-contact printed substrates to form 3D aggregates. This new method allowed generation of embryoid bodies (EBs) of controlled size without enzymatic or mechanical treatment. Within the early 3D aggregates, radial organization and differential gene expression continued in analogy to the changes observed during self-organization of iPSC colonies. Early self-detached aggregates revealed up-regulated germline-specific gene expression patterns as compared to conventional EBs. However, there were no marked differences after further directed differentiation toward hematopoietic, mesenchymal, and neuronal lineages. Our results provide further insight into the gradual self-organization within iPSC colonies and at their transition into EBs.
Collapse
|
86
|
Pour M, Kumar AS, Farag N, Bolondi A, Kretzmer H, Walther M, Wittler L, Meissner A, Nachman I. Emergence and patterning dynamics of mouse-definitive endoderm. iScience 2022; 25:103556. [PMID: 34988400 PMCID: PMC8693470 DOI: 10.1016/j.isci.2021.103556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
The segregation of definitive endoderm (DE) from bipotent mesendoderm progenitors leads to the formation of two distinct germ layers. Dissecting DE commitment and onset has been challenging as it occurs within a narrow spatiotemporal window in the embryo. Here, we employ a dual Bra/Sox17 reporter cell line to study DE onset dynamics. We find Sox17 expression initiates in vivo in isolated cells within a temporally restricted window. In 2D and 3D in vitro models, DE cells emerge from mesendoderm progenitors at a temporally regular, but spatially stochastic pattern, which is subsequently arranged by self-sorting of Sox17 + cells. A subpopulation of Bra-high cells commits to a Sox17+ fate independent of external Wnt signal. Self-sorting coincides with upregulation of E-cadherin but is not necessary for DE differentiation or proliferation. Our in vivo and in vitro results highlight basic rules governing DE onset and patterning through the commonalities and differences between these systems. Sox17 onsets in a few isolated cells within Bra-expressing population Sox17 onset followed by expansion and self-sorting Final number of Sox17+ cells does not depend on self-sorting or cell movement The DE segregation pattern is similar in in vivo and in 2D, 3D in vitro systems
Collapse
Affiliation(s)
- Maayan Pour
- School of Neurobiology, Biochemistry and Biophysics, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Naama Farag
- School of Neurobiology, Biochemistry and Biophysics, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Maria Walther
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Iftach Nachman
- School of Neurobiology, Biochemistry and Biophysics, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
87
|
Luo Y, Yu Y. Research Advances in Gametogenesis and Embryogenesis Using Pluripotent Stem Cells. Front Cell Dev Biol 2022; 9:801468. [PMID: 35127717 PMCID: PMC8810640 DOI: 10.3389/fcell.2021.801468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
The previous studies of human gametogenesis and embryogenesis have left many unanswered questions, which hinders the understanding of the physiology of these two vital processes and the development of diagnosis and treatment strategies for related diseases. Although many results have been obtained from animal studies, particularly mouse research, the results cannot be fully applied to humans due to species differences in physiology and pathology. However, due to ethical and material limitations, the direct study of human gametes and embryos is very difficult. The emergence and rapid development of organoids allow the construction of organoid systems that simulate gametogenesis and embryogenesis in vitro, and many studies have successfully established organoid systems for some parts of or even the entire processes of gametogenesis and embryogenesis. These studies typically start with the establishment of mouse models and then modify these models to obtain human organoid models. These organoid models can be used to obtain a better understanding of the signaling pathways, molecular mechanisms, genetics, and epigenetic changes involved in gametogenesis and embryogenesis and could also be applied to clinical applications, such as drug screening. Here, we discuss the formation of primordial stem cell-like cells (PGCLCs), and in vitro-induced gametes and embryoids using pluripotent stem cells (PSCs). We also analyze their applications and limitations.
Collapse
Affiliation(s)
- Yuxin Luo
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Stem Cell Research Center, Peking University Third Hospital, Beijing, China
- *Correspondence: Yang Yu,
| |
Collapse
|
88
|
Nakatani E, Okajima R, Ohnuma K. Slow diffusion on the monolayer culture enhances auto/paracrine effects of Noggin in differentiation of human iPS cells induced by BMP. Biochem Biophys Rep 2022; 29:101195. [PMID: 35005256 PMCID: PMC8717143 DOI: 10.1016/j.bbrep.2021.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Auto/paracrine factors secreted from cells affect differentiation of human pluripotent stem cells (hPSCs). However, the molecular mechanisms underlying the role of secreted factors are not well known. We previously showed that pattern formation in hPSCs induced by BMP4 could be reproduced by a simple reaction-diffusion of BMP and Noggin, a cell-secreted BMP4 inhibitor. However, the amount of Noggin secreted is unknown. In this study, we measured the concentration of Noggin secreted during the differentiation of hPSCs induced by BMP4. The Noggin concentration in the supernatant before and after differentiation was constant at approximately 0.69 ng/mL, which is approximately 50–200 times less than expected in the model. To explain the difference between the experiment and model, we assumed that macromolecules such as heparan sulfate proteoglycan on the cell surface act as a diffusion barrier structure, where the diffusion slows down to 1/400. The model with the diffusion barrier structure reduced the Noggin concentration required to suppress differentiation in the static culture model. The model also qualitatively reproduced the pattern formation, in which only the upstream but not the downstream hPSCs were differentiated in a one-directional perfusion culture chamber, with a small change in the amount of secreted Noggin resulting in a large change in the differentiation position. These results suggest that the diffusion barrier on the cell surface might enhance the auto/paracrine effects on monolayer hPSC culture. Noggin was constantly secreted at about 0.69 ng/mL irrespective of cell state. Noggin concentration was 1/145 than expected in the mere diffusion-reaction model. Slow diffusion on the cell surface reduced the Noggin concentration in the medium. The diffusion barrier reproduced pattern formation in the microchamber.
Collapse
Affiliation(s)
- Eri Nakatani
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, 940-2188, Japan
| | - Riho Okajima
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, 940-2188, Japan
| | - Kiyoshi Ohnuma
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, 940-2188, Japan.,Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, 940-2188, Japan
| |
Collapse
|
89
|
Rossant J, Tam PP. Early human embryonic development: Blastocyst formation to gastrulation. Dev Cell 2022; 57:152-165. [DOI: 10.1016/j.devcel.2021.12.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
|
90
|
Simon G, Plouhinec JL, Sorre B. Differentiation of EpiLCs on Micropatterned Substrates Generated by Micro-Contact Printing. Methods Mol Biol 2022; 2490:251-268. [PMID: 35486251 DOI: 10.1007/978-1-0716-2281-0_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
During the last decades, signaling pathways responsible for the initiation of gastrulation in mammalian embryos have been identified. However, the physical rules governing the tissue spatial patterning and the extensive morphogenetic movements occurring during that process are still elusive. Progress on these issues is slowed by the difficulty to record or perturb the patterning events in real time, especially in mammalian embryos that develop in utero. Because they permit easy observation and manipulation, in vitro model systems offer an exciting opportunity to dissect the rules governing the organization of the mammalian gastrula. For instance, it is sufficient to cultivate human embryonic stem cells on micropatterned substrates to reveal their self-organization potential. We present here a method to obtain micropatterned mouse Epiblast Like Cells colonies, providing a convenient way to compare spatial organization of mouse and human pluripotent stem cells and to complement the characterization of mutant embryos in a controlled environment.
Collapse
Affiliation(s)
- Gaël Simon
- Institut Jacques Monod, UMR 7592, CNRS, Université de Paris, Paris, France
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Jean-Louis Plouhinec
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université de Paris, Paris, France
| | - Benoit Sorre
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France.
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université de Paris, Paris, France.
| |
Collapse
|
91
|
Stronati E, Giraldez S, Huang L, Abraham E, McGuire GR, Hsu HT, Jones KA, Estarás C. YAP1 regulates the self-organized fate patterning of hESC-derived gastruloids. Stem Cell Reports 2022; 17:211-220. [PMID: 35063126 PMCID: PMC8828531 DOI: 10.1016/j.stemcr.2021.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
The gastrulation process relies on complex interactions between developmental signaling pathways that are not completely understood. Here, we interrogated the contribution of the Hippo signaling effector YAP1 to the formation of the three germ layers by analyzing human embryonic stem cell (hESC)-derived 2D-micropatterned gastruloids. YAP1 knockout gastruloids display a reduced ectoderm layer and enlarged mesoderm and endoderm layers compared with wild type. Furthermore, our epigenome and transcriptome analysis revealed that YAP1 attenuates Nodal signaling by directly repressing the chromatin accessibility and transcription of key genes in the Nodal pathway, including the NODAL and FOXH1 genes. Hence, in the absence of YAP1, hyperactive Nodal signaling retains SMAD2/3 in the nuclei, impeding ectoderm differentiation of hESCs. Thus, our work revealed that YAP1 is a master regulator of Nodal signaling, essential for instructing germ layer fate patterning in human gastruloids. YAP1 deletion compromises cell-fate patterning of hESC-derived 2D gastruloids YAP1 is required for ectoderm differentiation in hESCs YAP1 transcriptionally represses Nodal signaling genes during ectoderm induction Reducing Nodal signaling rescues YAP1 knockout gastrulation defects
Collapse
|
92
|
Veenvliet JV, Lenne PF, Turner DA, Nachman I, Trivedi V. Sculpting with stem cells: how models of embryo development take shape. Development 2021; 148:dev192914. [PMID: 34908102 PMCID: PMC8722391 DOI: 10.1242/dev.192914] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryogenesis, organisms acquire their shape given boundary conditions that impose geometrical, mechanical and biochemical constraints. A detailed integrative understanding how these morphogenetic information modules pattern and shape the mammalian embryo is still lacking, mostly owing to the inaccessibility of the embryo in vivo for direct observation and manipulation. These impediments are circumvented by the developmental engineering of embryo-like structures (stembryos) from pluripotent stem cells that are easy to access, track, manipulate and scale. Here, we explain how unlocking distinct levels of embryo-like architecture through controlled modulations of the cellular environment enables the identification of minimal sets of mechanical and biochemical inputs necessary to pattern and shape the mammalian embryo. We detail how this can be complemented with precise measurements and manipulations of tissue biochemistry, mechanics and geometry across spatial and temporal scales to provide insights into the mechanochemical feedback loops governing embryo morphogenesis. Finally, we discuss how, even in the absence of active manipulations, stembryos display intrinsic phenotypic variability that can be leveraged to define the constraints that ensure reproducible morphogenesis in vivo.
Collapse
Affiliation(s)
- Jesse V. Veenvliet
- Stembryogenesis Lab, Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| | - Pierre-François Lenne
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, 13288, Marseille, France
| | - David A. Turner
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, University of Liverpool, Liverpool, L7 8TX, UK
| | - Iftach Nachman
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Vikas Trivedi
- European Molecular Biology Laboratories (EMBL), Barcelona, 08003, Spain
- EMBL Heidelberg, Developmental Biology Unit, 69117, Heidelberg, Germany
| |
Collapse
|
93
|
Stutt N, Song M, Wilson MD, Scott IC. Cardiac specification during gastrulation - The Yellow Brick Road leading to Tinman. Semin Cell Dev Biol 2021; 127:46-58. [PMID: 34865988 DOI: 10.1016/j.semcdb.2021.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
The question of how the heart develops, and the genetic networks governing this process have become intense areas of research over the past several decades. This research is propelled by classical developmental studies and potential clinical applications to understand and treat congenital conditions in which cardiac development is disrupted. Discovery of the tinman gene in Drosophila, and examination of its vertebrate homolog Nkx2.5, along with other core cardiac transcription factors has revealed how cardiac progenitor differentiation and maturation drives heart development. Careful observation of cardiac morphogenesis along with lineage tracing approaches indicated that cardiac progenitors can be divided into two broad classes of cells, namely the first and second heart fields, that contribute to the heart in two distinct waves of differentiation. Ample evidence suggests that the fate of individual cardiac progenitors is restricted to distinct cardiac structures quite early in development, well before the expression of canonical cardiac progenitor markers like Nkx2.5. Here we review the initial specification of cardiac progenitors, discuss evidence for the early patterning of cardiac progenitors during gastrulation, and consider how early gene expression programs and epigenetic patterns can direct their development. A complete understanding of when and how the developmental potential of cardiac progenitors is determined, and their potential plasticity, is of great interest developmentally and also has important implications for both the study of congenital heart disease and therapeutic approaches based on cardiac stem cell programming.
Collapse
Affiliation(s)
- Nathan Stutt
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Michael D Wilson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Ian C Scott
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
| |
Collapse
|
94
|
Nakatani E, Yamazaki W, Sugiura S, Kanamori T, Ohnuma K. Modeling of differentiation pattern formation in human induced pluripotent stem cells mediated by BMP4 and its inhibitor noggin secreted from cells. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
95
|
Esfahani SN, Resto Irizarry AM, Xue X, Lee SBD, Shao Y, Fu J. Micro/nanoengineered technologies for human pluripotent stem cells maintenance and differentiation. NANO TODAY 2021; 41:101310. [PMID: 34745321 PMCID: PMC8570530 DOI: 10.1016/j.nantod.2021.101310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human pluripotent stem cells (hPSCs) are a promising source of cells for cell replacement-based therapies as well as modeling human development and diseases in vitro. However, achieving fate control of hPSC with a high yield and specificity remains challenging. The fate specification of hPSCs is regulated by biochemical and biomechanical cues in their environment. Driven by this knowledge, recent exciting advances in micro/nanoengineering have been leveraged to develop a broad range of tools for the generation of extracellular biomechanical and biochemical signals that determine the behavior of hPSCs. In this review, we summarize such micro/nanoengineered technologies for controlling hPSC fate and highlight the role of biochemical and biomechanical cues such as substrate rigidity, surface topography, and cellular confinement in the hPSC-based technologies that are on the horizon.
Collapse
Affiliation(s)
- Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel Byung-Deuk Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Shao
- Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Jiangping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
96
|
Cell position within human pluripotent stem cell colonies determines apical specialization via an actin cytoskeleton-based mechanism. Stem Cell Reports 2021; 17:68-81. [PMID: 34919810 PMCID: PMC8758941 DOI: 10.1016/j.stemcr.2021.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/12/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) grow as colonies with epithelial-like features including cell polarity and position-dependent features that contribute to symmetry breaking during development. Our study provides evidence that hPSC colonies exhibit position-dependent differences in apical structures and functions. With this apical difference, edge cells were preferentially labeled with amphipathic dyes, which enabled separation of edge and center cells by fluorescence-activated cell sorting. Transcriptome comparison between center and edge cells showed differential expression of genes related to apicobasal polarization, cell migration, and endocytosis. Accordingly, different kinematics and mechanical dynamics were found between center and edge cells, and perturbed actin dynamics disrupted the position-dependent apical polarity. In addition, our dye-labeling approach could be utilized to sort out a certain cell population in differentiated micropatterned colonies. In summary, hPSC colonies have position-dependent differences in apical structures and properties, and actin dynamics appear to play an important role in the establishment of this position-dependent cell polarity. Apical structure and properties are position dependent in hPSC colonies Center and edge cells in hPSC colonies were separated by FACS for RNA-seq analysis DEGs are involved in cell polarization, migration, actin dynamics Perturbed actin dynamics disrupt position-dependent cell polarity
Collapse
|
97
|
Chen Y, Shao Y. Stem Cell-Based Embryo Models: En Route to a Programmable Future. J Mol Biol 2021; 434:167353. [PMID: 34774563 DOI: 10.1016/j.jmb.2021.167353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023]
Abstract
Early-stage human embryogenesis, such as implantation, gastrulation, and neurulation, are critical for successful pregnancy. For decades, our knowledge about these stages has been limited by the inaccessibility to such embryo specimens in vivo and the difficulty in rebuilding them in vitro. Although human embryos could be cultured in vitro beyond implantation, it remains challenging for the cultured embryos to recapitulate the continuous, coordinated morphogenesis and cytodifferentiation as seen in vivo. Stem cell-based embryo models, mainly derived from human pluripotent stem cells, are organized structures mimicking essential developmental processes in the early-stage human embryos. Despite their invaluable potentials, most embryo models are based on the self-organization of human pluripotent stem cells, which are limited in controllability, reproducibility, and developmental fidelity. Recently, the integration of bioengineered tools and stem cell biology has fueled a technological transformation towards programmable, highly complex, high-fidelity stem cell-based embryo models. Given its scientific and clinical significance, we present an overview of recent paradigm-shifting advances as well as historical perspectives regarding the past, present, and future of synthetic human embryology. Following the developmental roadmap of human embryogenesis, we critically review existing stem cell-based models for implantation, gastrulation, and neurulation, respectively. We highlight the limitations encountered by autonomous self-organization strategy and discuss the concept and application of guided cell organization as a game-changer for innovating next-generation embryo models. Future endeavors in synthetic human embryology should rationally leverage both the self-organizing power and programmable microenvironmental guidance to secure faithful reconstructions of the hierarchical orders of human embryogenesis in vitro.
Collapse
Affiliation(s)
- Yunping Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
98
|
Valcourt JR, Huang RE, Kundu S, Venkatasubramanian D, Kingston RE, Ramanathan S. Modulating mesendoderm competence during human germ layer differentiation. Cell Rep 2021; 37:109990. [PMID: 34758327 PMCID: PMC8601596 DOI: 10.1016/j.celrep.2021.109990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/16/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
As pluripotent human embryonic stem cells progress toward one germ layer fate, they lose the ability to adopt alternative fates. Using a low-dimensional reaction coordinate to monitor progression toward ectoderm, we show that a differentiating stem cell's probability of adopting a mesendodermal fate given appropriate signals falls sharply at a point along the ectoderm trajectory. We use this reaction coordinate to prospectively isolate and profile differentiating cells based on their mesendoderm competence and analyze their RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) profiles to identify transcription factors that control the cell's mesendoderm competence. By modulating these key transcription factors, we can expand or contract the window of competence to adopt the mesendodermal fate along the ectodermal differentiation trajectory. The ability of the underlying gene regulatory network to modulate competence is essential for understanding human development and controlling the fate choices of stem cells in vitro.
Collapse
Affiliation(s)
- James R Valcourt
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Division of Applied Physics, Harvard University, Cambridge, MA 02138, USA.
| | - Roya E Huang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Division of Applied Physics, Harvard University, Cambridge, MA 02138, USA
| | - Sharmistha Kundu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Divya Venkatasubramanian
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Division of Applied Physics, Harvard University, Cambridge, MA 02138, USA
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sharad Ramanathan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Division of Applied Physics, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
99
|
Vickers A, Tewary M, Laddach A, Poletti M, Salameti V, Fraternali F, Danovi D, Watt FM. Plating human iPSC lines on micropatterned substrates reveals role for ITGB1 nsSNV in endoderm formation. Stem Cell Reports 2021; 16:2628-2641. [PMID: 34678211 PMCID: PMC8581167 DOI: 10.1016/j.stemcr.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
Quantitative analysis of human induced pluripotent stem cell (iPSC) lines from healthy donors is a powerful tool for uncovering the relationship between genetic variants and cellular behavior. We previously identified rare, deleterious non-synonymous single nucleotide variants (nsSNVs) in cell adhesion genes that are associated with outlier iPSC phenotypes in the pluripotent state. Here, we generated micropatterned colonies of iPSCs to test whether nsSNVs influence patterning of radially ordered germ layers. Using a custom-built image analysis pipeline, we quantified the differentiation phenotypes of 13 iPSC lines that harbor nsSNVs in genes related to cell adhesion or germ layer development. All iPSC lines differentiated into the three germ layers; however, there was donor-specific variation in germ layer patterning. We identified one line that presented an outlier phenotype of expanded endodermal differentiation, which was associated with a nsSNV in ITGB1. Our study establishes a platform for investigating the impact of nsSNVs on differentiation.
Collapse
Affiliation(s)
- Alice Vickers
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Mukul Tewary
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Anna Laddach
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Great Maze Pond, London SE1 9RT, UK; Development and Homeostasis of the Nervous System Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Martina Poletti
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; Quadram Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Vasiliki Salameti
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Great Maze Pond, London SE1 9RT, UK
| | - Davide Danovi
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK; bit.bio, Babraham Research Campus, The Dorothy Hodgkin Building, Cambridge CB22 3FH, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
100
|
Bedekar P, Timofeyev I, Warmflash A, Perepelitsa M. Reaction-diffusion models for morphological patterning of hESCs. J Math Biol 2021; 83:55. [PMID: 34727234 DOI: 10.1007/s00285-021-01674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/04/2021] [Accepted: 09/08/2021] [Indexed: 10/19/2022]
Abstract
In this paper we consider mathematical modeling of the dynamics of self-organized patterning of spatially confined human embryonic stem cells (hESCs) treated with BMP4 (gastruloids) described in recent experimental works (Warmflash in Nat Methods 11:847-854, 2014; Chhabra in PloS Biol 17: 3000498, 2019). In the first part of the paper we use the activator-inhibitor equations of Gierer and Meinhardt to identify 3 reaction-diffusion regimes for each of the three morphogenic proteins, BMP4, Wnt and Nodal, based on the characteristic features of the dynamic patterning. We identify appropriate boundary conditions which correspond to the experimental setup and perform numerical simulations of the reaction-diffusion (RD) systems, using the finite element approximation, to confirm that the RD systems in these regimes produce realistic dynamics of the protein concentrations. In the second part of the paper we use analytic tools to address the questions of the existence and stability of non-homogeneous steady states for the reaction-diffusion systems of the type considered in the first part of the paper.
Collapse
Affiliation(s)
- Prajakta Bedekar
- Department of Mathematics, University of Houston, Houston, TX, United States
| | - Ilya Timofeyev
- Department of Mathematics, University of Houston, Houston, TX, United States
| | - Aryeh Warmflash
- Laboratory of Systems Stem Cell and Developmental Biology, Department of BioSciences, Rice University, Houston, TX, United States
| | - Misha Perepelitsa
- Department of Mathematics, University of Houston, Houston, TX, United States.
| |
Collapse
|