51
|
Thapar R. Regulation of DNA Double-Strand Break Repair by Non-Coding RNAs. Molecules 2018; 23:molecules23112789. [PMID: 30373256 PMCID: PMC6278438 DOI: 10.3390/molecules23112789] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/12/2023] Open
Abstract
DNA double-strand breaks (DSBs) are deleterious lesions that are generated in response to ionizing radiation or replication fork collapse that can lead to genomic instability and cancer. Eukaryotes have evolved two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ) to repair DSBs. Whereas the roles of protein-DNA interactions in HR and NHEJ have been fairly well defined, the functions of small and long non-coding RNAs and RNA-DNA hybrids in the DNA damage response is just beginning to be elucidated. This review summarizes recent discoveries on the identification of non-coding RNAs and RNA-mediated regulation of DSB repair.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
52
|
Xu R, Xu Y, Huo W, Lv Z, Yuan J, Ning S, Wang Q, Hou M, Gao G, Ji J, Chen J, Guo R, Xu D. Mitosis-specific MRN complex promotes a mitotic signaling cascade to regulate spindle dynamics and chromosome segregation. Proc Natl Acad Sci U S A 2018; 115:E10079-E10088. [PMID: 30297404 PMCID: PMC6205471 DOI: 10.1073/pnas.1806665115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The MRE11-RAD50-NBS1 (MRN) complex is well known for participating in DNA damage response pathways in all phases of cell cycle. Here, we show that MRN constitutes a mitosis-specific complex, named mMRN, with a protein, MMAP. MMAP directly interacts with MRE11 and is required for optimal stability of the MRN complex during mitosis. MMAP colocalizes with MRN in mitotic spindles, and MMAP-deficient cells display abnormal spindle dynamics and chromosome segregation similar to MRN-deficient cells. Mechanistically, both MMAP and MRE11 are hyperphosphorylated by the mitotic kinase, PLK1; and the phosphorylation is required for assembly of the mMRN complex. The assembled mMRN complex enables PLK1 to interact with and activate the microtubule depolymerase, KIF2A, leading to spindle turnover and chromosome segregation. Our study identifies a mitosis-specific version of the MRN complex that acts in the PLK1-KIF2A signaling cascade to regulate spindle dynamics and chromosome distribution.
Collapse
Affiliation(s)
- Ran Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yixi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Huo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhicong Lv
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jingsong Yuan
- Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032
| | - Shaokai Ning
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Mei Hou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ge Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Rong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China;
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China;
| |
Collapse
|
53
|
Fan C, Zhang J, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Xie Y. RAD50 germline mutations are associated with poor survival in BRCA1/2-negative breast cancer patients. Int J Cancer 2018; 143:1935-1942. [PMID: 29726012 DOI: 10.1002/ijc.31579] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022]
Abstract
RAD50 is a highly conserved DNA double-strand break (DSB) repair gene. However, the associations between RAD50 germline mutations and the survival and risk of breast cancer have not been fully elucidated. Here, we aimed to investigate the clinical impact of RAD50 germline mutations in a large cohort of unselected breast cancer patients. In our study, RAD50 germline mutations were determined using next-generation sequencing in 7657 consecutive unselected breast cancer patients without BRCA1/2 mutations. We also screened for RAD50 recurrent mutations (L719fs, K994fs, and H1269fs) in 5000 healthy controls using Sanger sequencing. We found that 26 out of 7,657 (0.34%) patients had RAD50 pathogenic mutations, and 16 patients carried one of the three recurrent mutations (L719fs, n = 6 cases; K994fs, n = 5 cases; and H1269fs, n = 5 cases); the recurrent mutation rate was 0.21%. The frequency of the three recurrent mutations in the 5,000 healthy controls was 0.18% (9/5,000). These mutations did not confer an increased risk of breast cancer in the studied patients [odds ratios (OR), 1.16; 95% confidence interval (CI), 0.51-2.63; p = 0.72]. Nevertheless, multivariate analysis revealed that RAD50 pathogenic mutations were an independent unfavourable predictor of recurrence-free survival (RFS) [adjusted hazard ratio (HR) 2.66; 95% CI, 1.18-5.98; p = 0.018] and disease-specific survival (DSS; adjusted HR 4.36; 95% CI, 1.58-12.03; p = 0.004) in the entire study cohort. Our study suggested that RAD50 germline mutations are not associated with an increased risk of breast cancer, but patients with RAD50 germline mutations have unfavourable survival compared to patients without these mutations.
Collapse
Affiliation(s)
- Cong Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Juan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Tao Ouyang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Jinfeng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Tianfeng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Zhaoqing Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Tie Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Benyao Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Yuntao Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| |
Collapse
|
54
|
MRE11 inhibition highlights a replication stress-dependent vulnerability of MYCN-driven tumors. Cell Death Dis 2018; 9:895. [PMID: 30166519 PMCID: PMC6117286 DOI: 10.1038/s41419-018-0924-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
MRE11 is a component of the MRE11/RAD50/NBS1 (MRN) complex, whose activity is essential to control faithful DNA replication and to prevent accumulation of deleterious DNA double-strand breaks. In humans, hypomorphic mutations in these genes lead to DNA damage response (DDR)-defective and cancer-prone syndromes. Moreover, MRN complex dysfunction dramatically affects the nervous system, where MRE11 is required to restrain MYCN-dependent replication stress, during the rapid expansion of progenitor cells. MYCN activation, often due to genetic amplification, represents the driving oncogenic event for a number of human tumors, conferring bad prognosis and predicting very poor responses even to the most aggressive therapeutic protocols. This is prototypically exemplified by neuroblastoma, where MYCN amplification occurs in about 25% of the cases. Intriguingly, MRE11 is highly expressed and predicts bad prognosis in MYCN-amplified neuroblastoma. Due to the lack of direct means to target MYCN, we explored the possibility to trigger intolerable levels of replication stress-dependent DNA damage, by inhibiting MRE11 in MYCN-amplified preclinical models. Indeed, either MRE11 knockdown or its pharmacological inhibitor mirin induce accumulation of replication stress and DNA damage biomarkers in MYCN-amplified cells. The consequent DDR recruits p53 and promotes a p53-dependent cell death, as indicated by p53 loss- and gain-of-function experiments. Encapsulation of mirin in nanoparticles allowed its use on MYCN-amplified neuroblastoma xenografts in vivo, which resulted in a sharp impairment of tumor growth, associated with DDR activation, p53 accumulation, and cell death. Therefore, we propose that MRE11 inhibition might be an effective strategy to treat MYCN-amplified and p53 wild-type neuroblastoma, and suggest that targeting replication stress with appropriate tools should be further exploited to tackle MYCN-driven tumors.
Collapse
|
55
|
Gass J, Jackson J, Macklin S, Blackburn P, Hines S, Atwal PS. A case of contralateral breast cancer and skin cancer associated with NBN heterozygous pathogenic variant c.698_701delAACA. Fam Cancer 2018; 16:551-553. [PMID: 28374160 DOI: 10.1007/s10689-017-9982-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Approximately 39.6% of people will be diagnosed with cancer during their lifetime. Several factors including, lifestyle, environment and genetics may play a role in its development. Understanding these causes will greatly improve treatment methods, prevention, and survival rates of these patients. Our patient, who has a positive family history of cancer, presented with contralateral breast cancer and multiple skin malignancies. Genetic testing revealed a frameshift variant in NBN. This gene encodes the protein, nibrin, which is involved in maintaining genomic stability. Several reports have identified heterozygous NBN frameshift (c.2028delT, c.2097dupT, c.657-661delACAAA) and splice site variants (c.1397+delG) in patients with breast cancer. However, our report is the first to describe a heterozygous c.698_701delAACA NBN variant in a patient with breast cancer. Since NBN is involved in DNA integrity, loss of functional protein due to pathogenic variants significantly increases the risk of various cancers. Given the family and personal history of our patient, in connection with previous reports of NBN pathogenic variants predisposition to cancer, this variant is predicted to be pathogenic and clinically significant.
Collapse
Affiliation(s)
- Jennifer Gass
- Center for Individualized Medicine, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA. .,Department of Clinical Genomics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| | - Jessica Jackson
- Center for Individualized Medicine, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.,Department of Clinical Genomics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Sarah Macklin
- Center for Individualized Medicine, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.,Department of Clinical Genomics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Patrick Blackburn
- Center for Individualized Medicine, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Stephanie Hines
- Department of Medicine, Division of Diagnostic & Consultative Medicine, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Paldeep S Atwal
- Center for Individualized Medicine, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.,Department of Clinical Genomics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| |
Collapse
|
56
|
Campillo-Marcos I, Lazo PA. Implication of the VRK1 chromatin kinase in the signaling responses to DNA damage: a therapeutic target? Cell Mol Life Sci 2018; 75:2375-2388. [PMID: 29679095 PMCID: PMC5986855 DOI: 10.1007/s00018-018-2811-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
Abstract
DNA damage causes a local distortion of chromatin that triggers the sequential processes that participate in specific DNA repair mechanisms. This initiation of the repair response requires the involvement of a protein whose activity can be regulated by histones. Kinases are candidates to regulate and coordinate the connection between a locally altered chromatin and the response initiating signals that lead to identification of the type of lesion and the sequential steps required in specific DNA damage responses (DDR). This initiating kinase must be located in chromatin, and be activated independently of the type of DNA damage. We review the contribution of the Ser-Thr vaccinia-related kinase 1 (VRK1) chromatin kinase as a new player in the signaling of DNA damage responses, at chromatin and cellular levels, and its potential as a new therapeutic target in oncology. VRK1 is involved in the regulation of histone modifications, such as histone phosphorylation and acetylation, and in the formation of γH2AX, NBS1 and 53BP1 foci induced in DDR. Induction of DNA damage by chemotherapy or radiation is a mainstay of cancer treatment. Therefore, novel treatments can be targeted to proteins implicated in the regulation of DDR, rather than by directly causing DNA damage.
Collapse
Affiliation(s)
- Ignacio Campillo-Marcos
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, 37007, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
57
|
Syed A, Tainer JA. The MRE11-RAD50-NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair. Annu Rev Biochem 2018; 87:263-294. [PMID: 29709199 PMCID: PMC6076887 DOI: 10.1146/annurev-biochem-062917-012415] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genomic instability in disease and its fidelity in health depend on the DNA damage response (DDR), regulated in part from the complex of meiotic recombination 11 homolog 1 (MRE11), ATP-binding cassette-ATPase (RAD50), and phosphopeptide-binding Nijmegen breakage syndrome protein 1 (NBS1). The MRE11-RAD50-NBS1 (MRN) complex forms a multifunctional DDR machine. Within its network assemblies, MRN is the core conductor for the initial and sustained responses to DNA double-strand breaks, stalled replication forks, dysfunctional telomeres, and viral DNA infection. MRN can interfere with cancer therapy and is an attractive target for precision medicine. Its conformations change the paradigm whereby kinases initiate damage sensing. Delineated results reveal kinase activation, posttranslational targeting, functional scaffolding, conformations storing binding energy and enabling access, interactions with hub proteins such as replication protein A (RPA), and distinct networks at DNA breaks and forks. MRN biochemistry provides prototypic insights into how it initiates, implements, and regulates multifunctional responses to genomic stress.
Collapse
Affiliation(s)
- Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; ,
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; ,
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
58
|
Huang D, jin L, Li Z, Wu J, Zhang N, Zhou D, Ni X, Hou T. Isoorientin triggers apoptosis of hepatoblastoma by inducing DNA double-strand breaks and suppressing homologous recombination repair. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.02.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
59
|
Moiani D, Ronato DA, Brosey CA, Arvai AS, Syed A, Masson JY, Petricci E, Tainer JA. Targeting Allostery with Avatars to Design Inhibitors Assessed by Cell Activity: Dissecting MRE11 Endo- and Exonuclease Activities. Methods Enzymol 2018. [PMID: 29523233 DOI: 10.1016/bs.mie.2017.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For inhibitor design, as in most research, the best system is question dependent. We suggest structurally defined allostery to design specific inhibitors that target regions beyond active sites. We choose systems allowing efficient quality structures with conformational changes as optimal for structure-based design to optimize inhibitors. We maintain that evolutionarily related targets logically provide molecular avatars, where this Sanskrit term for descent includes ideas of functional relationships and of being a physical embodiment of the target's essential features without requiring high sequence identity. Appropriate biochemical and cell assays provide quantitative measurements, and for biomedical impacts, any inhibitor's activity should be validated in human cells. Specificity is effectively shown empirically by testing if mutations blocking target activity remove cellular inhibitor impact. We propose this approach to be superior to experiments testing for lack of cross-reactivity among possible related enzymes, which is a challenging negative experiment. As an exemplary avatar system for protein and DNA allosteric conformational controls, we focus here on developing separation-of-function inhibitors for meiotic recombination 11 nuclease activities. This was achieved not by targeting the active site but rather by geometrically impacting loop motifs analogously to ribosome antibiotics. These loops are neighboring the dimer interface and active site act in sculpting dsDNA and ssDNA into catalytically competent complexes. One of our design constraints is to preserve DNA substrate binding to geometrically block competing enzymes and pathways from the damaged site. We validate our allosteric approach to controlling outcomes in human cells by reversing the radiation sensitivity and genomic instability in BRCA mutant cells.
Collapse
Affiliation(s)
- Davide Moiani
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Daryl A Ronato
- Genome Stability Laboratory, CHU de Québec Research Center, Québec City, QC, Canada; Laval University Cancer Research Center, Québec City, QC, Canada
| | - Chris A Brosey
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Andrew S Arvai
- The Scripps Research Institute, La Jolla, CA, United States
| | - Aleem Syed
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Québec City, QC, Canada; Laval University Cancer Research Center, Québec City, QC, Canada
| | | | - John A Tainer
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States; Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
60
|
Zhen Y, Xiao R, Chen X, Yuan C, Sun Y, Li J. A non-synonymous polymorphism in NBS1 is associated with progression from chronic hepatitis B virus infection to hepatocellular carcinoma in a Chinese population. Onco Targets Ther 2018; 11:563-569. [PMID: 29416357 PMCID: PMC5790086 DOI: 10.2147/ott.s153538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Nijmegen breakage syndrome 1 (NBS1) has a vital role in DNA double-strand break (DSB) repair, functioning as a sensor to identify and repair DNA damage and maintaining genomic stability by participating in the intra-S-phase checkpoint. Polymorphisms of NBS1 have been investigated in multiple cancers with variable results. To our best knowledge, no previous study has focused on the association between NBS1 single-nucleotide polymorphisms (SNPs) and hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). PATIENTS AND METHODS Five NBS1 SNPs were selected based on their potential functional impact. A hospital-based cohort, comprising 481 patients with HBV-related HCC, 508 patients with chronic hepatitis B virus infection (CHB), and 581 healthy controls, was recruited for genotyping analysis. RESULTS After quality control, four SNPs were successfully genotyped (rs10464867, rs1063053, rs1805794, and rs709816), none of which were significantly associated with HCC or CHB compared with those of healthy controls. Similarly, the combined HBV-infected group (including the HCC and CHB groups) exhibited no significant associations with these SNPs compared with healthy controls. In contrast, comparison of the frequency of rs1805794 between patients with CHB and those with HCC identified a significant association (P=2.99E-03, odds ratio =1.31, 95% confidence interval =1.10-1.56). CONCLUSION These findings suggest that, as a non-synonymous SNP, the rs1805794 C/G polymorphism may play a role in the progression from CHB to HCC.
Collapse
Affiliation(s)
- Ya’nan Zhen
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan
- Department of General Surgery, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan
| | - Ruixue Xiao
- Department of Pathology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan
| | - Xing Chen
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan
| | - Changjin Yuan
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| | - Yanlai Sun
- Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Jie Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan
| |
Collapse
|
61
|
Coppa A, Nicolussi A, D'Inzeo S, Capalbo C, Belardinilli F, Colicchia V, Petroni M, Zani M, Ferraro S, Rinaldi C, Buffone A, Bartolazzi A, Screpanti I, Ottini L, Giannini G. Optimizing the identification of risk-relevant mutations by multigene panel testing in selected hereditary breast/ovarian cancer families. Cancer Med 2018; 7:46-55. [PMID: 29271107 PMCID: PMC5773970 DOI: 10.1002/cam4.1251] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/05/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022] Open
Abstract
The introduction of multigene panel testing for hereditary breast/ovarian cancer screening has greatly improved efficiency, speed, and costs. However, its clinical utility is still debated, mostly due to the lack of conclusive evidences on the impact of newly discovered genetic variants on cancer risk and lack of evidence-based guidelines for the clinical management of their carriers. In this pilot study, we aimed to test whether a systematic and multiparametric characterization of newly discovered mutations could enhance the clinical utility of multigene panel sequencing. Out of a pool of 367 breast/ovarian cancer families Sanger-sequenced for BRCA1 and BRCA2 gene mutations, we selected a cohort of 20 BRCA1/2-negative families to be subjected to the BROCA-Cancer Risk Panel massive parallel sequencing. As a strategy for the systematic characterization of newly discovered genetic variants, we collected blood and cancer tissue samples and established lymphoblastoid cell lines from all available individuals in these families, to perform segregation analysis, loss-of-heterozygosity and further molecular studies. We identified loss-of-function mutations in 6 out 20 high-risk families, 5 of which occurred on BRCA1, CHEK2 and ATM and are esteemed to be risk-relevant. In contrast, a novel RAD50 truncating mutation is most likely unrelated to breast cancer. Our data suggest that integrating multigene panel testing with a pre-organized, multiparametric characterization of newly discovered genetic variants improves the identification of risk-relevant alleles impacting on the clinical management of their carriers.
Collapse
Affiliation(s)
- Anna Coppa
- Department of Experimental MedicineUniversity La SapienzaV.le R. Elena 324Rome00161Italy
| | - Arianna Nicolussi
- Department of Experimental MedicineUniversity La SapienzaV.le R. Elena 324Rome00161Italy
| | - Sonia D'Inzeo
- Department of Experimental MedicineUniversity La SapienzaV.le R. Elena 324Rome00161Italy
| | - Carlo Capalbo
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
| | | | - Valeria Colicchia
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
| | - Marialaura Petroni
- Center for Life Nano Science@SapienzaIstituto Italiano di TecnologiaRome00161Italy
| | - Massimo Zani
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
| | - Sergio Ferraro
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
| | - Christian Rinaldi
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
| | - Amelia Buffone
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
| | - Armando Bartolazzi
- Department of PathologySant'Andrea HospitalUniversity La SapienzaVia di Grottarossa 1035Rome00189Italy
| | - Isabella Screpanti
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
| | - Laura Ottini
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
| | - Giuseppe Giannini
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
- Istituto Pasteur‐Fondazione Cenci BolognettiRome00161Italy
| |
Collapse
|
62
|
Terranova-Barberio M, Pecori B, Roca MS, Imbimbo S, Bruzzese F, Leone A, Muto P, Delrio P, Avallone A, Budillon A, Di Gennaro E. Synergistic antitumor interaction between valproic acid, capecitabine and radiotherapy in colorectal cancer: critical role of p53. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:177. [PMID: 29212503 PMCID: PMC5719792 DOI: 10.1186/s13046-017-0647-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
Background Recurrence with distant metastases has become the predominant pattern of failure in locally advanced rectal cancer (LARC), thus the integration of new antineoplastic agents into preoperative fluoropyrimidine-based chemo-radiotherapy represents a clinical challenge to implement an intensified therapeutic strategy. The present study examined the combination of the histone deacetylase inhibitor (HDACi) valproic acid (VPA) with fluoropyrimidine-based chemo-radiotherapy on colorectal cancer (CRC) cells. Methods HCT-116 (p53-wild type), HCT-116 p53−/− (p53-null), SW620 and HT29 (p53-mutant) CRC cell lines were used to assess the antitumor interaction between VPA and capecitabine metabolite 5′-deoxy-5-fluorouridine (5′-DFUR) in combination with radiotherapy and to evaluate the role of p53 in the combination treatment. Effects on proliferation, clonogenicity and apoptosis were evaluated, along with γH2AX foci formation as an indicator for DNA damage. Results Combined treatment with equipotent doses of VPA and 5′-DFUR resulted in synergistic effects in CRC lines expressing p53 (wild-type or mutant). In HCT-116 p53−/− cells we observed antagonist effects. Radiotherapy further potentiated the antiproliferative, pro-apoptotic and DNA damage effects induced by 5′-DFUR/VPA combination in p53 expressing cells. Conclusions These results highlighted the role of VPA as valuable candidate to be added to preoperative chemo-radiotherapy in LARC. On these bases we launched the ongoing phase I/II study of VPA and short-course radiotherapy plus capecitabine as preoperative treatment in low-moderate risk rectal cancer (V-shoRT-R3). Electronic supplementary material The online version of this article (10.1186/s13046-017-0647-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuela Terranova-Barberio
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Via Mariano Semmola, 13, 80131, Naples, NA, Italy.,Division of Hematology and Oncology, University of California, San Francisco, CA, 94143, USA
| | - Biagio Pecori
- Radiotherapy Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Via Mariano Semmola, 13, 80131, Naples, NA, Italy
| | - Serena Imbimbo
- Radiotherapy Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Via Mariano Semmola, 13, 80131, Naples, NA, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Via Mariano Semmola, 13, 80131, Naples, NA, Italy
| | - Paolo Muto
- Radiotherapy Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Paolo Delrio
- Colorectal Cancer Surgery Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Antonio Avallone
- Abdominal Oncology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Via Mariano Semmola, 13, 80131, Naples, NA, Italy.
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Via Mariano Semmola, 13, 80131, Naples, NA, Italy
| |
Collapse
|
63
|
Chen F, Xu G, Qin X, Jin X, Gou S. Hybrid of DNA-targeting Chlorambucil with Pt(IV) Species to Reverse Drug Resistance. J Pharmacol Exp Ther 2017; 363:221-239. [PMID: 28916659 DOI: 10.1124/jpet.117.243451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022] Open
Abstract
Two hybrids of Pt(IV) species were designed and prepared by addition of a chlorambucil unit to the axial positions of the Pt(IV) complexes derived from DN603 and DN604. In vitro studies of two hybrids against two pairs of cisplatin sensitive and resistant cancer cell lines indicated that compound 5 had superior antitumor activity to cisplatin and chlorambucil via suppressing DNA damage repair to reverse drug resistance. Mechanistic investigation suggested that the potent antitumor activity of compound 5 arose from its major suppression of CK2-mediated MRE11-RAD50-NBS1(MRN) complex promotion of DNA double-strand break (DSB) repair. In nude mice with A549/CDDP xenografts, compound 5 exhibited higher anticancer efficacy than cisplatin and chlorambucil by reversing drug resistance, displayed improved effectiveness, and had no toxicity effects. Overall, compound 5 is a promising drug candidate, which could promote the anticancer activity and reverse drug resistance by attenuating CK2-induced MRN-dependent DSB repair.
Collapse
Affiliation(s)
- Feihong Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Gang Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Xiaodong Qin
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Xiufeng Jin
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
64
|
Ursu O, Gosline SJC, Beeharry N, Fink L, Bhattacharjee V, Huang SSC, Zhou Y, Yen T, Fraenkel E. Network modeling of kinase inhibitor polypharmacology reveals pathways targeted in chemical screens. PLoS One 2017; 12:e0185650. [PMID: 29023490 PMCID: PMC5638242 DOI: 10.1371/journal.pone.0185650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/15/2017] [Indexed: 01/22/2023] Open
Abstract
Small molecule screens are widely used to prioritize pharmaceutical development. However, determining the pathways targeted by these molecules is challenging, since the compounds are often promiscuous. We present a network strategy that takes into account the polypharmacology of small molecules in order to generate hypotheses for their broader mode of action. We report a screen for kinase inhibitors that increase the efficacy of gemcitabine, the first-line chemotherapy for pancreatic cancer. Eight kinase inhibitors emerge that are known to affect 201 kinases, of which only three kinases have been previously identified as modifiers of gemcitabine toxicity. In this work, we use the SAMNet algorithm to identify pathways linking these kinases and genetic modifiers of gemcitabine toxicity with transcriptional and epigenetic changes induced by gemcitabine that we measure using DNaseI-seq and RNA-seq. SAMNet uses a constrained optimization algorithm to connect genes from these complementary datasets through a small set of protein-protein and protein-DNA interactions. The resulting network recapitulates known pathways including DNA repair, cell proliferation and the epithelial-to-mesenchymal transition. We use the network to predict genes with important roles in the gemcitabine response, including six that have already been shown to modify gemcitabine efficacy in pancreatic cancer and ten novel candidates. Our work reveals the important role of polypharmacology in the activity of these chemosensitizing agents.
Collapse
Affiliation(s)
- Oana Ursu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sara J. C. Gosline
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Neil Beeharry
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Lauren Fink
- Cancer Biology Program, Fox Chase Cancer Center; Philadelphia, Pennsylvania, United States of America
| | | | - Shao-shan Carol Huang
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Yan Zhou
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Tim Yen
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
65
|
Myler LR, Gallardo IF, Soniat MM, Deshpande RA, Gonzalez XB, Kim Y, Paull TT, Finkelstein IJ. Single-Molecule Imaging Reveals How Mre11-Rad50-Nbs1 Initiates DNA Break Repair. Mol Cell 2017; 67:891-898.e4. [PMID: 28867292 PMCID: PMC5609712 DOI: 10.1016/j.molcel.2017.08.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/07/2017] [Accepted: 08/04/2017] [Indexed: 11/21/2022]
Abstract
DNA double-strand break (DSB) repair is essential for maintaining our genomes. Mre11-Rad50-Nbs1 (MRN) and Ku70-Ku80 (Ku) direct distinct DSB repair pathways, but the interplay between these complexes at a DSB remains unclear. Here, we use high-throughput single-molecule microscopy to show that MRN searches for free DNA ends by one-dimensional facilitated diffusion, even on nucleosome-coated DNA. Rad50 binds homoduplex DNA and promotes facilitated diffusion, whereas Mre11 is required for DNA end recognition and nuclease activities. MRN gains access to occluded DNA ends by removing Ku or other DNA adducts via an Mre11-dependent nucleolytic reaction. Next, MRN loads exonuclease 1 (Exo1) onto the free DNA ends to initiate DNA resection. In the presence of replication protein A (RPA), MRN acts as a processivity factor for Exo1, retaining the exonuclease on DNA for long-range resection. Our results provide a mechanism for how MRN promotes homologous recombination on nucleosome-coated DNA.
Collapse
Affiliation(s)
- Logan R Myler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ignacio F Gallardo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael M Soniat
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rajashree A Deshpande
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xenia B Gonzalez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yoori Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
66
|
von Morgen P, Burdova K, Flower TG, O'Reilly NJ, Boulton SJ, Smerdon SJ, Macurek L, Hořejší Z. MRE11 stability is regulated by CK2-dependent interaction with R2TP complex. Oncogene 2017; 36:4943-4950. [PMID: 28436950 PMCID: PMC5531254 DOI: 10.1038/onc.2017.99] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/05/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
The MRN (MRE11-RAD50-NBS1) complex is essential for repair of DNA double-strand breaks and stalled replication forks. Mutations of the MRN complex subunit MRE11 cause the hereditary cancer-susceptibility disease ataxia-telangiectasia-like disorder (ATLD). Here we show that MRE11 directly interacts with PIH1D1, a subunit of heat-shock protein 90 cochaperone R2TP complex, which is required for the assembly of large protein complexes, such as RNA polymerase II, small nucleolar ribonucleoproteins and mammalian target of rapamycin complex 1. The MRE11-PIH1D1 interaction is dependent on casein kinase 2 (CK2) phosphorylation of two acidic sequences within the MRE11 C terminus containing serines 558/561 and 688/689. Conversely, the PIH1D1 phospho-binding domain PIH-N is required for association with MRE11 phosphorylated by CK2. Consistent with these findings, depletion of PIH1D1 resulted in MRE11 destabilization and affected DNA-damage repair processes dependent on MRE11. Additionally, mutations of serines 688/689, which abolish PIH1D1 binding, also resulted in decreased MRE11 stability. As depletion of R2TP frequently leads to instability of its substrates and as truncation mutation of MRE11 lacking serines 688/689 leads to decreased levels of the MRN complex both in ATLD patients and an ATLD mouse model, our results suggest that the MRN complex is a novel R2TP complex substrate and that their interaction is regulated by CK2 phosphorylation.
Collapse
Affiliation(s)
- P von Morgen
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - K Burdova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - T G Flower
- Structural Biology of DNA-damage Signalling Laboratory, The Francis Crick Institute, London,UK
| | - N J O'Reilly
- Peptide Chemistry, The Francis Crick Institute, London, UK
| | - S J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - S J Smerdon
- Structural Biology of DNA-damage Signalling Laboratory, The Francis Crick Institute, London,UK
| | - L Macurek
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Z Hořejší
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Centre, Charterhouse Square, London, UK
| |
Collapse
|
67
|
Mlody B, Wruck W, Martins S, Sperling K, Adjaye J. Nijmegen Breakage Syndrome fibroblasts and iPSCs: cellular models for uncovering disease-associated signaling pathways and establishing a screening platform for anti-oxidants. Sci Rep 2017; 7:7516. [PMID: 28790359 PMCID: PMC5548734 DOI: 10.1038/s41598-017-07905-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022] Open
Abstract
Nijmegen Breakage Syndrome (NBS) is associated with cancer predisposition, premature aging, immune deficiency, microcephaly and is caused by mutations in the gene coding for NIBRIN (NBN) which is involved in DNA damage repair. Dermal-derived fibroblasts from NBS patients were reprogrammed into induced pluripotent stem cells (iPSCs) in order to bypass premature senescence. The influence of antioxidants on intracellular levels of ROS and DNA damage were screened and it was found that EDHB-an activator of the hypoxia pathway, decreased DNA damage in the presence of high oxidative stress. Furthermore, NBS fibroblasts but not NBS-iPSCs were found to be more susceptible to the induction of DNA damage than their healthy counterparts. Global transcriptome analysis comparing NBS to healthy fibroblasts and NBS-iPSCs to embryonic stem cells revealed regulation of P53 in NBS fibroblasts and NBS-iPSCs. Cell cycle related genes were down-regulated in NBS fibroblasts. Furthermore, oxidative phosphorylation was down-regulated and glycolysis up-regulated specifically in NBS-iPSCs compared to embryonic stem cells. Our study demonstrates the utility of NBS-iPSCs as a screening platform for anti-oxidants capable of suppressing DNA damage and a cellular model for studying NBN de-regulation in cancer and microcephaly.
Collapse
Affiliation(s)
- Barbara Mlody
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13092, Berlin, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Soraia Martins
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Karl Sperling
- Charité - Universitätsmedizin Berlin, Institute of Medical and Human Genetics, 13353, Berlin, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany.
| |
Collapse
|
68
|
Fujii N. Potential Strategies to Target Protein-Protein Interactions in the DNA Damage Response and Repair Pathways. J Med Chem 2017; 60:9932-9959. [PMID: 28654754 DOI: 10.1021/acs.jmedchem.7b00358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article discusses some insights about generating novel mechanistic inhibitors of the DNA damage response and repair (DDR) pathways by focusing on protein-protein interactions (PPIs) of the key DDR components. General requirements for PPI strategies, such as selecting the target PPI site on the basis of its functionality, are discussed first. Next, on the basis of functional rationale and biochemical feasibility to identify a PPI inhibitor, 26 PPIs in DDR pathways (BER, MMR, NER, NHEJ, HR, TLS, and ICL repair) are specifically discussed for inhibitor discovery to benefit cancer therapies using a DNA-damaging agent.
Collapse
Affiliation(s)
- Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
69
|
Abstract
Multiple DNA repair pathways maintain genome stability and ensure that DNA remains essentially unchanged over the life of a cell. Various human diseases occur if DNA repair is compromised, and most of these impact the nervous system, in some cases exclusively. However, it is often unclear what specific endogenous damage underpins disease pathology. Generally, the types of causative DNA damage are associated with replication, transcription, or oxidative metabolism; other direct sources of endogenous lesions may arise from aberrant topoisomerase activity or ribonucleotide incorporation into DNA. This review focuses on the etiology of DNA damage in the nervous system and the genome stability pathways that prevent human neurologic disease.
Collapse
Affiliation(s)
- Peter J McKinnon
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
70
|
Qiao Q, Sun C, Han C, Han N, Zhang M, Li G. Endoplasmic reticulum stress pathway PERK-eIF2α confers radioresistance in oropharyngeal carcinoma by activating NF-κB. Cancer Sci 2017; 108:1421-1431. [PMID: 28418119 PMCID: PMC5497722 DOI: 10.1111/cas.13260] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum stress (ERS) plays an important role in the pathogenesis and development of malignant tumors, as well as in the regulation of radiochemoresistance and chemoresistance in many malignancies. ERS signaling pathway protein kinase RNA‐like endoplasmic reticulum kinase (PERK)‐eukaryotic initiation factor‐2 (eIF2α) may induce aberrant activation of nuclear factor‐κB (NF‐κB). Our previous study showed that NF‐κB conferred radioresistance in lymphoma cells. However, whether PERK‐eIF2α regulates radioresistance in oropharyngeal carcinoma through NF‐κB activation is unknown. Herein, we showed that PERK overexpression correlated with a poor prognosis for patients with oropharyngeal carcinoma (P < 0.01). Meanwhile, the percentage of the high expression level of PERK in oropharyngeal carcinoma patients resistant to radiation was higher than in patients sensitive to radiation (77.7 and 33.3%, respectively; P < 0.05). Silencing PERK and eIF2α increased the radiosensitivity in oropharyngeal carcinoma cells and increased radiation‐induced apoptosis and G2/M phase arrest. PERK‐eIF2α silencing also inhibited radiation‐induced NF‐κB phosphorylation and increased the DNA double strand break‐related proteins ATM phosphorylation. NF‐κB activator TNF‐α and the ATM inhibitor Ku55933 offset the regulatory effect of eIF2α on the expression of radiation‐induced cell apoptosis‐related proteins and the G2/M phase arrest‐related proteins. These data indicate that PERK regulates radioresistance in oropharyngeal carcinoma through NF‐kB activation‐mediated phosphorylation of eIF2α, enhancing X‐ray‐induced activation of DNA DSB repair, cell apoptosis inhibition and G2/M cell cycle arrest.
Collapse
Affiliation(s)
- Qiao Qiao
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chaonan Sun
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chuyang Han
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ning Han
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao Zhang
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Li
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
71
|
Brosey CA, Ahmed Z, Lees-Miller SP, Tainer JA. What Combined Measurements From Structures and Imaging Tell Us About DNA Damage Responses. Methods Enzymol 2017; 592:417-455. [PMID: 28668129 DOI: 10.1016/bs.mie.2017.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA damage outcomes depend upon the efficiency and fidelity of DNA damage responses (DDRs) for different cells and damage. As such, DDRs represent tightly regulated prototypical systems for linking nanoscale biomolecular structure and assembly to the biology of genomic regulation and cell signaling. However, the dynamic and multifunctional nature of DDR assemblies can render elusive the correlation between the structures of DDR factors and specific biological disruptions to the DDR when these structures are altered. In this chapter, we discuss concepts and strategies for combining structural, biophysical, and imaging techniques to investigate DDR recognition and regulation, and thus bridge sequence-level structural biochemistry to quantitative biological outcomes visualized in cells. We focus on representative DDR responses from PARP/PARG/AIF damage signaling in DNA single-strand break repair and nonhomologous end joining complexes in double-strand break repair. Methods with exemplary experimental results are considered with a focus on strategies for probing flexibility, conformational changes, and assembly processes that shape a predictive understanding of DDR mechanisms in a cellular context. Integration of structural and imaging measurements promises to provide foundational knowledge to rationally control and optimize DNA damage outcomes for synthetic lethality and for immune activation with resulting insights for biology and cancer interventions.
Collapse
Affiliation(s)
- Chris A Brosey
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Zamal Ahmed
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Susan P Lees-Miller
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.
| | - John A Tainer
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
72
|
Weyand CM, Zeisbrich M, Goronzy JJ. Metabolic signatures of T-cells and macrophages in rheumatoid arthritis. Curr Opin Immunol 2017; 46:112-120. [PMID: 28538163 DOI: 10.1016/j.coi.2017.04.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/17/2022]
Abstract
In most autoimmune diseases, a decade-long defect in self-tolerance eventually leads to clinically relevant, tissue-destructive inflammatory disease. The pathogenic potential of chronic persistent immune responses during the pre-clinical and clinical phase is ultimately linked to the bioenergetic fitness of innate and adaptive immune cells. Chronic immune cell stimulation, high cellular turn-over, structural damage to the host tissue and maladaptive wound healing, all require a reliable supply of nutrients, oxygen, and biosynthetic precursors. Here, we use the model system of rheumatoid arthritis (RA) to discuss immunometabolism from the vantage point of T-cells and macrophages that encounter fundamentally different metabolic stress scenarios in the RA host. We outline the general principle that both insufficient nutrient supply, as well as nutrient excess generate cellular stress responses and guide immune function. ATPlow, NADPHhigh, ROSlow T-cells hyperproliferate and are forced into premature senescence. ATPhigh, ROShigh macrophages dimerize the glycolytic enzyme pyruvate kinase to amplify STAT3-dependent inflammatory effector functions. A corollary of this model is that simple nutraceutical interventions will be insufficient to re-educate the immune system in RA. Instead, interference with cell-type-exclusive and differentiation-stage-dependent metabolic setpoints will be needed to reprogram arthritogenic pathways.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA , United States.
| | - Markus Zeisbrich
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA , United States
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA , United States
| |
Collapse
|
73
|
Deshpande RA, Lee JH, Paull TT. Rad50 ATPase activity is regulated by DNA ends and requires coordination of both active sites. Nucleic Acids Res 2017; 45:5255-5268. [PMID: 28369545 PMCID: PMC5435944 DOI: 10.1093/nar/gkx173] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/03/2023] Open
Abstract
The Mre11-Rad50-Nbs1(Xrs2) (MRN/X) complex is critical for the repair and signaling of DNA double strand breaks. The catalytic core of MRN/X comprised of the Mre11 nuclease and Rad50 adenosine triphosphatase (ATPase) active sites dimerizes through association between the Rad50 ATPase catalytic domains and undergoes extensive conformational changes upon ATP binding. This ATP-bound 'closed' state promotes binding to DNA, tethering DNA ends and ATM activation, but prevents nucleolytic processing of DNA ends, while ATP hydrolysis is essential for Mre11 endonuclease activity at blocked DNA ends. Here we investigate the regulation of ATP hydrolysis as well as the interdependence of the two functional active sites. We find that double-stranded DNA stimulates ATP hydrolysis by hMRN over ∼20-fold in an end-dependent manner. Using catalytic site mutants to create Rad50 dimers with only one functional ATPase site, we find that both ATPase sites are required for the stimulation by DNA. MRN-mediated endonucleolytic cleavage of DNA at sites of protein adducts requires ATP hydrolysis at both sites, as does the stimulation of ATM kinase activity. These observations suggest that symmetrical engagement of the Rad50 catalytic head domains with ATP bound at both sites is important for MRN functions in eukaryotic cells.
Collapse
Affiliation(s)
- Rajashree A. Deshpande
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Ji-Hoon Lee
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya T. Paull
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
74
|
Merigliano C, Marzio A, Renda F, Somma MP, Gatti M, Vernì F. A Role for the Twins Protein Phosphatase (PP2A-B55) in the Maintenance of Drosophila Genome Integrity. Genetics 2017; 205:1151-1167. [PMID: 28040742 PMCID: PMC5340330 DOI: 10.1534/genetics.116.192781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/21/2016] [Indexed: 01/14/2023] Open
Abstract
The protein phosphatase 2A (PP2A) is a conserved heterotrimeric enzyme that regulates several cellular processes including the DNA damage response and mitosis. Consistent with these functions, PP2A is mutated in many types of cancer and acts as a tumor suppressor. In mammalian cells, PP2A inhibition results in DNA double strand breaks (DSBs) and chromosome aberrations (CABs). However, the mechanisms through which PP2A prevents DNA damage are still unclear. Here, we focus on the role of the Drosophila twins (tws) gene in the maintenance of chromosome integrity; tws encodes the B regulatory subunit (B/B55) of PP2A. Mutations in tws cause high frequencies of CABs (0.5 CABs/cell) in Drosophila larval brain cells and lead to an abnormal persistence of γ-H2Av repair foci. However, mutations that disrupt the PP4 phosphatase activity impair foci dissolution but do not cause CABs, suggesting that a delayed foci regression is not clastogenic. We also show that Tws is required for activation of the G2/M DNA damage checkpoint while PP4 is required for checkpoint recovery, a result that points to a conserved function of these phosphatases from flies to humans. Mutations in the ATM-coding gene tefu are strictly epistatic to tws mutations for the CAB phenotype, suggesting that failure to dephosphorylate an ATM substrate(s) impairs DNA DSBs repair. In addition, mutations in the Ku70 gene, which do not cause CABs, completely suppress CAB formation in tws Ku70 double mutants. These results suggest the hypothesis that an improperly phosphorylated Ku70 protein can lead to DNA damage and CABs.
Collapse
Affiliation(s)
- Chiara Merigliano
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Antonio Marzio
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Fioranna Renda
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Maria Patrizia Somma
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Sapienza, Università di Roma, 00185, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Sapienza, Università di Roma, 00185, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| |
Collapse
|
75
|
Henrich SM, Usadel C, Werwein E, Burdova K, Janscak P, Ferrari S, Hess D, Klempnauer KH. Interplay with the Mre11-Rad50-Nbs1 complex and phosphorylation by GSK3β implicate human B-Myb in DNA-damage signaling. Sci Rep 2017; 7:41663. [PMID: 28128338 PMCID: PMC5269693 DOI: 10.1038/srep41663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022] Open
Abstract
B-Myb, a highly conserved member of the Myb transcription factor family, is expressed ubiquitously in proliferating cells and controls the cell cycle dependent transcription of G2/M-phase genes. Deregulation of B-Myb has been implicated in oncogenesis and loss of genomic stability. We have identified B-Myb as a novel interaction partner of the Mre11-Rad50-Nbs1 (MRN) complex, a key player in the repair of DNA double strand breaks. We show that B-Myb directly interacts with the Nbs1 subunit of the MRN complex and is recruited transiently to DNA-damage sites. In response to DNA-damage B-Myb is phosphorylated by protein kinase GSK3β and released from the MRN complex. A B-Myb mutant that cannot be phosphorylated by GSK3β disturbs the regulation of pro-mitotic B-Myb target genes and leads to inappropriate mitotic entry in response to DNA-damage. Overall, our work suggests a novel function of B-Myb in the cellular DNA-damage signalling.
Collapse
Affiliation(s)
- Sarah Marie Henrich
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
- Graduate School of Chemistry (GSC-MS), Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Clemens Usadel
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Eugen Werwein
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Kamila Burdova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 143 00 Prague, Czech Republic
| | - Pavel Janscak
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 143 00 Prague, Czech Republic
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstr.190, CH-8057 Zürich, Switzerland
| | - Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstr.190, CH-8057 Zürich, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, CH-4058 Basel, Switzerland
| | - Karl-Heinz Klempnauer
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| |
Collapse
|
76
|
Tse AKW, Chen YJ, Fu XQ, Su T, Li T, Guo H, Zhu PL, Kwan HY, Cheng BCY, Cao HH, Lee SKW, Fong WF, Yu ZL. Sensitization of melanoma cells to alkylating agent-induced DNA damage and cell death via orchestrating oxidative stress and IKKβ inhibition. Redox Biol 2017; 11:562-576. [PMID: 28107677 PMCID: PMC5247288 DOI: 10.1016/j.redox.2017.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 01/22/2023] Open
Abstract
Nitrosourea represents one of the most active classes of chemotherapeutic alkylating agents for metastatic melanoma. Treatment with nitrosoureas caused severe systemic side effects which hamper its clinical use. Here, we provide pharmacological evidence that reactive oxygen species (ROS) induction and IKKβ inhibition cooperatively enhance nitrosourea-induced cytotoxicity in melanoma cells. We identified SC-514 as a ROS-inducing IKKβ inhibitor which enhanced the function of nitrosoureas. Elevated ROS level results in increased DNA crosslink efficiency triggered by nitrosoureas and IKKβ inhibition enhances DNA damage signals and sensitizes nitrosourea-induced cell death. Using xenograft mouse model, we confirm that ROS-inducing IKKβ inhibitor cooperates with nitrosourea to reduce tumor size and malignancy in vivo. Taken together, our results illustrate a new direction in nitrosourea treatment, and reveal that the combination of ROS-inducing IKKβ inhibitors with nitrosoureas can be potentially exploited for melanoma therapy.
Collapse
Affiliation(s)
- Anfernee Kai-Wing Tse
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Ying-Jie Chen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Tao Su
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ting Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hui Guo
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Pei-Li Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hiu-Yee Kwan
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Brian Chi-Yan Cheng
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hui-Hui Cao
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Sally Kin-Wah Lee
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Wang-Fun Fong
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| |
Collapse
|
77
|
Brandt S, Samartzis EP, Zimmermann AK, Fink D, Moch H, Noske A, Dedes KJ. Lack of MRE11-RAD50-NBS1 (MRN) complex detection occurs frequently in low-grade epithelial ovarian cancer. BMC Cancer 2017; 17:44. [PMID: 28073364 PMCID: PMC5223425 DOI: 10.1186/s12885-016-3026-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND BRCA1/2-deficient ovarian carcinomas are recognized as target for Poly (ADP-ribose) polymerase (PARP) inhibitors. BRCA1 and BRCA2 proteins are involved in homologous recombination repair of double-strand DNA breaks. The relevance of other homologous recombination repair proteins, e.g. MRE11, RAD50, NBS1 (MRN complex) in ovarian carcinomas is unclear. The objective of this study was to investigate the prevalence of lack of MRE11, RAD50, NBS1 protein detection in epithelial ovarian cancer (EOC). METHODS A tissue microarray (TMA) with 134 EOC was immunohistochemically evaluated for MRE11, RAD50 and NBS1. Data was analysed for associations with clinicopathological parameters, histological subtype, patient overall survival and mismatch repair (MMR) protein status. Sensitivity towards the PARP inhibitor BMN673 was tested in two ovarian cancer cell lines (TOV-21 and OVTOKO) using colony formation assays. RESULTS Lack of MRN complex protein detection was seen in 41% (55/134) of EOC and was more frequent in low-grade (57.6%; 19/33) than in high-grade EOC (18.8%; 36/101; n = 134; p = 0.04). There was an association with the ovarian carcinoma subtype (60.3%; 35/58 lack of detection in type I versus 26.3%; 20/76 in type II; n = 134; p < 0.001) as well as undetectable DNA mismatch repair proteins MLH1 and MSH2 (89.3%; 25/28; n = 131; p < 0.001). MRE11 knockdown led to moderately increased sensitivity towards the PARP inhibitor BMN673 in one ovarian carcinoma cell line in vitro. CONCLUSIONS Frequent lack of MRE11, RAD50, NBS1 protein detection in type I human ovarian carcinomas is observed in EOC and our data suggests further investigation regarding sensitivity to PARP-inhibition in tumours lacking MRE11 expression.
Collapse
MESH Headings
- Acid Anhydride Hydrolases
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Mucinous/drug therapy
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/pathology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/metabolism
- Cell Cycle Proteins/metabolism
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/pathology
- DNA Repair Enzymes/metabolism
- DNA-Binding Proteins/metabolism
- Endometrial Neoplasms/drug therapy
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Female
- Follow-Up Studies
- Humans
- MRE11 Homologue Protein
- Middle Aged
- Neoplasm Grading
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Nuclear Proteins/metabolism
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Prognosis
- Survival Rate
Collapse
Affiliation(s)
- Simone Brandt
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Daniel Fink
- Department of Gynecology, University Hospital Zurich, CH- 8091 Zurich, Switzerland
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Aurelia Noske
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Konstantin J. Dedes
- Department of Gynecology, University Hospital Zurich, CH- 8091 Zurich, Switzerland
| |
Collapse
|
78
|
Wang W, Zhang G, Yang J, Gu H, Ding L, Yu H, Yu M, Cui Q, Ji X, Li M. Digital gene expression profiling analysis of DNA repair pathways in colon cancer stem population of HT29 cells. Acta Biochim Biophys Sin (Shanghai) 2017; 49:90-100. [PMID: 27932392 DOI: 10.1093/abbs/gmw119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) contribute to the relapse and development of new neoplasm lesions. While most available clinical approaches, such as chemical and radiation therapies, will kill the majority of cancer cells, they do not kill them all. Some resisting cells, like CSCs, are able to survive due to their excellent self-maintaining capabilities, even in challenging environments. In the present study, we investigated the mRNA level of DNA repair genes of colon CSCs from the HT29 cell line in response to single-strand damage and double-strand breaks, as well as the evident upregulation of key genes in base excision repair, mismatch repair, non-homologous end-joining, and homologous recombination pathways in these cells. Digital gene expression analysis identified upregulated genes in CD44+ HT29 cells that may play important roles in DNA repair. Our results reveal that colon CSCs bear efficient DNA repair abilities, which might explain the survival of colon CSCs after repeated chemical and radiation therapy.
Collapse
Affiliation(s)
- Wenxue Wang
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Guoxiu Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jing Yang
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Huan Gu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Lei Ding
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Haijing Yu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Min Yu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qinghua Cui
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xinglai Ji
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Meizhang Li
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
79
|
Hammel M, Yu Y, Radhakrishnan SK, Chokshi C, Tsai MS, Matsumoto Y, Kuzdovich M, Remesh SG, Fang S, Tomkinson AE, Lees-Miller SP, Tainer JA. An Intrinsically Disordered APLF Links Ku, DNA-PKcs, and XRCC4-DNA Ligase IV in an Extended Flexible Non-homologous End Joining Complex. J Biol Chem 2016; 291:26987-27006. [PMID: 27875301 PMCID: PMC5207133 DOI: 10.1074/jbc.m116.751867] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/03/2016] [Indexed: 11/29/2022] Open
Abstract
DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) in human cells is initiated by Ku heterodimer binding to a DSB, followed by recruitment of core NHEJ factors including DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4-like factor (XLF), and XRCC4 (X4)-DNA ligase IV (L4). Ku also interacts with accessory factors such as aprataxin and polynucleotide kinase/phosphatase-like factor (APLF). Yet, how these factors interact to tether, process, and ligate DSB ends while allowing regulation and chromatin interactions remains enigmatic. Here, small angle X-ray scattering (SAXS) and mutational analyses show APLF is largely an intrinsically disordered protein that binds Ku, Ku/DNA-PKcs (DNA-PK), and X4L4 within an extended flexible NHEJ core complex. X4L4 assembles with Ku heterodimers linked to DNA-PKcs via flexible Ku80 C-terminal regions (Ku80CTR) in a complex stabilized through APLF interactions with Ku, DNA-PK, and X4L4. Collective results unveil the solution architecture of the six-protein complex and suggest cooperative assembly of an extended flexible NHEJ core complex that supports APLF accessibility while possibly providing flexible attachment of the core complex to chromatin. The resulting dynamic tethering furthermore, provides geometric access of L4 catalytic domains to the DNA ends during ligation and of DNA-PKcs for targeted phosphorylation of other NHEJ proteins as well as trans-phosphorylation of DNA-PKcs on the opposing DSB without disrupting the core ligation complex. Overall the results shed light on evolutionary conservation of Ku, X4, and L4 activities, while explaining the observation that Ku80CTR and DNA-PKcs only occur in a subset of higher eukaryotes.
Collapse
Affiliation(s)
- Michal Hammel
- From the Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720,
| | - Yaping Yu
- the Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Sarvan K Radhakrishnan
- the Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Chirayu Chokshi
- From the Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Miaw-Sheue Tsai
- From the Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Yoshihiro Matsumoto
- the University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico 87131, and
| | - Monica Kuzdovich
- From the Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Soumya G Remesh
- From the Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Shujuan Fang
- the Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Alan E Tomkinson
- the University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico 87131, and
| | - Susan P Lees-Miller
- the Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada,
| | - John A Tainer
- From the Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, .,the Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
80
|
Myler LR, Finkelstein IJ. Eukaryotic resectosomes: A single-molecule perspective. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 127:119-129. [PMID: 27498169 DOI: 10.1016/j.pbiomolbio.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022]
Abstract
DNA double-strand breaks (DSBs) disrupt the physical and genetic continuity of the genome. If unrepaired, DSBs can lead to cellular dysfunction and malignant transformation. Homologous recombination (HR) is a universally conserved DSB repair mechanism that employs the information in a sister chromatid to catalyze error-free DSB repair. To initiate HR, cells assemble the resectosome: a multi-protein complex composed of helicases, nucleases, and regulatory proteins. The resectosome nucleolytically degrades (resects) the free DNA ends for downstream homologous recombination. Several decades of intense research have identified the core resectosome components in eukaryotes, archaea, and bacteria. More recently, these proteins have been characterized via single-molecule approaches. Here, we focus on recent single-molecule studies that have begun to unravel how nucleases, helicases, processivity factors, and other regulatory proteins dictate the extent and efficiency of DNA resection in eukaryotic cells. We conclude with a discussion of outstanding questions that can be addressed via single-molecule approaches.
Collapse
Affiliation(s)
- Logan R Myler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
81
|
van der Crabben SN, Hennus MP, McGregor GA, Ritter DI, Nagamani SC, Wells OS, Harakalova M, Chinn IK, Alt A, Vondrova L, Hochstenbach R, van Montfrans JM, Terheggen-Lagro SW, van Lieshout S, van Roosmalen MJ, Renkens I, Duran K, Nijman IJ, Kloosterman WP, Hennekam E, Orange JS, van Hasselt PM, Wheeler DA, Palecek JJ, Lehmann AR, Oliver AW, Pearl LH, Plon SE, Murray JM, van Haaften G. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease. J Clin Invest 2016; 126:2881-92. [PMID: 27427983 PMCID: PMC4966312 DOI: 10.1172/jci82890] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/12/2016] [Indexed: 11/27/2022] Open
Abstract
The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood.
Collapse
Affiliation(s)
| | - Marije P. Hennus
- Department of Pediatric Intensive Care, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - Grant A. McGregor
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | | | | | - Owen S. Wells
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | | | - Ivan K. Chinn
- Texas Children’s Hospital, and
- Department of Pediatrics, Baylor College of Medicine, Houston Texas, USA
| | - Aaron Alt
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | - Lucie Vondrova
- Central European Institute of Technology and Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | - Ivo Renkens
- Department of Genetics (Center for Molecular Medicine) and
| | - Karen Duran
- Department of Genetics (Center for Molecular Medicine) and
| | | | | | - Eric Hennekam
- Department of Genetics (Center for Molecular Medicine) and
| | - Jordan S. Orange
- Texas Children’s Hospital, and
- Department of Pediatrics, Baylor College of Medicine, Houston Texas, USA
| | - Peter M. van Hasselt
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, UMCU, Utrecht, Netherlands
| | - David A. Wheeler
- Human Genome Sequencing Center
- Department of Molecular and Human Genetics
| | - Jan J. Palecek
- Central European Institute of Technology and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Alan R. Lehmann
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | - Antony W. Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | - Laurence H. Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | - Sharon E. Plon
- Human Genome Sequencing Center
- Department of Molecular and Human Genetics
- Texas Children’s Hospital, and
- Department of Pediatrics, Baylor College of Medicine, Houston Texas, USA
| | - Johanne M. Murray
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | | |
Collapse
|
82
|
Šamanić I, Cvitanić R, Simunić J, Puizina J. Arabidopsis thalianaMRE11 is essential for activation of cell cycle arrest, transcriptional regulation and DNA repair upon the induction of double-stranded DNA breaks. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:681-694. [PMID: 27007017 DOI: 10.1111/plb.12453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
Given the fundamental role of MRE11 in many aspects of DNA metabolism and signalling in eukaryotes, we analysed the impact of several MRE11 mutations on DNA damage response (DDR) and DNA repair in Arabidopsis thaliana. Three different atmre11 and an atatm-2 mutant lines, together with the wild type (WT), were compared using a new Arabidopsis genotoxic assay for in situ evaluation of genome integrity and DNA damage repair efficiency after double strand break (DSB) induction. The results showed that, despite the phenotypic differences and different lengths of the putative truncated AtMRE11 proteins, all three atmre11 and the atatm-2 mutant lines exhibited common hypersensitivity to bleomycin treatment, where they only slightly reduced mitotic activity, indicating a G2/M checkpoint abrogation. In contrast to the WT, which reduced the frequency of chromosomal aberrations throughout the recovery period after treatment, none of the three atmre11 and atatm-2 mutants recovered. Moreover, atmre11-3 mutants, similarly to atatm-2 mutants, failed to transcriptionally induce several DDR genes and had altered expression of the CYCB1;1::GUS protein. Nevertheless, numerous chromosomal fusions in the atmre11 mutants, observed after DNA damage induction, suggest intensive DNA repair activity. These results indicate that functional and full-length AtMRE11 is essential for activation of the cell cycle arrest, transcriptional regulation and DNA repair upon induction of DSB.
Collapse
Affiliation(s)
- I Šamanić
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - R Cvitanić
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - J Simunić
- Ruđer Bošković Institute, Zagreb, Croatia
| | - J Puizina
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| |
Collapse
|
83
|
DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: Cell cycle and proliferation-dependent regulation. Semin Cancer Biol 2016; 37-38:51-64. [DOI: 10.1016/j.semcancer.2016.03.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022]
|
84
|
The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination. DNA Repair (Amst) 2016; 43:1-8. [PMID: 27173583 DOI: 10.1016/j.dnarep.2016.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 11/24/2022]
Abstract
Trinucleotide repeats (TNRs) are tandem arrays of three nucleotides that can expand in length to cause at least 17 inherited human diseases. Somatic expansions in patients can occur in differentiated tissues where DNA replication is limited and cannot be a primary source of somatic mutation. Instead, mouse models of TNR diseases have shown that both inherited and somatic expansions can be suppressed by the loss of certain DNA repair factors. It is generally believed that these repair factors cause misprocessing of TNRs, leading to expansions. Here we extend this idea to show that the Mre11-Rad50-Xrs2 (MRX) complex of Saccharomyces cerevisiae is a causative factor in expansions of short TNRs. Mutations that eliminate MRX subunits led to significant suppression of expansions whereas mutations that inactivate Rad51 had only a minor effect. Coupled with previous evidence, this suggests that MRX drives expansions of short TNRs through a process distinct from homologous recombination. The nuclease function of Mre11 was dispensable for expansions, suggesting that expansions do not occur by Mre11-dependent nucleolytic processing of the TNR. Epistasis between MRX and post-replication repair (PRR) was tested. PRR protects against expansions, so a rad5 mutant gave a high expansion rate. In contrast, the mre11 rad5 double mutant gave a suppressed expansion rate, indistinguishable from the mre11 single mutant. This suggests that MRX creates a TNR substrate for PRR. Protein acetylation was also tested as a mechanism regulating MRX activity in expansions. Six acetylation sites were identified in Rad50. Mutation of all six lysine residues to arginine gave partial bypass of a sin3 HDAC mutant, suggesting that Rad50 acetylation is functionally important for Sin3-mediated expansions. Overall we conclude that yeast MRX helps drive expansions of short TNRs by a mechanism distinct from its role in homologous recombination and independent of the nuclease function of Mre11.
Collapse
|
85
|
Naccarati A, Rosa F, Vymetalkova V, Barone E, Jiraskova K, Di Gaetano C, Novotny J, Levy M, Vodickova L, Gemignani F, Buchler T, Landi S, Vodicka P, Pardini B. Double-strand break repair and colorectal cancer: gene variants within 3' UTRs and microRNAs binding as modulators of cancer risk and clinical outcome. Oncotarget 2016; 7:23156-69. [PMID: 26735576 PMCID: PMC5029617 DOI: 10.18632/oncotarget.6804] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/09/2015] [Indexed: 12/25/2022] Open
Abstract
Genetic variations in 3' untranslated regions of target genes may affect microRNA binding, resulting in differential protein expression. microRNAs regulate DNA repair, and single-nucleotide polymorphisms in miRNA binding sites (miRSNPs) may account for interindividual differences in the DNA repair capacity. Our hypothesis is that miRSNPs in relevant DNA repair genes may ultimately affect cancer susceptibility and impact prognosis.In the present study, we analysed the association of polymorphisms in predicted microRNA target sites of double-strand breaks (DSBs) repair genes with colorectal cancer (CRC) risk and clinical outcome. Twenty-one miRSNPs in non-homologous end-joining and homologous recombination pathways were assessed in 1111 cases and 1469 controls. The variant CC genotype of rs2155209 in MRE11A was strongly associated with decreased cancer risk when compared with the other genotypes (OR 0.54, 95% CI 0.38-0.76, p = 0.0004). A reduced expression of the reporter gene was observed for the C allele of this polymorphism by in vitro assay, suggesting a more efficient interaction with potentially binding miRNAs. In colon cancer patients, the rs2155209 CC genotype was associated with shorter survival while the TT genotype of RAD52 rs11226 with longer survival when both compared with their respective more frequent genotypes (HR 1.63, 95% CI 1.06-2.51, p = 0.03 HR 0.60, 95% CI 0.41-0.89, p = 0.01, respectively).miRSNPs in DSB repair genes involved in the maintenance of genomic stability may have a role on CRC susceptibility and clinical outcome.
Collapse
Affiliation(s)
- Alessio Naccarati
- Molecular and Genetic Epidemiology Research Unit, Human Genetics Foundation, Turin, Italy
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
| | - Fabio Rosa
- Genomic Variation in Human Populations and Complex Diseases Research Unit, Human Genetics Foundation, Turin, Italy
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Elisa Barone
- Department of Biology, University of Pisa, Pisa, Italy
| | - Katerina Jiraskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cornelia Di Gaetano
- Genomic Variation in Human Populations and Complex Diseases Research Unit, Human Genetics Foundation, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jan Novotny
- Department of Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Tomas Buchler
- Department of Oncology, Thomayer Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbara Pardini
- Genomic Variation in Human Populations and Complex Diseases Research Unit, Human Genetics Foundation, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
86
|
Godin SK, Sullivan MR, Bernstein KA. Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication. Biochem Cell Biol 2016; 94:407-418. [PMID: 27224545 DOI: 10.1139/bcb-2016-0012] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review we focus on new insights that challenge our understanding of homologous recombination (HR) and Rad51 regulation. Recent advances using high-resolution microscopy and single molecule techniques have broadened our knowledge of Rad51 filament formation and strand invasion at double-strand break (DSB) sites and at replication forks, which are one of most physiologically relevant forms of HR from yeast to humans. Rad51 filament formation and strand invasion is regulated by many mediator proteins such as the Rad51 paralogues and the Shu complex, consisting of a Shu2/SWS1 family member and additional Rad51 paralogues. Importantly, a novel RAD51 paralogue was discovered in Caenorhabditis elegans, and its in vitro characterization has demonstrated a new function for the worm RAD51 paralogues during HR. Conservation of the human RAD51 paralogues function during HR and repair of replicative damage demonstrate how the RAD51 mediators play a critical role in human health and genomic integrity. Together, these new findings provide a framework for understanding RAD51 and its mediators in DNA repair during multiple cellular contexts.
Collapse
Affiliation(s)
- Stephen K Godin
- University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, and the Department of Microbiology and Molecular Genetics.,University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, and the Department of Microbiology and Molecular Genetics
| | - Meghan R Sullivan
- University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, and the Department of Microbiology and Molecular Genetics.,University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, and the Department of Microbiology and Molecular Genetics
| | - Kara A Bernstein
- University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, and the Department of Microbiology and Molecular Genetics
| |
Collapse
|
87
|
Dickreuter E, Eke I, Krause M, Borgmann K, van Vugt MA, Cordes N. Targeting of β1 integrins impairs DNA repair for radiosensitization of head and neck cancer cells. Oncogene 2016; 35:1353-62. [PMID: 26073085 DOI: 10.1038/onc.2015.212] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/08/2015] [Accepted: 04/12/2015] [Indexed: 11/09/2022]
Abstract
β1 Integrin-mediated cell-extracellular matrix interactions allow cancer cell survival and confer therapy resistance. It was shown that inhibition of β1 integrins sensitizes cells to radiotherapy. Here, we examined the impact of β1 integrin targeting on the repair of radiation-induced DNA double-strand breaks (DSBs). β1 Integrin inhibition was accomplished using the monoclonal antibody AIIB2 and experiments were performed in three-dimensional cell cultures and tumor xenografts of human head and neck squamous cell carcinoma (HNSCC) cell lines. AIIB2, X-ray irradiation, small interfering RNA-mediated knockdown and Olaparib treatment were performed and residual DSB number, protein and gene expression, non-homologous end joining (NHEJ) activity as well as clonogenic survival were determined. β1 Integrin targeting impaired repair of radiogenic DSB (γH2AX/53BP1, pDNA-PKcs T2609 foci) in vitro and in vivo and reduced the protein expression of Ku70, Rad50 and Nbs1. Further, we identified Ku70, Ku80 and DNA-PKcs but not poly(ADP-ribose) polymerase (PARP)-1 to reside in the β1 integrin pathway. Intriguingly, combined inhibition of β1 integrin and PARP using Olaparib was significantly more effective than either treatment alone in non-irradiated and irradiated HNSCC cells. Here, we support β1 integrins as potential cancer targets and highlight a regulatory role for β1 integrins in the repair of radiogenic DNA damage via classical NHEJ. Further, the data suggest combined targeting of β1 integrin and PARP as promising approach for radiosensitization of HNSCC.
Collapse
Affiliation(s)
- E Dickreuter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - I Eke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - M Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany
- German Cancer Consortium (DKTK), 01307 Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - K Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, Clinic of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M A van Vugt
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - N Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany
- German Cancer Consortium (DKTK), 01307 Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
88
|
Chang L, Huang J, Wang K, Li J, Yan R, Zhu L, Ye J, Wu X, Zhuang S, Li D, Zhang G. Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy. BMC Cancer 2016; 16:190. [PMID: 26951044 PMCID: PMC4782334 DOI: 10.1186/s12885-016-2190-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/16/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The Mre11-Rad50-Nbs1 (MRN) complex is well known for its crucial role in initiating DNA double strand breaks (DSBs) repair pathways to resistant irradiation (IR) injury and thus facilitating radioresistance which severely reduces radiocurability of nasopharyngeal cancer (NPC). Targeting native cellular MRN function would sensitize NPC cells to IR. METHODS A recombinant adenovirus containing a mutant Rad50 gene (Ad-RAD50) expressing Rad50 zinc hook domain but lacking the ATPase domain and the Mre11 interaction domain was constructed to disrupt native cellular MRN functions. The effects of Ad-RAD50 on the MRN functions were assessed in NPC cells lines using western blot, co-immunoprecipitation and confocal microscopy analyses. The increased radiosensitivity of transient Ad-RAD50 to IR was examined in NPC cells, including MTT assay, colony formation. The molecular mechanisms of radiosensitization were confirmed by neutral comet assay and western bolts. Nude mice subcutaneous injection, tumor growth curve and TUNEL assay were used to evaluate tumor regression and apoptosis in vivo. RESULTS Rad50 is remarkably upregulated in NPC cells after IR, implying the critical role of Rad50 in MRN functions. The transient expression of this mutant Rad50 decreased the levels of native cellular Rad50, Mre11 and Nbs1, weakened the interactions among these proteins, abrogated the G2/M arrest induced by DSBs and reduced the DNA repair ability in NPC cells. A combination of IR and mutant RAD50 therapy produced significant tumor cytotoxicity in vitro, with a corresponding increase in DNA damage, prevented proliferation and cell viability. Furthermore, Ad-RAD50 sensitized NPC cells to IR by causing dramatic tumor regression and inducing apoptosis in vivo. CONCLUSION Our findings define a novel therapeutic approach to NPC radiosensitization via targeted native cellular Rad50 disruption.
Collapse
Affiliation(s)
- Lihong Chang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Jiancong Huang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Kai Wang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otorhinolaryngology-Head & Neck Surgery, The First People's Hospital of Foshan, Cancheng District, NO.81 Lingnan Bei Road, Foshan, 528000, China.
| | - Jingjia Li
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Ruicheng Yan
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otolaryngology-Head & Neck Surgery, Zengcheng District People's Hospital of Guangzhou (Boji-Affiliated Hospital of Sun Yat-sen University), Zengcheng District, NO.1 Guangming Dong Road, Guangzhou, 511300, China.
| | - Ling Zhu
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otolaryngology-Head & Neck Surgery, Nanhai Maternity and Child Healthcare Hospital, Nanhai District, NO.6 Guiping Xi Road, Foshan, 528000, China.
| | - Jin Ye
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Xifu Wu
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Shimin Zhuang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otolaryngology-Head & Neck Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, NO.26 Yuancun Erheng Road, Guangzhou, 510655, China.
| | - Daqing Li
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | - Gehua Zhang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
89
|
VRK1 phosphorylates and protects NBS1 from ubiquitination and proteasomal degradation in response to DNA damage. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:760-9. [PMID: 26869104 DOI: 10.1016/j.bbamcr.2016.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 01/08/2023]
Abstract
NBS1 is an early component in DNA-Damage Response (DDR) that participates in the initiation of the responses aiming to repair double-strand breaks caused by different mechanisms. Early steps in DDR have to react to local alterations in chromatin that are induced by DNA damage. NBS1 participates in the early detection of DNA damage and functions as a platform for the recruitment and assembly of components that are sequentially required for the repair process. In this work we have studied whether the VRK1 chromatin kinase can affect the activation of NBS1 in response to DNA damage induced by ionizing radiation. VRK1 is forming a basal preassembled complex with NBS1 in non-damaged cells. Knockdown of VRK1 resulted in the loss of NBS1 foci induced by ionizing radiation, an effect that was also detected in cell-cycle arrested cells and in ATM (-/-) cells. The phosphorylation of NBS1 in Ser343 by VRK1 is induced by either doxorubicin or IR in ATM (-/-) cells. Phosphorylated NBS1 is also complexed with VRK1. NBS1 phosphorylation by VRK1 cooperates with ATM. This phosphorylation of NBS1 by VRK1 contributes to the stability of NBS1 in ATM (-/-) cells, and the consequence of its loss can be prevented by treatment with the MG132 proteasome inhibitor of RNF8. We conclude that VRK1 regulation of NBS1 contributes to the stability of the repair complex and permits the sequential steps in DDR.
Collapse
|
90
|
Dynamic structures in DNA damage responses & cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 117:129-133. [PMID: 25934179 DOI: 10.1016/j.pbiomolbio.2015.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
91
|
Nakahara T, Kiyono T. Interplay between NF-κB/interferon signaling and the genome replication of HPV. Future Virol 2016. [DOI: 10.2217/fvl.16.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HPV infection can persist within the infected epithelium for years. The viral persistence is primarily attributed to the ability of the virus to maintain its genome as nuclear episomes in the basal cells. Recent studies have revealed that HPV induces DNA damage response to facilitate productive amplification of the viral genome. DNA damage response comprises a part of the cellular defense mechanism against viral infection and its activation can result in induction of innate immune responses. The activation of NF-κB and interferon (IFN) signals has been shown to suppress the genome replication of HPV while the viral proteins inhibit NF-κB/IFN signaling. This review intends to focus on illustrating the interplay between NFκB/IFN signaling and HPV genome replication in the HPV life cycle.
Collapse
Affiliation(s)
- Tomomi Nakahara
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
92
|
Abstract
The balance between DNA damage, especially double strand breaks, and DNA damage repair is a critical determinant of chromosomal translocation frequency. The non-homologous end-joining repair (NHEJ) pathways seem to play the major role in the generation of chromosomal translocations. The "landscape" of chromosomal translocation identified in malignancies is largely due to selection processes which operate on the growth advantages conveyed to the cells by the functional consequences of chromosomal translocations (i.e., oncogenic fusion proteins and overexpression of oncogenes, both compromising tumor suppressor gene functions). Newer studies have shown that there is an abundance of local rearrangements in many tumors, like small deletions and inversions. A better understanding of the interplay between DNA repair mechanisms and the generation of tumorigenic translocations will, among many other things, depend on an improved understanding of DNA repair mechanisms and their interplay with chromatin and the 3D organization of the interphase nucleus.
Collapse
|
93
|
Chen YJ, Chuang YC, Chuang CN, Cheng YH, Chang CR, Leng CH, Wang TF. S. cerevisiae Mre11 recruits conjugated SUMO moieties to facilitate the assembly and function of the Mre11-Rad50-Xrs2 complex. Nucleic Acids Res 2016; 44:2199-213. [PMID: 26743002 PMCID: PMC4797280 DOI: 10.1093/nar/gkv1523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 12/19/2015] [Indexed: 01/04/2023] Open
Abstract
Double-strand breaks (DSBs) in chromosomes are the most challenging type of DNA damage. The yeast and mammalian Mre11-Rad50-Xrs2/Nbs1 (MRX/N)-Sae2/Ctp1 complex catalyzes the resection of DSBs induced by secondary structures, chemical adducts or covalently-attached proteins. MRX/N also initiates two parallel DNA damage responses-checkpoint phosphorylation and global SUMOylation-to boost a cell's ability to repair DSBs. However, the molecular mechanism of this SUMO-mediated response is not completely known. In this study, we report that Saccharomyces cerevisiae Mre11 can non-covalently recruit the conjugated SUMO moieties, particularly the poly-SUMO chain. Mre11 has two evolutionarily-conserved SUMO-interacting motifs, Mre11(SIM1) and Mre11(SIM2), which reside on the outermost surface of Mre11. Mre11(SIM1) is indispensable for MRX assembly. Mre11(SIM2) non-covalently links MRX with the SUMO enzymes (E2/Ubc9 and E3/Siz2) to promote global SUMOylation of DNA repair proteins. Mre11(SIM2) acts independently of checkpoint phosphorylation. During meiosis, the mre11(SIM2) mutant, as for mre11S, rad50S and sae2Δ, allows initiation but not processing of Spo11-induced DSBs. Using MRX and DSB repair as a model, our work reveals a general principle in which the conjugated SUMO moieties non-covalently facilitate the assembly and functions of multi-subunit protein complexes.
Collapse
Affiliation(s)
- Yu-Jie Chen
- Graduate Program of Biotechnology in Medicine, National Tsing Hua University and National Health Research Institutes, Taiwan Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan National Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Miaoli 350, Taiwan Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chien Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Ning Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yun-Hsin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chuang-Rung Chang
- Graduate Program of Biotechnology in Medicine, National Tsing Hua University and National Health Research Institutes, Taiwan Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chih-Hsiang Leng
- Graduate Program of Biotechnology in Medicine, National Tsing Hua University and National Health Research Institutes, Taiwan National Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Miaoli 350, Taiwan
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
94
|
Gatz SA, Salles D, Jacobsen EM, Dörk T, Rausch T, Aydin S, Surowy H, Volcic M, Vogel W, Debatin KM, Stütz AM, Schwarz K, Pannicke U, Hess T, Korbel JO, Schulz AS, Schumacher J, Wiesmüller L. MCM3AP and POMP Mutations Cause a DNA-Repair and DNA-Damage-Signaling Defect in an Immunodeficient Child. Hum Mutat 2015; 37:257-68. [PMID: 26615982 DOI: 10.1002/humu.22939] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 11/17/2015] [Indexed: 01/22/2023]
Abstract
Immunodeficiency patients with DNA repair defects exhibit radiosensitivity and proneness to leukemia/lymphoma formation. Though progress has been made in identifying the underlying mutations, in most patients the genetic basis is unknown. Two de novo mutated candidate genes, MCM3AP encoding germinal center-associated nuclear protein (GANP) and POMP encoding proteasome maturation protein (POMP), were identified by whole-exome sequencing (WES) and confirmed by Sanger sequencing in a child with complex phenotype displaying immunodeficiency, genomic instability, skin changes, and myelodysplasia. GANP was previously described to promote B-cell maturation by nuclear targeting of activation-induced cytidine deaminase (AID) and to control AID-dependent hyperrecombination. POMP is required for 20S proteasome assembly and, thus, for efficient NF-κB signaling. Patient-derived cells were characterized by impaired homologous recombination, moderate radio- and cross-linker sensitivity associated with accumulation of damage, impaired DNA damage-induced NF-κB signaling, and reduced nuclear AID levels. Complementation by wild-type (WT)-GANP normalized DNA repair and WT-POMP rescued defective NF-κB signaling. In conclusion, we identified for the first time mutations in MCM3AP and POMP in an immunodeficiency patient. These mutations lead to cooperative effects on DNA recombination and damage signaling. Digenic/polygenic mutations may constitute a novel genetic basis in immunodeficiency patients with DNA repair defects.
Collapse
Affiliation(s)
- Susanne A Gatz
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, D-89075, Germany
| | - Daniela Salles
- Department of Obstetrics and Gynecology, Ulm University, Ulm, D-89075, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, D-89075, Germany
| | - Thilo Dörk
- Gynecology Research Unit, Hannover Medical School, Hannover, D-30625, Germany
| | - Tobias Rausch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, D-69117, Germany
| | - Sevtap Aydin
- Department of Obstetrics and Gynecology, Ulm University, Ulm, D-89075, Germany
| | - Harald Surowy
- Department of Human Genetics, Ulm University, Ulm, D-89081, Germany
| | - Meta Volcic
- Department of Obstetrics and Gynecology, Ulm University, Ulm, D-89075, Germany
| | - Walther Vogel
- Department of Human Genetics, Ulm University, Ulm, D-89081, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, D-89075, Germany
| | - Adrian M Stütz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, D-69117, Germany
| | - Klaus Schwarz
- Institute of Transfusion Medicine, Ulm University and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, D-89081, Germany
| | - Ulrich Pannicke
- Institute of Transfusion Medicine, Ulm University and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, D-89081, Germany
| | - Timo Hess
- Institute of Human Genetics, Biomedical Center, University of Bonn, Bonn, D-53127, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, D-69117, Germany
| | - Ansgar S Schulz
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, D-89075, Germany
| | - Johannes Schumacher
- Institute of Human Genetics, Biomedical Center, University of Bonn, Bonn, D-53127, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, D-89075, Germany
| |
Collapse
|
95
|
A Novel Aspect of Tumorigenesis-BMI1 Functions in Regulating DNA Damage Response. Biomolecules 2015; 5:3396-415. [PMID: 26633535 PMCID: PMC4693283 DOI: 10.3390/biom5043396] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/23/2015] [Accepted: 11/26/2015] [Indexed: 12/27/2022] Open
Abstract
BMI1 plays critical roles in maintaining the self-renewal of hematopoietic, neural, intestinal stem cells, and cancer stem cells (CSCs) for a variety of cancer types. BMI1 promotes cell proliferative life span and epithelial to mesenchymal transition (EMT). Upregulation of BMI1 occurs in multiple cancer types and is associated with poor prognosis. Mechanistically, BMI1 is a subunit of the Polycomb repressive complex 1 (PRC1), and binds the catalytic RING2/RING1b subunit to form a functional E3 ubiquitin ligase. Through mono-ubiquitination of histone H2A at lysine 119 (H2A-K119Ub), BMI1 represses multiple gene loci; among these, the INK4A/ARF locus has been most thoroughly investigated. The locus encodes the p16INK4A and p14/p19ARF tumor suppressors that function in the pRb and p53 pathways, respectively. Its repression contributes to BMI1-derived tumorigenesis. BMI1 also possesses other oncogenic functions, specifically its regulative role in DNA damage response (DDR). In this process, BMI1 ubiquitinates histone H2A and γH2AX, thereby facilitating the repair of double-stranded DNA breaks (DSBs) through stimulating homologous recombination and non-homologous end joining. Additionally, BMI1 compromises DSB-induced checkpoint activation independent of its-associated E3 ubiquitin ligase activity. We review the emerging role of BMI1 in DDR regulation and discuss its impact on BMI1-derived tumorigenesis.
Collapse
|
96
|
Burgess RC, Misteli T. Not All DDRs Are Created Equal: Non-Canonical DNA Damage Responses. Cell 2015; 162:944-7. [PMID: 26317463 DOI: 10.1016/j.cell.2015.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 10/23/2022]
Abstract
It is commonly assumed that there is a single canonical DNA damage response (DDR) that protects cells from various types of double-strand breaks and that its activation occurs via recognition of DNA ends by the DDR machinery. Recent work suggests that both assumptions may be oversimplifications. Here, we discuss several variations of the DDR in which the pathway is activated by diverse cellular events and/or generates distinct signaling outcomes. The existence of multiple non-canonical DDRs provides insights into how DNA damage is sensed and suggests a highly modular organization of the DDR.
Collapse
Affiliation(s)
- Rebecca C Burgess
- National Cancer Institute, NIH, Bethesda, MD 20892, USA; Department of Biological Sciences, School of the Sciences, Stevenson University, Stevenson, MD 21153, USA.
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
97
|
Park S, Hwang IW, Kim JS, Kang HC, Park SY, Gil HW, Song HY, Hong SY. The effects of nonyl phenoxypolyethoxyl ethanol on cell damage pathway gene expression in SK-NSH cells. Korean J Intern Med 2015; 30:873-83. [PMID: 26552463 PMCID: PMC4642017 DOI: 10.3904/kjim.2015.30.6.873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/24/2014] [Accepted: 02/13/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/AIMS Most pesticide formulations contain both chief and additive ingredients. But, the additives may not have been tested as thoroughly as the chief ingredients. The surfactant, nonyl phenoxypolyethoxylethanol (NP40), is an additive frequently present in pesticide formulations. We investigated the effects of NP40 and other constituents of a validamycin pesticide formulation on cell viability and on the expression of genes involved in cell damage pathways. METHODS The effects of validamycin pesticide ingredients on cell viability and of NP40 on the mRNA expression of 80 genes involved in nine key cellular pathways were examined in the human neuroblastoma SK-N-SH cell line. RESULTS The chemicals present in the validamycin pesticide formulation were cytotoxic to SK-N-SH cells and NP40 showed the greatest cytotoxicity. A range of gene expression changes were identified, with both up- and down-regulation of genes within the same pathway. However, all genes tested in the necrosis signaling pathway were down-regulated and all genes tested in the cell cycle checkpoint/arrest pathway were up-regulated. The median fold-change in gene expression was significantly higher in the cell cycle checkpoint/arrest pathway than in the hypoxia pathway category (p = 0.0064). The 70 kDa heat shock protein 4 gene, within the heat shock protein/unfolded protein response category, showed the highest individual increase in expression (26.1-fold). CONCLUSIONS NP40 appeared to be particularly harmful, inducing gene expression changes that indicated genotoxicity, activation of the cell death (necrosis signaling) pathway, and induction of the 70 kDa heat shock protein 4 gene.
Collapse
Affiliation(s)
- Samel Park
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Il-woong Hwang
- Pesticide Intoxication Institute, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jin-sheon Kim
- Pesticide Intoxication Institute, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyo-chul Kang
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Su-Yeon Park
- Biostatistical Consulting Unit, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyo-wook Gil
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Ho-yeon Song
- Department of Microbiology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sae-yong Hong
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
- Correspondence to Sae-yong Hong, M.D. Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan 31151, Korea Tel: +82-41-570-3682 Fax: +82-41-574-5762 E-mail:
| |
Collapse
|
98
|
Ma L, Milman N, Nambiar M, Smith GR. Two separable functions of Ctp1 in the early steps of meiotic DNA double-strand break repair. Nucleic Acids Res 2015; 43:7349-7359. [PMID: 26130711 PMCID: PMC4551917 DOI: 10.1093/nar/gkv644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/02/2022] Open
Abstract
Meiotic programmed DNA double-strand break (DSB) repair is essential for crossing-over and viable gamete formation and requires removal of Spo11-oligonucleotide complexes from 5' ends (clipping) and their resection to generate invasive 3'-end single-stranded DNA (resection). Ctp1 (Com1, Sae2, CtIP homolog) acting with the Mre11-Rad50-Nbs1 (MRN) complex is required in both steps. We isolated multiple S. pombe ctp1 mutants deficient in clipping but proficient in resection during meiosis. Remarkably, all of the mutations clustered in or near the conserved CxxC or RHR motif in the C-terminal portion. The mutants tested, like ctp1Δ, were clipping-deficient by both genetic and physical assays-. But, unlike ctp1Δ, these mutants were recombination-proficient for Rec12 (Spo11 homolog)-independent break-repair and resection-proficient by physical assay. We conclude that the intracellular Ctp1 C-terminal portion is essential for clipping, while the N-terminal portion is sufficient for DSB end-resection. This conclusion agrees with purified human CtIP resection and endonuclease activities being independent. Our mutants provide intracellular evidence for separable functions of Ctp1. Some mutations truncate Ctp1 in the same region as one of the CtIP mutations linked to the Seckel and Jawad severe developmental syndromes, suggesting that these syndromes are caused by a lack of clipping at DSB ends that require repair.
Collapse
Affiliation(s)
- Lijuan Ma
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Neta Milman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mridula Nambiar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
99
|
Lim CT, Lai PJ, Leach DRF, Maki H, Furukohri A. A novel mode of nuclease action is revealed by the bacterial Mre11/Rad50 complex. Nucleic Acids Res 2015; 43:9804-16. [PMID: 26319016 PMCID: PMC4787754 DOI: 10.1093/nar/gkv855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 08/12/2015] [Indexed: 11/14/2022] Open
Abstract
The Mre11/Rad50 complex is a central player in various genome maintenance pathways. Here, we report a novel mode of nuclease action found for the Escherichia coli Mre11/Rad50 complex, SbcC2/D2 complex (SbcCD). SbcCD cuts off the top of a cruciform DNA by making incisions on both strands and continues cleaving the dsDNA stem at ∼10-bp intervals. Using linear-shaped DNA substrates, we observed that SbcCD cleaved dsDNA using this activity when the substrate was 110 bp long, but that on shorter substrates the cutting pattern was changed to that predicted for the activity of a 3′-5′ exonuclease. Our results suggest that SbcCD processes hairpin and linear dsDNA ends with this novel DNA end-dependent binary endonuclease activity in response to substrate length rather than using previously reported activities. We propose a model for this mode of nuclease action, which provides new insight into SbcCD activity at a dsDNA end.
Collapse
Affiliation(s)
- Chew Theng Lim
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Pey Jiun Lai
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - David R F Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, UK
| | - Hisaji Maki
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Asako Furukohri
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
100
|
Fisher C. Recent Insights into the Control of Human Papillomavirus (HPV) Genome Stability, Loss, and Degradation. J Clin Med 2015; 4:204-30. [PMID: 25798290 PMCID: PMC4366058 DOI: 10.3390/jcm4020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most human papillomavirus (HPV) antiviral strategies have focused upon inhibiting viral DNA replication, but it is increasingly apparent that viral DNA levels can be chemically controlled by approaches that promote its instability. HPVs and other DNA viruses have a tenuous relationship with their hosts. They must replicate and hide from the DNA damage response (DDR) and innate immune systems, which serve to protect cells from foreign or “non-self” DNA, and yet they draft these same systems to support their life cycles. DNA binding antiviral agents promoting massive viral DNA instability and elimination are reviewed. Mechanistic studies of these agents have identified genetic antiviral enhancers and repressors, antiviral sensitizers, and host cell elements that protect and stabilize HPV genomes. Viral DNA degradation appears to be an important means of controlling HPV DNA levels in some cases, but the underlying mechanisms remain poorly understood. These findings may prove useful not only for understanding viral DNA persistence but only in devising future antiviral strategies.
Collapse
Affiliation(s)
- Chris Fisher
- NanoVir, 4717 Campus, Kalamazoo, MI 49008, USA; ; Tel.: +1-269-372-3261
| |
Collapse
|