51
|
Kumar Villuri B, Desai UR. Synthesis and Reactivity of Masked Organic Sulfates. Chemistry 2024; 30:e202402268. [PMID: 39024030 DOI: 10.1002/chem.202402268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Nature offers a variety of structurally unique, sulfated endobiotics including sulfated glycosaminoglycans, sulfated tyrosine peptides, sulfated steroids/bile acids/catecholamines. Sulfated molecules display a large number of biological activities including antithrombotic, antimicrobial, anticancer, anti-inflammatory, and others, which arise from modulation of intracellular signaling and enhanced in vivo retention of certain hormones. These characteristics position sulfated molecules very favorably as drug-like agents. However, few have reached the clinic. Major hurdles exist in realizing sulfated molecules as drugs. This state-of-the-art has been transformed through recent works on the development of sulfate masking technologies for both alkyl (sulfated carbohydrates, sulfated steroids) and aryl (sTyr-bearing peptides/proteins, sulfated flavonoids) sulfates. This review compiles the literature on different strategies implemented for different types of sulfate groups. Starting from early efforts in protection of sulfate groups to the design of newer SuFEx, trichloroethyl, and gem-dimethyl-based protection technologies, this review presents the evolution and application of concepts in realizing highly diverse, sulfated molecules as candidate drugs and/or prodrugs. Overall, the newer strategies for sulfate masking and demasking are likely to greatly enhance the design and development of sulfated molecules as non-toxic drugs of the future.
Collapse
Affiliation(s)
- Bharath Kumar Villuri
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23219, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23219, United States
| |
Collapse
|
52
|
R VS, Choudhuri S, Ghosh B. Hybrid Diffusion Model for Stable, Affinity-Driven, Receptor-Aware Peptide Generation. J Chem Inf Model 2024; 64:6912-6925. [PMID: 39193724 DOI: 10.1021/acs.jcim.4c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The convergence of biotechnology and artificial intelligence has the potential to transform drug development, especially in the field of therapeutic peptide design. Peptides are short chains of amino acids with diverse therapeutic applications that offer several advantages over small molecular drugs, such as targeted therapy and minimal side effects. However, limited oral bioavailability and enzymatic degradation have limited their effectiveness. With advances in deep learning techniques, innovative approaches to peptide design have become possible. In this work, we demonstrate HYDRA, a hybrid deep learning approach that leverages the distribution modeling capabilities of a diffusion model and combines it with a binding affinity maximization algorithm that can be used for de novo design of peptide binders for various target receptors. As an application, we have used our approach to design therapeutic peptides targeting proteins expressed by Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) genes. The ability of HYDRA to generate peptides conditioned on the target receptor's binding sites makes it a promising approach for developing effective therapies for malaria and other diseases.
Collapse
Affiliation(s)
- Vishva Saravanan R
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Soham Choudhuri
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Bhaswar Ghosh
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| |
Collapse
|
53
|
Cavallaro PA, De Santo M, Marinaro R, Belsito EL, Liguori A, Leggio A. Efficient Solution-Phase Dipeptide Synthesis Using Titanium Tetrachloride and Microwave Heating. Int J Mol Sci 2024; 25:9729. [PMID: 39273676 PMCID: PMC11395851 DOI: 10.3390/ijms25179729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Microwaves have been successfully employed in the Lewis acid titanium tetrachloride-assisted synthesis of peptide systems. Dipeptide systems with their amino function differently protected with urethane protecting groups have been synthesized in short periods of time and with high yields. The formation of the peptide bond between the two reacting amino acids was achieved in pyridine by using titanium tetrachloride as a condensing agent and heating the reaction mixture with a microwave reactor. The reaction conditions are compatible with amino acids featuring various side chains and different protecting groups on both the amino function and side chains. Additionally, the substrates retain their chiral integrity after reaction.
Collapse
Affiliation(s)
- Palmira Alessia Cavallaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Marzia De Santo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Rocco Marinaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Emilia Lucia Belsito
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Angelo Liguori
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
54
|
Yang Y, Geng C, Shen H, Chao J, Wang Z, Cong W, Li X, Ye G, Jiang Y. Systematical Mutational Analysis of FRATtide against Osteoclast Differentiation by Alanine Scanning. ACS Med Chem Lett 2024; 15:1242-1249. [PMID: 39140067 PMCID: PMC11318000 DOI: 10.1021/acsmedchemlett.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
Osteoporosis, a global bone disease, results in decreased bone density, mass, and microarchitecture deterioration, increasing fracture risk. In previous research, FRATtide, a peptide derived from a glycogen synthase kinase-3 binding protein, effectively hindered osteoclast differentiation to yield therapeutically potent derivatives via single and double stapling. However, FRATtide's structure-activity relationship remains unclear. This study synthesized 25 FRATtide-derived peptides through systematic alanine scanning and evaluated their activities. Substitutions in Pro2, Leu5, Leu9, Val10, Leu11, Ser12, Asn14, Leu15, Ile16, Glu18, Arg22, Ser25, and Arg26 showed reduced activity, while FRT13 and FRT20 with Gly13 and Arg21 substitutions, respectively, displayed enhanced activities. F-actin binding and bone resorption assays on FRT13 and FRT20 showed better inhibition of osteoclast differentiation and bone resorption compared with FRATtide. This study elucidated FRATtide's structure-activity relationship, thereby facilitating future structural optimization for osteoporosis treatment.
Collapse
Affiliation(s)
- Yi Yang
- School
of Pharmacy, Anhui Medical University, HeFei 230032, China
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chenchen Geng
- School
of Pharmacy, Anhui Medical University, HeFei 230032, China
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Huaxing Shen
- School
of Medicine, Shanghai University, Shanghai 200444, China
| | - Jingru Chao
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhe Wang
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Wei Cong
- School
of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiang Li
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Guangming Ye
- Xinrui
Hospital, Xinwu District, Wuxi, 214000, China
| | | |
Collapse
|
55
|
Deka H, Pawar A, Battula M, Ghfar AA, Assal ME, Chikhale RV. Identification and Design of Novel Potential Antimicrobial Peptides Targeting Mycobacterial Protein Kinase PknB. Protein J 2024; 43:858-868. [PMID: 39014259 PMCID: PMC11345320 DOI: 10.1007/s10930-024-10218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
Antimicrobial peptides have gradually gained advantages over small molecule inhibitors for their multifunctional effects, synthesising accessibility and target specificity. The current study aims to determine an antimicrobial peptide to inhibit PknB, a serine/threonine protein kinase (STPK), by binding efficiently at the helically oriented hinge region. A library of 5626 antimicrobial peptides from publicly available repositories has been prepared and categorised based on the length. Molecular docking using ADCP helped to find the multiple conformations of the subjected peptides. For each peptide served as input the tool outputs 100 poses of the subjected peptide. To maintain an efficient binding for relatively a longer duration, only those peptides were chosen which were seen to bind constantly to the active site of the receptor protein over all the poses observed. Each peptide had different number of constituent amino acid residues; the peptides were classified based on the length into five groups. In each group the peptide length incremented upto four residues from the initial length form. Five peptides were selected for Molecular Dynamic simulation in Gromacs based on higher binding affinity. Post-dynamic analysis and the frame comparison inferred that neither the shorter nor the longer peptide but an intermediate length of 15 mer peptide bound well to the receptor. Residual substitution to the selected peptides was performed to enhance the targeted interaction. The new complexes considered were further analysed using the Elastic Network Model (ENM) for the functional site's intrinsic dynamic movement to estimate the new peptide's role. The study sheds light on prospects that besides the length of peptides, the combination of constituent residues equally plays a pivotal role in peptide-based inhibitor generation. The study envisages the challenges of fine-tuned peptide recovery and the scope of Machine Learning (ML) and Deep Learning (DL) algorithm development. As the study was primarily meant for generation of therapeutics for Tuberculosis (TB), the peptide proposed by this study demands meticulous invitro analysis prior to clinical applications.
Collapse
Affiliation(s)
- Hemchandra Deka
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 5600413, India
| | - Atul Pawar
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 5600413, India
| | - Monishka Battula
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune, India
| | - Ayman A Ghfar
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed E Assal
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rupesh V Chikhale
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, Brunswick Square, London, UK.
| |
Collapse
|
56
|
Wang J, Zheng P, Yu J, Yang X, Zhang J. Rational design of small-sized peptidomimetic inhibitors disrupting protein-protein interaction. RSC Med Chem 2024; 15:2212-2225. [PMID: 39026653 PMCID: PMC11253864 DOI: 10.1039/d4md00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/04/2024] [Indexed: 07/20/2024] Open
Abstract
Protein-protein interactions are fundamental to nearly all biological processes. Due to their structural flexibility, peptides have emerged as promising candidates for developing inhibitors targeting large and planar PPI interfaces. However, their limited drug-like properties pose challenges. Hence, rational modifications based on peptide structures are anticipated to expedite the innovation of peptide-based therapeutics. This review comprehensively examines the design strategies for developing small-sized peptidomimetic inhibitors targeting PPI interfaces, which predominantly encompass two primary categories: peptidomimetics with abbreviated sequences and low molecular weights and peptidomimetics mimicking secondary structural conformations. We have also meticulously detailed several instances of designing and optimizing small-sized peptidomimetics targeting PPIs, including MLL1-WDR5, PD-1/PD-L1, and Bak/Bcl-xL, among others, to elucidate the potential application prospects of these design strategies. Hopefully, this review will provide valuable insights and inspiration for the future development of PPI small-sized peptidomimetic inhibitors in pharmaceutical research endeavors.
Collapse
Affiliation(s)
- Junyuan Wang
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Xiuyan Yang
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University Shanghai 200025 China
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| |
Collapse
|
57
|
Yoshida M, Hayashi S, Haraguchi T, Ito M, Hatanaka Y, Yoshii M, Tatsuoka H, Tanaka S, Nagao T. Antimicrobial Activity of Positively Charged Oligopeptides with Theoretical High α-Helix Content against Cutibacterium acnes. Int J Mol Sci 2024; 25:7445. [PMID: 39000551 PMCID: PMC11242407 DOI: 10.3390/ijms25137445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Cutibacterium acnes is abundant and commonly exists as a superficial bacteria on human skin. Recently, the resistance of C. acnes to antimicrobial agents has become a serious concern, necessitating the development of alternative pharmaceutical products with antimicrobial activity against C. acnes. To address this need, we evaluated the antimicrobial activity of CKR-13-a mutant oligopeptide of FK-13 with increased net charge and theoretical α-helical content-against C. acnes in modified Gifu Anaerobic Medium broth by determining the minimum inhibitory concentration (MIC). CKR-13 exerted greater antimicrobial activity against C. acnes than FK-13 in the broth at pH 7.0. The antimicrobial activity of CKR-13 with RXM against C. albicans was pH-dependent. The ionization of CKR-13 and pH-dependent growth delay of C. albicans was suggested to be associated with the increase in CKR-13 antimicrobial activity.
Collapse
Affiliation(s)
- Miyako Yoshida
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; (S.H.); (T.H.); (M.I.)
| | - Saki Hayashi
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; (S.H.); (T.H.); (M.I.)
| | - Tamami Haraguchi
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; (S.H.); (T.H.); (M.I.)
| | - Momoka Ito
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; (S.H.); (T.H.); (M.I.)
| | - Yoshiro Hatanaka
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka City 536-8553, Osaka, Japan; (Y.H.); (M.Y.); (H.T.); (S.T.); (T.N.)
| | - Miki Yoshii
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka City 536-8553, Osaka, Japan; (Y.H.); (M.Y.); (H.T.); (S.T.); (T.N.)
| | - Hiroaki Tatsuoka
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka City 536-8553, Osaka, Japan; (Y.H.); (M.Y.); (H.T.); (S.T.); (T.N.)
| | - Shigemitsu Tanaka
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka City 536-8553, Osaka, Japan; (Y.H.); (M.Y.); (H.T.); (S.T.); (T.N.)
| | - Toshihiro Nagao
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka City 536-8553, Osaka, Japan; (Y.H.); (M.Y.); (H.T.); (S.T.); (T.N.)
| |
Collapse
|
58
|
Biji CA, Balde A, Nazeer RA. Anti-inflammatory peptide therapeutics and the role of sulphur containing amino acids (cysteine and methionine) in inflammation suppression: A review. Inflamm Res 2024; 73:1203-1221. [PMID: 38769154 DOI: 10.1007/s00011-024-01893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Inflammation serves as our body's immune response to combat infections, pathogens, viruses, and external stimuli. Inflammation can be classified into two types: acute inflammation and chronic inflammation. Non-steroidal anti-inflammatory medications (NSAIDs) are used to treat both acute and chronic inflammatory disorders. However, these treatments have various side effects such as reduced healing efficiency, peptic ulcers, gastrointestinal toxicities, etc. METHOD: This review assesses the potential of anti-inflammatory peptides (AIPs) derived from various natural sources, such as algae, fungi, plants, animals, and marine organisms. Focusing on peptides rich in cysteines and methionine, sulphur-containing amino acids known for their role in suppression of inflammation. RESULT Due to their varied biological activity, ability to penetrate cells, and low cytotoxicity, bioactive peptides have garnered interest as possible therapeutic agents. The utilisation of AIPs has shown great potential in the treatment of disorders associated with inflammation. AIPs can be obtained from diverse natural sources such as algae, fungi, plants, and animals. Cysteine and methionine are sulphur-containing amino acids that aid in the elimination of free radicals, hence assisting in the treatment of inflammatory diseases. CONCLUSION This review specifically examines several sources of AIPs including peptides that contain numerous cysteines and methionine. In addition, the biological characteristics of these amino acids and advancements in peptide delivery are also discussed.
Collapse
Affiliation(s)
- Catherin Ann Biji
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India.
| |
Collapse
|
59
|
Quintieri L, Caputo L, Nicolotti O. Recent Advances in the Discovery of Novel Drugs on Natural Molecules. Biomedicines 2024; 12:1254. [PMID: 38927461 PMCID: PMC11200856 DOI: 10.3390/biomedicines12061254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Natural products (NPs) are always a promising source of novel drugs for tackling unsolved diseases [...].
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy;
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy;
| | - Orazio Nicolotti
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy;
| |
Collapse
|
60
|
Yao L, Guan J, Xie P, Chung C, Deng J, Huang Y, Chiang Y, Lee T. AMPActiPred: A three-stage framework for predicting antibacterial peptides and activity levels with deep forest. Protein Sci 2024; 33:e5006. [PMID: 38723168 PMCID: PMC11081525 DOI: 10.1002/pro.5006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024]
Abstract
The emergence and spread of antibiotic-resistant bacteria pose a significant public health threat, necessitating the exploration of alternative antibacterial strategies. Antibacterial peptide (ABP) is a kind of antimicrobial peptide (AMP) that has the potential ability to fight against bacteria infection, offering a promising avenue for developing novel therapeutic interventions. This study introduces AMPActiPred, a three-stage computational framework designed to identify ABPs, characterize their activity against diverse bacterial species, and predict their activity levels. AMPActiPred employed multiple effective peptide descriptors to effectively capture the compositional features and physicochemical properties of peptides. AMPActiPred utilized deep forest architecture, a cascading architecture similar to deep neural networks, capable of effectively processing and exploring original features to enhance predictive performance. In the first stage, AMPActiPred focuses on ABP identification, achieving an Accuracy of 87.6% and an MCC of 0.742 on an elaborate dataset, demonstrating state-of-the-art performance. In the second stage, AMPActiPred achieved an average GMean at 82.8% in identifying ABPs targeting 10 bacterial species, indicating AMPActiPred can achieve balanced predictions regarding the functional activity of ABP across this set of species. In the third stage, AMPActiPred demonstrates robust predictive capabilities for ABP activity levels with an average PCC of 0.722. Furthermore, AMPActiPred exhibits excellent interpretability, elucidating crucial features associated with antibacterial activity. AMPActiPred is the first computational framework capable of predicting targets and activity levels of ABPs. Finally, to facilitate the utilization of AMPActiPred, we have established a user-friendly web interface deployed at https://awi.cuhk.edu.cn/∼AMPActiPred/.
Collapse
Affiliation(s)
- Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenChina
| | - Jiahui Guan
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
- School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Peilin Xie
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Chia‐Ru Chung
- Department of Computer Science and Information EngineeringNational Central UniversityTaoyuanTaiwan
| | - Junyang Deng
- School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Yixian Huang
- School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Ying‐Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
- School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Tzong‐Yi Lee
- Institute of Bioinformatics and Systems BiologyNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Center for Intelligent Drug Systems and Smart Bio‐devices (IDS2B)National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| |
Collapse
|
61
|
Zuo Q, Li Y, Lai X, Bao G, Chen L, He Z, Song X, E R, Wang P, Shi Y, Luo H, Sun W, Wang R. Cysteine-Specific Multifaceted Bioconjugation of Peptides and Proteins Using 5-Substituted 1,2,3-Triazines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308491. [PMID: 38466927 DOI: 10.1002/advs.202308491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/08/2024] [Indexed: 03/13/2024]
Abstract
Peptide and protein postmodification have gained significant attention due to their extensive impact on biomolecule engineering and drug discovery, of which cysteine-specific modification strategies are prominent due to their inherent nucleophilicity and low abundance. Herein, the study introduces a novel approach utilizing multifunctional 5-substituted 1,2,3-triazine derivatives to achieve multifaceted bioconjugation targeting cysteine-containing peptides and proteins. On the one hand, this represents an inaugural instance of employing 1,2,3-triazine in biomolecular-specific modification within a physiological solution. On the other hand, as a powerful combination of precision modification and biorthogonality, this strategy allows for the one-pot dual-orthogonal functionalization of biomolecules utilizing the aldehyde group generated simultaneously. 1,2,3-Triazine derivatives with diverse functional groups allow conjugation to peptides or proteins, while bi-triazines enable peptide cyclization and dimerization. The examination of the stability of bi-triazines revealed their potential for reversible peptide modification. This work establishes a comprehensive platform for identifying cysteine-selective modifications, providing new avenues for peptide-based drug development, protein bioconjugation, and chemical biology research.
Collapse
Affiliation(s)
- Quan Zuo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Xuanliang Lai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Lu Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Zeyuan He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Xinyi Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Ruiyao E
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Pengxin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Yuntao Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Huixin Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
62
|
Tan X, Liu Q, Fang Y, Yang S, Chen F, Wang J, Ouyang D, Dong J, Zeng W. Introducing enzymatic cleavage features and transfer learning realizes accurate peptide half-life prediction across species and organs. Brief Bioinform 2024; 25:bbae350. [PMID: 39038937 PMCID: PMC11262833 DOI: 10.1093/bib/bbae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
Peptide drugs are becoming star drug agents with high efficiency and selectivity which open up new therapeutic avenues for various diseases. However, the sensitivity to hydrolase and the relatively short half-life have severely hindered their development. In this study, a new generation artificial intelligence-based system for accurate prediction of peptide half-life was proposed, which realized the half-life prediction of both natural and modified peptides and successfully bridged the evaluation possibility between two important species (human, mouse) and two organs (blood, intestine). To achieve this, enzymatic cleavage descriptors were integrated with traditional peptide descriptors to construct a better representation. Then, robust models with accurate performance were established by comparing traditional machine learning and transfer learning, systematically. Results indicated that enzymatic cleavage features could certainly enhance model performance. The deep learning model integrating transfer learning significantly improved predictive accuracy, achieving remarkable R2 values: 0.84 for natural peptides and 0.90 for modified peptides in human blood, 0.984 for natural peptides and 0.93 for modified peptides in mouse blood, and 0.94 for modified peptides in mouse intestine on the test set, respectively. These models not only successfully composed the above-mentioned system but also improved by approximately 15% in terms of correlation compared to related works. This study is expected to provide powerful solutions for peptide half-life evaluation and boost peptide drug development.
Collapse
Affiliation(s)
- Xiaorong Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha 410083, P.R. China
| | - Qianhui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha 410083, P.R. China
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha 410083, P.R. China
| | - Sen Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha 410083, P.R. China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha 410083, P.R. China
| | - Jianmin Wang
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, 214, Veritas A Hall, Yonsei Univeristy, 85 Songdogwahak-ro, Incheon 21983, Republic of Korea
| | - Defang Ouyang
- Institute of Chinese Medical Sciences (ICMS), State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha 410083, P.R. China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha 410083, P.R. China
| |
Collapse
|
63
|
Hampton JT, Liu WR. Diversification of Phage-Displayed Peptide Libraries with Noncanonical Amino Acid Mutagenesis and Chemical Modification. Chem Rev 2024; 124:6051-6077. [PMID: 38686960 PMCID: PMC11082904 DOI: 10.1021/acs.chemrev.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Sitting on the interface between biologics and small molecules, peptides represent an emerging class of therapeutics. Numerous techniques have been developed in the past 30 years to take advantage of biological methods to generate and screen peptide libraries for the identification of therapeutic compounds, with phage display being one of the most accessible techniques. Although traditional phage display can generate billions of peptides simultaneously, it is limited to expression of canonical amino acids. Recently, several groups have successfully undergone efforts to apply genetic code expansion to introduce noncanonical amino acids (ncAAs) with novel reactivities and chemistries into phage-displayed peptide libraries. In addition to biological methods, several different chemical approaches have also been used to install noncanonical motifs into phage libraries. This review focuses on these recent advances that have taken advantage of both biological and chemical means for diversification of phage libraries with ncAAs.
Collapse
Affiliation(s)
- J. Trae Hampton
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
64
|
Scarano N, Brullo C, Musumeci F, Millo E, Bruzzone S, Schenone S, Cichero E. Recent Advances in the Discovery of SIRT1/2 Inhibitors via Computational Methods: A Perspective. Pharmaceuticals (Basel) 2024; 17:601. [PMID: 38794171 PMCID: PMC11123952 DOI: 10.3390/ph17050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Sirtuins (SIRTs) are classified as class III histone deacetylases (HDACs), a family of enzymes that catalyze the removal of acetyl groups from the ε-N-acetyl lysine residues of histone proteins, thus counteracting the activity performed by histone acetyltransferares (HATs). Based on their involvement in different biological pathways, ranging from transcription to metabolism and genome stability, SIRT dysregulation was investigated in many diseases, such as cancer, neurodegenerative disorders, diabetes, and cardiovascular and autoimmune diseases. The elucidation of a consistent number of SIRT-ligand complexes helped to steer the identification of novel and more selective modulators. Due to the high diversity and quantity of the structural data thus far available, we reviewed some of the different ligands and structure-based methods that have recently been used to identify new promising SIRT1/2 modulators. The present review is structured into two sections: the first includes a comprehensive perspective of the successful computational approaches related to the discovery of SIRT1/2 inhibitors (SIRTIs); the second section deals with the most interesting SIRTIs that have recently appeared in the literature (from 2017). The data reported here are collected from different databases (SciFinder, Web of Science, Scopus, Google Scholar, and PubMed) using "SIRT", "sirtuin", and "sirtuin inhibitors" as keywords.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.M.); (S.B.)
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.M.); (S.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| |
Collapse
|
65
|
Li J, Zhang Y, Gu J, Zhou Y, Liu J, Cui H, Zhao T, Jin Z. Stress Granule Core Protein-Derived Peptides Inhibit Assembly of Stress Granules and Improve Sorafenib Sensitivity in Cancer Cells. Molecules 2024; 29:2134. [PMID: 38731625 PMCID: PMC11085366 DOI: 10.3390/molecules29092134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Upon a variety of environmental stresses, eukaryotic cells usually recruit translational stalled mRNAs and RNA-binding proteins to form cytoplasmic condensates known as stress granules (SGs), which minimize stress-induced damage and promote stress adaptation and cell survival. SGs are hijacked by cancer cells to promote cell survival and are consequently involved in the development of anticancer drug resistance. However, the design and application of chemical compounds targeting SGs to improve anticancer drug efficacy have rarely been studied. Here, we developed two types of SG inhibitory peptides (SIPs) derived from SG core proteins Caprin1 and USP10 and fused with cell-penetrating peptides to generate TAT-SIP-C1/2 and SIP-U1-Antp, respectively. We obtained 11 SG-inducing anticancer compounds from cell-based screens and explored the potential application of SIPs in overcoming resistance to the SG-inducing anticancer drug sorafenib. We found that SIPs increased the sensitivity of HeLa cells to sorafenib via the disruption of SGs. Therefore, anticancer drugs which are competent to induce SGs could be combined with SIPs to sensitize cancer cells, which might provide a novel therapeutic strategy to alleviate anticancer drug resistance.
Collapse
Affiliation(s)
- Juan Li
- College of Life Sciences, Office of Student Entrepreneurship, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yaobin Zhang
- College of Life Sciences, Office of Student Entrepreneurship, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Jinxuan Gu
- College of Life Sciences, Office of Student Entrepreneurship, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yulin Zhou
- College of Life Sciences, Office of Student Entrepreneurship, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Jie Liu
- College of Life Sciences, Office of Student Entrepreneurship, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Haiyan Cui
- College of Life Sciences, Office of Student Entrepreneurship, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Tiejun Zhao
- College of Life Sciences, Office of Student Entrepreneurship, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Zhigang Jin
- College of Life Sciences, Office of Student Entrepreneurship, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| |
Collapse
|
66
|
Jadav R, Kameriya R, Chatterjee S, Gour V, Purohit P, Bandyopadhyay A. Identification, synthesis, and characterization of an unprecedented N-(2-carboxyethyl) adduct impurity in an injectable ganirelix formulation. J Pept Sci 2024; 30:e3564. [PMID: 38131153 DOI: 10.1002/psc.3564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Ganirelix, a peptide-based drug used to treat female infertility, has been in high market demand, which attracted generic formulation. A hitherto unknown impurity of ganirelix was observed in our formulation process, which reached ~0.3% in 6 months and led to a detailed investigation of its structure. In-depth analysis of ESI-MS/MS data of this impurity coupled with an artificial intelligence prediction tool led to a highly unusual putative structure, that is, N-(2-carboxyethyl)-ganirelix (NCE-GA), which was authenticated by chemical synthesis from ganirelix and NMR analysis and via corroborated HPLC and MS/MS data with the formulation-derived impurity.
Collapse
Affiliation(s)
- Rohit Jadav
- Kashiv BioSciences Pvt Ltd., Ahmedabad, Gujarat, India
| | - Ramraj Kameriya
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Ropar, Punjab, India
| | - Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Ropar, Punjab, India
| | - Vinod Gour
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Ropar, Punjab, India
| | - Parva Purohit
- Kashiv BioSciences Pvt Ltd., Ahmedabad, Gujarat, India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Ropar, Punjab, India
| |
Collapse
|
67
|
Cresti L, Cappello G, Pini A. Antimicrobial Peptides towards Clinical Application-A Long History to Be Concluded. Int J Mol Sci 2024; 25:4870. [PMID: 38732089 PMCID: PMC11084544 DOI: 10.3390/ijms25094870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Antimicrobial peptides (AMPs) are molecules with an amphipathic structure that enables them to interact with bacterial membranes. This interaction can lead to membrane crossing and disruption with pore formation, culminating in cell death. They are produced naturally in various organisms, including humans, animals, plants and microorganisms. In higher animals, they are part of the innate immune system, where they counteract infection by bacteria, fungi, viruses and parasites. AMPs can also be designed de novo by bioinformatic approaches or selected from combinatorial libraries, and then produced by chemical or recombinant procedures. Since their discovery, AMPs have aroused interest as potential antibiotics, although few have reached the market due to stability limits or toxicity. Here, we describe the development phase and a number of clinical trials of antimicrobial peptides. We also provide an update on AMPs in the pharmaceutical industry and an overall view of their therapeutic market. Modifications to peptide structures to improve stability in vivo and bioavailability are also described.
Collapse
Affiliation(s)
- Laura Cresti
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
| | - Giovanni Cappello
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
| | - Alessandro Pini
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
- SetLance srl, Via Fiorentina 1, 53100 Siena, Italy
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
| |
Collapse
|
68
|
Scalzitti N, Miralavy I, Korenchan DE, Farrar CT, Gilad AA, Banzhaf W. Computational peptide discovery with a genetic programming approach. J Comput Aided Mol Des 2024; 38:17. [PMID: 38570405 PMCID: PMC11416381 DOI: 10.1007/s10822-024-00558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
The development of peptides for therapeutic targets or biomarkers for disease diagnosis is a challenging task in protein engineering. Current approaches are tedious, often time-consuming and require complex laboratory data due to the vast search spaces that need to be considered. In silico methods can accelerate research and substantially reduce costs. Evolutionary algorithms are a promising approach for exploring large search spaces and can facilitate the discovery of new peptides. This study presents the development and use of a new variant of the genetic-programming-based POET algorithm, called POETRegex , where individuals are represented by a list of regular expressions. This algorithm was trained on a small curated dataset and employed to generate new peptides improving the sensitivity of peptides in magnetic resonance imaging with chemical exchange saturation transfer (CEST). The resulting model achieves a performance gain of 20% over the initial POET models and is able to predict a candidate peptide with a 58% performance increase compared to the gold-standard peptide. By combining the power of genetic programming with the flexibility of regular expressions, new peptide targets were identified that improve the sensitivity of detection by CEST. This approach provides a promising research direction for the efficient identification of peptides with therapeutic or diagnostic potential.
Collapse
Affiliation(s)
- Nicolas Scalzitti
- BEACON Center of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Iliya Miralavy
- BEACON Center of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - David E Korenchan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian T Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Assaf A Gilad
- BEACON Center of Evolution in Action, Michigan State University, East Lansing, MI, USA.
- Department of Chemical Engineering, Michigan State University, East Lansing, MI, USA.
- Department of Radiology, Michigan State University, East Lansing, MI, USA.
| | - Wolfgang Banzhaf
- BEACON Center of Evolution in Action, Michigan State University, East Lansing, MI, USA.
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
69
|
Pham TL, Thomas F. Design of Functional Globular β-Sheet Miniproteins. Chembiochem 2024; 25:e202300745. [PMID: 38275210 DOI: 10.1002/cbic.202300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/27/2024]
Abstract
The design of discrete β-sheet peptides is far less advanced than e. g. the design of α-helical peptides. The reputation of β-sheet peptides as being poorly soluble and aggregation-prone often hinders active design efforts. Here, we show that this reputation is unfounded. We demonstrate this by looking at the β-hairpin and WW domain. Their structure and folding have been extensively studied and they have long served as model systems to investigate protein folding and folding kinetics. The resulting fundamental understanding has led to the development of hyperstable β-sheet scaffolds that fold at temperatures of 100 °C or high concentrations of denaturants. These have been used to design functional miniproteins with protein or nucleic acid binding properties, in some cases with such success that medical applications are conceivable. The β-sheet scaffolds are not always completely rigid, but can be specifically designed to respond to changes in pH, redox potential or presence of metal ions. Some engineered β-sheet peptides also exhibit catalytic properties, although not comparable to those of natural proteins. Previous reviews have focused on the design of stably folded and non-aggregating β-sheet sequences. In our review, we now also address design strategies to obtain functional miniproteins from β-sheet folding motifs.
Collapse
Affiliation(s)
- Truc Lam Pham
- Truc Lam Pham, Prof. Dr. Franziska Thomas, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Truc Lam Pham, Prof. Dr. Franziska Thomas, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
70
|
Gorain C, Gupta S, Alam SSM, Hoque M, Karlyshev AV, Mallick AI. Identification and functional characterization of putative ligand binding domain(s) of JlpA protein of Campylobacter jejuni. Int J Biol Macromol 2024; 264:130388. [PMID: 38417756 DOI: 10.1016/j.ijbiomac.2024.130388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Among the major Surface Exposed Colonization Proteins (SECPs) of Campylobacter jejuni (C. jejuni), Jejuni lipoprotein A (JlpA) plays a crucial role in host cell adhesion specifically by binding to the N-terminal domain of the human heat shock protein 90α (Hsp90α-NTD). Although the JlpA binding to Hsp90α activates NF-κB and p38 MAP kinase pathways, the underlying mechanism of JlpA association with the cellular receptor remains unclear. To this end, we predicted two potential receptor binding sites within the C-terminal domain of JlpA: one spanning from amino acid residues Q332-A354 and the other from S258-T295; however, the latter exhibited weaker binding. To assess the functional attributes of these predicted sequences, we generated two JlpA mutants (JlpAΔ1: S258-T295; JlpAΔ2: Q332-A354) and assessed the Hsp90α-binding affinity-kinetics by in vitro and ex vivo experiments. Our findings confirmed that the residues Q332-A354 are of greater importance in host cell adhesion with a measurable impact on cellular responses. Further, thermal denaturation by circular dichroism (CD) confirmed that the reduced binding affinity of the JlpAΔ2 to Hsp90α is not associated with protein folding or stability. Together, this study provides a possible framework for determining the molecular function of designing rational inhibitors efficiently targeting JlpA.
Collapse
Affiliation(s)
- Chandan Gorain
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Subhadeep Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - S S Mahafujul Alam
- Department of Biological Sciences, Aliah University, New Town Kolkata, West Bengal, 700160, India
| | - Mehboob Hoque
- Department of Biological Sciences, Aliah University, New Town Kolkata, West Bengal, 700160, India
| | - Andrey V Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Pharmacy and Chemistry Faculty of Health, Science, Social Care & Education, Kingston University London, Penrhyn Road, Kingston upon Thames, KT12EE, UK
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
71
|
Pastuszak K, Jurak M, Kowalczyk B, Tarasiuk J, Wiącek AE, Palusińska-Szysz M. Susceptibility of Legionella gormanii Membrane-Derived Phospholipids to the Peptide Action of Antimicrobial LL-37-Langmuir Monolayer Studies. Molecules 2024; 29:1522. [PMID: 38611802 PMCID: PMC11013288 DOI: 10.3390/molecules29071522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
LL-37 is the only member of the cathelicidin-type host defense peptide family in humans. It exhibits broad-spectrum bactericidal activity, which represents a distinctive advantage for future therapeutic targets. The presence of choline in the growth medium for bacteria changes the composition and physicochemical properties of their membranes, which affects LL-37's activity as an antimicrobial agent. In this study, the effect of the LL-37 peptide on the phospholipid monolayers at the liquid-air interface imitating the membranes of Legionella gormanii bacteria was determined. The Langmuir monolayer technique was employed to prepare model membranes composed of individual classes of phospholipids-phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), cardiolipin (CL)-isolated from L. gormanii bacteria supplemented or non-supplemented with exogenous choline. Compression isotherms were obtained for the monolayers with or without the addition of the peptide to the subphase. Then, penetration tests were carried out for the phospholipid monolayers compressed to a surface pressure of 30 mN/m, followed by the insertion of the peptide into the subphase. Changes in the mean molecular area were observed over time. Our findings demonstrate the diversified effect of LL-37 on the phospholipid monolayers, depending on the bacteria growth conditions. The substantial changes in membrane properties due to its interactions with LL-37 enable us to propose a feasible mechanism of peptide action at a molecular level. This can be associated with the stable incorporation of the peptide inside the monolayer or with the disruption of the membrane leading to the removal (desorption) of molecules into the subphase. Understanding the role of antimicrobial peptides is crucial for the design and development of new strategies and routes for combating resistance to conventional antibiotics.
Collapse
Affiliation(s)
- Katarzyna Pastuszak
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland; (K.P.); (A.E.W.)
| | - Małgorzata Jurak
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland; (K.P.); (A.E.W.)
| | - Bożena Kowalczyk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.K.); (J.T.); (M.P.-S.)
| | - Jacek Tarasiuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.K.); (J.T.); (M.P.-S.)
| | - Agnieszka Ewa Wiącek
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland; (K.P.); (A.E.W.)
| | - Marta Palusińska-Szysz
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.K.); (J.T.); (M.P.-S.)
| |
Collapse
|
72
|
García FA, Fuentes TF, Alonso IP, Bosch RA, Brunetti AE, Lopes NP. A Comprehensive Review of Patented Antimicrobial Peptides from Amphibian Anurans. JOURNAL OF NATURAL PRODUCTS 2024; 87:600-616. [PMID: 38412091 DOI: 10.1021/acs.jnatprod.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Since the 1980s, studies of antimicrobial peptides (AMPs) derived from anuran skin secretions have unveiled remarkable structural diversity and a wide range of activities. This study explores the potential of these peptides for drug development by examining granted patents, amino acid modifications related to patented peptides, and recent amphibians' taxonomic updates influencing AMP names. A total of 188 granted patents related to different anuran peptides were found, with Asia and North America being the predominant regions, contributing 65.4% and 15.4%, respectively. Conversely, although the Neotropical region is the world's most diversified region for amphibians, it holds only 3.7% of the identified patents. The antimicrobial activities of the peptides are claimed in 118 of these 188 patents. Additionally, for 160 of these peptides, 66 patents were registered for the natural sequence, 69 for both natural and derivative sequences, and 20 exclusively for sequence derivatives. Notably, common modifications include alterations in the side chains of amino acids and modifications to the peptides' N- and C-termini. This review underscores the biomedical potential of anuran-derived AMPs, emphasizing the need to bridge the gap between AMP description and practical drug development while highlighting the urgency of biodiversity conservation to facilitate biomedical discoveries.
Collapse
Affiliation(s)
- Fabiola Almeida García
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Avenida do Café, s/no, 14040-903 Ribeirão Preto, Brazil
| | - Talia Frómeta Fuentes
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Street No. 455, Vedado 10400, Cuba
| | - Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Street No. 455, Vedado 10400, Cuba
| | - Roberto Alonso Bosch
- Natural History Museum Felipe Poey, Faculty of Biology, University of Havana, Vedado 10400, Cuba
| | - Andrés E Brunetti
- Institute of Subtropical Biology (CONICET-UNAM), National University of Misiones, Posadas N3300LQH, Argentina
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Norberto Peporine Lopes
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Avenida do Café, s/no, 14040-903 Ribeirão Preto, Brazil
| |
Collapse
|
73
|
Sehra N, Parmar R, Maurya IK, Kumar V, Tikoo K, Jain R. Synthesis and mechanistic study of ultrashort peptides that inhibits Alzheimer's Aβ-aggregation-induced neurotoxicity. Bioorg Chem 2024; 144:107159. [PMID: 38309001 DOI: 10.1016/j.bioorg.2024.107159] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Misfolding/aggregation of β-amyloid peptide lead to the formation of toxic oligomers or accumulation of amyloid plaques, which is a seminal step in the progression of Alzheimer's disease (AD). Despite continuous efforts in the development of therapeutic agents, the cure for AD remains a major challenge. Owing to specific binding affinity of structure-based peptides, we report the synthesis of new peptide-based inhibitors derived from the C-terminal sequences, Aβ38-40 and Aβ40-42. Preliminary screening using MTT cell viability assay and corroborative results from ThT fluorescence assay revealed a tripeptide showing significantly effective inhibition towards Aβ1-42 aggregation and induced toxicity. Peptide 3 exhibited excellent cell viability of 94.3 % at 2 μM and of 100 % at 4 μM and 10 μM. CD study showed that peptide 3 restrict the conformation transition of Aβ1-42 peptide towards cross-β-sheet structure and electron microscopy validated the absence of Aβ aggregates as indicated by the altered morphology of Aβ1-42 in the presence of peptide 3. The HRMS-ESI, DLS and ANS studies were performed to gain mechanistic insights into the effect of inhibitor against Aβ aggregation. This Aβ-derived ultrashort motif provides impetus for the development of peptide-based anti-AD agents.
Collapse
Affiliation(s)
- Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Indresh K Maurya
- Center of Infectious Disease, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
74
|
Li R, Tang Y, Chen Z, Liu Y. Screening TLR4 Binding Peptide from Naja atra Venom Glands Based on Phage Display. Toxins (Basel) 2024; 16:113. [PMID: 38535779 PMCID: PMC10976260 DOI: 10.3390/toxins16030113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 02/11/2024] [Indexed: 04/25/2025] Open
Abstract
Toll-like receptor 4 (TLR4) is a crucial inflammatory signaling pathway that can serve as a potential treatment target for various disorders. A number of inhibitors have been developed for the TLR4 pathway, and although no inhibitors have been approved for clinical use, most have been screened against the TLR4-MD2 conformation. The venom gland is the organ of venomous snakes that secretes substances that are toxic to other animals. The level of gene transcription in venom glands is different from that in other tissues, includes a large number of biologically active ingredients, and is an important natural resource for the development of new drugs. We constructed a T7 phage display library using the cobra (Naja atra) venom gland from the Guangdong Snake Breeding Plant and performed three rounds of screening with TLR4 as the target, randomly selecting monoclonal phage spots for PCR followed by Sanger sequencing. The obtained sequences were subjected to length analysis, molecular docking, solubility prediction, and stability prediction, and a peptide containing 39 amino acids (NA39) was finally screened out. The BLAST results indicated that NA39 was a sequence in RPL19 (Ribosomal Protein L19). After peptide synthesis, the binding ability of NA39 to TLR4 was verified by the surface plasmon resonance (SPR) technique. In this study, a new peptide that can specifically bind TLR4 was successfully screened from the cobra venom gland cDNA library, further demonstrating the effectiveness of phage display technology in the field of drug discovery.
Collapse
Affiliation(s)
- Runhan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China;
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| | - Yezhong Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| | - Zening Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China;
| | - Yang Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| |
Collapse
|
75
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
76
|
Tian Y, Bu X, Wang L, E J, Shi L, Tian H, Yang X, Fu H, Zhao Z. Visible Light-Driven Flexible Synthesis of α-Alkylated Glycine Derivatives Catalyzed by Reusable Covalent Organic Frameworks. J Org Chem 2024; 89:1657-1668. [PMID: 38241608 DOI: 10.1021/acs.joc.3c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Herein, we report a heterogeneous visible light-driven preparation of α-alkylated glycine derivatives. This approach employed a β-ketoenamine-linked covalent organic framework (2D-COF-4) as the heterogeneous photocatalyst and N-hydroxy phthalimide (NHPI) esters as the alkyl radical sources. Numerous glycine derivatives, including dipeptides, were precisely and efficiently alkylated under visible light-driven reaction conditions. Based on the excellent photoactivity and organic reaction compatibility of 2D-COF-4, this alkylation could proceed flexibly in a green solvent (ethanol) without any other additives. The photocatalyst and phthalimide were fruitfully recycled with a simple workup procedure, revealing a high ecoscale value and low environmental factor (E-factor).
Collapse
Affiliation(s)
- Yao Tian
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Luohe Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Junnan E
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Liangliang Shi
- Tianjin Lisheng Pharmaceutical Co., Ltd., Tianjin 300385, P. R. China
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin300385, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| |
Collapse
|
77
|
Quagliata M, Papini AM, Rovero P. Chemically modified antiviral peptides against SARS-CoV-2. J Pept Sci 2024; 30:e3541. [PMID: 37699615 DOI: 10.1002/psc.3541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
To date, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) COVID-19 pandemic continues to be a potentially lethal disease. Although both vaccines and specific antiviral drugs have been approved, the search for more specific therapeutic approaches is still ongoing. The infection mechanism of SARS-CoV-2 consists of several stages, and each one can be selectively blocked to disrupt viral infection. Peptides are a promising class of antiviral compounds, which may be suitably modified to be more stable, more effective, and more selective towards a specific viral replication step. The latter two goals might be obtained by increasing the specificity and/or the affinity of the interaction with a specific target and often imply the stabilization of the secondary structure of the active peptide. This review is focused on modified antiviral peptides against SARS-CoV-2 acting at different stages of virus replication, including ACE2-RBD interaction, membrane fusion mechanism, and the proteolytic cleavage by different viral proteases. Therefore, the landscape presented herein provides a useful springboard for the design of new and powerful antiviral therapeutics.
Collapse
Affiliation(s)
- Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
78
|
Tong Z, Xie X, Ge H, Jiao R, Wang T, Wang X, Zhuang W, Hu G, Tan R. Disulfide bridge-targeted metabolome mining unravels an antiparkinsonian peptide. Acta Pharm Sin B 2024; 14:881-892. [PMID: 38322339 PMCID: PMC10840396 DOI: 10.1016/j.apsb.2023.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 02/08/2024] Open
Abstract
Peptides are a particular molecule class with inherent attributes of some small-molecule drugs and macromolecular biologics, thereby inspiring continuous searches for peptides with therapeutic and/or agrochemical potentials. However, the success rate is decreasing, presumably because many interesting but less-abundant peptides are so scarce or labile that they are likely 'overlooked' during the characterization effort. Here, we present the biochemical characterization and druggability improvement of an unprecedented minor fungal RiPP (ribosomally synthesized and post-translationally modified peptide), named acalitide, by taking the relevant advantages of metabolomics approach and disulfide-bridged substructure which is more frequently imprinted in the marketed peptide drug molecules. Acalitide is biosynthetically unique in the macrotricyclization via two disulfide bridges and a protease (AcaB)-catalyzed lactamization of AcaA, an unprecedented precursor peptide. Such a biosynthetic logic was successfully re-edited for its sample supply renewal to facilitate the identification of the in vitro and in vivo antiparkinsonian efficacy of acalitide which was further confirmed safe and rendered brain-targetable by the liposome encapsulation strategy. Taken together, the work updates the mining strategy and biosynthetic complexity of RiPPs to unravel an antiparkinsonian drug candidate valuable for combating Parkinson's disease that is globally prevailing in an alarming manner.
Collapse
Affiliation(s)
- Zhiwu Tong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiahong Xie
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ruihua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tingting Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xincun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenying Zhuang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Hu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Renxiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
79
|
Wu J, Roesger S, Jones N, Hu CMJ, Li SD. Cell-penetrating peptides for transmucosal delivery of proteins. J Control Release 2024; 366:864-878. [PMID: 38272399 DOI: 10.1016/j.jconrel.2024.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Enabling non-invasive delivery of proteins across the mucosal barriers promises improved patient compliance and therapeutic efficacies. Cell-penetrating peptides (CPPs) are emerging as a promising and versatile tool to enhance protein and peptide permeation across various mucosal barriers. This review examines the structural and physicochemical attributes of the nasal, buccal, sublingual, and oral mucosa that hamper macromolecular delivery. Recent development of CPPs for overcoming those mucosal barriers for protein delivery is summarized and analyzed. Perspectives regarding current challenges and future research directions towards improving non-invasive transmucosal delivery of macromolecules for ultimate clinical translation are discussed.
Collapse
Affiliation(s)
- Jiamin Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sophie Roesger
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie Jones
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
80
|
Rahman MT, Chaminda Lakmal HH, Hussain J, Jin C. Targeting the relaxin-3/RXFP3 system: a patent review for the last two decades. Expert Opin Ther Pat 2024; 34:71-81. [PMID: 38573177 PMCID: PMC11027024 DOI: 10.1080/13543776.2024.2338099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION The neuropeptide relaxin-3/RXFP3 system belongs to the relaxin/insulin superfamily and is involved in many important physiological processes, such as stress responses, appetite control, and motivation for reward. Although relaxin-3 is the endogenous agonist for RXFP3, it can also bind to and activate RXFP1 and RXFP4. Consequently, research has been focused on the development of RXFP3-specific peptides and small-molecule ligands to validate the relaxin-3/RXFP3 system as a novel drug target. AREAS COVERED This review provides an overview of patents on the relaxin-3/RXFP3 system covering ligand development and pharmacological studies since 2003. Related patents and literature reports were obtained from established sources including SciFinder, Google Patents, and Espacenet for patents and SciFinder, PubMed, and Google Scholar for literature reports. EXPERT OPINION There has been an increasing amount of patent activities around relaxin-3/RXFP3, highlighting the importance of this novel neuropeptide system for drug discovery. The development of relaxin-3 derived peptides and small-molecule modulators, as well as behavioral studies in rodents, have shown that the relaxin-3/RXFP3 system is a promising drug target for treating various metabolic and neuropsychiatric diseases including obesity, anxiety, and alcohol addiction.
Collapse
Affiliation(s)
- Md Toufiqur Rahman
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, USA
| | | | - Javeena Hussain
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, USA
| | - Chunyang Jin
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, USA
| |
Collapse
|
81
|
Beloborodov E, Iurova E, Sugak D, Rastorgueva E, Pogodina E, Fomin A, Viktorov D, Slesarev S, Saenko Y. Stabilizing Scaffold for Short Peptides Based on Knottins. Curr Cancer Drug Targets 2024; 24:1275-1285. [PMID: 38357956 DOI: 10.2174/0115680096285288240118090050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Bombesin (BBN) is a short peptide with a high affinity for receptors that are expressed on the surface of various types of cancer cells. However, a full length BBN molecule has low in vivo stability. OBJECTIVE In our study, we propose the use of peptide toxins, derived from animal and plant toxins, as scaffold molecules to enhance the bioavailability and stability of bombesin. These peptides possess a unique structure known as an inhibitory cystine knot. METHODS We synthesized structures in which short bombesin was incorporated into various domains of arthropod and plant toxins using solid-phase peptide synthesis. The stability under different conditions was assessed through high-performance liquid chromatography, and binding to cell cultures expressing the bombesin receptor was analyzed. Additionally, toxicity to cell cultures was evaluated using fluorescence microscopy. RESULTS The data obtained demonstrated that placing the short peptide between the first and second cysteine residues in arachnid toxins results in increased in vitro stability and bioavailability, as well as low cytotoxicity. CONCLUSION Arachnid toxins with an inhibitory cystine knot can be considered as a scaffold for increasing the stability of therapeutic peptides.
Collapse
Affiliation(s)
- Evgenii Beloborodov
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Elena Iurova
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Dmitrii Sugak
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Eugenia Rastorgueva
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
- Department of General and Clinical Pharmacology and Microbiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russia
| | - Evgeniya Pogodina
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Aleksandr Fomin
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Denis Viktorov
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Sergei Slesarev
- Department of Biology, Ecology and Natural Resources Management, Faculty of Ecology, Ulyanovsk State University, Ulyanovsk, Russia
| | - Yury Saenko
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| |
Collapse
|
82
|
Hansen PR, Oddo A. Fmoc Solid-Phase Peptide Synthesis. Methods Mol Biol 2024; 2821:33-55. [PMID: 38997478 DOI: 10.1007/978-1-0716-3914-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Synthetic peptides are important as drugs and in research. Currently, the method of choice for producing these compounds is solid-phase peptide synthesis. Here, we describe the scope and limitations of Fmoc solid-phase peptide synthesis. Furthermore, we provide a detailed protocol for Fmoc peptide synthesis.
Collapse
Affiliation(s)
- Paul Robert Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Alberto Oddo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- , Måløv, Denmark
| |
Collapse
|
83
|
Glavaš M, Gitlin-Domagalska A, Ptaszyńska N, Starego D, Freza S, Dębowski D, Helbik-Maciejewska A, Łęgowska A, Gilon C, Rolka K. Synthesis of Novel Arginine Building Blocks with Increased Lipophilicity Compatible with Solid-Phase Peptide Synthesis. Molecules 2023; 28:7780. [PMID: 38067510 PMCID: PMC10708530 DOI: 10.3390/molecules28237780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Arginine, due to the guanidine moiety, increases peptides' hydrophilicity and enables interactions with charged molecules, but at the same time, its presence in a peptide chain might reduce its permeability through biological membranes. This might be resolved by temporary coverage of the peptide charge by lipophilic, enzyme-sensitive alkoxycarbonyl groups. Unfortunately, such a modification of a guanidine moiety has not been reported to date and turned out to be challenging. Here, we present a new, optimized strategy to obtain arginine building blocks with increased lipophilicity that were successfully utilized in the solid-phase peptide synthesis of novel arginine vasopressin prodrugs.
Collapse
Affiliation(s)
- Mladena Glavaš
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (N.P.); (D.S.); (D.D.); (A.H.-M.); (A.Ł.); (K.R.)
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Agata Gitlin-Domagalska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (N.P.); (D.S.); (D.D.); (A.H.-M.); (A.Ł.); (K.R.)
| | - Natalia Ptaszyńska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (N.P.); (D.S.); (D.D.); (A.H.-M.); (A.Ł.); (K.R.)
| | - Dominika Starego
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (N.P.); (D.S.); (D.D.); (A.H.-M.); (A.Ł.); (K.R.)
| | - Sylwia Freza
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (N.P.); (D.S.); (D.D.); (A.H.-M.); (A.Ł.); (K.R.)
| | - Aleksandra Helbik-Maciejewska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (N.P.); (D.S.); (D.D.); (A.H.-M.); (A.Ł.); (K.R.)
| | - Anna Łęgowska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (N.P.); (D.S.); (D.D.); (A.H.-M.); (A.Ł.); (K.R.)
| | - Chaim Gilon
- Department of Organic Chemistry, Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel;
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (N.P.); (D.S.); (D.D.); (A.H.-M.); (A.Ł.); (K.R.)
| |
Collapse
|
84
|
Kravchenko SV, Domnin PA, Grishin SY, Vershinin NA, Gurina EV, Zakharova AA, Azev VN, Mustaeva LG, Gorbunova EY, Kobyakova MI, Surin AK, Fadeev RS, Ostroumova OS, Ermolaeva SA, Galzitskaya OV. Enhancing the Antimicrobial Properties of Peptides through Cell-Penetrating Peptide Conjugation: A Comprehensive Assessment. Int J Mol Sci 2023; 24:16723. [PMID: 38069046 PMCID: PMC10706425 DOI: 10.3390/ijms242316723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Combining antimicrobial peptides (AMPs) with cell-penetrating peptides (CPPs) has shown promise in boosting antimicrobial potency, especially against Gram-negative bacteria. We examined the CPP-AMP interaction with distinct bacterial types based on cell wall differences. Our investigation focused on AMPs incorporating penetratin CPP and dihybrid peptides containing both cell-penetrating TAT protein fragments from the human immunodeficiency virus and Antennapedia peptide (Antp). Assessment of the peptides TAT-AMP, AMP-Antp, and TAT-AMP-Antp revealed their potential against Gram-positive strains (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), and Bacillus cereus). Peptides TAT-AMP and AMP-Antp using an amyloidogenic AMP from S1 ribosomal protein Thermus thermophilus, at concentrations ranging from 3 to 12 μM, exhibited enhanced antimicrobial activity against B. cereus. TAT-AMP and TAT-AMP-Antp, using an amyloidogenic AMP from the S1 ribosomal protein Pseudomonas aeruginosa, at a concentration of 12 µM, demonstrated potent antimicrobial activity against S. aureus and MRSA. Notably, the TAT-AMP, at a concentration of 12 µM, effectively inhibited Escherichia coli (E. coli) growth and displayed antimicrobial effects similar to gentamicin after 15 h of incubation. Peptide characteristics determined antimicrobial activity against diverse strains. The study highlights the intricate relationship between peptide properties and antimicrobial potential. Mechanisms of AMP action are closely tied to bacterial cell wall attributes. Peptides with the TAT fragment exhibited enhanced antimicrobial activity against S. aureus, MRSA, and P. aeruginosa. Peptides containing only the Antp fragment displayed lower activity. None of the investigated peptides demonstrated cytotoxic or cytostatic effects on either BT-474 cells or human skin fibroblasts. In conclusion, CPP-AMPs offer promise against various bacterial strains, offering insights for targeted antimicrobial development.
Collapse
Affiliation(s)
- Sergey V. Kravchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (S.Y.G.); (N.A.V.); (E.V.G.)
| | - Pavel A. Domnin
- Biology Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Sergei Y. Grishin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (S.Y.G.); (N.A.V.); (E.V.G.)
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Nikita A. Vershinin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (S.Y.G.); (N.A.V.); (E.V.G.)
| | - Elena V. Gurina
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (S.Y.G.); (N.A.V.); (E.V.G.)
| | - Anastasiia A. Zakharova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.A.Z.); (O.S.O.)
| | - Viacheslav N. Azev
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.N.A.); (L.G.M.); (E.Y.G.)
| | - Leila G. Mustaeva
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.N.A.); (L.G.M.); (E.Y.G.)
| | - Elena Y. Gorbunova
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.N.A.); (L.G.M.); (E.Y.G.)
| | - Margarita I. Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, 630060 Novosibirsk, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.N.A.); (L.G.M.); (E.Y.G.)
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Roman S. Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
| | - Olga S. Ostroumova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.A.Z.); (O.S.O.)
| | | | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
| |
Collapse
|
85
|
Wang D, Deng B, Cheng L, Li J, Guo X, Zhang J, Zhang X, Su P, Li G, Miao X, Yang W, Xie J, Wang R. The novel peptide DR4penA attenuates the bleomycin- and paraquat-induced pulmonary fibrosis by suppressing the TGF-β/Smad signaling pathway. FASEB J 2023; 37:e23225. [PMID: 37855708 DOI: 10.1096/fj.202301363r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023]
Abstract
Pulmonary fibrosis (PF), which is caused by continuous alveolar epithelial cell injury and abnormal repair, is referred to as a difficult disease of the lung system by the World Health Organization due to its rapid progression, poor prognosis, and high mortality rate. However, there is still a lack of ideal therapeutic strategies. The peptide DR8 (DHNNPQIR-NH2 ), which is derived from rapeseed, exerted antifibrotic activity in the lung, liver, and kidney in our previous studies. By studying the structure-activity relationship and rational design, we introduced an unnatural hydrophobic amino acid (α-(4-pentenyl)-Ala) into DR8 and screened the novel peptide DR4penA (DHNα-(4-pentenyl)-APQIR-NH2 ), which had higher anti-PF activity, higher antioxidant activity and a longer half-life than DR8. Notably, DR4penA attenuated bleomycin- and paraquat-induced PF, and the anti-PF activity of DR4penA was equivalent to that of pirfenidone. Additionally, DR4penA suppressed the TGF-β/Smad pathway in TGF-β1-induced A549 cells and paraquat-induced rats. This study demonstrates that the novel peptide DR4penA is a potential candidate compound for PF therapy, and its antifibrotic activity in different preclinical models of PF provides a theoretical basis for further study.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
| | - Bochuan Deng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lu Cheng
- School of Biomedical Engineering, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Jieru Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jiao Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiang Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ping Su
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Guofeng Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Xiaokang Miao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Rui Wang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
86
|
Liang QL, Xu HG, Yu L, Ding MR, Li YT, Qi GF, Zhang K, Wang L, Wang H, Cui X. Binding-induced fibrillogenesis peptide inhibits RANKL-mediated osteoclast activation against osteoporosis. Biomaterials 2023; 302:122331. [PMID: 37741149 DOI: 10.1016/j.biomaterials.2023.122331] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Osteoporosis is primarily driven by an imbalance between bone resorption and formation, stemming from enhanced osteoclast activity during bone remodeling. At the crux of this mechanism lies the pivotal RANK-RANKL-OPG axis. In our study, we designed two binding-induced fibrillogenesis (BIF) peptides, namely BIFP and BIFY, targeting RANK and RANKL, respectively. These BIF peptides, with distinct hydrophilic and hydrophobic characteristics, assemble into nanoparticles (NPs) in aqueous solution. Through specific ligand-receptor interactions, these NPs efficiently target and bind to specific proteins, resulting in the formation of fibrous networks that effectively inhibit the RANK-RANKL associations. Experiments have confirmed the potent inhibitory effects of peptides on both osteoclast differentiation and function. Compared with the +RANKL controls, BIFP and BIFY demonstrated a more remarkable reduction in tartrate resistant acid phosphatase (TRAP)-positive cells, achieving an impressive decline of 82.8% and 70.7%, respectively. Remarkably, the administration of BIFP led to a substantial reduction in bone resorption pit area by 17.4%, compared to a significant increase of 92.4% in the +RANKL groups. In vivo experiments on an ovariectomized mouse model demonstrated that the BIFP treated group exhibited an impressive 2.6-fold elevation in bone mineral density and an astounding 4.0-fold enhancement in bone volume/total volume as against those of the PBS-treated group. Overall, BIF peptides demonstrate remarkable abilities to impede osteoclast differentiation, presenting promising prospects for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qi-Lin Liang
- College of Medicine, Southwest Jiaotong University, No. 111 Beiyiduan, Second Ring Road, Chengdu, 610031, Sichuan Province, China; CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Huan-Ge Xu
- College of Medicine, Southwest Jiaotong University, No. 111 Beiyiduan, Second Ring Road, Chengdu, 610031, Sichuan Province, China; CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Long Yu
- Department of Orthopaedics, The 4th Medical Center of Chinese PLA General Hospital, Jia No.17 Heishanhu Road, Beijing, 100091, China
| | - Meng-Ru Ding
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yu-Ting Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Gao-Feng Qi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Kuo Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
| | - Xu Cui
- Department of Orthopaedics, The 4th Medical Center of Chinese PLA General Hospital, Jia No.17 Heishanhu Road, Beijing, 100091, China.
| |
Collapse
|
87
|
Zheng M, Gao J. Phage Display of Two Distinct Warheads to Inhibit Challenging Proteins. ACS Chem Biol 2023; 18:2259-2266. [PMID: 37682047 DOI: 10.1021/acschembio.3c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Falling in between traditional small molecules and antibodies in size, peptides are emerging as a privileged therapeutic modality, one that can harness the benefits of both small molecule and antibody drugs. To discover potential peptide therapeutics, it is highly desirable to have high throughput screening platforms that can assess peptides with diverse and non-natural functional motifs. With this contribution, we present a novel phage library that incorporates two distinct designer groups. As an example, a pair of reversible covalent warheads was installed onto phage-displayed peptides to target a cysteine and a lysine. The double modification is realized by sequential modification of an N-terminal cysteine and then an internal cysteine using chemoselective chemistry. Screening of this double-warhead-presenting library against TEV protease readily revealed peptide inhibitors with single-digit micromolar potency. Importantly, our structure-activity studies demonstrate that both covalent warheads make important contributions to TEV protease inhibition. We envision that our strategy of double phage modification can be readily extended to build phage libraries with diverse structural motifs, allowing facile expansion of the chemical space coverable by phage display.
Collapse
Affiliation(s)
- Mengmeng Zheng
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Jianmin Gao
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
88
|
Fodor A, Hess C, Ganas P, Boros Z, Kiss J, Makrai L, Dublecz K, Pál L, Fodor L, Sebestyén A, Klein MG, Tarasco E, Kulkarni MM, McGwire BS, Vellai T, Hess M. Antimicrobial Peptides (AMP) in the Cell-Free Culture Media of Xenorhabdus budapestensis and X. szentirmaii Exert Anti-Protist Activity against Eukaryotic Vertebrate Pathogens including Histomonas meleagridis and Leishmania donovani Species. Antibiotics (Basel) 2023; 12:1462. [PMID: 37760758 PMCID: PMC10525888 DOI: 10.3390/antibiotics12091462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Anti-microbial peptides provide a powerful toolkit for combating multidrug resistance. Combating eukaryotic pathogens is complicated because the intracellular drug targets in the eukaryotic pathogen are frequently homologs of cellular structures of vital importance in the host organism. The entomopathogenic bacteria (EPB), symbionts of entomopathogenic-nematode species, release a series of non-ribosomal templated anti-microbial peptides. Some may be potential drug candidates. The ability of an entomopathogenic-nematode/entomopathogenic bacterium symbiotic complex to survive in a given polyxenic milieu is a coevolutionary product. This explains that those gene complexes that are responsible for the biosynthesis of different non-ribosomal templated anti-microbial protective peptides (including those that are potently capable of inactivating the protist mammalian pathogen Leishmania donovanii and the gallinaceous bird pathogen Histomonas meleagridis) are co-regulated. Our approach is based on comparative anti-microbial bioassays of the culture media of the wild-type and regulatory mutant strains. We concluded that Xenorhabdus budapestensis and X. szentirmaii are excellent sources of non-ribosomal templated anti-microbial peptides that are efficient antagonists of the mentioned pathogens. Data on selective cytotoxicity of different cell-free culture media encourage us to forecast that the recently discovered "easy-PACId" research strategy is suitable for constructing entomopathogenic-bacterium (EPB) strains producing and releasing single, harmless, non-ribosomal templated anti-microbial peptides with considerable drug, (probiotic)-candidate potential.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter. sétány 1C, H-1117 Budapest, Hungary; (Z.B.); (T.V.)
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine (Vetmeduni Vienna), 1210 Vienna, Austria; (C.H.); (P.G.)
| | - Petra Ganas
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine (Vetmeduni Vienna), 1210 Vienna, Austria; (C.H.); (P.G.)
| | - Zsófia Boros
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter. sétány 1C, H-1117 Budapest, Hungary; (Z.B.); (T.V.)
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, H-2100 Gödöllő, Hungary;
| | - János Kiss
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, H-2100 Gödöllő, Hungary;
| | | | - Károly Dublecz
- Institute of Physiology and Nutrition, Georgikon Campus, Hungarian University of Agriculture and Life Sciences (MATE), Deák Ferenc utca 16, H-8360 Keszthely, Hungary; (K.D.); (L.P.)
| | - László Pál
- Institute of Physiology and Nutrition, Georgikon Campus, Hungarian University of Agriculture and Life Sciences (MATE), Deák Ferenc utca 16, H-8360 Keszthely, Hungary; (K.D.); (L.P.)
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, H-1143 Budapest, Hungary;
| | - Anna Sebestyén
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| | - Michael G. Klein
- USDA-ARS & Department of Entomology, The Ohio State University, 13416 Claremont Ave, Cleveland, OH 44130, USA;
| | - Eustachio Tarasco
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy;
| | - Manjusha M. Kulkarni
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (M.M.K.); (B.S.M.)
| | - Bradford S. McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (M.M.K.); (B.S.M.)
| | - Tibor Vellai
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter. sétány 1C, H-1117 Budapest, Hungary; (Z.B.); (T.V.)
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine (Vetmeduni Vienna), 1210 Vienna, Austria; (C.H.); (P.G.)
| |
Collapse
|
89
|
Vishnoi S, Bhattacharya S, Walsh EM, Okoh GI, Thompson D. Computational Peptide Design Cotargeting Glucagon and Glucagon-like Peptide-1 Receptors. J Chem Inf Model 2023; 63:4934-4947. [PMID: 37523325 PMCID: PMC10428222 DOI: 10.1021/acs.jcim.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 08/02/2023]
Abstract
Peptides are sustainable alternatives to conventional therapeutics for G protein-coupled receptor (GPCR) linked disorders, promising biocompatible and tailorable next-generation therapeutics for metabolic disorders including type-2 diabetes, as agonists of the glucagon receptor (GCGR) and the glucagon-like peptide-1 receptor (GLP-1R). However, single agonist peptides activating GLP-1R to stimulate insulin secretion also suppress obesity-linked glucagon release. Hence, bioactive peptides cotargeting GCGR and GLP-1R may remediate the blood glucose and fatty acid metabolism imbalance, tackling both diabetes and obesity to supersede current monoagonist therapy. Here, we design and model optimized peptide sequences starting from peptide sequences derived from earlier phage-displayed library screening, identifying those with predicted molecular binding profiles for dual agonism of GCGR and GLP-1R. We derive design rules from extensive molecular dynamics simulations based on peptide-receptor binding. Our newly designed coagonist peptide exhibits improved predicted coupled binding affinity for GCGR and GLP-1R relative to endogenous ligands and could in the future be tested experimentally, which may provide superior glycemic and weight loss control.
Collapse
Affiliation(s)
- Shubham Vishnoi
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | - Shayon Bhattacharya
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | | | | | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
90
|
Gostaviceanu A, Gavrilaş S, Copolovici L, Copolovici DM. Membrane-Active Peptides and Their Potential Biomedical Application. Pharmaceutics 2023; 15:2091. [PMID: 37631305 PMCID: PMC10459175 DOI: 10.3390/pharmaceutics15082091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Membrane-active peptides (MAPs) possess unique properties that make them valuable tools for studying membrane structure and function and promising candidates for therapeutic applications. This review paper provides an overview of the fundamental aspects of MAPs, focusing on their membrane interaction mechanisms and potential applications. MAPs exhibit various structural features, including amphipathic structures and specific amino acid residues, enabling selective interaction with multiple membranes. Their mechanisms of action involve disrupting lipid bilayers through different pathways, depending on peptide properties and membrane composition. The therapeutic potential of MAPs is significant. They have demonstrated antimicrobial activity against bacteria and fungi, making them promising alternatives to conventional antibiotics. MAPs can selectively target cancer cells and induce apoptosis, opening new avenues in cancer therapeutics. Additionally, MAPs serve as drug delivery vectors, facilitating the transport of therapeutic cargoes across cell membranes. They represent a fascinating class of biomolecules with significant potential in basic research and clinical applications. Understanding their mechanisms of action and designing peptides with enhanced selectivity and efficacy will further expand their utility in diverse fields. Exploring MAPs holds promise for developing novel therapeutic strategies against infections, cancer, and drug delivery challenges.
Collapse
Affiliation(s)
- Andreea Gostaviceanu
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Biomedical Sciences Doctoral School, University of Oradea, University St., No. 1, 410087 Oradea, Romania
| | - Simona Gavrilaş
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| | - Dana Maria Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| |
Collapse
|
91
|
Hao Y, Teng D, Mao R, Yang N, Wang J. Site Mutation Improves the Expression and Antimicrobial Properties of Fungal Defense. Antibiotics (Basel) 2023; 12:1283. [PMID: 37627703 PMCID: PMC10451632 DOI: 10.3390/antibiotics12081283] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Although antimicrobial peptides (AMPs) have highly desirable intrinsic characteristics in their commercial product development as new antimicrobials, the limitations of AMPs from experimental to scale development include the low oral bioavailability, and high production costs due to inadequate in vitro/in vivo gene expression- and low scale. Plectasin has good bactericidal activity against Staphylococcus and Streptococcus, and the selective bactericidal activity greatly reduces the damage to the micro-ecosystem when applied in vivo. However, its expression level was relatively low (748.63 mg/L). In view of these situations, this study will optimize and modify the structure of Plectasin, hoping to obtain candidates with high expression, no/low toxicity, and maintain desirable antibacterial activity. Through sequence alignment, Plectasin was used as a template to introduce the degenerate bases, and the screening library was constructed. After three different levels of screening, the candidate sequence PN7 was obtained, and its total protein yield in the supernatant was 5.53 g/L, with the highest value so far for the variants or constructs from the same ancestor source. PN7 had strong activity against several species of Gram-positive bacteria (MIC value range 1~16 μg/mL). It was relatively stable in various conditions in vitro; in addition, the peptide showed no toxicity to mice for 1 week after intraperitoneal injection. Meanwhile, PN7 kills Staphylococcus aureus ATCC 43300 with a mode of a quicker (>99% S. aureus was killed within 2 h, whereas vancomycin at 2× MIC was 8 h.) and longer PAE period. The findings indicate that PN7 may be a novel promising antimicrobial agent, and this study also provides a model or an example for the design, modification, or reconstruction of novel AMPs and their derivatives.
Collapse
Affiliation(s)
- Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
92
|
Yoshida M, Inaba T, Shibuya Y, Igarashi M, Kigoshi H. Concise Total Synthesis and Biological Evaluation of Pargamicin A and its Diastereomer, Piperazic Acid-containing Cyclopeptides. Chempluschem 2023; 88:e202300339. [PMID: 37492977 DOI: 10.1002/cplu.202300339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/27/2023]
Abstract
We have accomplished the total synthesis, structure determination, and biological evaluation of pargamicin A and one of its diastereomers. Two key tripeptide segments were synthesized using a linear peptide elongation process that includes the direct coupling of a poorly nucleophilic piperazic acid derivative. The resulting tripeptides were coupled using triphosgene/collidine at ambient temperature leading to a precursor for the final cyclization step. T3P-promoted macrolactamization under high-dilution conditions, followed by the removal of the benzyl protecting group was used to furnish two putative structures of pargamicin A. Comparison of the 1 H and 13 C NMR spectra and the antibacterial activity of the natural and synthetic products successfully revealed that the absolute configuration of the N-hydroxy-Ile residue of pargamicin A is 2S,3S. A biological evaluation of synthetically obtained pargamicin A and its diastereomer suggested that the stereostructure of the cyclic peptide scaffold of the natural product plays a crucial role in determining the strength of its antibacterial activity.
Collapse
Affiliation(s)
- Masahito Yoshida
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Tetsuya Inaba
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Yuko Shibuya
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Masayuki Igarashi
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Hideo Kigoshi
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| |
Collapse
|
93
|
Wang Q, Qin H, Deng J, Xu H, Liu S, Weng J, Zeng H. Research Progress in Calcitonin Gene-Related Peptide and Bone Repair. Biomolecules 2023; 13:biom13050838. [PMID: 37238709 DOI: 10.3390/biom13050838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) has 37 amino acids. Initially, CGRP had vasodilatory and nociceptive effects. As research progressed, evidence revealed that the peripheral nervous system is closely associated with bone metabolism, osteogenesis, and bone remodeling. Thus, CGRP is the bridge between the nervous system and the skeletal muscle system. CGRP can promote osteogenesis, inhibit bone resorption, promote vascular growth, and regulate the immune microenvironment. The G protein-coupled pathway is vital for its effects, while MAPK, Hippo, NF-κB, and other pathways have signal crosstalk, affecting cell proliferation and differentiation. The current review provides a detailed description of the bone repair effects of CGRP, subjected to several therapeutic studies, such as drug injection, gene editing, and novel bone repair materials.
Collapse
Affiliation(s)
- Qichang Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- School of Clinical Medicine, Department of Medicine, Shenzhen University, Shenzhen 518061, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China
| | - Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jiapeng Deng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Huihui Xu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Su Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China
| |
Collapse
|
94
|
Cresti L, Cappello G, Vailati S, Melloni E, Brunetti J, Falciani C, Bracci L, Pini A. In Vivo Efficacy and Toxicity of an Antimicrobial Peptide in a Model of Endotoxin-Induced Pulmonary Inflammation. Int J Mol Sci 2023; 24:ijms24097967. [PMID: 37175674 PMCID: PMC10178222 DOI: 10.3390/ijms24097967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
SET-M33 is a synthetic peptide that is being developed as a new antibiotic against major Gram-negative bacteria. Here we report two in vivo studies to assess the toxicity and efficacy of the peptide in a murine model of pulmonary inflammation. First, we present the toxicity study in which SET-M33 was administered to CD-1 mice by snout inhalation exposure for 1 h/day for 7 days at doses of 5 and 20 mg/kg/day. The results showed adverse clinical signs and effects on body weight at the higher dose, as well as some treatment-related histopathology findings (lungs and bronchi, nose/turbinates, larynx and tracheal bifurcation). On this basis, the no observable adverse effect level (NOAEL) was considered to be 5 mg/kg/day. We then report an efficacy study of the peptide in an endotoxin (LPS)-induced pulmonary inflammation model. Intratracheal administration of SET-M33 at 0.5, 2 and 5 mg/kg significantly inhibited BAL neutrophil cell counts after an LPS challenge. A significant reduction in pro-inflammatory cytokines, KC, MIP-1α, IP-10, MCP-1 and TNF-α was also recorded after SET-M33 administration.
Collapse
Affiliation(s)
- Laura Cresti
- U.O.C. Clinical Pathology, Azienda Ospedaliera Universitaria Senese, Via M. Bracci, 53100 Siena, Italy
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
| | - Giovanni Cappello
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
- SetLance srl, Via Fiorentina 1, 53100 Siena, Italy
| | | | - Elsa Melloni
- Zambon spa, Via A. Meucci 3, 20091 Bresso, Italy
| | - Jlenia Brunetti
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
| | - Chiara Falciani
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
| | - Luisa Bracci
- U.O.C. Clinical Pathology, Azienda Ospedaliera Universitaria Senese, Via M. Bracci, 53100 Siena, Italy
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
| | - Alessandro Pini
- U.O.C. Clinical Pathology, Azienda Ospedaliera Universitaria Senese, Via M. Bracci, 53100 Siena, Italy
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
| |
Collapse
|
95
|
Zhou W, Xie Z, Si R, Chen Z, Javeed A, Li J, Wu Y, Han B. Actinomycin-X2-Immobilized Silk Fibroin Film with Enhanced Antimicrobial and Wound Healing Activities. Int J Mol Sci 2023; 24:6269. [PMID: 37047243 PMCID: PMC10094675 DOI: 10.3390/ijms24076269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Actinomycin is a family of chromogenic lactone peptides that differ in their peptide portions of the molecule. An antimicrobial peptide, actinomycin X2 (Ac.X2), was produced through the fermentation of a Streptomyces cyaneofuscatus strain. Immobilization of Ac.X2 onto a prepared silk fibroin (SF) film was done through a carbodiimide reaction. The physical properties of immobilized Ac.X2 (antimicrobial films, AMFs) were analyzed by ATR-FTIR, SEM, AFM, and WCA. The findings from an in vitro study showed that AMFs had a more broad-spectrum antibacterial activity against both S. aureus and E. coli compared with free Ac.X2, which showed no apparent strong effect against E. coli. These AMFs showed a suitable degradation rate, good hemocompatibility, and reduced cytotoxicity in the biocompatibility assay. The results of in vivo bacterially infected wound healing experiments indicated that wound inflammation was prevented by AMFs, which promoted wound repair and improved the wound microenvironment. This study revealed that Ac.X2 transformation is a potential candidate for skin wound healing.
Collapse
Affiliation(s)
- Wenjing Zhou
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenxia Xie
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ranran Si
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zijun Chen
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ansar Javeed
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiaxing Li
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Wu
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bingnan Han
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
96
|
Gattu R, Ramesh SS, Nadigar S, D CG, Ramesh S. Conjugation as a Tool in Therapeutics: Role of Amino Acids/Peptides-Bioactive (Including Heterocycles) Hybrid Molecules in Treating Infectious Diseases. Antibiotics (Basel) 2023; 12:532. [PMID: 36978399 PMCID: PMC10044335 DOI: 10.3390/antibiotics12030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Peptide-based drugs are gaining significant momentum in the modern drug discovery, which is witnessed by the approval of new drugs by the FDA in recent years. On the other hand, small molecules-based drugs are an integral part of drug development since the past several decades. Peptide-containing drugs are placed between small molecules and the biologics. Both the peptides as well as the small molecules (mainly heterocycles) pose several drawbacks as therapeutics despite their success in curing many diseases. This gap may be bridged by utilising the so called 'conjugation chemistry', in which both the partners are linked to one another through a stable chemical bond, and the resulting conjugates are found to possess attracting benefits, thus eliminating the stigma associated with the individual partners. Over the past decades, the field of molecular hybridisation has emerged to afford us new and efficient molecular architectures that have shown high promise in medicinal chemistry. Taking advantage of this and also considering our experience in this field, we present herein a review concerning the molecules obtained by the conjugation of peptides (amino acids) to small molecules (heterocycles as well as bioactive compounds). More than 125 examples of the conjugates citing nearly 100 references published during the period 2000 to 2022 having therapeutic applications in curing infectious diseases have been covered.
Collapse
Affiliation(s)
- Rohith Gattu
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Sanjay S. Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Siddaram Nadigar
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Channe Gowda D
- Department of Studies in Chemistry, Manasagangotri, University of Mysore, Mysuru 570005, Karnataka, India
| | - Suhas Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| |
Collapse
|
97
|
Komar AA. Molecular Peptide Grafting as a Tool to Create Novel Protein Therapeutics. Molecules 2023; 28:2383. [PMID: 36903628 PMCID: PMC10005171 DOI: 10.3390/molecules28052383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The study of peptides (synthetic or corresponding to discrete regions of proteins) has facilitated the understanding of protein structure-activity relationships. Short peptides can also be used as powerful therapeutic agents. However, the functional activity of many short peptides is usually substantially lower than that of their parental proteins. This is (as a rule) due to their diminished structural organization, stability, and solubility often leading to an enhanced propensity for aggregation. Several approaches have emerged to overcome these limitations, which are aimed at imposing structural constraints into the backbone and/or sidechains of the therapeutic peptides (such as molecular stapling, peptide backbone circularization and molecular grafting), therefore enforcing their biologically active conformation and thus improving their solubility, stability, and functional activity. This review provides a short summary of approaches aimed at enhancing the biological activity of short functional peptides with a particular focus on the peptide grafting approach, whereby a functional peptide is inserted into a scaffold molecule. Intra-backbone insertions of short therapeutic peptides into scaffold proteins have been shown to enhance their activity and render them a more stable and biologically active conformation.
Collapse
Affiliation(s)
- Anton A. Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA; ; Tel.: +1-216-687-2516
- Department of Biochemistry and Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
98
|
Sharma K, Sharma KK, Mahindra A, Sehra N, Bagra N, Aaghaz S, Parmar R, Rathod GK, Jain R. Design, synthesis, and applications of ring-functionalized histidines in peptide-based medicinal chemistry and drug discovery. Med Res Rev 2023. [PMID: 36710510 DOI: 10.1002/med.21936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
Modified and synthetic α-amino acids are known to show diverse applications. Histidine, which possesses numerous applications when subjected to synthetic modifications, is one such amino acid. The utility of modified histidines varies widely from remarkable biological activities to catalysis, and from nanotechnology to polymer chemistry. This renders histidine residue an important place in scientific research. Histidine is a well-studied scaffold and constitutes the active site of various enzymes catalyzing important reactions in the biological systems. A rational modification in histidine structure with a distinctly developed protocol extensively changes its physical and chemical properties. The utilization of modified histidines in search of potent, target selective and proteostable scaffolds is vital in the development of bioactive peptides with enhanced drug-likeliness. This review is a compilation and analysis of reported side-chain ring modifications at histidine followed by applications of ring-modified histidines in the synthesis of various categories of bioactive peptides and peptidomimetics.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Amit Mahindra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Nitin Bagra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| |
Collapse
|
99
|
Sharma K, Aaghaz S, Maurya IK, Singh S, Rudramurthy SM, Kumar V, Tikoo K, Jain R. Ring-Modified Histidine-Containing Cationic Short Peptides Exhibit Anticryptococcal Activity by Cellular Disruption. Molecules 2022; 28:molecules28010087. [PMID: 36615282 PMCID: PMC9821961 DOI: 10.3390/molecules28010087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Delineation of clinical complications secondary to fungal infections, such as cryptococcal meningitis, and the concurrent emergence of multidrug resistance in large population subsets necessitates the need for the development of new classes of antifungals. Herein, we report a series of ring-modified histidine-containing short cationic peptides exhibiting anticryptococcal activity via membrane lysis. The N-1 position of histidine was benzylated, followed by iodination at the C-5 position via electrophilic iodination, and the dipeptides were obtained after coupling with tryptophan. In vitro analysis revealed that peptides Trp-His[1-(3,5-di-tert-butylbenzyl)-5-iodo]-OMe (10d, IC50 = 2.20 μg/mL; MIC = 4.01 μg/mL) and Trp-His[1-(2-iodophenyl)-5-iodo)]-OMe (10o, IC50 = 2.52 μg/mL; MIC = 4.59 μg/mL) exhibit promising antifungal activities against C. neoformans. When administered in combination with standard drug amphotericin B (Amp B), a significant synergism was observed, with 4- to 16-fold increase in the potencies of both peptides and Amp B. Electron microscopy analysis with SEM and TEM showed that the dipeptides primarily act via membrane disruption, leading to pore formation and causing cell lysis. After entering the cells, the peptides interact with the intracellular components as demonstrated by confocal laser scanning microscopy (CLSM).
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Indresh Kumar Maurya
- Center of Infectious Diseases, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Shreya Singh
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160 012, India
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160 012, India
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
- Correspondence:
| |
Collapse
|