51
|
The Hormetic Response of Soil P Extraction Induced by Low-Molecular-Weight Organic Acids. Processes (Basel) 2023. [DOI: 10.3390/pr11010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The hormetic effect is a toxicological phenomenon in the soil ecosystem. The influence of low-molecular-weight organic acids (LMWOAs) on the release and activation of soil phosphorus (P) has become the focus of toxicological research. To what extent LMWOAs can regulate the hormetic effect of P release and then influence soil P nutrients is worth attention. This study aimed to investigate the effects of different types and concentrations of exogenous LMWOAs on P extraction, establish the relationship between the concentration of LMWOAs and P extraction efficiency, and calculate the hormetic parameters to understand the mechanism of types and concentrations of LMWOAs in P extraction efficiency. Four organic acids, i.e., citric, oxalic, tartaric, and malic acids, induced hormetic effects on P extraction that were concentration dependent. The relationship between LMWOAs and P extraction efficiency was explained by a quadratic polynomial equation. The critical threshold of citric acid concentration was similar to that of oxalic acid, whereas that of tartaric acid was similar to that of malic acid. The critical thresholds of the P concentration extracted by malic acid and citric acid were higher than those extracted by oxalic acid and tartaric acid due to the differences in the structure and properties of LMWOAs. The critical thresholds of P extraction efficiency of oxalic acid were lower than those of the other three organic acid types. These results provide evidence for the use of citric acid and malic acid to increase soil P.
Collapse
|
52
|
Alhamza Juameer RA, Assi Obaid A, Ayed Yousif S. Improved micropropagation and salinity tolerance of strawberry (Fragaria X ananssa L) cv. Albion. BIONATURA 2022; 7:1-7. [DOI: 10.21931/rb/2022.07.04.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Gamma-ray has been used to increase genetic variation to obtain salt-tolerant plants in strawberries.The protocol was established to multiply strawberry cv. Albion from runner segments cultured on multiplication Murashige and Skoog (MS) medium contain 0.5 mg l-1 of 6-benzyl adenine (BA) and 0.1 mg l-1 of Naphthaleneacetic acid (NAA). Cultures were irradiated with gamma rays at (0, 20, 50, 100) Gy after 30 days, and the irradiated and unirradiated shoots were exposed to different concentrations of Sodium Chloride (NaCl) (6,10,14, 22) dS m-1. The results showed the superiority of doses 20 and 50 Gy in giving the highest rate of the number of shoots reached (9.25 and 8.44) shoot explant-1. The treatment 6 dS m-1 NaCl with 20 Gy was superior in giving the highest fresh
4.75 g and dry weight 0.36 g. A significant increase of proline was observed in the shoots irradiated with a dose of 50 Gy and grown on a medium with 22 mg l-1 of NaCl, as it reached 34.36 (µm proline g-1 fresh weight) compared 6 dS m-1 and unirradiated media and the highest enzyme activity of (POD) was )263.50 units g-1 FW ( when treated with 100 Gy grown on a medium with 22 ds m-1 of salt. While the dose exceeded 20 Gy without adding salt, as it gave the highest activity of (CAT) enzyme, reaching )4.042 units g-1 FW(. It was observed that multiplication was generally restricted, depending on the increase in salt applications and gamma rays.
Keywords: BA, NAA, Fragaria, Micropropagation, mutation gamma ray. Salt tolerance.
Collapse
|
53
|
Agathokleous E, Zhou B, Geng C, Xu J, Saitanis CJ, Feng Z, Tack FMG, Rinklebe J. Mechanisms of cerium-induced stress in plants: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158352. [PMID: 36063950 DOI: 10.1016/j.scitotenv.2022.158352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
A comprehensive evaluation of the effects of cerium on plants is lacking even though cerium is extensively applied to the environment. Here, the effects of cerium on plants were meta-analyzed using a newly developed database consisting of approximately 8500 entries of published data. Cerium affects plants by acting as oxidative stressor causing hormesis, with positive effects at low concentrations and adverse effects at high doses. Production of reactive oxygen species and its linked induction of antioxidant enzymes (e.g. catalase and superoxide dismutase) and non-enzymatic antioxidants (e.g. glutathione) are major mechanisms driving plant response mechanisms. Cerium also affects redox signaling, as indicated by altered GSH/GSSG redox pair, and electrolyte leakage, Ca2+, K+, and K+/Na+, indicating an important role of K+ and Na+ homeostasis in cerium-induced stress and altered mineral (ion) balance. The responses of the plants to cerium are further extended to photosynthesis rate (A), stomatal conductance (gs), photosynthetic efficiency of PSII, electron transport rate, and quantum yield of PSII. However, photosynthesis response is regulated not only by physiological controls (e.g. gs), but also by biochemical controls, such as via changed Hill reaction and RuBisCO carboxylation. Cerium concentrations <0.1-25 mg L-1 commonly enhance chlorophyll a and b, gs, A, and plant biomass, whereas concentrations >50 mg L-1 suppress such fitness-critical traits at trait-specific concentrations. There was no evidence that cerium enhances yields. Observations were lacking for yield response to low concentrations of cerium, whereas concentrations >50 mg Kg-1 suppress yields, in line with the response of chlorophyll a and b. Cerium affects the uptake and tissue concentrations of several micro- and macro-nutrients, including heavy metals. This study enlightens the understanding of some mechanisms underlying plant responses to cerium and provides critical information that can pave the way to reducing the cerium load in the environment and its associated ecological and human health risks.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Boya Zhou
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China; Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - Caiyu Geng
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Jianing Xu
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Wuppertal, Germany
| |
Collapse
|
54
|
Durán AG, Calle JM, Butrón D, Pérez AJ, Macías FA, Simonet AM. Steroidal Saponins with Plant Growth Stimulation Effects; Yucca schidigera as a Commercial Source. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233378. [PMID: 36501417 PMCID: PMC9740418 DOI: 10.3390/plants11233378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 05/26/2023]
Abstract
Plant growth-stimulation bioactivity of triterpenoid saponins is well known, especially for oleanane-type compounds. Nevertheless, a few phytotoxicity bioassays performed on some steroidal saponins have shown hormesis profiles and growth stimulation on Lactuca sativa roots. The focus of the work described here was on the use of the wheat coleoptile bioassay to evaluate plant growth stimulation, and on the search for a commercially available source of active saponins by bio-guided fractionation strategy. Selected saponins were tested and a cluster analysis showed that those saponins with a sugar chain of more than five units had a hormesis profile, while saponins with growth enhancement had fewer sugar residues. Two saponins showed similar activity to the positive control, namely the phytohormone indole-3-butyric acid (IBA). As a potential source of these metabolites, a commercial extract of Yucca schidigera used as a fertilizer was selected. Bio-guided fractionation led to the identification of two fractions of defined composition and these showed stimulation values similar to the positive control. It was observed that the presence of a carbonyl group at C-12 on the aglycone skeleton led to improved activity. A saponin-rich fraction from Y. schidigera could be proposed to enhance crop quality and production.
Collapse
Affiliation(s)
- Alexandra G. Durán
- Allelopathy Group, Department of Organic Chemistry, Campus de Excelencia Internacional (ceiA3), Institute of Biomolecules (INBIO), School of Science, University of Cádiz, C/República Saharaui 7, 11510 Cádiz, Spain
| | - Juan M. Calle
- Allelopathy Group, Department of Organic Chemistry, Campus de Excelencia Internacional (ceiA3), Institute of Biomolecules (INBIO), School of Science, University of Cádiz, C/República Saharaui 7, 11510 Cádiz, Spain
| | - Davinia Butrón
- Allelopathy Group, Department of Organic Chemistry, Campus de Excelencia Internacional (ceiA3), Institute of Biomolecules (INBIO), School of Science, University of Cádiz, C/República Saharaui 7, 11510 Cádiz, Spain
| | - Andy J. Pérez
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Francisco A. Macías
- Allelopathy Group, Department of Organic Chemistry, Campus de Excelencia Internacional (ceiA3), Institute of Biomolecules (INBIO), School of Science, University of Cádiz, C/República Saharaui 7, 11510 Cádiz, Spain
| | - Ana M. Simonet
- Allelopathy Group, Department of Organic Chemistry, Campus de Excelencia Internacional (ceiA3), Institute of Biomolecules (INBIO), School of Science, University of Cádiz, C/República Saharaui 7, 11510 Cádiz, Spain
| |
Collapse
|
55
|
Tavangar M, Ehsanzadeh P, Eshghizadeh H. Interplay of an array of salt-responding mechanisms in Iranian borage: Evidence from physiological, biochemical, and histochemical examinations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:57-71. [PMID: 36206707 DOI: 10.1016/j.plaphy.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In order to address the lacuna of data on the response of physiological and biochemical attributes and chemical compounds of glandular trichomes of Iranian borage (Echium amoenum Fisch. & C.A.Mey.) to saline water (0, 25, 50, 75, and 100 mM NaCl) an experiment was conducted on 13 genotypes. Genotypic differences and salt-induced modifications in chlorophyll concentration and fluorescence, plant growth, relative water content, proline concentration, antioxidant defense, and chemical compounds of glandular trichomes upon exposure to salt stress were observed. Chlorophyll and carotenoids concentrations and catalase (EC 1.11.1.6) and ascorbate peroxidase (EC 1.11.1.11) activities were either enhanced or remained unchanged in the presence of moderate salt concentrations (i.e. 25 and 50 mM NaCl) in a majority of the genotypes. Though, 75 and 100 mM NaCl were modestly and severely detrimental, respectively, to the majority of the genotypes. The 75 and 100 mM NaCl led to substantial increases and decreases in the Na+ and K+, respectively, resulting in notable increase in the Na+/K+. Increases in proline, total phenolic compounds, and alkaloids concentrations, essential oils, alkaloids, and phenolic compounds of the glandular trichomes were concomitant to decreases in the relative water content, leaf area, maximum quantum efficiency of photosystem II, shoot and root dry masses. This study revealed, for the first time, that Iranian borage tolerates 25 and 50 mM NaCl and antioxidative enzymes as well as secondary metabolites such as alkaloids and phenolic compounds accumulated mainly in the trichomes play key role in this regard.
Collapse
Affiliation(s)
- Mohammad Tavangar
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Parviz Ehsanzadeh
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Hamidreza Eshghizadeh
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
56
|
Bakaeva M, Chetverikov S, Timergalin M, Feoktistova A, Rameev T, Chetverikova D, Kenjieva A, Starikov S, Sharipov D, Hkudaygulov G. PGP-Bacterium Pseudomonas protegens Improves Bread Wheat Growth and Mitigates Herbicide and Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3289. [PMID: 36501327 PMCID: PMC9735837 DOI: 10.3390/plants11233289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The reaction of plants to simultaneous stress action and treatment with biological stimulants still remains poorly studied. Laboratory and field experiments have been conducted to study the growth and yield of bread wheat (Triticum aestivum L.) of the variety Ekada 113; stress markers and quantitative ratios of phytohormones in plants under insufficient soil moisture; the effects of spraying with herbicide containing 2,4-D and dicamba and growth-stimulating bacterium Pseudomonas protegens DA1.2; and combinations of these factors. Under water shortage conditions, spraying plants with Chistalan reduced their growth compared to non-sprayed plants, which was associated with inhibition of root growth and a decrease in the content of endogenous auxins in the plants. Under conditions of combined stress, the treatment of plants with the strain P. protegens DA1.2 increased the IAA/ABA ratio and prevented inhibition of root growth by auxin-like herbicide, ensuring water absorption by the roots as well as increased transpiration. As a result, the content of malondialdehyde oxidative stress marker was reduced. Bacterization improved the water balance of wheat plants under arid field conditions. The addition of bacterium P. protegens DA1.2 to the herbicide Chistalan increased relative water content in wheat leaves by 11% compared to plants treated with herbicide alone. Application of the bacterial strain P. protegens DA1.2 increased the amount of harvested grain from 2.0-2.2 t/ha to 3.2-3.6 t/ha. Thus, auxin-like herbicide Chistalan and auxin-producing bacterium P. protegens DA1.2 may affect the balance of phytohormones in different ways. This could be the potential reason for the improvement in wheat plants' growth during dry periods when the bacterium P. protegens DA1.2 is included in mixtures for weed control.
Collapse
|
57
|
Sun X, Qin L, Wang L, Zhao S, Yu L, Wang M, Chen S. Aging factor and its prediction models of chromium ecotoxicity in soils with various properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157622. [PMID: 35901894 DOI: 10.1016/j.scitotenv.2022.157622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Aging of pollutants determines bioavailability and toxicity thresholds of environmental pollutants in soil. However, the ecotoxicity of chromium (Cr) rarely considers the effect of aging as well as soil properties. In order to explore the aging characteristics and establish their quantitative relationship with different soil properties, this study selected 7 soils with different properties through exogenous addition of Cr and determined its toxicity on barley root elongation. From 14d to 540d, EC10 and EC50 of barley root elongation ranged from 21.40 to 312.52 (mg·kg-1) and 50.15 to 883.88 (mg·kg-1) respectively. The hormesis appeared in the dose-response curve of acid soil as relative barley root elongation reached >110 % compared with the control. Extended aging time of Cr from 14d to 540d was associated with the attenuation of the toxicity of Cr, as the aging factor increased from 1.26 to 6.09 for EC50, from 0.88 to 4.98 for EC10. The prediction model of AFEC50 and soil properties is lg (AF360d) = 0.306lg Clay+0.026lg CEC + 0.240 (R2 = 0.872, P < 0.01). The results demonstrated that with the extension of aging time, the toxicity of Cr decreased at 360d and reached a slow reaction stage, after that soil OC, Clay and CEC could well explain the aging procedure of Cr (VI). These results are beneficial for risk assessment of Cr contaminated soils and establishment of a soil environmental quality criteria for Cr.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Luyao Qin
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lifu Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shuwen Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lei Yu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Meng Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Shibao Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
58
|
Dinalli RP, Buzetti S, Gazola RDN, de Castilho RMM, Jalal A, Galindo FS, Teixeira Filho MCM. Nitrogen Fertilization and Glyphosate as a Growth Regulator: Effects on the Nutritional Efficiency and Nutrient Balance in Emerald Grass. AGRONOMY 2022; 12:2473. [DOI: 10.3390/agronomy12102473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Nitrogen (N) is one of the promising nutrients for lawn growth and is required for the lawn’s proper growth and development, but it also increases mowing frequency. Glyphosate herbicide application in sub-doses, as a growth regulator, can reduce the maintenance costs without any adverse reduction in the density and nutritional status of grasses. The objective of this study was to evaluate the influences of nitrogen and glyphosate doses on the growth, aesthetic quality and nutritional status of emerald grass (Zoysia japonica Steud.). The experiment was conducted at the Research and Extension Education Farm of São Paulo State University (UNESP), Ilha Solteira, SP, Brazil, in an Ultisol. The experiment was designed as a randomized block with 12 treatments arranged in a 3 × 4 factorial scheme with 4 replications, comprised of a control (without N), 15 and 30 g N m−2 of urea, applied in five splits annually, and glyphosate doses (0, 200, 400 and 600 g ha−1 of the active ingredient, a.i.). The split N fertilization at the rate of 15 g m−2 and glyphosate at the dose of 400 g ha−1 maintained nutritional status of emerald grass. Nitrogen at the rate 15 g N m−2 (in five splits per year) was observed to produce lower growth traits, an adequate aesthetic quality and longer stability of the nutrients in emerald grasses through lower exportation, with removal of “clipping” after mowing. In addition, glyphosate, at the dose of 400 g a.i. ha−1, was efficient in reducing the leaf area, plant height, shoot dry matter and total dry matter by 18.3, 14.7, 6.8 and 8.1%, respectively, as compared to the control. However, this dose did not impair the coloration and resulted in a lower exportation of nutrients by reducing the need to replenish by fertilization. Therefore, fertilization with 15 g N m−2, associated with application of 400 g a.i. ha−1 of glyphosate, is recommended for emerald grass in the tropical savannah of Brazil.
Collapse
Affiliation(s)
- Raíssa Pereira Dinalli
- Department of Plant Protection, Rural Engineering, and Soils, São Paulo State University, Av. Brazil Sul no 56, Ilha Solteira 15385-000, SP, Brazil
| | - Salatiér Buzetti
- Department of Plant Protection, Rural Engineering, and Soils, São Paulo State University, Av. Brazil Sul no 56, Ilha Solteira 15385-000, SP, Brazil
| | - Rodolfo de Niro Gazola
- Department of Plant Protection, Rural Engineering, and Soils, São Paulo State University, Av. Brazil Sul no 56, Ilha Solteira 15385-000, SP, Brazil
| | - Regina Maria Monteiro de Castilho
- Department of Plant Protection, Rural Engineering, and Soils, São Paulo State University, Av. Brazil Sul no 56, Ilha Solteira 15385-000, SP, Brazil
| | - Arshad Jalal
- Department of Plant Protection, Rural Engineering, and Soils, São Paulo State University, Av. Brazil Sul no 56, Ilha Solteira 15385-000, SP, Brazil
| | - Fernando Shintate Galindo
- College of Agricultural and Technological Sciences, São Paulo State University, Rod. Cmte João Ribeiro de Barros, km 651-Bairro das Antas, Dracena 17900-000, SP, Brazil
| | | |
Collapse
|
59
|
Moustakas M, Dobrikova A, Sperdouli I, Hanć A, Adamakis IDS, Moustaka J, Apostolova E. A Hormetic Spatiotemporal Photosystem II Response Mechanism of Salvia to Excess Zinc Exposure. Int J Mol Sci 2022; 23:11232. [PMID: 36232535 PMCID: PMC9569477 DOI: 10.3390/ijms231911232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure of Salvia sclarea plants to excess Zn for 8 days resulted in increased Ca, Fe, Mn, and Zn concentrations, but decreased Mg, in the aboveground tissues. The significant increase in the aboveground tissues of Mn, which is vital in the oxygen-evolving complex (OEC) of photosystem II (PSII), contributed to the higher efficiency of the OEC, and together with the increased Fe, which has a fundamental role as a component of the enzymes involved in the electron transport process, resulted in an increased electron transport rate (ETR). The decreased Mg content in the aboveground tissues contributed to decreased chlorophyll content that reduced excess absorption of sunlight and operated to improve PSII photochemistry (ΦPSII), decreasing excess energy at PSII and lowering the degree of photoinhibition, as judged from the increased maximum efficiency of PSII photochemistry (Fv/Fm). The molecular mechanism by which Zn-treated leaves displayed an improved PSII photochemistry was the increased fraction of open PSII reaction centers (qp) and, mainly, the increased efficiency of the reaction centers (Fv'/Fm') that enhanced ETR. Elemental bioimaging of Zn and Ca by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed their co-localization in the mid-leaf veins. The high Zn concentration was located in the mid-leaf-vein area, while mesophyll cells accumulated small amounts of Zn, thus resembling a spatiotemporal heterogenous response and suggesting an adaptive strategy. These findings contribute to our understanding of how exposure to excess Zn triggered a hormetic response of PSII photochemistry. Exposure of aromatic and medicinal plants to excess Zn in hydroponics can be regarded as an economical approach to ameliorate the deficiency of Fe and Zn, which are essential micronutrients for human health.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thermi, Greece
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61614 Poznań, Poland
| | | | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
60
|
Agathokleous E, Peñuelas J, Azevedo RA, Rillig MC, Sun H, Calabrese EJ. Low Levels of Contaminants Stimulate Harmful Algal Organisms and Enrich Their Toxins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11991-12002. [PMID: 35968681 DOI: 10.1021/acs.est.2c02763] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A widespread increase in intense phytoplankton blooms has been noted in lakes worldwide since the 1980s, with the summertime peak intensity amplifying in most lakes. Such blooms cause annual economic losses of multibillion USD and present a major challenge, affecting 11 out of the 17 United Nations Sustainable Development Goals. Here, we evaluate recent scientific evidence for hormetic effects of emerging contaminants and regulated pollutants on Microcystis sp., the most notorious cyanobacteria forming harmful algal blooms and releasing phycotoxins in eutrophic freshwater systems. This new evidence leads to the conclusion that pollution is linked to algal bloom intensification. Concentrations of contaminants that are considerably smaller than the threshold for toxicity enhance the formation of harmful colonies, increase the production of phycotoxins and their release into the environment, and lower the efficacy of algaecides to control algal blooms. The low-dose enhancement of microcystins is attributed to the up-regulation of a protein controlling microcystin release (McyH) and various microcystin synthetases in tandem with the global nitrogen regulator Ycf28, nonribosomal peptide synthetases, and several ATP-binding cassette transport proteins. Given that colony formation and phycotoxin production and release are enhanced by contaminant concentrations smaller than the toxicological threshold and are widely occurring in the environment, the effect of contaminants on harmful algal blooms is more prevalent than previously thought. Climate change and nutrient enrichment, known mechanisms underpinning algal blooms, are thus joined by low-level pollutants as another causal mechanism.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, People's Republic of China
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, People's Republic of China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia 08193, Spain
- CREAF, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Ricardo A Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, Piracicaba, São Paulo, São Paulo 13418-900, Brazil
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, D-14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Morrill I, N344, Amherst, Massachusetts 01003, United States
| |
Collapse
|
61
|
Yildiztugay E, Ozfidan-Konakci C, Arikan B, Alp FN, Elbasan F, Zengin G, Cavusoglu H, Sakalak H. The hormetic dose-risks of polymethyl methacrylate nanoplastics on chlorophyll a fluorescence transient, lipid composition and antioxidant system in Lactuca sativa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119651. [PMID: 35752396 DOI: 10.1016/j.envpol.2022.119651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/27/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastic pollution has become an increasing problem due to over-consumption and degradation in ecosystems. A little is known about ecological toxicity and the potential risks of nanoplastics on plants. To better comprehend the hormetic effects of nanoplastics, the experimental design was conducted on the impacts of polymethyl methacrylate (PMMA) on water status, growth, gas exchange, chlorophyll a fluorescence transient, reactive oxygen species (ROS) content (both content and fluorescence visualization), lipid peroxidation and antioxidant capacity (comparatively between leaves and roots). For this purpose, PMMA (10, 20, 50 and 100 mg L-1) was hydroponically applied to Lactuca sativa for 15 days(d). PMMA exposure resulted a decline in the growth, water content and osmotic potential. As based on assimilation rate (A), stomatal conductance (gs), and intercellular CO2 concentrations (Ci), the decreased stomatal limitation (Ls) and, A/Ci and increased intrinsic mesophyll efficiency proved low carboxylation efficiency showing impaired photosynthesis as a non-stomatal limitation. PMMA toxicity increased the trapping fluxes and absorption with a decrease in electron transport fluxes caused the disruption in reaction centers of photosystems. The leaves and roots had a similar effect against PMMA toxicity, with increased superoxide dismutase (SOD) activity. Although, catalase (CAT) and peroxidase (POX) of leaves increased under 10 mg L-1 PMMA, these defense activities failed to prevent radicals from attacking. Compared to the leaves, the lettuce roots showed an intriguing result for AsA-GSH cycle against PMMA exposure. In the roots, the lowest PMMA application provided the high ascorbate/dehydroascorbate (AsA/DHA), GSH/GSSG and the pool of AsA/glutathione (GSH) and non-suppressed GSH redox state. Also, 10 mg L-1 PMMA helped remove high hydrogen peroxide (H2O2) by both glutathione peroxidase (GPX) and glutathione S-transferase (GST). Since this improvement in the antioxidant system could not be continued in roots after higher applications than 20 mg L-1 PMMA, TBARS (Thiobarbituric acid-reactive substances), indicating the level of lipid peroxidation, and H2O2 increased. Our findings obtained from PMMA-applied lettuce provide new information to advance the tolerance mechanism against nanoplastic pollution.
Collapse
Affiliation(s)
- Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fatma Nur Alp
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Halit Cavusoglu
- Department of Physics, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Huseyin Sakalak
- Graduate School of Natural and Applied Sciences, Nanotechnology and Advanced Materials, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| |
Collapse
|
62
|
Zhang X, Ai S, Wei J, Yang X, Huang Y, Hu J, Wang Q, Wang H. Biphasic effects of typical chlorinated organophosphorus flame retardants on Microcystis aeruginosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113813. [PMID: 36068742 DOI: 10.1016/j.ecoenv.2022.113813] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The potential accumulation of chlorinated organophosphorus flame retardants (Cl-OPFRs) in aquatic environments sparked interest in studying the effects of Cl-OPFRs on cyanobacterial blooms. In this work, two common Cl-OPFRs, tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and tris(2-chloroethyl) phosphate (TCEP), induced dose-dependent biphasic effect on bloom-forming M. aeruginosa. The hormetic response to low-dose Cl-OPFRs was associated with the upregulation of the type I NADH dehydrogenase (NDH-1) complex and its mediated cyclic electron transfer (CET) pathway, as reflected by a transient post-illumination increase in chlorophyll fluorescence, the dark reduction of P700+ and the change of NDH-1-related gene expression. The increased CET activity and carotenoid content jointly reduced the intracellular ROS production, facilitating cyanobacterial growth. Conversely, a higher concentration of both Cl-OPFRs induced severe inhibition of growth and photosynthetic oxygen-evolving activity through an imbalance between PSII and PSI. Toxic-dose Cl-OPFRs inhibited state transition and fixed cells into the State I with a higher PSII/PSI ratio, as indicated by chlorophyll fluorescence induction, 77 K fluorescence emission spectra and photosystem stoichiometry. The elevated PSII/PSI ratio created an imbalance between the two photosystems and eventually lead to ROS overproduction, which generate adverse effects on cell growth. This work provides important insights into the hormetic mechanism of Cl-OPFRs on Microcystis aeruginosa and their potential roles in harmful cyanobacteria blooms.
Collapse
Affiliation(s)
- Xin Zhang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Sijie Ai
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Jialu Wei
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Xu Yang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Yichen Huang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Haiying Wang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China.
| |
Collapse
|
63
|
Yadav S, Yugandhar P, Alavilli H, Raliya R, Singh A, Sahi SV, Sarkar AK, Jain A. Potassium Chloroaurate-Mediated In Vitro Synthesis of Gold Nanoparticles Improved Root Growth by Crosstalk with Sucrose and Nutrient-Dependent Auxin Homeostasis in Arabidopsis thaliana. NANOMATERIALS 2022; 12:nano12122099. [PMID: 35745438 PMCID: PMC9230854 DOI: 10.3390/nano12122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/07/2022]
Abstract
In a hydroponic system, potassium chloroaurate (KAuCl4) triggers the in vitro sucrose (Suc)-dependent formation of gold nanoparticles (AuNPs). AuNPs stimulate the growth of the root system, but their molecular mechanism has not been deciphered. The root system of Arabidopsis (Arabidopsis thaliana) exhibits developmental plasticity in response to the availability of various nutrients, Suc, and auxin. Here, we showed the roles of Suc, phosphorus (P), and nitrogen (N) in facilitating a AuNPs-mediated increase in root growth. Furthermore, the recuperating effects of KAuCl4 on the natural (IAA) auxin-mediated perturbation of the root system were demonstrated. Arabidopsis seedlings harboring the cell division marker CycB1;1::CDB-GUS provided evidence of the restoration efficacy of KAuCl4 on the IAA-mediated inhibitory effect on meristematic cell proliferation of the primary and lateral roots. Arabidopsis harboring synthetic auxin DR5rev::GFP exhibited a reinstating effect of KAuCl4 on IAA-mediated aberration in auxin subcellular localization in the root. KAuCl4 also exerted significant and differential recuperating effects on the IAA-mediated altered expression of the genes involved in auxin signaling and biosynthetic pathways in roots. Our results highlight the crosstalk between KAuCl4-mediated improved root growth and Suc and nutrient-dependent auxin homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (S.Y.); (A.S.)
| | - Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India;
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea;
| | - Ramesh Raliya
- Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (S.Y.); (A.S.)
| | - Shivendra V. Sahi
- Department of Biology, University City Campus, Saint Joseph's University, 600 S. 43rd St., Philadelphia, PA 19104, USA;
| | - Ananda K. Sarkar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
- Correspondence:
| |
Collapse
|
64
|
Gamma Radiation (60Co) Induces Mutation during In Vitro Multiplication of Vanilla (Vanilla planifolia Jacks. ex Andrews). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vitro mutagenesis is an alternative to induce genetic variation in vanilla (Vanilla planifolia Jacks. ex Andrews), which is characterized by low genetic diversity. The objective of this study was to induce somaclonal variation in V. planifolia by gamma radiation and detect it using inter-simple sequence repeat (ISSR) molecular markers. Shoots previously established in vitro were multiplied in Murashige and Skoog culture medium supplemented with 2 mg·L−1 BAP (6-benzylaminopurine). Explants were irradiated with different doses (0, 20, 40, 60, 80 and 100 Gy) of 60Co gamma rays. Survival percentage, number of shoots per explant, shoot length, number of leaves per shoot, and lethal dose (LD50) were recorded after 60 d of culture. For molecular analysis, ten shoots were used for each dose and the donor plant as a control. Eight ISSR primers were selected, and 43 fragments were obtained. The percentage of polymorphism (% P) was estimated. A dendrogram based on Jaccard’s coefficient and the neighbor joining clustering method was obtained. Results showed a hormetic effect on the explants, promoting development at low dose (20 Gy) and inhibition and death at high doses (60–100 Gy). The LD50 was observed at the 60 Gy. Primers UBC-808, UBC-836 and UBC-840 showed the highest % P, with 42.6%, 34.7% and 28.7%, respectively. Genetic distance analysis showed that treatments without irradiation and with irradiation presented somaclonal variation. The use of gamma rays during in vitro culture is an alternative to broaden genetic diversity for vanilla breeding.
Collapse
|
65
|
Khan I, Iqbal M, Raza SH, Anwar S, Ashraf M, Shafiq F. Tartaric acid soil-amendment increases phytoextraction potential through root to shoot transfer of lead in turnip. CHEMOSPHERE 2022; 296:134055. [PMID: 35196532 DOI: 10.1016/j.chemosphere.2022.134055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The phytoextraction potential of turnip and comparative effectiveness of three different organic ligands towards removal of lead (Pb) was investigated under field conditions. The 20 d old turnip seedlings were exposed to different Pb levels (0.0218, 2.42 and 4.83 mM Pb) spiked in the soil. After 10 d of Pb application, the soil was spiked with 2.4 mM concentration of different chelates viz. ethylenediaminetetraacetic acid (EDTA), citric acid (CA) and tartaric acid (TA). The 60 d old plants were harvested for growth analyses and determination of photosynthetic pigments, while Pb-concentration in different plant parts was determined from 60 and 90 d old plants. Yield attributes were recorded at the harvesting stage (HS, 90 d old plants). No suppression (rather a stimulation) in the root and shoot growth was evident upon Pb exposure whereas, a reduction in the chlorophyll content occurred at 4.83 mM Pb level. Soil amendment with TA improved chlorophyll contents irrespective of Pb levels while the effect of CA and EDTA was differential. A reduction in the root length while an increase in its diameter was recorded particularly at 4.83 mM Pb stress in 90 d old plants. The turnip retained maximum Pb-fraction in the roots at early growth stages, while EDTA application further increased its retention in root at 4.83 mM Pb regime. Nonetheless, only TA amendment promoted the transfer of Pb to shoot (∼30%) irrespective of Pb regimes. At the HS, application of both TA and EDTA caused substantial uptake of Pb in the root while the maximum shoot Pb-fraction was recorded again due to TA application, particularly at 4.83 mM Pb level. Above all, TA was identified as the most effective chelate that mobilized Pb from root to shoot leading to better growth possibly due to dilution effect, and thus enhanced phytoextraction efficiency in turnip.
Collapse
Affiliation(s)
- Imran Khan
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Iqbal
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan.
| | - Syed Hammad Raza
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan.
| | - Sumera Anwar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan.
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan.
| | - Fahad Shafiq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan.
| |
Collapse
|
66
|
Wang H, Liu T, Zhao W, Liu X, Sun M, Su P, Wen J. Reduced Invasiveness of Common Ragweed ( Ambrosia artemisiifolia) Using Low-Dose Herbicide Treatments for High-Efficiency and Eco-Friendly Control. FRONTIERS IN PLANT SCIENCE 2022; 13:861806. [PMID: 35646043 PMCID: PMC9133841 DOI: 10.3389/fpls.2022.861806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Common ragweed (Ambrosia artemisiifolia) is an invasive annual weed that invades heavily disturbed habitats and natural habitats less disturbed by human activities with native plant species in need of protection. Achieving effective control of A. artemisiifolia for the protection of native organisms and the local ecological environment is an ongoing challenge. Based on the growth and development characteristics of A. artemisiifolia, we examined the effectiveness of herbicides in controlling this species and the optimal time for application in the field with the aim of reducing herbicide dosage. Additionally, we analyzed whether the efficiency of low-dose applications for controlling this species might improve with increasing native plant species richness. Our findings indicate that aminopyralid (33 g ai ha-1) was the most suitable herbicide for chemical control of A. artemisiifolia, with optimum application time being during vegetative growth (BBCH 32-35). Application of aminopyralid was found to kill approximately 52% of A. artemisiifolia plants, and more than 75% of the surviving plants did not bloom, thereby reducing seed yield of the population by more than 90%. Compared with the application of high-dose herbicide, the phytotoxicity of aminopyralid to native plants at the applied dose was substantially reduced. After 2 years of application, the relative coverage of A. artemisiifolia significantly decreased, with few plants remaining, whereas the relative coverage of native plants more than doubled, representing an eco-friendly control. Further, there was an increase in the A. artemisiifolia control rate in the plant community with higher native plant species richness at the same herbicide rates and a reduction in seed yield of A. artemisiifolia. Our findings help toward developing control measures to reduce the invasiveness of A. artemisiifolia with low-dose herbicides meanwhile protecting native plants, and then using the species richness of native plant communities to indirectly promote the effectiveness of low-dose herbicide application.
Collapse
Affiliation(s)
- Hanyue Wang
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Tong Liu
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Wenxuan Zhao
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Xuelian Liu
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Mingming Sun
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Pei Su
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Jun Wen
- Office of Locust and Rodent Control Headquarters of Ili Kazak Autonomous Prefecture, Yining, China
| |
Collapse
|
67
|
Agathokleous E, Barceló D, Rinklebe J, Sonne C, Calabrese EJ, Koike T. Hormesis induced by silver iodide, hydrocarbons, microplastics, pesticides, and pharmaceuticals: Implications for agroforestry ecosystems health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153116. [PMID: 35063521 DOI: 10.1016/j.scitotenv.2022.153116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Increasing amounts of silver iodide (AgI) in the environment are expected because of the recent massive expansion of weather modification programs. Concurrently, pharmaceuticals, microplastics, hydrocarbons, and pesticides in terrestrial ecosystems continue contaminating forests and agroforests. Our review supports that AgI induces hormesis, a biphasic dose response characterized by often beneficial low-dose responses and toxic high-dose effects, which adds to the evidence for pharmaceuticals, microplastics, hydrocarbons, and pesticides induced hormesis in numerous species. Doses smaller than the no-observed-adverse-effect-level (NOAEL) positively affect defense physiology, growth, biomass, yields, survival, lifespan, and reproduction. They also lead to negative or undesirable outcomes, including stimulation of pathogenic microbes, pest insects, and weeds with enhanced resistance to drugs and potential negative multi- or trans-generational effects. Such sub-NOAEL effects perplex terrestrial ecosystems managements and may compromise combating outbreaks of disease vectors that can threaten not only forest and agroforestry health but also sensitive human subpopulations living in remote forested areas.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Christian Sonne
- Department of Bioscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO box 358, DK-4000 Roskilde, Denmark; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan
| |
Collapse
|
68
|
Rath P, Rapp J, Brilisauer K, Braun M, Kolukisaoglu Ü, Forchhammer K, Grond S. Hybrid Chemoenzymatic Synthesis of C7-Sugars for Molecular Evidence of in vivo Shikimate Pathway Inhibition. Chembiochem 2022; 23:e202200241. [PMID: 35508894 PMCID: PMC9401589 DOI: 10.1002/cbic.202200241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/22/2022]
Abstract
The design of distinctive chemical synthesis strategies aims for the most efficient routes towards versatile compounds in drug target studies. Here, we establish a powerful hybrid synthetic approach of total chemical and chemoenzymatic synthesis to efficiently obtain various 7‐deoxy‐sedoheptulose (7dSh, 1) analogues, unique C7 sugars, for structure‐activity relationship studies. 7dSh (1) is a rare microbial sugar with in planta herbicidal activity. As natural antimetabolite of 3‐dehydroquinate synthase (DHQS), 7dSh (1) inhibits the shikimate pathway, which is essential for the synthesis of aromatic amino acids in bacteria, fungi, and plants, but absent in mammals. As glyphosate, the most used chemical herbicide faces restrictions worldwide, DHQS has gained more attention as valid target of herbicides and antimicrobial agents. In vitro and in vivo analyses of the C7‐deoxysugars confirm DHQS as enzymatic target, highlight the crucial role of uptake for inhibition and add molecular aspects to target mechanism studies of C7‐sugars as our contribution to global efforts for alternative weed‐control strategies.
Collapse
Affiliation(s)
- Pascal Rath
- Eberhard Karls Universitat Tubingen, Institute of Organic Chemistry, Biomolecluar Chemistry, Auf der Morgenstelle 18, 72076, Tuebingen, GERMANY
| | - Johanna Rapp
- Eberhard Karls Universitat Tubingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Auf der Morgenstelle 28, 72076, Tuebingen, GERMANY
| | - Klaus Brilisauer
- Eberhard Karls Universitat Tubingen, Institute of Organic Chemistry, Biomolecular Chemistry, Auf der Morgenstelle 18, 72076, Tuebingen, GERMANY
| | - Marvin Braun
- Eberhard Karls Universitat Tubingen, Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 32, 72076, Tuebingen, GERMANY
| | - Üner Kolukisaoglu
- Eberhard Karls Universitat Tubingen, Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 32, 72076, Tuebingen, GERMANY
| | - Karl Forchhammer
- Eberhard Karls Universitat Tubingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Auf der Morgenstelle 28, 72076, Tuebingen, GERMANY
| | - Stephanie Grond
- Eberhard Karls Universität Tübingen Mathematisch-Naturwissenschaftliche Fakultät: Eberhard Karls Universitat Tubingen Mathematisch-Naturwissenschaftliche Fakultat, Institute of Organic Chemistry, Auf der Morgenstelle 18, 72076, Tübingen, GERMANY
| |
Collapse
|
69
|
Gajewska J, Floryszak-Wieczorek J, Sobieszczuk-Nowicka E, Mattoo A, Arasimowicz-Jelonek M. Fungal and oomycete pathogens and heavy metals: an inglorious couple in the environment. IMA Fungus 2022; 13:6. [PMID: 35468869 PMCID: PMC9036806 DOI: 10.1186/s43008-022-00092-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/07/2022] [Indexed: 01/30/2023] Open
Abstract
Heavy metal (HM) contamination of the environment is a major problem worldwide. The rate of global deposition of HMs in soil has dramatically increased over the past two centuries and there of facilitated their rapid accumulation also in living systems. Although the effects of HMs on plants, animals and humans have been extensively studied, yet little is known about their effects on the (patho)biology of the microorganisms belonging to a unique group of filamentous eukaryotic pathogens, i.e., fungi and oomycetes. Much of the literature concerning mainly model species has revealed that HM stress affects their hyphal growth, morphology, and sporulation. Toxicity at cellular level leads to disturbance of redox homeostasis manifested by the formation of nitro-oxidative intermediates and to the induction of antioxidant machinery. Despite such adverse effects, published data is indicative of the fact that fungal and oomycete pathogens have a relatively high tolerance to HMs in comparison to other groups of microbes such as bacteria. Likely, these pathogens may harbor a network of detoxification mechanisms that ensure their survival in a highly HM-polluted (micro)habitat. Such a network may include extracellular HMs immobilization, biosorption to cell wall, and/or their intracellular sequestration to proteins or other ligands. HMs may also induce a hormesis-like phenomenon allowing the pathogens to maintain or even increase fitness against chemical challenges. Different scenarios linking HMs stress and modification of the microorganisms pathogenicity are disscused in this review.
Collapse
|
70
|
Khodamoradi S, Sagharyan M, Samari E, Sharifi M. Changes in phenolic compounds production as a defensive mechanism against hydrogen sulfide pollution in Scrophularia striata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 177:23-31. [PMID: 35231684 DOI: 10.1016/j.plaphy.2022.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Increasing pollutants such as hydrogen sulfide (H2S) from industrial activities is an ecological challenge for plants, which seriously affects their health and productivity. Scrophularia striata is a plant endemic to Iran growing in the province of Ilam, wherein a gas refinery releases toxic agents such as H2S whose detrimental effects on the function and tolerability of medicinal plants in this region have yet to be elucidated. Thus, we initiated a hydroponic study into hormetic effect of sodium hydrogen sulfide (NaHS) concentrations (0, 3 and 7 mM) as H2S-donor at different time points on oxidative status and phenolic compounds, focusing more on phenylethanoid glycosides (PhGs) in S. striata. Our results indicated that hydrogen peroxide (H2O2) increased significantly at 3 mM NaHS after 48 h, while its peak at 7 mM occurred after 24 h. Nitric oxide (NO) level peaked at 3 mM and 7 mM after 24 h. Treatment with NaHS also resulted in a dose-dependent induction of phenylalanine ammonia-lyase (PAL) and tyrosine ammonia-lyase (TAL) enzyme activities, phenolic acids production (cinnamic acid, coumaric acid, ferulic acid, caffeic acid and salicylic acid) and acteoside accumulation, ultimately leading to an increase in antioxidant capacity. Modulation of soluble sugars contents including glucose, mannose and rhamnose/xylose, occurred after the treatment with NaHS, likely increasing plant tolerance due to their biological activity and structural effects. Overall, our results suggest that dose-dependent accumulation of phenolics, notably acteoside, leads to an augmentation in antioxidant system to deal with H2S stress in S. striata.
Collapse
Affiliation(s)
- Sahar Khodamoradi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mostafa Sagharyan
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Samari
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Center of Excellence in Medicinal Plant Metabolites, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
71
|
Shi P, Liu S, Xia X, Qian J, Jing H, Yuan J, Zhao H, Wang F, Wang Y, Wang X, Wang X, He M, Xi S. Identification of the hormetic dose-response and regulatory network of multiple metals co-exposure-related hypertension via integration of metallomics and adverse outcome pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153039. [PMID: 35026265 DOI: 10.1016/j.scitotenv.2022.153039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Environmental stressors, including heavy metals, can be associated with hypertension development. However, little information regarding the dose-response relationship and toxicity mechanisms of metal mixtures with hypertension development is currently available. Therefore, we recruited 940 participants from six factories in northeastern China and measured the urinary concentrations of 19 metals. Then, we used Bayesian kernel machine regression (BKMR) to explore associations between metals co-exposure and hypertension. The BKMR model indicated a hermetic dose-response relationship between eight urinary metals (Co, Cr, Ni, Cd, As, Fe, Zn, and Pb) and hypertension risk. Moreover, heterogeneous and non-linear association patterns were detected across different metals/metalloids concentrations. Next, for the first time, we analyzed data of chemicals containing specific metal elements in the Comparative Toxicogenomics Database (CTD) from a disease perspective and provided insights from various biological levels to explain heavy metal co-exposure-related hypertension. On the molecular scale, 43 chemical components and 112 potential target genes were detected for metal exposure-related hypertension. Further, the network topology analysis indicated that target genes such as insulin (INS, degree = 78), albumin (ALB, degree = 74), renin (REN, degree = 71), interleukin-6 (IL6, degree = 70), endothelin 1 (EDN1, degree = 70), and endothelial nitric oxide synthase (NOS3, degree = 69) have a strong correlation with heavy metals co-exposure. Finally, we used integrative analyses in the adverse outcome pathway (AOP) wiki to analyze the co-exposure of heavy metals and hypertension and support an integrated metallomics approach. We selected the AOP 149 as the framework and found that the molecular initiating events (MIEs) of hypertension stems from the oxidation of AA residues on critical peptides of the NO pathway. The NOS3 was particularly promising since its subunit has three metal ion cross-linking domains with Zn2+, Fe2+, and Ga3+, which might serve as a binding site for heavy metal ions.
Collapse
Affiliation(s)
- Peng Shi
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Shengnan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xinyu Xia
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jili Qian
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Hongmei Jing
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jiamei Yuan
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Hanqing Zhao
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Fei Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yue Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China; Key Laboratory of Environmental Health Damage Research and Assessment, China Medical University, Shenyang 110122, PR China
| | - Xue Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China; Key Laboratory of Environmental Health Damage Research and Assessment, China Medical University, Shenyang 110122, PR China
| | - Xuan Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China; Central Hospital, Shenyang Medical College, Shenyang 110122, PR China
| | - Miao He
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China; Key Laboratory of Environmental Health Damage Research and Assessment, China Medical University, Shenyang 110122, PR China
| | - Shuhua Xi
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
72
|
Carbajal-Vázquez VH, Gómez-Merino FC, Alcántar-González EG, Sánchez-García P, Trejo-Téllez LI. Titanium Increases the Antioxidant Activity and Macronutrient Concentration in Tomato Seedlings Exposed to Salinity in Hydroponics. PLANTS (BASEL, SWITZERLAND) 2022; 11:1036. [PMID: 35448765 PMCID: PMC9024507 DOI: 10.3390/plants11081036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 11/17/2022]
Abstract
Global climate change affects agriculture and tends to aggravate the effect of various environmental stress factors including soil salinity. Beneficial elements such as titanium (Ti) may improve the performance of plants facing restrictive environments such as saline soils. This research work evaluated the individual effect of sodium chloride (0, 50, and 100 mM NaCl) in solution, that of leaf-applied Ti (0, 500, and 1000 mg L-1 Ti), and their interactions on physiological, biochemical, and nutritional variables of tomato (Solanum lycopersicum L.) seedlings cv. Rio Grande in a factorial design in greenhouse hydroponics. NaCl reduced seedling height, stem diameter, leaf area, SPAD units, and sugar and K concentrations, and increased antioxidant activity in stems and roots, photosynthetic pigments, sugars. Titanium increased the N, P, K, Ca, Mg, and Ti concentrations in leaves, but the concentration of total sugars in leaves was reduced when applying 500 mg Ti L-1. Under moderate salinity conditions (50 mM NaCl) the application of Ti increased the antioxidant activity in roots, while, at all salinity levels tested, Ti increased the concentrations of macro-nutrients and Ti in leaves. Titanium is concluded to have a positive effect on the antioxidant activity and nutrition of seedlings under saline stress conditions.
Collapse
Affiliation(s)
| | | | | | | | - Libia Iris Trejo-Téllez
- Laboratory of Plant Nutrition, College of Postgraduates in Agricultural Sciences Campus Montecillo, Texcoco 56230, Mexico; (V.H.C.-V.); (F.C.G.-M.); (E.G.A.-G.); (P.S.-G.)
| |
Collapse
|
73
|
Rico-Chávez AK, Franco JA, Fernandez-Jaramillo AA, Contreras-Medina LM, Guevara-González RG, Hernandez-Escobedo Q. Machine Learning for Plant Stress Modeling: A Perspective towards Hormesis Management. PLANTS 2022; 11:plants11070970. [PMID: 35406950 PMCID: PMC9003083 DOI: 10.3390/plants11070970] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 01/11/2023]
Abstract
Plant stress is one of the most significant factors affecting plant fitness and, consequently, food production. However, plant stress may also be profitable since it behaves hormetically; at low doses, it stimulates positive traits in crops, such as the synthesis of specialized metabolites and additional stress tolerance. The controlled exposure of crops to low doses of stressors is therefore called hormesis management, and it is a promising method to increase crop productivity and quality. Nevertheless, hormesis management has severe limitations derived from the complexity of plant physiological responses to stress. Many technological advances assist plant stress science in overcoming such limitations, which results in extensive datasets originating from the multiple layers of the plant defensive response. For that reason, artificial intelligence tools, particularly Machine Learning (ML) and Deep Learning (DL), have become crucial for processing and interpreting data to accurately model plant stress responses such as genomic variation, gene and protein expression, and metabolite biosynthesis. In this review, we discuss the most recent ML and DL applications in plant stress science, focusing on their potential for improving the development of hormesis management protocols.
Collapse
Affiliation(s)
- Amanda Kim Rico-Chávez
- Unidad de Ingeniería en Biosistemas, Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carretera Chichimequillas, s/n km 1, El Marqués CP 76265, Mexico; (A.K.R.-C.); (L.M.C.-M.)
| | - Jesus Alejandro Franco
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, UNAM, Querétaro CP 76230, Mexico;
| | - Arturo Alfonso Fernandez-Jaramillo
- Unidad Académica de Ingeniería Biomédica, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Mazatlán Higueras km 3, Col. Genaro Estrada, Mazatlán CP 82199, Mexico;
| | - Luis Miguel Contreras-Medina
- Unidad de Ingeniería en Biosistemas, Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carretera Chichimequillas, s/n km 1, El Marqués CP 76265, Mexico; (A.K.R.-C.); (L.M.C.-M.)
| | - Ramón Gerardo Guevara-González
- Unidad de Ingeniería en Biosistemas, Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carretera Chichimequillas, s/n km 1, El Marqués CP 76265, Mexico; (A.K.R.-C.); (L.M.C.-M.)
- Correspondence: (R.G.G.-G.); (Q.H.-E.)
| | - Quetzalcoatl Hernandez-Escobedo
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, UNAM, Querétaro CP 76230, Mexico;
- Correspondence: (R.G.G.-G.); (Q.H.-E.)
| |
Collapse
|
74
|
Agathokleous E. The hormetic response of heart rate of fish embryos to contaminants - Implications for research and policy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152911. [PMID: 34999064 DOI: 10.1016/j.scitotenv.2021.152911] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Evidence of contaminant-induced hormesis is rapidly accumulating, while the underlying mechanisms of hormesis are becoming increasingly understood. Recent developments in this research area, and especially the emergence of the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) as the master mechanism, suggest that contaminants can induce cardiac hormetic responses. This paper collates significant evidence of hormetic response of the heart rate of fish embryos to contaminants, in particular antibiotics, microplastics, and herbicides, characterized by a low-dose increase (tachycardia) and a high-dose decrease (bradycardia). The increase often occurs at doses about 100-800 times smaller than the no-observed-adverse-effect-level (NOAEL). There are also indications for even triphasic responses, which include a sub-hormetic decrease of the heart rate by doses over 106 times smaller than the NOAEL. Such sub-NOAEL effects cannot be captured by linear-no-threshold (LNT) and threshold models, raising concerns about environmental health and highlighting the pressing need to consider hormetic responses in the ecological risk assessment. A visionary way forward is proposed, but addressing this research bottleneck would require improved research designs with enhanced ability and statistical power to study diphasic and triphasic responses of heart rate.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), 219 Ningliu Rd., Nanjing 210044, China.
| |
Collapse
|
75
|
Li P, Zhang J, Sun X, Agathokleous E, Zheng G. Atmospheric Pb induced hormesis in the accumulator plant Tillandsia usneoides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152384. [PMID: 34923012 DOI: 10.1016/j.scitotenv.2021.152384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/21/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
While numerous studies reported hormesis in plants exposed to heavy metals, metals were commonly added in the growth substrate (e.g. soil or solution). The potential of heavy metals in the atmosphere to induce hormesis in plants, however, remains unknown. In this study, we exposed the widely-used accumulator plant Tillandsia usneoides to 10 atmospheric Pb concentrations (0-25.6 μg·m-3) for 6 or 12 h. Three types of dose-response relationships between different response endpoints (biomarkers) and Pb concentrations were found for T. usneoides. The first was a monophasic dose response, in which the response increased linearly with increasing Pb concentrations, as seen for metallothionein (MT) content after a 6-h exposure. The second and dominating type was a biphasic-hormetic dose response, exhibited by malondialdehyde (MDA), superoxide anion radical (O2-), and superoxide dismutase (SOD) after 6 or 12 h of exposure and by glutathione (GSH) and MT content after 12 h of treatment. The third type was a triphasic dose response, as seen for leaf electric conductivity after 6 or 12 h of exposure and GSH after 6 h of exposure. This finding suggests that Pb inhibited the response of T. usneoides at very low concentrations, stimulated it at low-to-moderate concentrations, and inhibited it at higher concentrations. Our results demonstrate diverse adaptation mechanisms of plants to stress, in the framework of which alternating between up- and down-regulation of biomarkers is at play when responding to different levels of toxicants. The emergence of the triphasic dose response will further enhance the understanding of time-dependent hormesis.
Collapse
Affiliation(s)
- Peng Li
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Jingyi Zhang
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xingyue Sun
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing, Jiangsu 21044, China
| | - Guiling Zheng
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|
76
|
|
77
|
Wei C, Jiao Q, Agathokleous E, Liu H, Li G, Zhang J, Fahad S, Jiang Y. Hormetic effects of zinc on growth and antioxidant defense system of wheat plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150992. [PMID: 34662623 DOI: 10.1016/j.scitotenv.2021.150992] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 05/03/2023]
Abstract
Although hormesis induced by heavy metals is a well-known phenomenon, the involved biological mechanisms are not fully understood. Zinc (Zn) is an essential micronutrient for wheat, an important crop contributing to food security as a main staple food; however, excessive Zn is detrimental to the growth of wheat. The aim of this study was to evaluate morphological and physiological responses of two wheat varieties exposed to a broad range of Zn concentrations (0-1000 μM) for 14 days. Hormesis was induced by Zn in both wheat varieties. Treatment with 10-100 μM Zn promoted biomass accumulation by enhancing the photosynthetic ability, the chlorophyll content and the activities of antioxidant enzymes. Increased root/shoot ratio suggested that shoot growth was severely inhibited when Zn concentration exceeded 300 μM by reducing photosynthetic ability and the content of photosynthetic pigments. Excessive Zn accumulation (Zn treatment of 300-1000 μM) in leaf and root induced membrane injuries through lipid peroxidation as malondialdehyde (MDA) content increased with increasing Zn concentration. The results show that MDA content was higher than other treatments by 16.1-151.1% and 15.0-88.3% (XN979) and 36.8-235.7% and 20.6-83.8% (BN207) in the leaves and roots under 1000 μM Zn treatment. To defend against Zn toxicity, ascorbate (AsA), glutathione (GSH), non-protein thiols (NPT) and phytochelatin (PC) content of both wheat varieties (except leaf GSH content of BN207) was increased, while, the activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and the content of soluble protein decreased by 300-1000 μM Zn. The results showed that AsA-GSH cycle and NPT and PC content of wheat seedlings play important roles in defending against Zn toxicity. This study contributes new insights into the physiological mechanisms underlying the hormetic response of wheat to Zn, which could be beneficial for optimizing plant health in changing environments and improving risk assessments.
Collapse
Affiliation(s)
- Chang Wei
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, PR China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Gezi Li
- National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Jingjing Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, College of Tropical Crops, Haikou 570228, PR China; Department of Agronomy, Faculty of Agricultural Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
78
|
Regulating Vapor Pressure Deficit and Soil Moisture Improves Tomato and Cucumber Plant Growth and Water Productivity in the Greenhouse. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Atmospheric vapor pressure deficit (VPD) is the driving force that regulates the rate of water transport within plants. Under High VPD (HVPD), plants always reduce their photosynthesis rate and close their stomata. Experiments were performed under greenhouse conditions with cucumber and tomato plants to identify the regulatory effect of VPD on plant water capacity. Treatments included two levels of soil water (100% and 60% field capacity [FC]) combined with two levels of VPD (LVPD and HVPD). Results indicated that with 60%FC, the plant heights of tomato and cucumber were enhanced under LVPD compared with those under HVPD. With 60%FC, relative leaf water contents under LVPD increased by 11% compared with those under HVPD. Furthermore, LVPD significantly improved the photosynthetic capacity of the two crops and changed their stress responses. Our results indicated that LVPD at different soil moisture levels reduced irrigation demand under greenhouse conditions. This approach can be applied in water management in greenhouse vegetable production in China and other regions of the world with temperate continental climates.
Collapse
|
79
|
Shang B, Fu R, Agathokleous E, Dai L, Zhang G, Wu R, Feng Z. Ethylenediurea offers moderate protection against ozone-induced rice yield loss under high ozone pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151341. [PMID: 34728207 DOI: 10.1016/j.scitotenv.2021.151341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Tropospheric ozone (O3) is the main phytotoxic air pollutant threatening food security, while ethylenediurea (EDU) can effectively mitigate O3-induced crop yield loss. EDU's mode of action, however, remains unclear, and the underlying physiological mechanisms of mitigating O3-induced crop yield loss are poorly understood. We cultivated hybrid rice seedlings under two O3 treatments (NF, nonfiltered ambient air; and NF60, ambient air plus 60 ppb O3) and sprayed foliage with 0 or 450 ppm EDU every ten days and determine photosynthesis-related traits, biomass indicators, and yield components. We found that EDU significantly increased the leaf nitrogen (N) allocation to photosynthesis (NP) and the grain N accumulation, while the grain N accumulation was positively correlated with NP and root biomass. EDU significantly increased the rice yield mainly by increasing the individual grain weight rather than the number of panicles and grains. While EDU protected from yield loss, the degree of protection was only 31% under NF60 treatment, thus EDU was unable to offer complete protection under high O3 pollution. These results will be conducive to a better understanding of the EDU protection mechanism and better application of EDU under high O3 pollution in the future.
Collapse
Affiliation(s)
- Bo Shang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Rao Fu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Lulu Dai
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China; Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guoyou Zhang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Rongjun Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China.
| |
Collapse
|
80
|
Chahardoli A, Sharifan H, Karimi N, Kakavand SN. Uptake, translocation, phytotoxicity, and hormetic effects of titanium dioxide nanoparticles (TiO 2NPs) in Nigella arvensis L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151222. [PMID: 34715233 DOI: 10.1016/j.scitotenv.2021.151222] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The extensive application of titanium dioxide nanoparticles (TiO2NPs) in agro-industrial practices leads to their high accumulation in the environment or agricultural soils. However, their threshold and ecotoxicological impacts on plants are still poorly understood. In this study, the hormetic effects of TiO2NPs at a concentration range of 0-2500 mg/L on the growth, and biochemical and physiological behaviors of Nigella arvensis in a hydroponic system were examined for three weeks. The translocation of TiO2NPs in plant tissues was characterized through scanning and transmission electron microscopy (SEM and TEM). The bioaccumulation of total titanium (Ti) was quantified by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Briefly, the elongation of roots and shoots and the total biomass growth were significantly promoted at 100 mg/L TiO2NPs. As the results indicated, TiO2NPs had a hormesis effect on the proline content, i.e., a stimulating effect at the low concentrations of 50 and 100 mg/L and an inhibiting effect in the highest concentration of 2500 mg/L. A biphasic dose-response was observed against TiO2NPs in shoot soluble sugar and protein contents. The inhibitory effects were detected at ≥1000 mg/L TiO2NPs, where the synthesis of chlorophylls and carotenoid was reduced. At 1000 mg/ L, TiO2NPs significantly promoted the cellular H2O2 generation, and increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT). Furthermore, it enhanced the total antioxidant content (TAC), total iridoid content (TIC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. Overall, the study revealed the physiological and biochemical alterations in a medicinal plant affected by TiO2NPs, which can help to use these NPs beneficially by eliminating their harmful effects.
Collapse
Affiliation(s)
- Azam Chahardoli
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Hamidreza Sharifan
- Department of Natural Science, Albany State University, Albany, GA 31705, USA
| | - Naser Karimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Shiva Najafi Kakavand
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
81
|
|
82
|
Erofeeva EA. Environmental hormesis of non-specific and specific adaptive mechanisms in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150059. [PMID: 34508935 DOI: 10.1016/j.scitotenv.2021.150059] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 05/17/2023]
Abstract
Adaptive responses of plants are important not only for local processes in populations and communities but also for global processes in the biosphere through the primary production of ecosystems. In recent years, the concept of environmental hormesis has been increasingly used to explain the adaptive responses of living organisms, including plants, to low doses of natural factors, both abiotic and biotic, as well as various anthropogenic impacts. However, the issues of whether plant hormesis is similar/different when it is induced by mild stressors having different specific effects and what is the contribution of hormetic stimulation of non-specific and specific adaptive mechanisms in plant resilience to strong stressors (i.e., preconditioning) remains unclear. This paper analyses hormetic stimulation of non-specific and specific adaptive mechanisms in plants and its significance for preconditioning, the phenomenon of the hormetic trade-off for these mechanisms, and the position of hormetic stimulation of non-specific and specific adaptive mechanisms in the system of plant adaptations to environmental challenges. The analysis has shown that both non-specific and specific adaptive mechanisms of plants can be stimulated hormetically by mild stressors and are important for plant preconditioning. Due to limited plant resources, non-specific and specific adaptive mechanisms have hormetic trades-offs 1 (hormesis accompanied by the deterioration of some plant traits) and 2 (hormesis of some plant traits with the invariability of others). At the same time, hormetic trade-off 2 is observed much more often than hormetic trade-off 1, at least, this was demonstrated here for non-specific adaptive responses of plants. The hormetic stimulation of non-specific and specific adaptive mechanisms is part of the inducible adaptation of plants caused by stress factors and is an adaptation to random (unpredictable) changes in the environment.
Collapse
Affiliation(s)
- Elena A Erofeeva
- Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Gagarina Pr, Nizhni Novgorod 603950, Russian Federation.
| |
Collapse
|
83
|
Agathokleous E, Moore MN, Calabrese EJ. Estimating the no-observed-adverse-effect-level (NOAEL) of hormetic dose-response relationships in meta-data evaluations. MethodsX 2022; 8:101568. [PMID: 35004202 PMCID: PMC8720840 DOI: 10.1016/j.mex.2021.101568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/30/2021] [Indexed: 01/11/2023] Open
Abstract
The number of studies reporting hormetic responses is rapidly increasing, and quantitative evaluations are needed to improve the understanding of hormetic dose responses. However, there is no standardized methodology to estimate the no-observed-adverse-effect-level (NOAEL) of hormetic dose-response relationships developed using data mined from the published literature. Here, we propose a protocol that can be followed to estimate NOAEL, a process that is illustrated using a specific example. This protocol can be used for maintaining a mutual language (since NOAEL can be defined in different ways), permitting comparisons among different studies, and facilitating cumulative science.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing, Jiangsu 210044, China
| | - Michael N Moore
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, UK.,Plymouth Marine Laboratory, Plymouth, Devon, UK.,School of Biological & Marine Sciences, University of Plymouth, Plymouth, UK
| | - Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
84
|
de Faria GS, Carlos L, Jakelaitis A, Filho SCV, Lourenço LL, da Costa AM, Gonçalves IA. Tolerance of Hymenaea courbaril L. to glyphosate. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:168-177. [PMID: 34773558 DOI: 10.1007/s10646-021-02499-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
The objective was to evaluate the effect of the glyphosate on Hymenaea courbaril L. A randomized block design with five replications was implemented. Each experimental unit was composed of one plant in a 5 L container. The treatments were 0 "control"; 96; 240; 480; and 960 g ha-1 "corresponding to 10, 25, 50, and 100% of the commercial dose of glyphosate recommended for Caryocar brasiliense crop, respectively". The evaluations were performed at 24 h and 60 days after application. Visual and anatomical evaluations did not change regardless of the dose, while the histochemical evaluation showed an accumulation of starch grains in leaf tissues. There was an increase in the photosynthetic rate, in the electron transport rate, and in the effective quantum yield of photosystem II at 24 h after application. At 60 days after the application of the treatments, the photosynthetic rate showed a slight decrease and the transpiratory rate showed quadratic behavior. An increase in plant height was observed up to the dose of 480 g ha-1, a linear increase in stem diameter and a decrease in the number of leaves with increasing glyphosate doses. These results show that the cuticle protected the plant, and that the little absorbed glyphosate increased photosynthesis and transpiration to favor the plants. We can conclude that the H. courbaril species is able to survive after contact with glyphosate during the evaluated time, with no visual and/or anatomical damage, showing increases in growth and physiological characteristics for the tested doses.
Collapse
Affiliation(s)
- Giselle Santos de Faria
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Leandro Carlos
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil.
| | - Adriano Jakelaitis
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Sebastião Carvalho Vasconcelos Filho
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Lucas Loram Lourenço
- Programa de Pós-Graduação em Biotecnologia em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Andreia Mendes da Costa
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Izadora Andrade Gonçalves
- Laboratório de anatomia vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| |
Collapse
|
85
|
Guzmán-Báez GA, Trejo-Téllez LI, Ramírez-Olvera SM, Salinas-Ruíz J, Bello-Bello JJ, Alcántar-González G, Hidalgo-Contreras JV, Gómez-Merino FC. Silver Nanoparticles Increase Nitrogen, Phosphorus, and Potassium Concentrations in Leaves and Stimulate Root Length and Number of Roots in Tomato Seedlings in a Hormetic Manner. Dose Response 2021; 19:15593258211044576. [PMID: 34840539 PMCID: PMC8619790 DOI: 10.1177/15593258211044576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Background Silver nanoparticles (AgNPs) display unique biological activities and may serve as novel biostimulators. Nonetheless, their biostimulant effects on germination, early growth, and major nutrient concentrations (N, P, and K) in tomato (Solanum lycopersicum) have been little explored. Methods Tomato seeds of the Vengador and Rio Grande cultivars were germinated on filter paper inside plastic containers in the presence of 0, 5, 10, and 20 mg/L AgNPs. Germination parameters were recorded daily, while early growth traits of seedlings were determined 20 days after applying the treatments (dat). To determine nutrient concentrations in leaves, a hydroponic experiment was established, adding AgNPs to the nutrient solution. Thirty-day-old plants were established in the hydroponic system and kept there for 7 days, and subsequently, leaves were harvested and nutrient concentrations were determined. Results The AgNPs applied did not affect germination parameters, whereas their application stimulated length and number of roots in a hormetic manner. In 37-day-old plants, low AgNP applications increased the concentrations of N, P, and K in leaves. Conclusion As novel biostimulants, AgNPs promoted root development, especially when applied at 5 mg/L. Furthermore, they increased N, P, and K concentration in leaves, which is advantageous for seedling performance during the early developmental stages.
Collapse
Affiliation(s)
| | | | | | - Josafhat Salinas-Ruíz
- College of Postgraduates in Agricultural Sciences Campus Córdoba, Amatlán de Los Reyes, Veracruz, Mexico
| | - Jericó J Bello-Bello
- CONACYT-College of Postgraduates in Agricultural Sciences Campus Córdoba, Amatlán de Los Reyes, Veracruz, Mexico
| | | | | | - Fernando C Gómez-Merino
- College of Postgraduates in Agricultural Sciences Campus Córdoba, Amatlán de Los Reyes, Veracruz, Mexico
| |
Collapse
|
86
|
Qin L, Wang M, Zhao S, Li S, Lei X, Wang L, Sun X, Chen S. Effect of soil leaching on the toxicity thresholds (ECx) of Zn in soils with different properties. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112999. [PMID: 34798362 DOI: 10.1016/j.ecoenv.2021.112999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Currently, the scientific basis for establishing soil environmental criteria is lacking. In order to establish reasonable soil environmental criteria values suitable for soils with different properties, this study selected soils from 16 different sites to determine the toxicity threshold of Zn based on toxicity tests of barley root elongation. In addition, leaching treatments were set up in seven soils with different properties to eliminate the influence of the accompanying anions (Cl-) on the determination of the Zn toxicity threshold. The results indicated that the toxicity thresholds of different soils vary greatly. The EC10 and EC50 ranges of barley root elongation in 16 kinds of non-leached soils were 18.5 mgkg-1 to 1618.7 mgkg-1 and 277.9 mgkg-1 to 3179.8 mgkg-1, respectively. The hormesis effect appeared in the dose response of Zn, and relative barley root elongation reached more than 150%. Leaching significantly reduced the Zn toxicity in acidic soils. The variation ranges of the leaching factor (LF) in the seven soils were LF10 = 1.1-9.3, LF50 = 1.0-3.2. The LF prediction model indicated that pH explained 81.4% of the LF variation (p < 0.01). The soil pH, cation exchange capacity (CEC), and conductivity (EC) explained 97.8% of the EC50 variation in the leached soil (p < 0.01). The results provide reference values for Zn environmental criteria.
Collapse
Affiliation(s)
- Luyao Qin
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Meng Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shuwen Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shanshan Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaoqin Lei
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lifu Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaoyi Sun
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shibao Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
87
|
Agathokleous E, Brown PH, Calabrese EJ. A gift from parent to offspring: transgenerational hormesis. TRENDS IN PLANT SCIENCE 2021; 26:1098-1100. [PMID: 34507888 DOI: 10.1016/j.tplants.2021.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 05/17/2023]
Abstract
Hormesis is a biological phenomenon characterized by opposite effects between low and high doses of stresses that can result in stimulatory and adaptive benefits to individuals within a population. While evidence of hormesis is well established, two recent studies (Nogueira et al., Belz and Sinkkonen) suggest that hormesis can also offer transgenerational benefit.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, Jiangsu, People's Republic of China.
| | - Patrick H Brown
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
88
|
Molina L, Segura A. Biochemical and Metabolic Plant Responses toward Polycyclic Aromatic Hydrocarbons and Heavy Metals Present in Atmospheric Pollution. PLANTS (BASEL, SWITZERLAND) 2021; 10:2305. [PMID: 34834668 PMCID: PMC8622723 DOI: 10.3390/plants10112305] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 05/17/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are toxic components of atmospheric particles. These pollutants induce a wide variety of responses in plants, leading to tolerance or toxicity. Their effects on plants depend on many different environmental conditions, not only the type and concentration of contaminant, temperature or soil pH, but also on the physiological or genetic status of the plant. The main detoxification process in plants is the accumulation of the contaminant in vacuoles or cell walls. PAHs are normally transformed by enzymatic plant machinery prior to conjugation and immobilization; heavy metals are frequently chelated by some molecules, with glutathione, phytochelatins and metallothioneins being the main players in heavy metal detoxification. Besides these detoxification mechanisms, the presence of contaminants leads to the production of the reactive oxygen species (ROS) and the dynamic of ROS production and detoxification renders different outcomes in different scenarios, from cellular death to the induction of stress resistances. ROS responses have been extensively studied; the complexity of the ROS response and the subsequent cascade of effects on phytohormones and metabolic changes, which depend on local concentrations in different organelles and on the lifetime of each ROS species, allow the plant to modulate its responses to different environmental clues. Basic knowledge of plant responses toward pollutants is key to improving phytoremediation technologies.
Collapse
Affiliation(s)
- Lázaro Molina
- Department of Environmental Protection, Estación Experimental del Zaidín, C.S.I.C., Calle Profesor Albareda 1, 18008 Granada, Spain;
| | | |
Collapse
|
89
|
Ferrari S, Serodio Mettifogo O, Luís Oliveira Cunha M, Dos Santos Cordeiro LF, Cidreira Bastos SA, Delovo Carara LG, Alves de Oliveira LC. Does the glufosinate-ammonium herbicide have the potential to induce the hormesis effect in upland rice? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:969-976. [PMID: 34678127 DOI: 10.1080/03601234.2021.1994287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study aimed to evaluate the effects of low doses of the herbicide glufosinate-ammonium in different application modes in the vegetative development of upland rice. The treatment consisted of a combination of five low doses (0; 15; 30; 60; and 100 g a.i. ha-1) of the herbicide glufosinate-ammonium and four application modes of the low doses: single between active tillering (AT) and floral differentiation (FD); single after FD; split in two (the first at the beginning of the AT and the second between AT and FD; split in three (the first at the beginning of the AT, the second between the AT and the FD and the third after the FD, with. There was no hormesis effect on rice crop due to low doses of glufosinate-ammonium. The vegetative development of rice plants was reduced by the application of low doses in all application modes with lower plant height, dry weight, number of panicles, and effective tiller.
Collapse
Affiliation(s)
- Samuel Ferrari
- College of Agriculture and Technology Science, Department of Crop Production, São Paulo State University (Unesp), Dracena, SP, Brazil
| | - Odin Serodio Mettifogo
- College of Agriculture and Technology Science, Department of Crop Production, São Paulo State University (Unesp), Dracena, SP, Brazil
| | | | - Luis Fernando Dos Santos Cordeiro
- College of Agriculture and Technology Science, Department of Crop Production, São Paulo State University (Unesp), Dracena, SP, Brazil
| | - Sony Anderson Cidreira Bastos
- College of Agriculture and Technology Science, Department of Crop Production, São Paulo State University (Unesp), Dracena, SP, Brazil
| | - Luís Guilherme Delovo Carara
- College of Agriculture and Technology Science, Department of Crop Production, São Paulo State University (Unesp), Dracena, SP, Brazil
| | | |
Collapse
|
90
|
Salinitro M, Mattarello G, Guardigli G, Odajiu M, Tassoni A. Induction of hormesis in plants by urban trace metal pollution. Sci Rep 2021; 11:20329. [PMID: 34645888 PMCID: PMC8514553 DOI: 10.1038/s41598-021-99657-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Hormesis is a dose-response phenomenon observed in numerous living organisms, caused by low levels of a large number of stressors, among which metal ions. In cities, metal levels are usually below toxicity limits for most plant species, however, it is of primary importance to understand whether urban metal pollution can threaten plant survival, or, conversely, be beneficial by triggering hormesis. The effects of Cd, Cr and Pb urban concentrations were tested in hydroponics on three annual plants, Cardamine hirsuta L., Poa annua L. and Stellaria media (L.) Vill., commonly growing in cities. Results highlighted for the first time that average urban trace metal concentrations do not hinder plant growth but cause instead hormesis, leading to a considerable increase in plant performance (e.g., two to five-fold higher shoot biomass with Cd and Cr). The present findings, show that city habitats are more suitable for plants than previously assumed, and that what is generally considered to be detrimental to plants, such as trace metals, could instead be exactly the plus factor allowing urban plants to thrive.
Collapse
Affiliation(s)
- Mirko Salinitro
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Gaia Mattarello
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Giorgia Guardigli
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Mihaela Odajiu
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Annalisa Tassoni
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| |
Collapse
|
91
|
Ferrari S, de Godoy DRZ, Cunha MLO, Prado EP, Lisboa LAM, Cordeiro LFDS, Carara LGD, de Oliveira LCA. Can the application of low doses of paraquat induce the hormesis effect in upland rice? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:954-961. [PMID: 34632960 DOI: 10.1080/03601234.2021.1988815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study aimed to verify the effects of the application of paraquat low doses on the agronomic traits of upland rice in two different application modes. The treatments consisted of a combination of 6 low doses of the paraquat (0; 20; 40; 60; 80 and 120 g a.i. ha-1) and 2 application modes of low doses a) single application performed between active tillering and floral differentiation b) application split into four applications, the first being carried out at the beginning of active tillering, the second being carried out between active tillering and floral differentiation, the third application carried out after floral differentiation and the fourth application carried out after flowering with 25% of the dose in each application. The application of low doses of paraquat does not promote the hormesis effect of upland rice. The increase in the frequency of the plant to the herbicide caused by the splitting of applications negatively affected the plant height, number of spikelets per panicle, yield, leaf nitrogen and sulfur as the low doses levels were increased. On the other hand, there is no influence of paraquat low doses levels when single applied to the agronomic traits of upland rice.
Collapse
Affiliation(s)
- Samuel Ferrari
- Department of Crop Production, College of Agricultural and Technology Science, São Paulo State University (UNESP), Dracena, SP, Brazil
| | | | - Matheus Luís Oliveira Cunha
- College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Evandro Pereira Prado
- Department of Crop Production, College of Agricultural and Technology Science, São Paulo State University (UNESP), Dracena, SP, Brazil
| | - Lucas Aparecido Manzani Lisboa
- Department of Crop Production, College of Agricultural and Technology Science, São Paulo State University (UNESP), Dracena, SP, Brazil
| | - Luis Fernando Dos Santos Cordeiro
- Department of Crop Production, College of Agricultural and Technology Science, São Paulo State University (UNESP), Dracena, SP, Brazil
| | - Luís Guilherme Delovo Carara
- Department of Crop Production, College of Agricultural and Technology Science, São Paulo State University (UNESP), Dracena, SP, Brazil
| | | |
Collapse
|
92
|
Fan D, Sun J, Liu C, Wang S, Han J, Agathokleous E, Zhu Y. Measurement and modeling of hormesis in soil bacteria and fungi under single and combined treatments of Cd and Pb. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147494. [PMID: 34088122 DOI: 10.1016/j.scitotenv.2021.147494] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals are considered major environmental pollutants. Soil microorganisms represent a predominant component of soils ecosystems, yet there is little information regarding hormetic responses of soil microorganisms to single and combined exposures to heavy metals. In the present study, to explore and predict the hormetic response of soil microorganisms, dose-response relationships of bacterial and fungal populations to single and combined treatments of cadmium (Cd) and lead (Pb) were evaluated. The results revealed hormetic responses of bacterial and fungal populations to both single and combined Cd and Pb treatments. The maximum stimulation (Mmax; relative to control treatment with no metals) of bacterial and fungal populations was 40% at 2 mg Cd/kg and 60% at 160 mg Pb/kg. An enhanced Mmax occurred in bacterial (50%) and fungal (75%) populations in the presence of the binary mixtures of 0.6 mg Cd/kg + 160 mg Pb/kg and 4.0 mg Cd/kg + 200 mg Pb/kg, suggesting positive additivity. This study showed that the hormetic effects of the mixtures were related to the independent effect of Cd and Pb, but they could not be predicted by the single effect of Cd or Pb. These new findings of the hormetic response of soil microorganisms to single treatments of Cd and Pb and their binary mixtures can facilitate the determination and minimization of ecological risks in heavy metal-polluted soils.
Collapse
Affiliation(s)
- Diwu Fan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jinwei Sun
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chenglei Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shengyan Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, Jiangsu 210044, China
| | - Yongli Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
93
|
Ma K, Zhang W, Zhang L, He X, Fan Y, Alam S, Yuan X. Effect of Pyrazosulfuron-Methyl on the Photosynthetic Characteristics and Antioxidant Systems of Foxtail Millet. FRONTIERS IN PLANT SCIENCE 2021; 12:696169. [PMID: 34421947 PMCID: PMC8375152 DOI: 10.3389/fpls.2021.696169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Foxtail millet (Setaria Italica L.) plays a principal role in food security in Africa and Asia, but it is sensitive to a variety of herbicides. This study was performed to clarify whether pyrazosulfuron-methyl can be used in foxtail millet fields and the effect of pyrazosulfuron-methyl on the photosynthetic performance of foxtail millet. Two foxtail millet varieties (Jingu 21 and Zhangzagu 10) were subjected to five doses (0, 15, 30, 60, and 120 g ai ha-1) of pyrazosulfuron-methyl in pot and field experiments. The plant height, leaf area, stem diameter, photosynthetic pigment contents, gas exchange parameters, chlorophyll fluorescence parameters, antioxidant enzyme activities, and antioxidant contents at 7 and 15 days after pyrazosulfuron-methyl application, and the yield of foxtail millet were measured. The results suggested that pyrazosulfuron-methyl inhibited the growth of foxtail millet and reduced the photosynthetic pigment contents, photosynthetic rate, and photosynthetic system II activity. Similarly, pyrazosulfuron-methyl decreased the antioxidant enzyme activities and antioxidant contents. These results also indicated that the toxicity of pyrazosulfuron-methyl to foxtail millet was decreased gradually with the extension of time after application; however, the foxtail millet yield was still significantly reduced. Therefore, pyrazosulfuron-methyl is not recommended for application in foxtail millet fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangyang Yuan
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), College of Agronomy, Shanxi Agricultural University, Shanxi, China
| |
Collapse
|
94
|
Agathokleous E, Calabrese EJ. Formaldehyde: Another hormesis-inducing chemical. ENVIRONMENTAL RESEARCH 2021; 199:111395. [PMID: 34048749 DOI: 10.1016/j.envres.2021.111395] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Formaldehyde (FA) is a naturally-occurring compound, produced endogenously in diverse living organisms. It also occurs widely in the environment due to anthropogenic (e.g. used as a chemical intermediate) and natural sources (e.g. a component of the volatile organic compounds blends emitted by plants). While FA is considered a potential carcinogen, living organisms have the ability to cope with FA, and some minimum endogenous levels of FA may be required for health. Recently, genetic engineering approaches transferring biological information from one organism to another led to increased assimilation of and conferred genetic-based tolerance to FA in plants-microorganisms systems. Here, we propose that FA commonly induces hormesis, a hypothesis that we confirm by collating evidence from various published studies with animals, plants, and microorganisms. The stimulation by low doses below the no-observed-adverse-effect-level (NOAEL) was modest in magnitude, in agreement with the general hormesis literature. In plants, among the endpoints showing hormesis were growth, lipid peroxidation, and photosynthetic pigments. In various animal cells, hormesis was observed in cell proliferation and viability, responses that were related to mechanisms, such as activation of phosphorylated ERK (extra-cellular signaling-regulated kinase) expression, acceleration of the process of cell division, and enhancement of the Warburg effect (i.e. use of glycolysis by tumor cells to produce energy for rapid growth). Hormetic in vitro responses were reported in several cancerous/tumorous cell lines, suggesting that FA has the potential to influence tumor promotion within a specific concentration range and biological context. These observations suggest that FA commonly acts in an hormetic manner with implications for study designs across a broad range of biological models and in the assessment of environmental and human risks associated with FA exposures.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, PR China.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
95
|
Ferrari S, Marsala L, Oliveira Cunha ML, Dos Santos Cordeiro LF, Tropaldi L, de Mattos Barretto VC, Alves de Oliveira LC. Can the application of low doses of glyphosate induce the hormesis effect in upland rice? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:814-820. [PMID: 34325621 DOI: 10.1080/03601234.2021.1957372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this research was to verify the effect of glyphosate low doses on leaf macronutrient levels and vegetative traits of upland rice in two growth stages. The treatments were arranged in 2 × 6 factorial scheme. The first factor consisted of applications in two growth stages of rice crop (tillering and floral differentiation) and the second factor was the low doses of glyphosate (0, 10, 20, 40, 70 and 100 g e.a. ha-1). In full bloom, the chlorophyll content was determined in a sample of 30 flag leaves. In these leaves, the contents of macronutrients were determined. At the maturity of the rice plant, the stem count was performed per m2, effective tiller and the plant height was measured. The low doses did not influence the leaf content of macronutrients. The plant height was reduced with an increase in the low doses of glyphosate, having a greater effect on the floral differentiation stage. When applied low doses of glyphosate at the floral differentiation stage, chlorophyll content increases and when applied to tillering there is a linear decrease in chlorophyll content. The number of stems increases with the application of low doses at floral differentiation.
Collapse
Affiliation(s)
- Samuel Ferrari
- Departament of Crop Production. Rod. Cmte João Ribeiro de Barros, São Paulo State University (Unesp) College of Agriculture and Technology Science, Dracena-SP, Brazil
| | | | | | - Luis Fernando Dos Santos Cordeiro
- Departament of Crop Production. Rod. Cmte João Ribeiro de Barros, São Paulo State University (Unesp) College of Agriculture and Technology Science, Dracena-SP, Brazil
| | - Leandro Tropaldi
- Departament of Crop Production. Rod. Cmte João Ribeiro de Barros, São Paulo State University (Unesp) College of Agriculture and Technology Science, Dracena-SP, Brazil
| | - Vitor Corrêa de Mattos Barretto
- Departament of Crop Production. Rod. Cmte João Ribeiro de Barros, São Paulo State University (Unesp) College of Agriculture and Technology Science, Dracena-SP, Brazil
| | | |
Collapse
|
96
|
Less Can Be More: The Hormesis Theory of Stress Adaptation in the Global Biosphere and Its Implications. Biomedicines 2021; 9:biomedicines9030293. [PMID: 33805626 PMCID: PMC8000639 DOI: 10.3390/biomedicines9030293] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
A dose-response relationship to stressors, according to the hormesis theory, is characterized by low-dose stimulation and high-dose inhibition. It is non-linear with a low-dose optimum. Stress responses by cells lead to adapted vitality and fitness. Physical stress can be exerted through heat, radiation, or physical exercise. Chemical stressors include reactive species from oxygen (ROS), nitrogen (RNS), and carbon (RCS), carcinogens, elements, such as lithium (Li) and silicon (Si), and metals, such as silver (Ag), cadmium (Cd), and lead (Pb). Anthropogenic chemicals are agrochemicals (phytotoxins, herbicides), industrial chemicals, and pharmaceuticals. Biochemical stress can be exerted through toxins, medical drugs (e.g., cytostatics, psychopharmaceuticals, non-steroidal inhibitors of inflammation), and through fasting (dietary restriction). Key-lock interactions between enzymes and substrates, antigens and antibodies, antigen-presenting cells, and cognate T cells are the basics of biology, biochemistry, and immunology. Their rules do not obey linear dose-response relationships. The review provides examples of biologic stressors: oncolytic viruses (e.g., immuno-virotherapy of cancer) and hormones (e.g., melatonin, stress hormones). Molecular mechanisms of cellular stress adaptation involve the protein quality control system (PQS) and homeostasis of proteasome, endoplasmic reticulum, and mitochondria. Important components are transcription factors (e.g., Nrf2), micro-RNAs, heat shock proteins, ionic calcium, and enzymes (e.g., glutathion redox enzymes, DNA methyltransferases, and DNA repair enzymes). Cellular growth control, intercellular communication, and resistance to stress from microbial infections involve growth factors, cytokines, chemokines, interferons, and their respective receptors. The effects of hormesis during evolution are multifarious: cell protection and survival, evolutionary flexibility, and epigenetic memory. According to the hormesis theory, this is true for the entire biosphere, e.g., archaia, bacteria, fungi, plants, and the animal kingdoms.
Collapse
|