51
|
Bull CJ, Bell JA, Murphy N, Sanderson E, Davey Smith G, Timpson NJ, Banbury BL, Albanes D, Berndt SI, Bézieau S, Bishop DT, Brenner H, Buchanan DD, Burnett-Hartman A, Casey G, Castellví-Bel S, Chan AT, Chang-Claude J, Cross AJ, de la Chapelle A, Figueiredo JC, Gallinger SJ, Gapstur SM, Giles GG, Gruber SB, Gsur A, Hampe J, Hampel H, Harrison TA, Hoffmeister M, Hsu L, Huang WY, Huyghe JR, Jenkins MA, Joshu CE, Keku TO, Kühn T, Kweon SS, Le Marchand L, Li CI, Li L, Lindblom A, Martín V, May AM, Milne RL, Moreno V, Newcomb PA, Offit K, Ogino S, Phipps AI, Platz EA, Potter JD, Qu C, Quirós JR, Rennert G, Riboli E, Sakoda LC, Schafmayer C, Schoen RE, Slattery ML, Tangen CM, Tsilidis KK, Ulrich CM, van Duijnhoven FJB, van Guelpen B, Visvanathan K, Vodicka P, Vodickova L, Wang H, White E, Wolk A, Woods MO, Wu AH, Campbell PT, Zheng W, Peters U, Vincent EE, Gunter MJ. Adiposity, metabolites, and colorectal cancer risk: Mendelian randomization study. BMC Med 2020; 18:396. [PMID: 33327948 PMCID: PMC7745469 DOI: 10.1186/s12916-020-01855-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Higher adiposity increases the risk of colorectal cancer (CRC), but whether this relationship varies by anatomical sub-site or by sex is unclear. Further, the metabolic alterations mediating the effects of adiposity on CRC are not fully understood. METHODS We examined sex- and site-specific associations of adiposity with CRC risk and whether adiposity-associated metabolites explain the associations of adiposity with CRC. Genetic variants from genome-wide association studies of body mass index (BMI) and waist-to-hip ratio (WHR, unadjusted for BMI; N = 806,810), and 123 metabolites from targeted nuclear magnetic resonance metabolomics (N = 24,925), were used as instruments. Sex-combined and sex-specific Mendelian randomization (MR) was conducted for BMI and WHR with CRC risk (58,221 cases and 67,694 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry). Sex-combined MR was conducted for BMI and WHR with metabolites, for metabolites with CRC, and for BMI and WHR with CRC adjusted for metabolite classes in multivariable models. RESULTS In sex-specific MR analyses, higher BMI (per 4.2 kg/m2) was associated with 1.23 (95% confidence interval (CI) = 1.08, 1.38) times higher CRC odds among men (inverse-variance-weighted (IVW) model); among women, higher BMI (per 5.2 kg/m2) was associated with 1.09 (95% CI = 0.97, 1.22) times higher CRC odds. WHR (per 0.07 higher) was more strongly associated with CRC risk among women (IVW OR = 1.25, 95% CI = 1.08, 1.43) than men (IVW OR = 1.05, 95% CI = 0.81, 1.36). BMI or WHR was associated with 104/123 metabolites at false discovery rate-corrected P ≤ 0.05; several metabolites were associated with CRC, but not in directions that were consistent with the mediation of positive adiposity-CRC relations. In multivariable MR analyses, associations of BMI and WHR with CRC were not attenuated following adjustment for representative metabolite classes, e.g., the univariable IVW OR for BMI with CRC was 1.12 (95% CI = 1.00, 1.26), and this became 1.11 (95% CI = 0.99, 1.26) when adjusting for cholesterol in low-density lipoprotein particles. CONCLUSIONS Our results suggest that higher BMI more greatly raises CRC risk among men, whereas higher WHR more greatly raises CRC risk among women. Adiposity was associated with numerous metabolic alterations, but none of these explained associations between adiposity and CRC. More detailed metabolomic measures are likely needed to clarify the mechanistic pathways.
Collapse
Affiliation(s)
- Caroline J Bull
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| | - Joshua A Bell
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Neil Murphy
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Barbara L Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Centre Hamburg (UCCH), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, UK
| | - Albert de la Chapelle
- Department of Cancer Biology and Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven J Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Stephen B Gruber
- Department of Preventive Medicine & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Corinne E Joshu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | | | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Vicente Martín
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Biomedicine Institute (IBIOMED), University of León, León, Spain
| | - Anne M May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Victor Moreno
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
- Centre for Public Health Research, Massey University, Wellington, New Zealand
- Health Sciences Centre, University of Canterbury, Christchurch, New Zealand
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kostas K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | | | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Hansong Wang
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St John's, Canada
| | - Anna H Wu
- University of Southern California, Preventative Medicine, CA, Los Angeles, USA
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Emma E Vincent
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
52
|
Zhu X, Liu Y, Xu J, Cheng Z, Yu Y, Chu M, Lu X, Yuan W. miR-608 rs4919510 Polymorphism May Affect Susceptibility to Colorectal Cancer by Upregulating MRPL43 Expression. DNA Cell Biol 2020; 39:2017-2027. [PMID: 33147064 DOI: 10.1089/dna.2020.5689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
There are many studies on the association between miR-608 rs4919510 polymorphism and susceptibility to colorectal cancer (CRC). However, the role of rs4919510 in CRC development and its underlying mechanism remain unclear. We first evaluated the gene that may be regulated by the variation of rs4919510 through a two-stage expression quantitative trait loci analysis and then compared the expression of that identified gene in CRC tissues and adjacent nontumor tissues. Next, methyl thiazolyl tetrazolium (MTT) assay, transwell assay, and flow cytometry analyses were performed to investigate the in vitro capacity of cell proliferation, migration, invasion, apoptosis, and cell cycle of CRC cells, respectively. Finally, through bioinformatics prediction, we contrasted the regulatory network and identified microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) that could regulate the obtained gene. We found that the variant G allele of rs4919510 located in miR-608 was associated with a potentially increased expression of MRPL43 in colon tissues (p = 0.065). Moreover, the results of functional experiments suggested that knockdown of the MRPL43 gene could inhibit the growth of the CRC HCT-116 cell line and promote apoptosis. Additionally, the cell cycle of CRC HCT-116 cell line was significantly arrested at the G2 phase. Next, we obtained a competing endogenous RNA regulatory network of MRPL43 with 17 pairs of miRNAs-lncRNAs by bioinformatics prediction, out of which, survival analysis indicated that different expression levels of miR-193b-3p (p = 0.0269) and miR-194-3p (p = 0.0113) were associated with overall survival in CRC patients. The rs4919510 variant G allele in miR-608 may increase the proliferation, invasion, and migration ability and decrease the apoptosis of CRC HCT-116 cell line by upregulating the expression of MRPL43, ultimately may affect the risk of CRC. Moreover, miR-193b-3p and miR-194-3p that target MRPL43 may serve as potential predictive biomarkers of CRC survival.
Collapse
Affiliation(s)
- Xiaoqi Zhu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, China
| | - Yichen Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, China
| | - Jingsheng Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, China
| | - Zhounan Cheng
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, China
| | - Yuhui Yu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, China
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, China
| | - Xiao Lu
- Department of Oncology, Changshu No. 1 People's Hospital, Suzhou, China
| | - Weiyan Yuan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
53
|
Gao QZ, Qin Y, Wang WJ, Fei BJ, Han WF, Jin JQ, Gao X. Overexpression of AMPD2 indicates poor prognosis in colorectal cancer patients via the Notch3 signaling pathway. World J Clin Cases 2020; 8:3197-3208. [PMID: 32874974 PMCID: PMC7441253 DOI: 10.12998/wjcc.v8.i15.3197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/26/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AMPD2 is a critical enzyme catalyzing smooth muscle energy supply and metabolism; however, its cellular biological function and clinical implication in colorectal cancer (CRC) are largely unknown.
AIM To clarify the role of AMPD2 in CRC and study the pathway and prognostic value of its role.
METHODS AMPD2 expression was analyzed by integrated bioinformatics analysis based on TCGA data sets and immunohistochemistry in tissue microarrays, and the correlation between AMPD2 expression and clinicopathological parameters, Notch3 expression, and prognostic features was assessed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were then performed to investigate the regulatory pathway involved. The effects of AMPD2 expression on CRC cells and Notch3 protein expression were investigated by downregulation and overexpression of AMPD2.
RESULTS AMPD2 mRNA was significantly overexpressed in tumor tissue when compared with normal tissue in a cohort of the TCGA-COAD data set. Biological function enrichment analysis indicated that the Notch pathway strongly correlated with AMPD2 expression, and that the expression of Notch3 and JAG2 mRNA was positively associated with AMPD2 in CRC tissues. In vitro, AMPD2 overexpression markedly reduced Notch3 protein expression in CRC cells, while knockdown of AMPD2 showed the opposite findings. In addition, protein expression was significantly up-regulated in our CRC cohort as indicated by tissue microarray analysis. High expression of AMPD2 protein correlated with advanced depth of tumor and poor differentiation. Furthermore, high AMPD2 expression in CRC tissues was an indicator of poor outcome for CRC patients.
CONCLUSION AMPD2 is commonly overexpressed in CRC, and acts as a metabolism oncogene to induce CRC progression through the Notch signaling pathway. Thus, AMPD2 may be a novel prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Qi-Zhong Gao
- Department of Gastrocolorectal Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214100, Jiangsu Province, China
| | - Yan Qin
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi 214000, Jiangsu Province, China
| | - Wei-Jia Wang
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi 214000, Jiangsu Province, China
| | - Bo-Jian Fei
- Department of Gastrocolorectal Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214100, Jiangsu Province, China
| | - Wei-Feng Han
- Department of Gastrocolorectal Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214100, Jiangsu Province, China
| | - Jian-Qiang Jin
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi 214000, Jiangsu Province, China
| | - Xiang Gao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| |
Collapse
|
54
|
Barry EL, Fedirko V, Uppal K, Ma C, Liu K, Mott LA, Peacock JL, Passarelli MN, Baron JA, Jones DP. Metabolomics Analysis of Aspirin's Effects in Human Colon Tissue and Associations with Adenoma Risk. Cancer Prev Res (Phila) 2020; 13:863-876. [PMID: 32655007 DOI: 10.1158/1940-6207.capr-20-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
Although substantial evidence supports aspirin's efficacy in colorectal cancer chemoprevention, key molecular mechanisms are uncertain. An untargeted metabolomics approach with high-resolution mass spectrometry was used to elucidate metabolic effects of aspirin treatment in human colon tissue. We measured 10,269 metabolic features in normal mucosal biopsies collected at colonoscopy after approximately 3 years of randomized treatment with placebo, 81 or 325 mg/day aspirin from 325 participants in the Aspirin/Folate Polyp Prevention Study. Linear regression was used to identify aspirin-associated metabolic features and network analysis was used to identify pathways and predict metabolite identities. Poisson regression was used to examine metabolic features associations with colorectal adenoma risk. We detected 471 aspirin-associated metabolic features. Aside from the carnitine shuttle, aspirin-associated metabolic pathways were largely distinct for 81 mg aspirin (e.g., pyrimidine metabolism) and 325 mg (e.g., arachidonic acid metabolism). Among aspirin-associated metabolic features, we discovered three that were associated with adenoma risk and could contribute to the chemopreventive effect of aspirin treatment, and which have also previously been associated with colorectal cancer: creatinine, glycerol 3-phosphate, and linoleate. The last two of these are in the glycerophospholipid metabolism pathway, which was associated with 81 mg aspirin treatment and provides precursors for the synthesis of eicosanoids from arachidonic acid upstream of cyclooxygenase inhibition by aspirin. Conversely, carnitine shuttle metabolites were increased with aspirin treatment and associated with increased adenoma risk. Thus, our untargeted metabolomics approach has identified novel metabolites and pathways that may underlie the effects of aspirin during early colorectal carcinogenesis.
Collapse
Affiliation(s)
- Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.
| | - Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health, Emory University and Winship Cancer Institute, Atlanta, Georgia
| | - Karan Uppal
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Chunyu Ma
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Ken Liu
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Leila A Mott
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Janet L Peacock
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- School of Population Health and Environmental Sciences, King's College, London, UK
| | - Michael N Passarelli
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - John A Baron
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Department of Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
55
|
Khankari NK, Banbury BL, Borges MC, Haycock P, Albanes D, Arndt V, Berndt SI, Bézieau S, Brenner H, Campbell PT, Casey G, Chan AT, Chang-Claude J, Conti DV, Cotterchio M, English DR, Figueiredo JC, Giles GG, Giovannucci EL, Gunter MJ, Hampe J, Hoffmeister M, Hopper JL, Jenkins MA, Joshi AD, Marchand LL, Lemire M, Li CI, Li L, Lindblom A, Martín V, Moreno V, Newcomb PA, Offit K, Pharoah PDP, Rennert G, Sakoda LC, Schafmayer C, Schmit SL, Slattery ML, Song M, Thibodeau SN, Ulrich CM, Weinstein SJ, White E, Win AK, Wolk A, Woods MO, Wu AH, Cai Q, Denny JC, Edwards TL, Murff HJ, Gruber SB, Peters U, Zheng W. Mendelian Randomization of Circulating Polyunsaturated Fatty Acids and Colorectal Cancer Risk. Cancer Epidemiol Biomarkers Prev 2020; 29:860-870. [PMID: 32051193 PMCID: PMC7125012 DOI: 10.1158/1055-9965.epi-19-0891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/03/2019] [Accepted: 01/23/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Results from epidemiologic studies examining polyunsaturated fatty acids (PUFA) and colorectal cancer risk are inconsistent. Mendelian randomization may strengthen causal inference from observational studies. Given their shared metabolic pathway, examining the combined effects of aspirin/NSAID use with PUFAs could help elucidate an association between PUFAs and colorectal cancer risk. METHODS Information was leveraged from genome-wide association studies (GWAS) regarding PUFA-associated SNPs to create weighted genetic scores (wGS) representing genetically predicted circulating blood PUFAs for 11,016 non-Hispanic white colorectal cancer cases and 13,732 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). Associations per SD increase in the wGS were estimated using unconditional logistic regression. Interactions between PUFA wGSs and aspirin/NSAID use on colorectal cancer risk were also examined. RESULTS Modest colorectal cancer risk reductions were observed per SD increase in circulating linoleic acid [ORLA = 0.96; 95% confidence interval (CI) = 0.93-0.98; P = 5.2 × 10-4] and α-linolenic acid (ORALA = 0.95; 95% CI = 0.92-0.97; P = 5.4 × 10-5), whereas modest increased risks were observed for arachidonic (ORAA = 1.06; 95% CI = 1.03-1.08; P = 3.3 × 10-5), eicosapentaenoic (OREPA = 1.04; 95% CI = 1.01-1.07; P = 2.5 × 10-3), and docosapentaenoic acids (ORDPA = 1.03; 95% CI = 1.01-1.06; P = 1.2 × 10-2). Each of these effects was stronger among aspirin/NSAID nonusers in the stratified analyses. CONCLUSIONS Our study suggests that higher circulating shorter-chain PUFAs (i.e., LA and ALA) were associated with reduced colorectal cancer risk, whereas longer-chain PUFAs (i.e., AA, EPA, and DPA) were associated with an increased colorectal cancer risk. IMPACT The interaction of PUFAs with aspirin/NSAID use indicates a shared colorectal cancer inflammatory pathway. Future research should continue to improve PUFA genetic instruments to elucidate the independent effects of PUFAs on colorectal cancer.
Collapse
Affiliation(s)
- Nikhil K Khankari
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Barbara L Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Maria C Borges
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Philip Haycock
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Jenny Chang-Claude
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David V Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Michelle Cotterchio
- Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, Canada
| | - Dallas R English
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Jane C Figueiredo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Edward L Giovannucci
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Jochen Hampe
- Department of Medicine, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | | | - Mathieu Lemire
- PanCuRx Translational Research Initiative, Ontario, Institute for Cancer Research, Toronto, Ontario, Canada
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Vicente Martín
- Área de Medicina Preventiva y Salud Publica, Universidad de León, León, Spain
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health and Community Medicine, Seattle, Washington
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Clemens Schafmayer
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stephanie L Schmit
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Martha L Slattery
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Mingyang Song
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | | | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health and Community Medicine, Seattle, Washington
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joshua C Denny
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Harvey J Murff
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephen B Gruber
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health and Community Medicine, Seattle, Washington
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
56
|
Gala H, Tomlinson I. The use of Mendelian randomisation to identify causal cancer risk factors: promise and limitations. J Pathol 2020; 250:541-554. [PMID: 32154591 DOI: 10.1002/path.5421] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
The use of observational analyses, such as classical epidemiological studies or randomised controlled trials (RCTs), to infer causality in cancer may be problematic due to both ethical reasons and technical issues, such as confounding variables and reverse causation. Mendelian randomisation (MR) is an epidemiological technique that uses genetic variants as proxies for exposures in an attempt to determine whether there is a causal link between an exposure and an outcome. Given that genetic variants are randomly assigned during meiosis according to Mendel's first and second laws of heritability, MR may be thought of as a 'natural' RCT and is therefore less vulnerable to the aforementioned problems. MR has the potential to help identify new, and validate or disprove previously implicated, modifiable risk factors in cancer, but it is not without limitations. This review provides a brief description of the history and principles of MR, as well as a guide to basic MR methodology. The bulk of the review then examines various limitations of MR in more detail, discussing some of the proposed solutions to these problems. The review ends with a brief section detailing the practical implementation of MR, with examples of its use in the study of cancer, and an assessment of its utility in identifying cancer predisposition traits. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Harvinder Gala
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Ian Tomlinson
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
57
|
Saeidi J, Motaghipur R, Sepehrian A, Mohtashami M, Forooghi Nia F, Ghasemi A. Dietary fats promote inflammation in Wistar rats as well as induce proliferation, invasion of SKOV3 ovarian cancer cells. J Food Biochem 2020; 44:e13177. [PMID: 32157714 DOI: 10.1111/jfbc.13177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 11/30/2022]
Abstract
The role of high fat diet (HFD) in ovarian cancer and its underlying mechanisms are poorly known. In current investigation, we investigated inflammatory and oncogenic effect of dietary fats in female Wistar rats and ovarian cancer cell line (SKOV3). The ELISA kits were used for adipokines and inflammatory factors analyses in sera collected from rats fed with high fat diet (SR-HFD). Cell growth, proliferation, apoptosis, migration, and invasion were measured in SKOV3 cells treated with the SR-HFD and FA mix. IL6, IL1β, TNFα, NF-kβ, and p53 expression were measured in cells incubated with the mentioned treatments. Leptin and inflammatory factors increased, while adiponectin decreased in SR-HFD. Moreover, FA mix significantly induced proliferation, migration, and invasion, promoted the expression of inflammatory factors and NF-κB and inhibited apoptosis markers in SKOV3 cells. Taken together, our findings revealed that diet might be a crucial factor in ovarian cancer progression through altering the inflammatory factors. PRACTICAL APPLICATIONS: The HFD-mediated obesity promotes cancer progression in various tissues. This study highlights the progression of inflammation in female Wistar rats and the growth of ovarian cancer cells by dietary fats. Thus, dietary factors can be considered as key factors for the prevention of ovarian cancer.
Collapse
Affiliation(s)
- Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Reza Motaghipur
- Department of Genetic, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Atefe Sepehrian
- Department of Genetic, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Fatemeh Forooghi Nia
- Department of Biology, School of Basic Science, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Ahmad Ghasemi
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
58
|
Zhao JV, Schooling CM. Response to: 'Role of linoleic acid in autoimmune disorders: aMendelian randomisation study' by Lee et al. Ann Rheum Dis 2020; 79:e29. [PMID: 30563868 DOI: 10.1136/annrheumdis-2018-214830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 11/03/2022]
Affiliation(s)
- Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Public Health and Health Policy, City University of New York, New York City, New York, USA
| |
Collapse
|
59
|
Mika A, Kobiela J, Pakiet A, Czumaj A, Sokołowska E, Makarewicz W, Chmielewski M, Stepnowski P, Marino-Gammazza A, Sledzinski T. Preferential uptake of polyunsaturated fatty acids by colorectal cancer cells. Sci Rep 2020; 10:1954. [PMID: 32029824 PMCID: PMC7005037 DOI: 10.1038/s41598-020-58895-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Although a growing body of evidence suggests that colorectal cancer (CRC) is associated with alterations of fatty acid (FA) profiles in serum and tumor tissues, available data about polyunsaturated fatty acid (PUFA) content in CRC patients are inconclusive. Our study showed that CRC tissues contained more PUFAs than normal large intestinal mucosa. However, serum levels of PUFAs in CRC patients were lower than in healthy controls. To explain the mechanism of PUFA alterations in CRC, we measured FA uptake by the colon cancer cells and normal colon cells. The levels of PUFAs in colon cancer cell culture medium decreased significantly with incubation time, while no changes were observed in the medium in which normal colon cells were incubated. Our findings suggest that the alterations in tumor and serum PUFA profiles result from preferential uptake of these FAs by cancer cells; indeed, PUFAs are essential for formation of cell membrane phospholipids during rapid proliferation of cancer cells. This observation puts into question potential benefits of PUFA supplementation in CRC patients.
Collapse
Affiliation(s)
- Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Jaroslaw Kobiela
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Sokołowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Wojciech Makarewicz
- Department of Oncologic Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Michał Chmielewski
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Antonella Marino-Gammazza
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100, Palermo, Italy
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
60
|
Thompson DJ, Genovese G, Halvardson J, Ulirsch JC, Wright DJ, Terao C, Davidsson OB, Day FR, Sulem P, Jiang Y, Danielsson M, Davies H, Dennis J, Dunlop MG, Easton DF, Fisher VA, Zink F, Houlston RS, Ingelsson M, Kar S, Kerrison ND, Kinnersley B, Kristjansson RP, Law PJ, Li R, Loveday C, Mattisson J, McCarroll SA, Murakami Y, Murray A, Olszewski P, Rychlicka-Buniowska E, Scott RA, Thorsteinsdottir U, Tomlinson I, Moghadam BT, Turnbull C, Wareham NJ, Gudbjartsson DF, Kamatani Y, Hoffmann ER, Jackson SP, Stefansson K, Auton A, Ong KK, Machiela MJ, Loh PR, Dumanski JP, Chanock SJ, Forsberg LA, Perry JRB. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 2019; 575:652-657. [PMID: 31748747 PMCID: PMC6887549 DOI: 10.1038/s41586-019-1765-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Mosaic loss of chromosome Y (LOY) in circulating white blood cells is the most common form of clonal mosaicism1-5, yet our knowledge of the causes and consequences of this is limited. Here, using a computational approach, we estimate that 20% of the male population represented in the UK Biobank study (n = 205,011) has detectable LOY. We identify 156 autosomal genetic determinants of LOY, which we replicate in 757,114 men of European and Japanese ancestry. These loci highlight genes that are involved in cell-cycle regulation and cancer susceptibility, as well as somatic drivers of tumour growth and targets of cancer therapy. We demonstrate that genetic susceptibility to LOY is associated with non-haematological effects on health in both men and women, which supports the hypothesis that clonal haematopoiesis is a biomarker of genomic instability in other tissues. Single-cell RNA sequencing identifies dysregulated expression of autosomal genes in leukocytes with LOY and provides insights into why clonal expansion of these cells may occur. Collectively, these data highlight the value of studying clonal mosaicism to uncover fundamental mechanisms that underlie cancer and other ageing-related diseases.
Collapse
Affiliation(s)
- Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Giulio Genovese
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonatan Halvardson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jacob C Ulirsch
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Daniel J Wright
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Open Targets Core Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Chikashi Terao
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | | | - Felix R Day
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Marcus Danielsson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hanna Davies
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Malcolm G Dunlop
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit and CRUK Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Victoria A Fisher
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Martin Ingelsson
- Geriatrics Research Group, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Siddhartha Kar
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Nicola D Kerrison
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | | | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chey Loveday
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Jonas Mattisson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Pawel Olszewski
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Edyta Rychlicka-Buniowska
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Robert A Scott
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Unnur Thorsteinsdottir
- deCODE Genetics, Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Ian Tomlinson
- Cancer Genetics and Evolution Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Behrooz Torabi Moghadam
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- William Harvey Research Institute, Queen Mary University, London, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Daniel F Gudbjartsson
- deCODE Genetics, Amgen, Reykjavík, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Kyoto-McGill International Collaborative School in Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steve P Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Kari Stefansson
- deCODE Genetics, Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | | | - Ken K Ong
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jan P Dumanski
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Lars A Forsberg
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Beijer Laboratory of Genome Research, Uppsala University, Uppsala, Sweden
| | - John R B Perry
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
61
|
Cornish AJ, Tomlinson IPM, Houlston RS. Mendelian randomisation: A powerful and inexpensive method for identifying and excluding non-genetic risk factors for colorectal cancer. Mol Aspects Med 2019; 69:41-47. [PMID: 30710596 PMCID: PMC6856712 DOI: 10.1016/j.mam.2019.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in economically developed countries and a major cause of cancer-related mortality. The importance of lifestyle and diet as major determinants of CRC risk is suggested by differences in CRC incidence between countries and in migration studies. Previous observational epidemiological studies have identified associations between modifiable environmental risk factors and CRC, but these studies can be susceptible to reverse causation and confounding, and their results can therefore conflict. Mendelian randomisation (MR) analysis represents an approach complementary to conventional observational studies examining associations between exposures and disease. The MR strategy employs allelic variants as instrumental variables (IVs), which act as proxies for non-genetic exposures. These allelic variants are randomly assigned during meiosis and can therefore inform on life-long exposure, whilst not being subject to reverse causation. In previous studies MR frameworks have associated several modifiable factors with CRC risk, including adiposity, hyperlipidaemia, fatty acid profile and alcohol consumption. In this review we detail the use of MR to investigate and discover CRC risk factors, and its future applications.
Collapse
Affiliation(s)
- Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
| | - Ian P M Tomlinson
- Cancer Genetics and Evolution Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Department of Histopathology, University Hospitals Birmingham, Birmingham, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
62
|
Hu D, Peng F, Lin X, Zhang H, Xia Y, Lin J, Zheng X, Niu W. The risk trajectory between preoperative fasting glucose and common digestive tract cancer-specific mortality in the FIESTA cohort involving 6865 Chinese patients. J Cancer 2019; 10:4596-4602. [PMID: 31528223 PMCID: PMC6746143 DOI: 10.7150/jca.31184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/21/2019] [Indexed: 12/25/2022] Open
Abstract
Backgrounds: High blood glucose or hyperglycemia is an established risk factor for the development and progression of cancer at many sites, whereas data on the relevance between low blood glucose or hypoglycemia and cancer survival are lacking. Aims: We aimed to assess the shape of risk trajectory between preoperative fasting glucose and postoperative digestive cancer-specific mortality in Chinese. Methods: In total, 6865 patients who underwent radical surgery for esophageal cancer (n=2535), gastric cancer (n=3012) and colorectal cancer (n=1318) during 2000-2010 were followed up as of December 2015. All patients received neither chemotherapy nor radiotherapy before and after the surgery. Optimal cutoff points were determined using survival tree analysis. Results: The median follow-up time was 44.9 months (range: 0.5-188.9 months), with 1065 deaths from esophageal cancer, 1331 from gastric cancer and 412 from colorectal cancer. Using fasting glucose (4.36, 6.09] mmol/L as the reference group, hazard ratios for fasting glucose ≤4.36, (6.09, 8.95], (8.95, 11.5] and >11.5 mmol/L were 1.35 (95% confidence interval: 1.19, 1.54), 2.82 (2.57, 3.11), 3.56 (3.10, 4.08) and 4.27 (3.67, 4.97), respectively (p<0.001). Conclusions: Our findings indicate a U-shaped risk trajectory between preoperative fasting glucose and digestive tract cancer-specific mortality in Chinese. Further external validation is warranted.
Collapse
Affiliation(s)
- Dan Hu
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Feng Peng
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiandong Lin
- Department of Radiobiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Hejun Zhang
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Yan Xia
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Jinxiu Lin
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiongwei Zheng
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Wenquan Niu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
63
|
Marques MPM, Batista de Carvalho ALM, Mamede AP, Santos IP, García Sakai V, Dopplapudi A, Cinque G, Wolna M, Gardner P, Batista de Carvalho LAE. Chemotherapeutic Targets in Osteosarcoma: Insights from Synchrotron-MicroFTIR and Quasi-Elastic Neutron Scattering. J Phys Chem B 2019; 123:6968-6979. [PMID: 31339317 DOI: 10.1021/acs.jpcb.9b05596] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study aimed at the development of improved drugs against human osteosarcoma, which is the most common primary bone tumor in children and teenagers with a low prognosis. New insights into the impact of an unconventional Pd(II) anticancer agent on human osteosarcoma cells were obtained by synchrotron radiation-Fourier transform infrared microspectroscopy and quasi-elastic neutron scattering (QENS) experiments from its effect on the cellular metabolism to its influence on intracellular water, which can be regarded as a potential secondary pharmacological target. Specific infrared biomarkers of drug action were identified, enabling a molecular-level description of variations in cellular biochemistry upon drug exposure. The main changes were detected in the protein and lipid cellular components, namely, in the ratio of unsaturated-to-saturated fatty acids. QENS revealed reduced water mobility within the cytoplasm for drug-treated cells, coupled to a disruption of the hydration layers of biomolecules. Additionally, the chemical and dynamical profiles of osteosarcoma cells were compared to those of metastatic breast cancer cells, revealing distinct dissimilarities that may influence drug activity.
Collapse
Affiliation(s)
- Maria Paula M Marques
- "Química-Física Molecular", Department of Chemistry , University of Coimbra , 3004-535 Coimbra , Portugal.,Department of Life Sciences , University of Coimbra , 3000-456 Coimbra , Portugal
| | | | - Adriana P Mamede
- "Química-Física Molecular", Department of Chemistry , University of Coimbra , 3004-535 Coimbra , Portugal
| | - Inês P Santos
- "Química-Física Molecular", Department of Chemistry , University of Coimbra , 3004-535 Coimbra , Portugal
| | - Victoria García Sakai
- ISIS Facility , STFC Rutherford Appleton Laboratory , Chilton, Didcot , Oxfordshire OX11 0QX , U.K
| | - Asha Dopplapudi
- ISIS Facility , STFC Rutherford Appleton Laboratory , Chilton, Didcot , Oxfordshire OX11 0QX , U.K
| | - Gianfelice Cinque
- Diamond Light Source , Harwell Science and Innovation Campus , Chilton, Didcot , Oxfordshire OX11 0DE , U.K
| | - Magda Wolna
- Diamond Light Source , Harwell Science and Innovation Campus , Chilton, Didcot , Oxfordshire OX11 0DE , U.K
| | - Peter Gardner
- Manchester Institute of Biotechnology , University of Manchester , Manchester M1 7DN , U.K
| | | |
Collapse
|
64
|
GC/MS-based metabonomics approach reveals effects of Xuebijing injection in CLP induced septic rats. Biomed Pharmacother 2019; 117:109163. [PMID: 31238257 DOI: 10.1016/j.biopha.2019.109163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/05/2019] [Accepted: 06/19/2019] [Indexed: 11/23/2022] Open
Abstract
Xuebijing (XBJ) injection, a Chinese traditional medicine injection, is widely used in the treatment of sepsis in China, and shows a promising clinical therapeutic effect. However, its impacts on the metabolic changes of sepsis have not yet been reported. We established a septic rat model using cecal ligation and puncture (CLP) and treated with XBJ or placebo (saline). The survival rates were monitored for 7d, the effects of XBJ on liver and kidney tissue morphology, serum biochemistry [alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and creatinine (Cr)] and cytokines [tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6)] production were assessed. Plasma samples were profiled by gas chromatography/mass spectrometer (GC/MS) and analyzed to evaluate the metabolites changes. We found that XBJ can increase the survival rate of septic rats by reducing multi-organ dysfunctions shown as decrease in serum biochemistry indicators, cytokines, and morphologic changes. A Partial Least-Squares Discriminant Analysis (PLS-DA) score plot indicated that rats undergo significant metabolic changes between the three groups. 21 distinct metabolites with VIP>1.5 and p<0.05 were were identified between these group. These metabolites primarily reflected disorders in energy metabolism, glucose metabolism and amino acid metabolism. This study established the foundation for further research of the mechanisms and therapeutic targets of sepsis.
Collapse
|
65
|
Dietary habits affect fatty acid composition of visceral adipose tissue in subjects with colorectal cancer or obesity. Eur J Nutr 2019; 59:1463-1472. [PMID: 31119400 DOI: 10.1007/s00394-019-02003-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Aim of this study was to identify a possible relationship among dietary fatty acids (FA) intake, FA adipose tissue (AT) profile and cancer condition in lean vs obese subjects affected or not by colorectal cancer (CRC). Actually, inadequate dietary habits together with physical inactivity are primary determinants of obesity and cancer risk. Changes in lipid metabolism play a crucial role in different types of cancer and key enzymes involved in lipid-metabolic pathways, such as stearoyl-coA-desaturase 1 (SCD-1), are differentially expressed in normal and cancer tissues. METHODS Food frequency questionnaires (FFQ) were analyzed by Winfood software. FA were assessed by gas-liquid chromatography in visceral AT samples. Estimated desaturase activities were calculated as precursor FA/product FA ratio. Desaturase gene expressions were evaluated by RT-qPCR. RESULTS Lean and obese CRC subjects showed inadequate dietary habits. In particular, lean CRC subjects showed increase in the intake of saturated FA, specifically palmitic (p = 0.0042) and stearic acid (p = 0.0091), and a corresponding reduction of monounsaturated FA consumption, in particular oleic acid (p = 0.002) with respect to lean without CRC. Estimated SCD-1 activity in AT was increased in all the groups vs lean without CRC (pANOVA = 0.029). CONCLUSIONS Unhealthy eating habits, characterizing obese and CRC subjects, may influence the visceral AT profile and contribute to the alteration of the metabolic pathways. The quality of the diet, other than the quantity, can have a main role in the establishment of inflammatory microenvironment and in metabolic changes favouring CRC.
Collapse
|
66
|
De Silva SF, Alcorn J. Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets. Pharmaceuticals (Basel) 2019; 12:E68. [PMID: 31060335 PMCID: PMC6630319 DOI: 10.3390/ph12020068] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer causes considerable morbidity and mortality across the world. Socioeconomic, environmental, and lifestyle factors contribute to the increasing cancer prevalence, bespeaking a need for effective prevention and treatment strategies. Phytochemicals like plant polyphenols are generally considered to have anticancer, anti-inflammatory, antiviral, antimicrobial, and immunomodulatory effects, which explain their promotion for human health. The past several decades have contributed to a growing evidence base in the literature that demonstrate ability of polyphenols to modulate multiple targets of carcinogenesis linking models of cancer characteristics (i.e., hallmarks and nutraceutical-based targeting of cancer) via direct or indirect interaction or modulation of cellular and molecular targets. This evidence is particularly relevant for the lignans, an ubiquitous, important class of dietary polyphenols present in high levels in food sources such as flaxseed. Literature evidence on lignans suggests potential benefit in cancer prevention and treatment. This review summarizes the relevant chemical and pharmacokinetic properties of dietary polyphenols and specifically focuses on the biological targets of flaxseed lignans. The consolidation of the considerable body of data on the diverse targets of the lignans will aid continued research into their potential for use in combination with other cancer chemotherapies, utilizing flaxseed lignan-enriched natural products.
Collapse
Affiliation(s)
- S Franklyn De Silva
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| | - Jane Alcorn
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| |
Collapse
|
67
|
Liyanage UE, Ong JS, An J, Gharahkhani P, Law MH, MacGregor S. Mendelian Randomization Study for Genetically Predicted Polyunsaturated Fatty Acids Levels on Overall Cancer Risk and Mortality. Cancer Epidemiol Biomarkers Prev 2019; 28:1015-1023. [DOI: 10.1158/1055-9965.epi-18-0940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/06/2018] [Accepted: 03/27/2019] [Indexed: 11/16/2022] Open
|
68
|
Zhao JV, Schooling CM. Effect of linoleic acid on ischemic heart disease and its risk factors: a Mendelian randomization study. BMC Med 2019; 17:61. [PMID: 30866921 PMCID: PMC6417131 DOI: 10.1186/s12916-019-1293-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The role of n-6 polyunsaturated fatty acids (PUFAs) in ischemic heart disease (IHD) is controversial, and dietary guidelines vary. Observationally, lower saturated fat intake and higher intake of vegetable oils rich in linoleic acid (LA), the main n-6 PUFA, is associated with lower IHD and diabetes; however, randomized controlled trials have not fully corroborated these benefits. We assessed how genetically predicted LA affected IHD and its risk factors, including diabetes, lipids, and blood pressure. We also assessed the role of LA in reticulocyte count, the red blood cell precursor, which has recently been identified as a possible causal factor in IHD. METHODS Two-sample instrumental variable analysis with genetic instruments, i.e., Mendelian randomization, was used to obtain unconfounded estimates using genetic variants strongly (p value < 5 × 10-8) and solely associated with LA, applied to an IHD case (n ≤ 76,014)-control (n ≤ 264,785) study (mainly based on the meta-analysis of CARDIoGRAMplusC4D 1000 Genomes and UK Biobank CAD SOFT GWAS), the DIAbetes Genetics Replication And Meta-analysis diabetes case (n = 26,676)-control (n = 132,532) study, lipids from the Global Lipids Genetics Consortium Results (n = 196,475), and reticulocyte count and blood pressure from the UK Biobank (n ≤ 361,194). A weighted median and Mendelian randomization Egger were used for sensitivity analysis. RESULTS Genetically predicted LA was not associated with IHD or systolic blood pressure. Genetically predicted higher serum LA was associated with lower diabetes (odds ratio (OR) 0.97 per percentage in total fatty acid increase in LA, 95% confidence interval (CI) 0.96 to 0.99) and lower lipids (low-density lipoprotein, high-density lipoprotein, and total cholesterol), but may be associated with higher diastolic blood pressure. The findings were robust to different single nucleotide polymorphism (SNP) selections, analytic methods, and correction for multiple testing. CONCLUSIONS Our novel study suggests a benefit of LA for diabetes and lipids but no benefit for IHD, blood pressure, or reticulocyte count. Explicating these paradoxical findings would facilitate identification of effective new interventions for diabetes and IHD.
Collapse
Affiliation(s)
- Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 1/F, Patrick Manson Building, 7 Sassoon Road, Hong Kong, SAR, China.
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 1/F, Patrick Manson Building, 7 Sassoon Road, Hong Kong, SAR, China
- School of Public Health and Health Policy, City University of New York, New York, NY, USA
| |
Collapse
|
69
|
Zhuang P, Zhang Y, He W, Chen X, Chen J, He L, Mao L, Wu F, Jiao J. Dietary Fats in Relation to Total and Cause-Specific Mortality in a Prospective Cohort of 521 120 Individuals With 16 Years of Follow-Up. Circ Res 2019; 124:757-768. [DOI: 10.1161/circresaha.118.314038] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pan Zhuang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China (P.Z., Y.Z., X.C., J.C., L.H.)
| | - Yu Zhang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China (P.Z., Y.Z., X.C., J.C., L.H.)
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (W.H.)
| | - Xiaoqian Chen
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China (P.Z., Y.Z., X.C., J.C., L.H.)
| | - Jingnan Chen
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China (P.Z., Y.Z., X.C., J.C., L.H.)
| | - Lilin He
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China (P.Z., Y.Z., X.C., J.C., L.H.)
| | - Lei Mao
- From the Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China (L.M., F.W., J.J.)
| | - Fei Wu
- From the Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China (L.M., F.W., J.J.)
| | - Jingjing Jiao
- From the Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China (L.M., F.W., J.J.)
| |
Collapse
|
70
|
Liu J, Zhou H, Zhang Y, Huang Y, Fang W, Yang Y, Hong S, Chen G, Zhao S, Chen X, Zhang Z, Shen J, Xian W, Zhan J, Zhao Y, Hou X, Ma Y, Zhou T, Zhao H, Zhang L. Docosapentaenoic acid and lung cancer risk: A Mendelian randomization study. Cancer Med 2019; 8:1817-1825. [PMID: 30741477 PMCID: PMC6488117 DOI: 10.1002/cam4.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Observational studies have shown that excessive dietary fat may be associated with lung carcinogenesis. However, findings from previous studies are inconsistent and it remains unclear whether docosapentaenoic acid (DPA), a kind of polyunsaturated fatty acid, is linked to the risk of lung cancer. The aim of this study is to investigate the causal effect of DPA on lung cancer with Mendelian randomization (MR) method. METHODS With a two-sample MR approach, we analyzed the summary data from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE, 8866 individuals of European ancestry) Consortium and International Lung Cancer Consortium (ILCCO, 11 348 lung cancer cases and 15 861 controls; European ancestry) to assess the possible causal relationship of DPA on the risk of lung cancer. RESULTS Our results indicated that genetically predicted higher DPA level has a positive association with lung cancer, where 1% higher DPA was associated with a 2.01-fold risk of lung cancer (odds ratio [OR]: 2.01, 95% CI = 1.34-3.01; P = 7.40 × 10-4 ). Additionally, lung cancer was not a causal factor for DPA. The results of MR-Egger regression analysis showed that there was no evidence for the presence of directional horizontal pleiotropy. CONCLUSIONS Genetically elevated DPA is positively associated with risk of lung cancer, and more work is needed to investigate the potential mechanisms.
Collapse
Affiliation(s)
- Jiaqing Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Huaqiang Zhou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yaxiong Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yunpeng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shaodong Hong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Gang Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shen Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xi Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhonghan Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiayi Shen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Xian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Zhan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuanyuan Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xue Hou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuxiang Ma
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ting Zhou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongyun Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
71
|
Pakiet A, Kobiela J, Stepnowski P, Sledzinski T, Mika A. Changes in lipids composition and metabolism in colorectal cancer: a review. Lipids Health Dis 2019; 18:29. [PMID: 30684960 PMCID: PMC6347819 DOI: 10.1186/s12944-019-0977-8] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Altered metabolism of lipids is currently considered a hallmark characteristic of many malignancies, including colorectal cancer (CRC). Lipids are a large group of metabolites that differ in terms of their fatty acid composition. This review summarizes recent evidence, documenting many alterations in the content and composition of fatty acids, polar lipids, oxylipins and triacylglycerols in CRC patients' sera, tumor tissues and adipose tissue. Some of altered lipid molecules may be potential biomarkers of CRC risk, development and progression. Owing to a significant role of many lipids in cancer cell metabolism, some of lipid metabolism pathways may also constitute specific targets for anti-CRC therapy.
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland.
| | - Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| |
Collapse
|
72
|
Kaluza J, Håkansson N, Harris HR, Orsini N, Michaëlsson K, Wolk A. Influence of anti-inflammatory diet and smoking on mortality and survival in men and women: two prospective cohort studies. J Intern Med 2019; 285:75-91. [PMID: 30209831 DOI: 10.1111/joim.12823] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The associations between an anti-inflammatory diet and both all-cause and cause-specific mortality have been studied previously; however, the influence of an anti-inflammatory diet on survival time has not been investigated. Moreover, the potential modification of these associations by smoking status remains unclear. OBJECTIVE The aims of this study were to examine the associations between an anti-inflammatory diet index (AIDI) and all-cause and cause-specific mortality, to determine the association between the AIDI and differences in survival time and to assess effect modification by smoking status. METHODS The study population included 68 273 Swedish men and women (aged 45-83 years) at baseline. The anti-inflammatory potential of the diet was estimated using the validated AIDI, which includes 11 potential anti-inflammatory and five potential pro-inflammatory foods. Cox proportional hazards and Laplace regression were used to estimate hazard ratios and differences in survival time. RESULTS During 16 years of follow-up (1 057 959 person-years), 16 088 deaths [5980 due to cardiovascular disease (CVD) and 5252 due to cancer] were recorded. Participants in the highest versus lowest quartile of the AIDI had lower risks of all-cause (18% reduction, 95% CI: 14-22%), CVD (20%, 95% CI: 14-26%) and cancer (13%, 95% CI: 5-20%) mortality. The strongest inverse associations between the highest and lowest quartiles of AIDI and risk of mortality were observed in current smokers: 31%, 36% and 22% lower risks of all-cause, CVD and cancer mortality, respectively. The difference in survival time between current smokers in the lowest AIDI quartile and never smokers in the highest quartile was 4.6 years. CONCLUSION Adherence to a diet with high anti-inflammatory potential may reduce all-cause, CVD and cancer mortality and prolong survival time especially amongst smokers.
Collapse
Affiliation(s)
- J Kaluza
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Nutrition Research Laboratory, Department of Human Nutrition, Warsaw, University of Life Sciences-SGGW, Warsaw, Poland.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - N Håkansson
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - H R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - N Orsini
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - K Michaëlsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - A Wolk
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
73
|
Isom CA, Shrubsole MJ, Cai Q, Smalley WE, Ness RM, Zheng W, Murff HJ. Arachidonic acid and colorectal adenoma risk: a Mendelian randomization study. Clin Epidemiol 2018; 11:17-22. [PMID: 30588120 PMCID: PMC6302799 DOI: 10.2147/clep.s186883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Previous studies have shown a link between increased dietary intake of arachidonic acid (ARA) and colorectal neoplasms. It has been shown that erythrocyte phospholipid membrane concentrations of ARA are strongly determined by genetic variation. Fatty acid desaturase (FADS) controls the rate limiting step in ARA production, and FADS variant rs174537 has been shown to be responsible for up to 18.6% of the variation seen. To determine if a causal association exists between erythrocyte membrane ARA concentrations and colorectal adenomas, we conducted a Mendelian randomization (MR) analysis using rs174537 as an instrumental variable (IV). MR analysis was chosen because it is less susceptible to bias and confounding. PATIENTS AND METHODS A case-control study was performed using the Tennessee Colorectal Polyps Study. Patients were matched on age, gender, race, facility site, and year of colonoscopy. Cases were defined as any colorectal adenoma on colonoscopy (n=909) and controls were polyp free (n=855). A two-stage logistic regression was conducted using rs174537 as the IV with the dependent variable being the presence of a colorectal adenoma on colonoscopy. RESULTS Cases were older (59 vs 57 years of age, P<0.0001), and more likely to use alcohol (47.4% vs 19.8%, P=0.001) and to smoke (77.0% vs 66.9%, P<0.0001). There was no statistically significant difference in: age, sex, alcohol use, body mass index (BMI), or NSAID use when stratified by the rs174537 alleles. Genotype was strongly associated with erythrocyte membrane ARA concentrations (P<0.0001). We found no evidence of an association between our IV (rs174537) and colorectal adenomas (P=0.41). CONCLUSION In our MR study increased erythrocyte ARA concentrations were not associated with the risk of colorectal adenomas.
Collapse
Affiliation(s)
- Chelsea A Isom
- Department of General Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Martha J Shrubsole
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA,
| | - Qiuyin Cai
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Walter E Smalley
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Reid M Ness
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA,
| | - Harvey J Murff
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA,
- Division of General Internal Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA,
| |
Collapse
|
74
|
Ducheix S, Peres C, Härdfeldt J, Frau C, Mocciaro G, Piccinin E, Lobaccaro JM, De Santis S, Chieppa M, Bertrand-Michel J, Plateroti M, Griffin JL, Sabbà C, Ntambi JM, Moschetta A. Deletion of Stearoyl-CoA Desaturase-1 From the Intestinal Epithelium Promotes Inflammation and Tumorigenesis, Reversed by Dietary Oleate. Gastroenterology 2018; 155:1524-1538.e9. [PMID: 30063922 DOI: 10.1053/j.gastro.2018.07.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS The enzyme stearoyl-coenzyme A desaturase 1 (SCD or SCD1) produces monounsaturated fatty acids by introducing double bonds into saturated bonds between carbons 9 and 10, with oleic acid as the main product. SCD1 is present in the intestinal epithelium, and fatty acids regulate cell proliferation, so we investigated the effects of SCD1-induced production of oleic acid in enterocytes in mice. METHODS We generated mice with disruption of Scd1 selectively in the intestinal epithelium (iScd1-/- mice) on a C57BL/6 background; iScd1+/+ mice were used as controls. We also generated iScd1-/-ApcMin/+ mice and studied cancer susceptibility. Mice were fed a chow, oleic acid-deficient, or oleic acid-rich diet. Intestinal tissues were collected and analyzed by histology, reverse transcription quantitative polymerase chain reaction, immunohistochemistry, and mass spectrometry, and tumors were quantified and measured. RESULTS Compared with control mice, the ileal mucosa of iScd1-/- mice had a lower proportion of palmitoleic (C16:1 n-7) and oleic acids (C18:1 n-9), with accumulation of stearic acid (C18:0); this resulted a reduction of the Δ9 desaturation ratio between monounsaturated (C16:1 n-7 and C18:1 n-9) and saturated (C16:0 and C18:0) fatty acids. Ileal tissues from iScd1-/- mice had increased expression of markers of inflammation activation and crypt proliferative genes compared with control mice. The iScd1-/-ApcMin/+ mice developed more and larger tumors than iScd1+/+ApcMin/+ mice. iScd1-/-ApcMin/+ mice fed the oleic acid-rich diet had reduced intestinal inflammation and significantly lower tumor burden compared with mice fed a chow diet. CONCLUSIONS In studies of mice, we found intestinal SCD1 to be required for synthesis of oleate in the enterocytes and maintenance of fatty acid homeostasis. Dietary supplementation with oleic acid reduces intestinal inflammation and tumor development in mice.
Collapse
Affiliation(s)
- Simon Ducheix
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia
| | - Claudia Peres
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia
| | - Jennifer Härdfeldt
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia
| | - Carla Frau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Département de la recherche, Lyon, France
| | - Gabriele Mocciaro
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Elena Piccinin
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia
| | - Jean-Marc Lobaccaro
- INSERM U 1103, CNRS, UMR 6293, Université Clermont Auvergne, GReD, F-6300 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Stefania De Santis
- IRCCS National Institute of Gastroenterology S. de Bellis, Castellana Grotte, Italy
| | - Marcello Chieppa
- IRCCS National Institute of Gastroenterology S. de Bellis, Castellana Grotte, Italy
| | - Justine Bertrand-Michel
- Lipidomic Facility, MetaboHUB, INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Michelina Plateroti
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Département de la recherche, Lyon, France
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Carlo Sabbà
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia
| | - James M Ntambi
- University of Wisconsin Madison, Departments of Biochemistry and of Nutritional Sciences, Madison, Wisconsin
| | - Antonio Moschetta
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia; IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italia.
| |
Collapse
|
75
|
Dadfarma A, Shayanfar M, Benisi-Kohansal S, Mohammad-Shirazi M, Sharifi G, Hosseini S, Esmaillzadeh A. Dietary Polyunsaturated Fat Intake in Relation to Glioma: A Case-Control Study. Nutr Cancer 2018; 70:1026-1033. [PMID: 30321055 DOI: 10.1080/01635581.2018.1494845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study aimed to assess the association of dietary polyunsaturated fatty acid (PUFA) and risk of glioma among the Iranian population. A case-control study carried out among 128 newly diagnosed glioma adult patients with pathologically confirmed samples along with 256 sex- and age-matched controls. Dietary intake was examined by means of a validated semiquantitative food frequency questionnaire (FFQ). Total PUFA intake was computed by summing up dietary PUFAs from all food items in the questionnaire. Participants were categorized based on quartile cut-points of dietary PUFA intake. After taking into account the effect of age, sex and energy intake, individuals in the top quartile of PUFA intake were 77% less likely to have glioma than those in the bottom quartile (OR: 0.23; 95% CI: 0.11-0.48). Further adjustment for other potential variables strengthened the association. Additional controlling of nutrients did not alter the findings (OR: 0.19; 95% CI: 0.04-0.78). When we took into account the effect of body mass index (BMI), we found those in the highest quartile of PUFA intake has lower odds of glioma than those in the lowest (OR: 0.20; 95% CI: 0.05-0.84). We found dietary PUFA intake was inversely associated with risk of glioma in this case-control study on Iranian adults.
Collapse
Affiliation(s)
- Alireza Dadfarma
- a Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics , International Campus, Tehran University of Medical Sciences (IC-TUMS) , Tehran , Iran
| | - Mehdi Shayanfar
- b Department of Clinical Nutrition and Dietetics , National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Sanaz Benisi-Kohansal
- c Department of Community Nutrition, School of Nutrition and Food Science , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Minoo Mohammad-Shirazi
- c Department of Community Nutrition, School of Nutrition and Food Science , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Giuve Sharifi
- d Department of Neurosurgery , Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Saeed Hosseini
- a Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics , International Campus, Tehran University of Medical Sciences (IC-TUMS) , Tehran , Iran.,e Endocrinology and Metabolism Research Center , Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences , Tehran , Iran
| | - Ahmad Esmaillzadeh
- f Obesity and Eating Habits Research Center , Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences , Tehran , Iran.,g Department of Community Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences , Tehran , Iran.,h Department of Community Nutrition , Isfahan University of Medical Sciences , Isfahan , Iran
| |
Collapse
|
76
|
Block KI, Block PB, Gyllenhaal C. Integrative Treatment for Colorectal Cancer: A Comprehensive Approach. J Altern Complement Med 2018; 24:890-901. [PMID: 30247965 DOI: 10.1089/acm.2018.0125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A comprehensive approach to integrative treatment of colorectal cancer (CRC) patients involves three spheres of intervention: lifestyle, biology, and conventional treatment. Individualization of treatment is emphasized. The lifestyle sphere includes nutritional therapies, biobehavioral strategies with circadian interventions, and physical care modalities. The biology sphere comprises six host factors in the patient's internal biochemical environment or "terrain": inflammation, glycemia, oxidative stress, immune dysregulation, coagulopathy, and stress chemistries. Laboratory testing of these factors guides integrative lifestyle and supplement recommendations. The conventional treatment sphere includes individualized lifestyle recommendations, and supplements or drugs used to enhance tolerability or effectiveness of conventional treatments. Innovative strategies are implemented, including chronomodulated chemotherapy, chemosensitivity testing, and using results of molecular genomic testing to guide nutritional infusions and supplement recommendations. In the lifestyle sphere, substantial evidence from cohort studies supports recommendations for a diet that emphasizes plant and fish proteins, healthful fats in amounts that are tailored to the clinical circumstance of the patient, and carbohydrates based on unrefined whole grains, vegetables and whole fruits. High glycemic diets and refined carbohydrates, especially sugar-sweetened beverages, should be avoided. Biobehavioral strategies include practice of the relaxation response and related approaches. In addition, specific strategies to promote robust circadian organization (CO) are used to combat quality of life concerns and worsened survival that accompany disrupted CO. Physical activity, including aerobic activity and muscle strengthening, is recommended at all disease stages. In the biology sphere, supplements and lifestyle recommendations for inflammation and glycemia are discussed. In the conventional treatment sphere, supplements and innovative and complementary therapies that may remedy treatment toxicities are reviewed. Approaching CRC treatment with a comprehensive, individualized intervention enables safe and beneficial outcomes in this patient population, which can vary widely in individual biology, treatment toxicities, and disease complications. Further research in integrative therapies for CRC patients is needed.
Collapse
Affiliation(s)
- Keith I Block
- Block Center for Integrative Cancer Treatment , Skokie, IL
| | - Penny B Block
- Block Center for Integrative Cancer Treatment , Skokie, IL
| | | |
Collapse
|
77
|
Serra N, Di Carlo P, Gulotta G, d' Arpa F, Giammanco A, Colomba C, Melfa G, Fasciana T, Sergi C. Bactibilia in women affected with diseases of the biliary tract and pancreas. A STROBE guidelines-adherent cross-sectional study in Southern Italy. J Med Microbiol 2018; 67:1090-1095. [PMID: 29975626 DOI: 10.1099/jmm.0.000787] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Bile is a hepatobiliary lipid-rich sterile solution, and its colonization by microorganisms defines the condition of bactibilia. In this study, we aimed to assess the bile microbiological flora and its potential link with comorbidity in women. METHODOLOGY We performed a microbiologic investigation on 53 female patients with biliopancreatic diseases who granted consent, and we analysed the data using a MATLAB platform. RESULTS We found that the most frequent disease associated with bactibilia was pancreas head carcinoma (PHC) (P=0.0015), while the least frequent disease was gall bladder carcinoma (GBC) (P=0.0002). The most common microorganisms were Pseudomonas spp. (P<0.0001) and Escherichia coli (P<0.0001). In particular Pseudomonas spp. and E. coli were negatively correlated to PHC presence and positively correlated to CCA by both univariate and multivariate analysis. CONCLUSIONS Gram-negative bacteria have been linked to a tumour-associated inflammatory status. In the last 30 years, the analysis of mortality rate in Italy for PHC and GBC shows an increasing and a decreasing trend, respectively. Although this study targeted only 53 patients and does not reflect the frequency of diagnosis in a Southern Italian population, the decrease in GBC may raise the suggestion ofnon-adherence to a Mediterranean diet that may have become more prevalent in Southern Italy since the 1990s.
Collapse
Affiliation(s)
- Nicola Serra
- 1Department of Pediatrics, University Federico II, Naples, Italy
| | - Paola Di Carlo
- 2Department of Sciences for Health Promotion and Mother and Child Care, University of Palermo, Italy
| | - Gaspare Gulotta
- 3Department of General Surgery and Emergency, University of Palermo, Italy
| | - Francesco d' Arpa
- 3Department of General Surgery and Emergency, University of Palermo, Italy
| | - Anna Giammanco
- 2Department of Sciences for Health Promotion and Mother and Child Care, University of Palermo, Italy
| | - Claudia Colomba
- 2Department of Sciences for Health Promotion and Mother and Child Care, University of Palermo, Italy
| | - Giuseppina Melfa
- 3Department of General Surgery and Emergency, University of Palermo, Italy
| | - Teresa Fasciana
- 2Department of Sciences for Health Promotion and Mother and Child Care, University of Palermo, Italy
| | - Consolato Sergi
- 5Stollery Children's Hospital, University of Alberta, Edmonton, AB, Canada
- 4Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
78
|
D'Hue CA, Dhawan D, Peat T, Ramos-Vara J, Jarmusch A, Knapp DW, Cooks RG. Fatty Acid Patterns Detected By Ambient Ionization Mass Spectrometry in Canine Invasive Urothelial Carcinoma From Dogs of Different Breeds. Bladder Cancer 2018; 4:283-291. [PMID: 30112439 PMCID: PMC6087441 DOI: 10.3233/blc-170125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background: In early work ambient ionization mass spectrometry (MS) revealed lipid patterns distinguishing muscle invasive bladder cancer (invasive urothelial carcinoma, InvUC) from normal urothelium. A new ambient ionization MS approach, touch spray MS (TS-MS) can rapidly generate mass spectra in real time, potentially in a point-of-care setting. A tissue sample removed from a patient is touched by a probe, and mass spectra generated within seconds. Objective: To validate TS-MS methods using specimens from naturally-occurring InvUC in dogs where the cancer closely mimics the human condition, and to demonstrate proof-of-concept that TS-MS can elucidate lipid patterns distinguishing InvUC from normal urothelium. Methods: Samples of normal urothelium and InvUC from dogs of several breeds were analyzed by TS-MS with correlative histopathology across each sample. Results were compared to those obtained with desorption electrospray ionization mass spectrometry (DESI-MS), a more traditional method. Data were analyzed by Principal Component Analysis and Linear Discriminant Analysis. Results: Lipid patterns identified by TS-MS, as well as by DESI-MS, differed between InvUC and normal urothelium with m/z 281.5 (oleic acid) and m/z 563.5 (oleic acid dimer) substantially contributing to the differences. Using histologic diagnosis as the gold standard, TS-MS had a global prediction rate of 93%. Conclusions: TS-MS can be used to identify lipid patterns that differentiate canine InvUC from normal urothelium. Optimization of TS-MS could lead to a point-of-care approach to distinguish cancer from normal in ex vivo tissues in real time, and to define biochemical processes leading to cancer development and progression.
Collapse
Affiliation(s)
- Cedric A D'Hue
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Tyler Peat
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - José Ramos-Vara
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Alan Jarmusch
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Deborah W Knapp
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, West Lafayette, IN, USA
| |
Collapse
|
79
|
Shiao SPK, Grayson J, Lie A, Yu CH. Personalized Nutrition-Genes, Diet, and Related Interactive Parameters as Predictors of Cancer in Multiethnic Colorectal Cancer Families. Nutrients 2018; 10:nu10060795. [PMID: 29925788 PMCID: PMC6024706 DOI: 10.3390/nu10060795] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 01/04/2023] Open
Abstract
To personalize nutrition, the purpose of this study was to examine five key genes in the folate metabolism pathway, and dietary parameters and related interactive parameters as predictors of colorectal cancer (CRC) by measuring the healthy eating index (HEI) in multiethnic families. The five genes included methylenetetrahydrofolate reductase (MTHFR) 677 and 1298, methionine synthase (MTR) 2756, methionine synthase reductase (MTRR 66), and dihydrofolate reductase (DHFR) 19bp, and they were used to compute a total gene mutation score. We included 53 families, 53 CRC patients and 53 paired family friend members of diverse population groups in Southern California. We measured multidimensional data using the ensemble bootstrap forest method to identify variables of importance within domains of genetic, demographic, and dietary parameters to achieve dimension reduction. We then constructed predictive generalized regression (GR) modeling with a supervised machine learning validation procedure with the target variable (cancer status) being specified to validate the results to allow enhanced prediction and reproducibility. The results showed that the CRC group had increased total gene mutation scores compared to the family members (p < 0.05). Using the Akaike’s information criterion and Leave-One-Out cross validation GR methods, the HEI was interactive with thiamine (vitamin B1), which is a new finding for the literature. The natural food sources for thiamine include whole grains, legumes, and some meats and fish which HEI scoring included as part of healthy portions (versus limiting portions on salt, saturated fat and empty calories). Additional predictors included age, as well as gender and the interaction of MTHFR 677 with overweight status (measured by body mass index) in predicting CRC, with the cancer group having more men and overweight cases. The HEI score was significant when split at the median score of 77 into greater or less scores, confirmed through the machine-learning recursive tree method and predictive modeling, although an HEI score of greater than 80 is the US national standard set value for a good diet. The HEI and healthy eating are modifiable factors for healthy living in relation to dietary parameters and cancer prevention, and they can be used for personalized nutrition in the precision-based healthcare era.
Collapse
Affiliation(s)
- S Pamela K Shiao
- College of Nursing and Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - James Grayson
- Hull College of Business, Augusta University, Augusta, GA 30912, USA.
| | - Amanda Lie
- Citrus Valley Health Partners, Foothill Presbyterian Hospital, Glendora, CA 91741, USA.
| | - Chong Ho Yu
- School of Business, University of Phoenix, Pasadena, CA 91101, USA.
| |
Collapse
|
80
|
Abstract
Purpose of review In this paper, we summarize prior studies that have used Mendelian Randomization (MR) methods to study the effects of exposures, lifestyle factors, physical traits, and/or biomarkers on cancer risk in humans. Many such risk factors have been associated with cancer risk in observational studies, and the MR approach can be used to provide evidence as to whether these associations represent causal relationships. MR methods require a risk factor of interest to have known genetic determinants that can be used as proxies for the risk factor (i.e., "instrumental variables" or IVs), and these can be used to obtain an effect estimate that, under certain assumptions, is not prone to bias caused by unobserved confounding or reverse causality. This review seeks to describe how MR studies have contributed to our understanding of cancer causation. Recent findings We searched the published literature and identified 76 MR studies of cancer risk published prior to October 31, 2017. Risk factors commonly studied included alcohol consumption, Vitamin D, anthropometric traits, telomere length, lipid traits, glycemic traits, and markers of inflammation. Risk factors showing compelling evidence of a causal association with risk for at least one cancer type include alcohol consumption (for head/neck and colorectal), adult body mass index (increases risk for multiple cancers, but decreases risk for breast), height (increases risk for breast, colorectal, and lung; decreases risk for esophageal), telomere length (increases risk for lung adenocarcinoma, melanoma, renal cell carcinoma, glioma, B-cell lymphoma subtypes, chronic lymphocytic leukemia, and neuroblastoma), and hormonal factors (affects risk for sex-steroid sensitive cancers). Summary This review highlights alcohol consumption, body mass index, height, telomere length, and the hormonal exposures as factors likely to contribute to cancer causation. This review also highlights the need to study specific cancer types, ideally subtypes, as the effects of risk factors can be heterogeneous across cancer types. As consortia-based genome-wide association studies increase in sample size and analytical methods for MR continue to become more sophisticated, MR will become an increasingly powerful tool for understanding cancer causation.
Collapse
|
81
|
Notarnicola M, Lorusso D, Tutino V, De Nunzio V, De Leonardis G, Marangelli G, Guerra V, Veronese N, Caruso MG, Giannelli G. Differential Tissue Fatty Acids Profiling between Colorectal Cancer Patients with and without Synchronous Metastasis. Int J Mol Sci 2018; 19:ijms19040962. [PMID: 29570667 PMCID: PMC5979339 DOI: 10.3390/ijms19040962] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
The early detection of colorectal cancer and determination of its metastatic potential are important factors to set up more efficacious therapeutic strategies. In the present study, we hypothesize that fatty acids analysis in colorectal cancer patients can discriminate between metastatic and non-metastatic patients. Fifty-one consecutive patients with histologically proven colorectal cancer were enrolled in the study and the presence of synchronous metastasis was detected in 25 of these 51 patients. Fatty acid profile analysis in red blood cell membranes was not able to discriminate the metastatic colorectal cancer patients from those without metastasis. However, significant differences in the tumor tissue fatty acid profile were found in metastatic cancer patients when compared to patients without metastasis. Metastatic patients showed significantly lower percentages of Eicosapentaenoic acid (EPA) and higher levels of γ-linolenic acid (GLA), a n-3- and n-6-Polyunsaturated fatty acid (PUFA), respectively. Our findings, suggesting that membrane lipid rearrangement could influence the cellular function and make the cell more prone to metastasis, offer the opportunity to develop nutritional strategies that may be helpful in the prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Dionigi Lorusso
- Division of Surgery, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Giampiero De Leonardis
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Gisella Marangelli
- Division of Surgery, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Vito Guerra
- Clinical Trial Unit, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Nicola Veronese
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Maria Gabriella Caruso
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology-Research Hospital"S. de Bellis", Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| |
Collapse
|
82
|
Jain R, Austin Pickens C, Fenton JI. The role of the lipidome in obesity-mediated colon cancer risk. J Nutr Biochem 2018; 59:1-9. [PMID: 29605789 DOI: 10.1016/j.jnutbio.2018.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Obesity is a state of chronic inflammation influenced by lipids such as fatty acids and their secondary oxygenated metabolites deemed oxylipids. Many such lipid mediators serve as potent signaling molecules of inflammation, which can further alter lipid metabolism and lead to carcinogenesis. For example, sphingosine-1-phosphate activates cyclooxygenase-2 in endothelial cells resulting in the conversion of arachidonic acid (AA) to prostaglandin E2 (PGE2). PGE2 promotes colon cancer cell growth. In contrast, the less studied path of AA oxygenation via cytochrome p450 enzymes produces epoxyeicosatetraenoic acids (EETs), whose anti-inflammatory properties cause shrinking of enlarged adipocytes, a characteristic of obesity, through the liberation of fatty acids. It is now thought that EET depletion occurs in obesity and may contribute to colon cell carcinogenesis. Meanwhile, gangliosides, a type of sphingolipid, are cell surface signaling molecules that contribute to the apoptosis of colon tumor cells. Many of these discoveries have been made recently and the mechanisms are still not fully understood, leading to an exciting new chapter of lipidomic research. In this review, mechanisms behind obesity-associated colon cancer are discussed with a focus on the role of small lipid signaling molecules in the process. Specifically, changes in lipid metabolite levels during obesity and the development of colon cancer, as well as novel biomarkers and targets for therapy, are discussed.
Collapse
Affiliation(s)
- Raghav Jain
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - C Austin Pickens
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
83
|
PGC1α: Friend or Foe in Cancer? Genes (Basel) 2018; 9:genes9010048. [PMID: 29361779 PMCID: PMC5793199 DOI: 10.3390/genes9010048] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
The PGC1 family (Peroxisome proliferator-activated receptor γ (PPARγ) coactivators) of transcriptional coactivators are considered master regulators of mitochondrial biogenesis and function. The PGC1α isoform is expressed especially in metabolically active tissues, such as the liver, kidneys and brain, and responds to energy-demanding situations. Given the altered and highly adaptable metabolism of tumor cells, it is of interest to investigate PGC1α in cancer. Both high and low levels of PGC1α expression have been reported to be associated with cancer and worse prognosis, and PGC1α has been attributed with oncogenic as well as tumor suppressive features. Early in carcinogenesis PGC1α may be downregulated due to a protective anticancer role, and low levels likely reflect a glycolytic phenotype. We suggest mechanisms of PGC1α downregulation and how these might be connected to the increased cancer risk that obesity is now known to entail. Later in tumor progression PGC1α is often upregulated and is reported to contribute to increased lipid and fatty acid metabolism and/or a tumor cell phenotype with an overall metabolic plasticity that likely supports drug resistance as well as metastasis. We conclude that in cancer PGC1α is neither friend nor foe, but rather the obedient servant reacting to metabolic and environmental cues to benefit the tumor cell.
Collapse
|